AD8226BRZ-R7 [ADI]

Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier; 宽电源电压范围,轨到轨输出仪表放大器
AD8226BRZ-R7
型号: AD8226BRZ-R7
厂家: ADI    ADI
描述:

Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier
宽电源电压范围,轨到轨输出仪表放大器

仪表放大器
文件: 总28页 (文件大小:686K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Wide Supply Range, Rail-to-Rail  
Output Instrumentation Amplifier  
AD8226  
FEATURES  
PIN CONFIGURATION  
Gain set with 1 external resistor  
Gain range: 1 to 1000  
Input voltage goes below ground  
Inputs protected beyond supplies  
Very wide power supply range  
Single supply: 2.2 V to 36 V  
AD8226  
1
2
3
4
8
7
6
5
–IN  
+V  
S
R
R
V
OUT  
G
G
REF  
–V  
+IN  
S
TOP VIEW  
(Not to Scale)  
Dual supplies: 1.3ꢀ V to 18 V  
Bandwidth (G = 1): 1.ꢀ MHz  
Figure 1.  
CMRR (G = 1): 90 dB minimum for BR models  
Input noise: 22 nV/√Hz  
Typical supply current: 3ꢀ0 μA  
Specified temperature: −40°C to +12ꢀ°C  
8-lead SOIC and MSOP packages  
Table 1. Instrumentation Amplifiers by Category1  
General  
Purpose  
Zero  
Drift  
Military  
Grade  
Low  
Power  
High Speed  
PGA  
AD8220  
AD8221  
AD8222  
AD8224  
AD8228  
AD8295  
AD8231 AD620  
AD8290 AD621  
AD8293 AD524  
AD8553 AD526  
AD8556 AD624  
AD8557  
AD627  
AD623  
AD8223 AD8253  
AD8226  
AD8250  
AD8251  
APPLICATIONS  
Industrial process controls  
Bridge amplifiers  
Medical instrumentation  
Portable data acquisition  
Multichannel systems  
AD8227  
1 Visit www.analog.com for the latest instrumentation amplifiers.  
GENERAL DESCRIPTION  
The AD8226 is a low cost, wide supply range instrumentation  
amplifier that requires only one external resistor to set any gain  
between 1 and 1000.  
AD8226 can handle voltages beyond the rails. For example,  
with a 5 V supply, the part is guaranteed to withstand 35 V  
at the input with no damage. Minimum as well as maximum  
input bias currents are specified to facilitate open wire detection.  
The AD8226 is designed to work with a variety of signal  
voltages. A wide input range and rail-to-rail output allow the  
signal to make full use of the supply rails. Because the input  
range also includes the ability to go below the negative supply,  
small signals near ground can be amplified without requiring dual  
supplies. The AD8226 operates on supplies ranging from 1.35 V  
to 18 V for dual supplies and 2.2 V to 36 V for single supply.  
The AD8226 is perfect for multichannel, space-constrained  
industrial applications. Unlike other low cost, low power  
instrumentation amplifiers, the AD8226 is designed with  
a minimum gain of 1 and can easily handle 10 V signals.  
With its MSOP package and 125°C temperature rating, the  
AD8226 thrives in tightly packed, zero airflow designs.  
The robust AD8226 inputs are designed to connect to real-  
world sensors. In addition to its wide operating range, the  
The AD8226 is available in 8-lead MSOP and SOIC packages,  
and is fully specified for −40°C to +125°C operation.  
For a device with a similar package and performance as the  
AD8226 but with gain settable from 5 to 1000, consider using  
the AD8227.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2009 Analog Devices, Inc. All rights reserved.  
 
AD8226  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Gain Selection............................................................................. 19  
Reference Terminal .................................................................... 20  
Input Voltage Range................................................................... 20  
Layout .......................................................................................... 20  
Input Bias Current Return Path ............................................... 21  
Input Protection ......................................................................... 22  
Radio Frequency Interference (RFI)........................................ 22  
Applications Information.............................................................. 23  
Differential Drive ....................................................................... 23  
Precision Strain Gage................................................................. 24  
Driving an ADC ......................................................................... 24  
Outline Dimensions....................................................................... 25  
Ordering Guide .......................................................................... 25  
Applications....................................................................................... 1  
Pin Configuration............................................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 7  
Thermal Resistance ...................................................................... 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
Typical Performance Characteristics ............................................. 9  
Theory of Operation ...................................................................... 19  
Architecture................................................................................. 19  
REVISION HISTORY  
7/09—Rev. 0 to Rev. A  
Added BRZ and BRM Models ..........................................Universal  
Changes to Features Section............................................................ 1  
Changes to Table 1............................................................................ 1  
Changes to General Description Section ...................................... 1  
Changes to Gain vs. Temperature Parameter, Output Parameter,  
and Operating Range Parameter, Table 2 .........................................4  
Changes to Common-Mode Rejection Ratio (CMRR) Parameter  
and to Input Offset, VOSO, Average Temperature Coefficient  
Parameter, Table 3 ........................................................................ 5  
Changes to Gain vs. Temperature Parameter, Table 3 ................. 6  
Changes to Gain Selection Section............................................... 19  
Changes to Reference Terminal Section and Input Voltage  
Range Section.............................................................................. 20  
Changes to Ordering Guide .......................................................... 25  
1/09—Revision 0: Initial Version  
Rev. A | Page 2 of 28  
 
AD8226  
SPECIFICATIONS  
+VS = +15 V, VS = −15 V, VREF = 0 V, TA = 25°C, G = 1, RL = 10 kΩ, specifications referred to input, unless otherwise noted.  
Table 2.  
ARZ, ARMZ  
Typ  
BRZ, BRMZ  
Typ  
Parameter  
Conditions  
Min  
Max  
Min  
Max  
Unit  
COMMON-MODE REJECTION RATIO (CMRR)  
VCM = −10 V to +10 V  
CMRR with DC to 60 Hz  
G = 1  
G = 10  
80  
90  
dB  
dB  
dB  
dB  
100  
105  
105  
105  
110  
110  
G = 100  
G = 1000  
CMRR with DC at 5 kHz  
G = 1  
80  
80  
dB  
dB  
dB  
dB  
G = 10  
90  
90  
G = 100  
90  
90  
G = 1000  
NOISE  
100  
100  
Total noise: eN = √(eNI2 + (eNO/G)2)  
1 kHz  
Voltage Noise  
Input Voltage Noise, eNI  
Output Voltage Noise, eNO  
RTI  
22  
24  
22  
24  
nV/√Hz  
nV/√Hz  
120  
125  
120  
125  
f = 0.1 Hz to 10 Hz  
G = 1  
2
2
μV p-p  
μV p-p  
μV p-p  
fA/√Hz  
pA p-p  
G = 10  
0.5  
0.4  
100  
3
0.5  
0.4  
100  
3
G = 100 to 1000  
Current Noise  
f = 1 kHz  
f = 0.1 Hz to 10 Hz  
VOLTAGE OFFSET  
Total offset voltage:  
VOS = VOSI + (VOSO/G)  
Input Offset, VOSI  
Average Temperature Coefficient  
Output Offset, VOSO  
Average Temperature Coefficient  
Offset RTI vs. Supply (PSR)  
G = 1  
VS = 5 V to 15 V  
TA = −40°C to +125°C  
VS = 5 V to 15 V  
TA = −40°C to +125°C  
VS = 5 V to 15 V  
200  
2
100  
1
μV  
0.5  
2
0.5  
1
μV/°C  
μV  
1000  
10  
500  
5
μV/°C  
80  
90  
dB  
dB  
dB  
dB  
G = 10  
100  
105  
105  
105  
110  
110  
G = 100  
G = 1000  
INPUT CURRENT  
Input Bias Current1  
TA = +25°C  
5
5
5
20  
15  
30  
70  
27  
25  
35  
5
5
5
20  
15  
30  
70  
27  
25  
35  
nA  
TA = +125°C  
nA  
TA = −40°C  
nA  
Average Temperature Coefficient  
Input Offset Current  
TA = −40°C to +125°C  
TA = +25°C  
pA/°C  
nA  
1.5  
1.5  
2
0.5  
0.5  
0.5  
TA = +125°C  
nA  
TA = −40°C  
nA  
Average Temperature Coefficient  
TA = −40°C to +125°C  
5
5
pA/°C  
REFERENCE INPUT  
RIN  
100  
7
100  
7
kΩ  
μA  
V
IIN  
Voltage Range  
Reference Gain to Output  
Reference Gain Error  
DYNAMIC RESPONSE  
Small-Signal −3 dB Bandwidth  
G = 1  
−VS  
+VS  
−VS  
+VS  
1
1
V/V  
%
0.01  
0.01  
1500  
160  
20  
1500  
160  
20  
kHz  
kHz  
kHz  
kHz  
G = 10  
G = 100  
G = 1000  
2
2
Rev. A | Page 3 of 28  
 
 
AD8226  
ARZ, ARMZ  
Typ  
BRZ, BRMZ  
Typ  
Parameter  
Settling Time 0.01%  
G = 1  
Conditions  
Min  
Max  
Min  
Max  
Unit  
10 V step  
25  
25  
μs  
G = 10  
15  
15  
μs  
G = 100  
40  
40  
μs  
G = 1000  
350  
0.4  
0.6  
350  
0.4  
0.6  
μs  
Slew Rate  
G = 1  
V/μs  
V/μs  
G = 5 to 100  
G = 1 + (49.4 kΩ/RG)  
GAIN  
Gain Range  
Gain Error  
G = 1  
1
1000  
1
1000  
V/V  
VOUT 10 V  
0.04  
0.3  
0.01  
0.1  
%
%
G = 5 to 1000  
Gain Nonlinearity  
G = 1 to 10  
G = 100  
VOUT = −10 V to +10 V  
RL ≥ 2 kΩ  
10  
10  
ppm  
ppm  
ppm  
RL ≥ 2 kΩ  
75  
75  
G = 1000  
Gain vs. Temperature2  
RL ≥ 2 kΩ  
750  
750  
G = 1  
TA = −40°C to +85°C  
TA = 85°C to 125°C  
TA = −40°C to +125°C  
VS = 1.35 V to +36 V  
5
1
ppm/°C  
ppm/°C  
ppm/°C  
5
2
G > 1  
−100  
−100  
INPUT  
Input Impedance  
Differential  
0.8||2  
0.4||2  
0.8||2  
0.4||2  
GΩ||pF  
Common Mode  
Input Operating Voltage Range3  
GΩ||pF  
TA = +25°C  
−VS − 0.1  
−VS − 0.05  
−VS − 0.15  
+VS − 40  
+VS − 0.8  
+VS − 0.6  
+VS − 0.9  
−VS + 40  
−VS − 0.1  
−VS − 0.05  
−VS − 0.15  
+VS − 40  
+VS − 0.8  
+VS − 0.6  
+VS − 0.9  
−VS + 40  
V
V
V
V
TA = +125°C  
TA = −40°C  
Input Overvoltage Range  
OUTPUT  
TA = −40°C to +125°C  
Output Swing  
RL = 2 kΩ to Ground  
TA = +25°C  
TA = +125°C  
TA = −40°C  
−VS + 0.4  
−VS + 0.4  
−VS + 1.2  
+VS − 0.7  
+VS – 1.0  
+VS – 1.1  
−VS + 0.4  
−VS + 0.4  
−VS + 1.2  
+VS − 0.7  
+VS – 1.0  
+VS – 1.1  
V
V
V
RL = 10 kΩ to Ground  
RL = 100 kΩ to Ground  
TA = +25°C  
TA = +125°C  
TA = −40°C  
−VS + 0.2  
−VS + 0.3  
−VS + 0.2  
+VS − 0.2  
+VS − 0.3  
+VS − 0.2  
−VS + 0.2  
−VS + 0.3  
−VS + 0.2  
+VS − 0.2  
+VS − 0.3  
+VS − 0.2  
V
V
V
TA = −40°C to +125°C  
−VS + 0.1  
1.35  
+VS − 0.1  
−VS + 0.1  
1.35  
+VS − 0.1  
V
Short-Circuit Current  
POWER SUPPLY  
13  
13  
mA  
Operating Range  
Quiescent Current  
Dual-supply operation  
TA = +25°C  
18  
425  
325  
525  
600  
+125  
18  
425  
325  
525  
600  
+125  
V
350  
250  
450  
525  
350  
250  
450  
525  
μA  
μA  
μA  
μA  
°C  
TA = −40°C  
TA = +85°C  
TA = +125°C  
TEMPERATURE RANGE  
−40  
−40  
1 The input stage uses pnp transistors; therefore, input bias current always flows into the part.  
2 The values specified for G > 1 do not include the effects of the external gain-setting resistor, RG.  
3 Input voltage range of the AD8226 input stage. The input range depends on the common-mode voltage, the differential voltage, the gain, and the reference voltage.  
See the Input Voltage Range section for more information.  
Rev. A | Page 4 of 28  
AD8226  
+VS = 2.7 V, −VS = 0 V, VREF = 0 V, TA = 25°C, G = 1, RL = 10 kΩ, specifications referred to input, unless otherwise noted.  
Table 3.  
ARZ, ARMZ  
BRZ, BRMZ  
Typ  
Parameter  
Conditions  
Min  
Typ  
Max  
Min  
Max  
Unit  
COMMON-MODE REJECTION RATIO (CMRR) VCM = 0 V to 1.7 V  
CMRR with DC to 60 Hz  
G = 1  
80  
90  
dB  
dB  
dB  
dB  
G = 10  
100  
105  
105  
105  
110  
110  
G = 100  
G = 1000  
CMRR with DC at 5 kHz  
G = 1  
80  
80  
dB  
dB  
dB  
dB  
G = 10  
90  
90  
G = 100  
90  
90  
G = 1000  
100  
100  
NOISE  
Total noise: eN = √(eNI2 + (eNO/G2))  
Voltage Noise  
1 kHz  
Input Voltage Noise, eNI  
22  
24  
22  
24  
nV/√Hz  
nV/√Hz  
Output Voltage Noise, eNO  
120  
125  
120  
125  
RTI  
f = 0.1 Hz to 10 Hz  
G = 1  
2.0  
0.5  
0.4  
100  
3
2.0  
0.5  
0.4  
100  
3
μV p-p  
μV p-p  
μV p-p  
fA/√Hz  
pA p-p  
G = 10  
G = 100 to 1000  
Current Noise  
f = 1 kHz  
f = 0.1 Hz to 10 Hz  
VOLTAGE OFFSET  
Input Offset, VOSI  
Total offset voltage: VOS = VOSI + (VOSO/G)  
200  
2
100  
1
μV  
Average Temperature Coefficient  
TA = −40°C to +125°C  
0.5  
2
0.5  
1
μV/°C  
μV  
Output Offset, VOSO  
Average Temperature Coefficient  
Offset RTI vs. Supply (PSR)  
G = 1  
1000  
10  
500  
5
TA = −40°C to +125°C  
VS = 0 V to 1.7 V  
μV/°C  
80  
90  
dB  
dB  
dB  
dB  
G = 10  
100  
105  
105  
105  
110  
110  
G = 100  
G = 1000  
INPUT CURRENT  
Input Bias Current1  
TA = +25°C  
5
5
5
20  
15  
30  
70  
27  
25  
35  
5
5
5
20  
15  
30  
70  
27  
25  
35  
nA  
TA = +125°C  
nA  
TA = −40°C  
nA  
Average Temperature Coefficient  
Input Offset Current  
TA = −40°C to +125°C  
TA = +25°C  
pA/°C  
nA  
1.5  
1.5  
1
0.5  
0.5  
0.1  
TA = +125°C  
nA  
TA = −40°C  
nA  
Average Temperature Coefficient  
TA =−40°C to +125°C  
5
5
pA/°C  
REFERENCE INPUT  
RIN  
100  
7
100  
7
kΩ  
μA  
V
IIN  
Voltage Range  
Reference Gain to Output  
Reference Gain Error  
DYNAMIC RESPONSE  
Small-Signal −3 dB Bandwidth  
G = 1  
−VS  
+VS  
−VS  
+VS  
1
1
V/V  
%
0.01  
0.01  
1500  
160  
20  
1500  
160  
20  
kHz  
kHz  
kHz  
kHz  
G = 10  
G = 100  
G = 1000  
2
2
Rev. A | Page 5 of 28  
 
AD8226  
ARZ, ARMZ  
BRZ, BRMZ  
Typ  
Parameter  
Settling Time 0.01%  
G = 1  
Conditions  
Min  
Typ  
Max  
Min  
Max  
Unit  
2 V step  
6
6
μs  
G = 10  
6
6
μs  
G = 100  
35  
350  
0.4  
0.6  
35  
350  
0.4  
0.6  
μs  
G = 1000  
μs  
Slew Rate  
G = 1  
V/μs  
V/μs  
G = 5 to 100  
G = 1 + (49.4 kΩ/RG)  
GAIN  
Gain Range  
Gain Error  
G = 1  
1
1000  
1
1000  
V/V  
VOUT = 0.8 V to 1.8 V  
VOUT = 0.2 V to 2.5 V  
0.04  
0.3  
0.01%  
0.1%  
%
%
G = 5 to 1000  
Gain vs. Temperature2  
G = 1  
TA = −40°C to +85°C  
5
1
2
ppm/°C  
ppm/°C  
ppm/°C  
TA = +85°C to +125°C  
TA = −40°C to +125°C  
−VS = 0 V, +VS = 2.7 V to 36 V  
5
G > 1  
−100  
INPUT  
Input Impedance  
Differential  
0.8||2  
0.4||2  
0.8||2  
0.4||2  
GΩ||pF  
Common Mode  
Input Operating Voltage Range3  
GΩ||pF  
TA = +25°C  
−0.1  
+VS − 0.7 −0.1  
+VS − 0.9 −0.15  
+VS − 0.6 −0.05  
−VS + 40 +VS − 40  
+VS − 0.7  
+VS − 0.9  
+VS − 0.6  
−VS + 40  
V
V
V
TA = −40°C  
−0.15  
−0.05  
+VS − 40  
TA = +125°C  
Input Overvoltage Range  
OUTPUT  
TA = −40°C to +125°C  
Output Swing  
RL = 10 kΩ to 1.35 V,  
TA = −40°C to +125°C  
0.1  
+VS − 0.1 0.1  
+VS − 0.1  
V
Short-Circuit Current  
POWER SUPPLY  
13  
13  
mA  
Operating Range  
Quiescent Current  
Single-supply operation  
2.2  
36  
2.2  
36  
V
TA = +25°C, −VS = 0 V, +VS = 2.7 V  
TA = −40°C, −VS = 0 V, +VS = 2.7 V  
TA = +85°C, −VS = 0 V, +VS = 2.7 V  
TA = +125°C, −VS = 0 V, +VS = 2.7 V  
325  
250  
425  
475  
400  
325  
500  
550  
+125  
325  
250  
425  
475  
400  
325  
500  
550  
+125  
μA  
μA  
μA  
μA  
°C  
TEMPERATURE RANGE  
−40  
−40  
1 Input stage uses pnp transistors; therefore, input bias current always flows into the part.  
2 The values specified for G > 1 do not include the effects of the external gain-setting resistor, RG.  
3 Input voltage range of the AD8226 input stage. The input range depends on the common-mode voltage, the differential voltage, the gain, and the reference voltage.  
See the Input Voltage Range section for more information.  
Rev. A | Page 6 of 28  
AD8226  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
THERMAL RESISTANCE  
θJA is specified for a device in free air.  
Parameter  
Rating  
Supply Voltage  
18 V  
Table 5. Thermal Resistance  
Package  
Output Short-Circuit Current  
Maximum Voltage at −IN or +IN  
Minimum Voltage at −IN or +IN  
REF Voltage  
Indefinite  
−VS + 40 V  
+VS − 40 V  
VS  
θJA  
Unit  
°C/W  
°C/W  
8-Lead MSOP, 4-Layer JEDEC Board  
8-Lead SOIC, 4-Layer JEDEC Board  
135  
121  
Storage Temperature Range  
Specified Temperature Range  
Maximum Junction Temperature  
ESD  
−65°C to +150°C  
−40°C to +125°C  
140°C  
ESD CAUTION  
Human Body Model  
Charge Device Model  
Machine Model  
1.5 kV  
1.5 kV  
100 V  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. A | Page 7 of 28  
 
AD8226  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
AD8226  
1
2
3
4
8
7
6
5
–IN  
+V  
S
R
R
V
OUT  
G
G
REF  
–V  
+IN  
S
TOP VIEW  
(Not to Scale)  
Figure 2. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
2, 3  
4
5
6
−IN  
RG  
Negative Input.  
Gain-Setting Pins. Place a gain resistor between these two pins.  
Positive Input.  
Negative Supply.  
Reference. This pin must be driven by low impedance.  
Output.  
Positive Supply.  
+IN  
−VS  
REF  
VOUT  
+VS  
7
8
Rev. A | Page 8 of 28  
 
AD8226  
TYPICAL PERFORMANCE CHARACTERISTICS  
T = 25°C, VS = 15 V, RL = 10 kꢀ, unless otherwise noted.  
N: 2203  
MEAN: 35.7649  
SD: 229.378  
MEAN: 0.041  
SD: 0.224  
250  
200  
160  
140  
120  
100  
80  
150  
100  
50  
60  
40  
20  
0
0
–1.2  
–900  
–600  
–300  
0
300  
600  
900  
0
0.3  
DRIFT (µV)  
OSI  
0.6  
0.9  
1.2  
–0.9  
–0.6  
–0.3  
V
@ ±15V (µV)  
V
OSO  
Figure 3. Typical Distribution of Output Offset Voltage  
Figure 6. Typical Distribution of Input Offset Voltage Drift, G = 100  
MEAN: –0.57  
SD: 1.5762  
MEAN: 21.5589  
SD: 0.624  
180  
150  
240  
210  
180  
150  
120  
90  
120  
90  
60  
30  
0
60  
30  
0
–9  
–6  
–3  
0
3
6
9
18  
26  
20  
22  
24  
V
DRIFT (µV)  
POSITIVE I  
CURRENT @ ±15V (nA)  
OSO  
BIAS  
Figure 4. Typical Distribution of Output Offset Voltage Drift  
Figure 7. Typical Distribution of Input Bias Current  
350  
MEAN: 0.003  
SD: 0.075  
MEAN: –3.67283  
SD: 51.1  
300  
250  
200  
300  
250  
200  
150  
100  
50  
150  
100  
50  
0
0
–400  
0
200  
400  
–0.9  
–0.6  
–0.3  
V
0
0.3  
@ ±15V (nA)  
OSI  
0.6  
0.9  
–200  
V
@ R PINS @ ±15V (µV)  
OSI  
G
Figure 5. Typical Distribution of Input Offset Voltage  
Figure 8. Typical Distribution of Input Offset Current  
Rev. A | Page 9 of 28  
 
AD8226  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.5  
2.0  
1.5  
1.0  
0.5  
0
+0.02V, +2.0V  
V
= +1.35V  
REF  
+0.02V, +2.0V  
+1.35V, +1.9V  
V
= +1.35V  
+1.35V, +1.9V  
REF  
+0.02V, +1.3V  
+2.68V, +1.2V  
+2.4V, +0.8V  
+0.02V, +1.3V  
+2.67V, +1.3V  
V
= 0V  
V
= 0V  
REF  
REF  
+2.4V, +0.8V  
+2.68V, +0.3V  
+0.02V, +0.3V  
+0.02V, +0.4V  
+2.67V, +0.4V  
–0.5  
+1.35V, –0.4V  
+0.02V, –0.4V  
+1.35, –0.3V  
1.5  
+0.02V, –0.3V  
–0.5  
–0.5  
–1.0  
–0.5  
2.0  
2.0  
0
0.5  
1.0  
1.5  
2.5  
3.0  
0
0.5  
1.0  
2.5  
3.0  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 9. Input Common-Mode Voltage vs. Output Voltage,  
Single Supply, VS = +2.7 V, G = 1  
Figure 12. Input Common-Mode Voltage vs. Output Voltage,  
Single Supply, VS = +2.7 V, G = 100  
5
5
+0.02V, +4.3V  
+2.5V, +4.2V  
+0.02V, +4.3V  
+2.5V, +4.3V  
V
= +1.35V  
V
= +2.5V  
REF  
REF  
4
3
4
3
+0.02V, +3.0V  
+4.96V, +3.0V  
+0.02V, +3.0V  
+4.98V, +3.0V  
V
= 0V  
V
= 0V  
REF  
REF  
2
2
+4.7V, +1.9V  
+4.7V, +1.9V  
1
+0.02V, +0.8V  
1
+4.98V, +0.8V  
+0.02V, +0.7V  
+4.96V, +0.7V  
0
0
+2.5V, –0.3.V  
+0.02V, –0.3V  
+0.02V, –0.4V  
+2.5V, –0.4V  
–1  
–0.5  
–1  
–0.5  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
OUTPUT VOLTAGE (V)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
OUTPUT VOLTAGE (V)  
Figure 13. Input Common-Mode Voltage vs. Output Voltage,  
Single Supply, VS = +5 V, G = 100  
Figure 10. Input Common-Mode Voltage vs. Output Voltage,  
Single Supply, VS = +5 V, G = 1  
6
6
0V, +4.3V  
0V, +4.2V  
4
4
2
2
–4.97V, +1.8V  
+4.96V, +1.8V  
+4.96V, +1.7V  
–4.96V, +1.7V  
0
–2  
–4  
–6  
0
–2  
–4  
–6  
–4.97V, –3.0V  
+4.96V, –0.3V  
–4.96V, –3.1V  
+4.96V, –3.1V  
0V, –5.4V  
0
0V, –5.3V  
0
4
4
–6  
–4  
–2  
2
6
–6  
–4  
–2  
2
6
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 11. Input Common-Mode Voltage vs. Output Voltage,  
Dual Supplies, VS = 5 V, G = 1  
Figure 14. Input Common-Mode Voltage vs. Output Voltage,  
Dual Supplies, VS = 5 V, G = 100  
Rev. A | Page 10 of 28  
 
AD8226  
20  
15  
20  
15  
0V, +14.3V  
0V, +11.3V  
0V, +14.2V  
0V, +11.2V  
V
= ±15V  
V = ±15V  
S
S
10  
10  
+14.96V, +6.8V  
+14.94V, +6.8V  
+14.95V, +6.7V  
+14.95V, +6.7V  
5
5
–11.95V, +5.3V  
+11.95V, +5.3V  
= ±12V  
–11.95V, +5.2V  
+11.95V, +5.2V  
0
0
V
S
V
S
= ±12V  
–5  
–5  
+11.95V, –6.4V  
+11.95V, –6.5V  
–11.95V, –6.4V  
–11.95V, –6.5V  
0V, –12.4V  
0V, –12.3V  
–10  
–15  
–20  
–10  
–15  
–20  
+14.94V, –7.9V  
+14.95V, –8.0V  
–14.96V, –7.9V  
–14.95V, –8.0V  
0V, –15.4V  
0
0V, –15.4V  
0
5
10  
5
10  
–20  
–15  
–10  
–5  
15  
20  
–20  
–15  
–10  
–5  
15  
20  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 15. Input Common-Mode Voltage vs. Output Voltage,  
Dual Supplies, VS = 15 V, G = 1  
Figure 18. Input Common-Mode Voltage vs. Output Voltage,  
Dual Supplies, VS = 15 V, G = 100  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
0.6  
0.5  
0.4  
0.3  
2.75  
2.50  
0.6  
0.5  
0.4  
0.3  
V
G = 1  
–V = 0V  
IN  
= 2.7V  
V
= 2.7V  
S
S
G = 100  
–V = 0V  
IN  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
V
OUT  
V
OUT  
0.2  
0.2  
0.1  
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
I
IN  
I
IN  
0.50  
0.25  
0
–40 –35 –30 –25 –20 –15 –10 –5  
0
5
10 15 20 25 30 35 40  
–40 –35 –30 –25 –20 –15 –10 –5  
0
5
10 15 20 25 30 35 40  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 16. Input Overvoltage Performance, G = 1, VS = 2.7 V  
Figure 19. Input Overvoltage Performance, G = 100, VS = 2.7 V  
16  
14  
12  
10  
8
0.5  
16  
14  
12  
10  
8
0.6  
0.5  
0.4  
V
G = 1  
–V = 0V  
IN  
= ±15V  
V = ±15V  
S
G = 100  
–V = 0V  
IN  
S
0.4  
0.3  
V
V
I
OUT  
OUT  
0.3  
0.2  
0.1  
0.2  
6
6
4
4
0.1  
2
0
2
0
I
IN  
0
0
IN  
–2  
–2  
–0.1  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–4  
–4  
–0.2  
–6  
–6  
–8  
–8  
–0.3  
–0.4  
–0.5  
–0.6  
–10  
–12  
–14  
–10  
–12  
–14  
–16  
–16  
–40 –35 –30 –25 –20 –15 –10 –5  
0
5
10 15 20 25 30 35 40  
–40 –35 –30 –25 –20 –15 –10 –5  
0
5
10 15 20 25 30 35 40  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 17. Input Overvoltage Performance, G = 1, VS = 15 V  
Figure 20. Input Overvoltage Performance, G = 100, VS = 15 V  
Rev. A | Page 11 of 28  
 
 
 
AD8226  
30  
29  
28  
160  
140  
120  
100  
GAIN = 1000  
–0.15V  
27  
26  
GAIN = 100  
GAIN = 10  
25  
24  
23  
22  
GAIN = 1  
80  
60  
40  
20  
0
21  
20  
+4.22V  
19  
18  
17  
16  
–0.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
COMMON-MODE VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 21. Input Bias Current vs. Common-Mode Voltage, VS = +5 V  
Figure 24. Negative PSRR vs. Frequency  
50  
70  
60  
V
= ±15V  
S
GAIN = 1000  
–15.13V  
45  
40  
35  
30  
25  
50  
GAIN = 100  
GAIN = 10  
GAIN = 1  
40  
30  
20  
20  
10  
15  
+14.18V  
0
10  
5
–10  
–20  
–30  
0
–5  
–16  
–12  
–8  
–4  
0
4
8
12  
16  
100  
1k  
10k  
100k  
1M  
10M  
COMMON-MODE VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 22. Input Bias Current vs. Common-Mode Voltage, VS = 15 V  
Figure 25. Gain vs. Frequency, VS = 15 V  
160  
70  
60  
V
= 2.7V  
S
GAIN = 1000  
GAIN = 1000  
140  
GAIN = 100  
50  
120  
GAIN = 10  
GAIN = 100  
GAIN = 10  
GAIN = 1  
40  
GAIN = 1  
100  
30  
20  
80  
60  
40  
20  
0
10  
0
–10  
–20  
–30  
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 23. Positive PSRR vs. Frequency, RTI  
Figure 26. Gain vs. Frequency, 2.7 V Single Supply  
Rev. A | Page 12 of 28  
 
 
AD8226  
160  
35  
30  
25  
20  
15  
10  
5
150  
V
V
= ±15V  
= 0V  
–IN BIAS CURRENT  
+IN BIAS CURRENT  
OFFSET CURRENT  
S
GAIN = 1000  
GAIN = 100  
REF  
140  
120  
100  
80  
125  
100  
75  
50  
25  
0
BANDWIDTH  
LIMITED  
GAIN = 10  
GAIN = 1  
60  
40  
20  
0
0.1  
1
10  
100  
1k  
10k  
100k  
–45 –30 –15  
0
15 30 45 60 75 90 105 120 135  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 27. CMRR vs. Frequency, RTI  
Figure 30. Input Bias Current and Input Offset Current vs. Temperature  
20  
10  
120  
100  
80  
GAIN = 100  
GAIN = 1000  
GAIN = 1  
BANDWIDTH  
LIMITED  
0
–0.6  
ppm/°C  
GAIN = 10  
–10  
–20  
60  
40  
20  
0
–0.3ppm/°C  
–30  
–0.4ppm/°C  
–40  
–50  
–60  
NORMALIZED AT 25°C  
–70  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
0.1  
1
10  
100  
FREQUENCY (Hz)  
1k  
10k  
100k  
TEMPERATURE (°C)  
Figure 31. Gain Error vs. Temperature, G = 1  
Figure 28. CMRR vs. Frequency, RTI, 1 kΩ Source Imbalance  
20  
10  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
–0.35ppm/°C  
0.2ppm/°C  
0
–10  
–20  
–30  
–40  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
REPRESENTATIVE DATA  
NORMALIZED AT 25°C  
–50  
–30  
–10  
10  
30  
50  
70  
90  
110  
130  
0
10 20 30 40 50 60 70 80 90 100 110 120  
WARM-UP TIME (Seconds)  
TEMPERATURE (°C)  
Figure 32. CMRR vs. Temperature, G = 1  
Figure 29. Change in Input Offset Voltage vs. Warm-Up Time  
Rev. A | Page 13 of 28  
AD8226  
+V  
S
15  
10  
5
–40°C  
+25°C  
+85°C  
+105°C  
+125°C  
–0.2  
–0.4  
–0.6  
–0.8  
–40°C  
+25°C  
+85°C  
+105°C  
+125°C  
0
–V  
S
–5  
–10  
–15  
–0.2  
–0.4  
–0.6  
–0.8  
2
4
6
8
10  
12  
14  
16  
18  
100  
1k  
10k  
100k  
SUPPLY VOLTAGE (±V )  
LOAD RESISTANCE ()  
S
Figure 33. Input Voltage Limit vs. Supply Voltage  
Figure 36. Output Voltage Swing vs. Load Resistance  
+V  
S
+V  
S
–0.1  
–0.2  
–0.3  
–0.4  
–0.2  
–0.4  
–0.6  
–0.8  
–40°C  
+25°C  
+85°C  
+105°C  
+125°C  
–40°C  
+25°C  
+85°C  
+105°C  
+125°C  
+0.8  
+0.6  
+0.4  
+0.2  
+0.4  
+0.3  
+0.2  
+0.1  
–V  
–V  
S
10µ  
S
2
4
6
8
10  
12  
14  
16  
18  
100µ  
1M  
10M  
SUPPLY VOLTAGE (±V )  
OUTPUT CURRENT (A)  
S
Figure 34. Output Voltage Swing vs. Supply Voltage, RL = 10 kΩ  
Figure 37. Output Voltage Swing vs. Output Current, G = 1  
8
+V  
S
G = 1  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
6
4
2
0
–40°C  
+25°C  
+85°C  
+105°C  
+125°C  
+1.2  
+1.0  
+0.8  
+0.6  
+0.4  
+0.2  
–2  
–4  
–6  
–8  
–V  
S
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
2
4
6
8
10  
12  
14  
16  
18  
OUTPUT VOLTAGE (V)  
SUPPLY VOLTAGE (±V )  
S
Figure 35. Output Voltage Swing vs. Supply Voltage, RL = 2 kΩ  
Figure 38. Gain Nonlinearity, G = 1, RL ≥ 2 kΩ  
Rev. A | Page 14 of 28  
AD8226  
8
6
1k  
G = 10  
4
2
GAIN = 1  
0
100  
–2  
–4  
–6  
–8  
GAIN = 10  
GAIN = 100  
GAIN = 1000  
10  
BANDWIDTH  
LIMITED  
10  
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
1
100  
1k  
10k  
100k  
OUTPUT VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 39. Gain Nonlinearity, G = 10, RL ≥ 2 kΩ  
Figure 42. Voltage Noise Spectral Density vs. Frequency  
80  
60  
G = 100  
GAIN = 1000, 200nV/DIV  
40  
20  
GAIN = 1, 1µV/DIV  
0
–20  
–40  
–60  
–80  
1s/DIV  
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
OUTPUT VOLTAGE (V)  
Figure 40. Gain Nonlinearity, G = 100, RL ≥ 2 kΩ  
Figure 43. 0.1 Hz to 10 Hz RTI Voltage Noise, G = 1, G = 1000  
800  
600  
1k  
G = 1000  
400  
200  
0
100  
–200  
–400  
–600  
–800  
10  
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
1
10  
100  
1k  
10k  
OUTPUT VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 41. Gain Nonlinearity, G = 1000, RL ≥ 2 kΩ  
Figure 44. Current Noise Spectral Density vs. Frequency  
Rev. A | Page 15 of 28  
AD8226  
5V/DIV  
15.46μs TO 0.01%  
17.68µs TO 0.001%  
0.002%/DIV  
40µs/DIV  
1.5pA/DIV  
1s/DIV  
Figure 45. 0.1 Hz to 10 Hz Current Noise  
Figure 48. Large-Signal Pulse Response and Settling Time,  
G = 10, 10 V Step, VS = 15 V  
30  
V
S
= ±15V  
27  
24  
21  
18  
15  
12  
9
5V/DIV  
39.64μs TO 0.01%  
58.04µs TO 0.001%  
0.002%/DIV  
6
V
S
= +5V  
3
100µs/DIV  
0
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 46. Large-Signal Frequency Response  
Figure 49. Large-Signal Pulse Response and Settling Time,  
G = 100, 10 V Step, VS = 15 V  
5V/DIV  
5V/DIV  
349.6μs TO 0.01%  
529.6µs TO 0.001%  
25.38μs TO 0.01%  
26.02µs TO 0.001%  
0.002%/DIV  
0.002%/DIV  
400µs/DIV  
40µs/DIV  
Figure 47. Large-Signal Pulse Response and Settling Time,  
G = 1, 10 V Step, VS = 15 V  
Figure 50. Large-Signal Pulse Response and Settling Time,  
G = 1000, 10 V Step, VS = 15 V  
Rev. A | Page 16 of 28  
AD8226  
20mV/DIV  
4µs/DIV  
20mV/DIV  
20µs/DIV  
Figure 53. Small-Signal Response, G = 100, RL = 10 kΩ, CL = 100 pF  
Figure 51. Small-Signal Response, G = 1, RL = 10 kΩ, CL = 100 pF  
20mV/DIV  
100µs/DIV  
20mV/DIV  
4µs/DIV  
Figure 52. Small-Signal Response, G = 10, RL = 10 kΩ, CL = 100 pF  
Figure 54. Small-Signal Response, G = 1000, RL = 10 kΩ, CL = 100 pF  
Rev. A | Page 17 of 28  
AD8226  
340  
330  
320  
310  
300  
290  
NO LOAD  
R
= 47pF  
L
R
= 100pF  
= 147pF  
L
L
R
20mV/DIV  
4µs/DIV  
0
2
4
6
8
10  
12  
14  
16  
18  
SUPPLY VOLTAGE (±V )  
S
Figure 55. Small-Signal Response with Various Capacitive Loads,  
G = 1, RL = ∞  
Figure 57. Supply Current vs. Supply Voltage  
60  
50  
40  
30  
SETTLED TO 0.001%  
20  
SETTLED TO 0.01%  
10  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
STEP SIZE (V)  
Figure 56. Settling Time vs. Step Size, VS = 15 V Dual Supplies  
Rev. A | Page 18 of 28  
AD8226  
THEORY OF OPERATION  
+V  
–V  
+V  
–V  
S
S
R
G
NODE 3  
NODE 4  
R3  
50kΩ  
S
S
R1  
24.7kΩ  
R2  
24.7kΩ  
+V  
–V  
S
R4  
50kΩ  
NODE 2  
V
A3  
OUT  
+V  
–V  
NODE 1  
R5  
50kΩ  
S
R6  
50kΩ  
S
ESD AND  
OVERVOLTAGE  
PROTECTION  
ESD AND  
OVERVOLTAGE  
PROTECTION  
REF  
Q1  
Q2  
+IN  
–IN  
A1  
A2  
S
V
R
R
BIAS  
B
B
–V  
DIFFERENCE  
AMPLIFIER STAGE  
S
GAIN STAGE  
Figure 58. Simplified Schematic  
ARCHITECTURE  
GAIN SELECTION  
The AD8226 is based on the classic 3-op-amp topology. This  
topology has two stages: a preamplifier to provide differential  
amplification, followed by a difference amplifier to remove the  
common-mode voltage. Figure 58 shows a simplified schematic  
of the AD8226.  
Placing a resistor across the RG terminals sets the gain of the  
AD8226, which can be calculated by referring to Table 7 or by  
using the following gain equation:  
49.4 kΩ  
RG =  
G 1  
The first stage works as follows: in order to maintain a constant  
voltage across the bias resistor RB, A1 must keep Node 3 a con-  
stant diode drop above the positive input voltage. Similarly, A2  
keeps Node 4 at a constant diode drop above the negative input  
voltage. Therefore, a replica of the differential input voltage is  
placed across the gain-setting resistor, RG. The current that  
flows across this resistance must also flow through the R1  
and R2 resistors, creating a gained differential signal between  
the A2 and A1 outputs. Note that, in addition to a gained  
differential signal, the original common-mode signal, shifted  
a diode drop up, is also still present.  
Table 7. Gains Achieved Using 1% Resistors  
1% Standard Table Value of RG (Ω)  
Calculated Gain  
49.9 k  
12.4 k  
5.49 k  
2.61 k  
1.00 k  
499  
1.990  
4.984  
9.998  
19.93  
50.40  
100.0  
249  
199.4  
100  
495.0  
49.9  
991.0  
The second stage is a difference amplifier, composed of A3 and  
four 50 kꢀ resistors. The purpose of this stage is to remove the  
common-mode signal from the amplified differential signal.  
The AD8226 defaults to G = 1 when no gain resistor is used.  
The tolerance and gain drift of the RG resistor should be added  
to the AD8226 specifications to determine the total gain accu-  
racy of the system. When the gain resistor is not used, gain  
error and gain drift are minimal.  
The transfer function of the AD8226 is  
V
OUT = G(VIN+ VIN−) + VREF  
where:  
49.4 kΩ  
If a gain of 5 is required and minimal gain drift is important,  
consider using the AD8227. The AD8227 has a default gain of 5  
that is set with internal resistors. Because all resistors are internal,  
the gain drift is extremely low (<5 ppm/°C maximum).  
G =1 +  
RG  
Rev. A | Page 19 of 28  
 
 
 
AD8226  
REFERENCE TERMINAL  
(VDIFF )(G)  
VCM  
VCM  
+
> −V S + VLIMIT  
< +VS V+LIMIT  
(1)  
(2)  
2
The output voltage of the AD8226 is developed with respect to  
the potential on the reference terminal. This is useful when the  
output signal needs to be offset to a precise midsupply level. For  
example, a voltage source can be tied to the REF pin to level-  
shift the output so that the AD8226 can drive a single-supply  
ADC. The REF pin is protected with ESD diodes and should  
not exceed either +VS or −VS by more than 0.3 V.  
(VDIFF )(G)  
2
(VDIFF )(G)  
+VCM +VREF  
2
< +VS VREF _ LIMIT  
(3)  
2
For the best performance, source impedance to the REF  
terminal should be kept below 2 ꢀ. As shown in Figure 58,  
the reference terminal, REF, is at one end of a 50 kΩ resistor.  
Additional impedance at the REF terminal adds to this 50 kΩ  
resistor and results in amplification of the signal connected to  
the positive input. The amplification from the additional RREF  
can be computed by 2(50 kΩ + RREF)/(100 kΩ + RREF).  
Table 8. Input Voltage Range Constants for Various  
Temperatures  
Temperature  
V−LIMIT  
V+LIMIT  
VREF_LIMIT  
−40°C  
+25°C  
+85°C  
+125°C  
−0.55 V  
−0.35 V  
−0.15 V  
−0.05 V  
0.8 V  
0.7 V  
0.65 V  
0.6 V  
1.3 V  
1.15 V  
1.05 V  
0.9 V  
Only the positive signal path is amplified; the negative path  
is unaffected. This uneven amplification degrades CMRR.  
Performance Across Temperature  
INCORRECT  
CORRECT  
The common-mode input range shifts upward with temper-  
ature. At cold temperatures, the part requires extra headroom  
from the positive supply, and operation near the negative supply  
has more margin. Conversely, hot temperatures require less  
headroom from the positive supply, but are the worst-case  
conditions for input voltages near the negative supply.  
AD8226  
AD8226  
REF  
REF  
V
V
+
Recommendation for Best Performance  
OP1177  
A typical part functions up to the boundaries described in this  
section. However, for best performance, designing with a few  
hundred millivolts extra margin is recommended. As signals  
approach the boundary, internal transistors begin to saturate,  
which can affect frequency and linearity performance.  
Figure 59. Driving the Reference Pin  
INPUT VOLTAGE RANGE  
Figure 9 through Figure 15 and Figure 18 show the allowable  
common-mode input voltage ranges for various output voltages  
and supply voltages. The 3-op-amp architecture of the AD8226  
applies gain in the first stage before removing common-mode  
voltage with the difference amplifier stage. Internal nodes between  
the first and second stages (Node 1 and Node 2 in Figure 58)  
experience a combination of a gained signal, a common-mode  
signal, and a diode drop. This combined signal can be limited  
by the voltage supplies even when the individual input and  
output signals are not limited.  
If the application requirements exceed the boundaries, one  
solution is to apply less gain with the AD8226, and then apply  
additional gain later in the signal chain. Another option is to  
use the pin-compatible AD8227.  
LAYOUT  
To ensure optimum performance of the AD8226 at the PCB  
level, care must be taken in the design of the board layout.  
The AD8226 pins are arranged in a logical manner to aid in  
this task.  
For most applications, Figure 9 through Figure 15 and Figure 18  
provide sufficient information to achieve a good design. For  
applications where a more detailed understanding is needed,  
Equation 1 to Equation 3 can be used to understand how the  
gain (G), common-mode input voltage (VCM), differential input  
voltage (VDIFF), and reference voltage (VREF) interact. The values for  
the constants, V−LIMIT, V+LIMIT, and VREF_LIMIT, are shown in Table 8.  
These three formulas, along with the input and output range  
specifications in Table 2 and Table 3, set the operating boundaries  
of the part.  
1
2
3
4
8
7
6
5
+V  
V
–IN  
S
R
G
OUT  
R
REF  
G
+IN  
–V  
S
AD8226  
TOP VIEW  
(Not to Scale)  
Figure 60. Pinout Diagram  
Rev. A | Page 20 of 28  
 
 
AD8226  
Common-Mode Rejection Ratio Over Frequency  
INPUT BIAS CURRENT RETURN PATH  
Poor layout can cause some of the common-mode signals to be  
converted to differential signals before reaching the in-amp.  
Such conversions occur when one input path has a frequency  
response that is different from the other. To keep CMRR across  
frequency high, the input source impedance and capacitance of  
each path should be closely matched. Additional source resistance  
in the input path (for example, for input protection) should be  
placed close to the in-amp inputs, which minimizes their  
interaction with parasitic capacitance from the PCB traces.  
The input bias current of the AD8226 must have a return path  
to ground. When the source, such as a thermocouple, cannot  
provide a return current path, one should be created, as shown  
in Figure 62.  
INCORRECT  
CORRECT  
+V  
+V  
S
S
AD8226  
AD8226  
Parasitic capacitance at the gain-setting pins can also affect  
CMRR over frequency. If the board design has a component  
at the gain-setting pins (for example, a switch or jumper), the  
part should be chosen so that the parasitic capacitance is as  
small as possible.  
REF  
REF  
REF  
REF  
–V  
S
–V  
S
TRANSFORMER  
TRANSFORMER  
Power Supplies  
+V  
+V  
S
S
A stable dc voltage should be used to power the instrumentation  
amplifier. Note that noise on the supply pins can adversely affect  
performance. For more information, see the PSRR performance  
curves in Figure 23 and Figure 24.  
AD8226  
AD8226  
REF  
A 0.1 μF capacitor should be placed as close as possible to each  
supply pin. As shown in Figure 61, a 10 μF tantalum capacitor  
can be used farther away from the part. In most cases, it can be  
shared by other precision integrated circuits.  
10M  
–V  
–V  
S
S
THERMOCOUPLE  
THERMOCOUPLE  
+V  
S
+V  
+V  
S
S
C
C
C
0.1µF  
10µF  
R
R
1
fHIGH-PASS  
=
+IN  
–IN  
AD8226  
2πRC  
AD8226  
C
REF  
V
OUT  
AD8226  
LOAD  
REF  
–V  
S
–V  
S
CAPACITIVELY COUPLED  
CAPACITIVELY COUPLED  
Figure 62. Creating an IBIAS Path  
0.1µF  
10µF  
–V  
S
Figure 61. Supply Decoupling, REF, and Output Referred to Local Ground  
References  
The output voltage of the AD8226 is developed with respect to  
the potential on the reference terminal. Care should be taken to  
tie REF to the appropriate local ground.  
Rev. A | Page 21 of 28  
 
 
 
AD8226  
+V  
S
INPUT PROTECTION  
The AD8226 has very robust inputs and typically does not  
need additional input protection. Input voltages can be up to  
40 V from the opposite supply rail. For example, with a +5 V  
positive supply and a −8 V negative supply, the part can safely  
withstand voltages from −35 V to 32 V. Unlike some other  
instrumentation amplifiers, the part can handle large differen-  
tial input voltages even when the part is in high gain. Figure 16,  
Figure 17, Figure 19, and Figure 20 show the behavior of the  
part under overvoltage conditions.  
0.1µF  
+IN  
10µF  
C
1nF  
C
R
4.02k  
V
C
D
10nF  
OUT  
R
G
AD8226  
R
REF  
–IN  
4.02kΩ  
C
C
1nF  
0.1µF  
10µF  
The rest of the AD8226 terminals should be kept within the  
supplies. All terminals of the AD8226 are protected against ESD.  
–V  
S
Figure 63. RFI Suppression  
For applications where the AD8226 encounters voltages beyond  
the allowed limits, external current-limiting resistors and low-  
leakage diode clamps such as the BAV199L, the FJH1100s, or  
the SP720 should be used.  
CD affects the difference signal and CC affects the common-mode  
signal. Values of R and CC should be chosen to minimize RFI.  
Mismatch between the R × CC at the positive input and the R × CC  
at the negative input degrades the CMRR of the AD8226. By using  
a value of CD that is one magnitude larger than CC, the effect of  
the mismatch is reduced and performance is improved.  
RADIO FREQUENCY INTERFERENCE (RFI)  
RF rectification is often a problem when amplifiers are used in  
applications having strong RF signals. The disturbance can appear  
as a small dc offset voltage. High frequency signals can be filtered  
with a low-pass RC network placed at the input of the instru-  
mentation amplifier, as shown in Figure 63. The filter limits the  
input signal bandwidth according to the following relationship:  
1
FilterFrequencyDIFF  
FilterFrequencyCM  
=
R(2CD +CC )  
1
=
RCC  
where CD 10 CC.  
Rev. A | Page 22 of 28  
 
 
AD8226  
APPLICATIONS INFORMATION  
Tips for Best Differential Output Performance  
DIFFERENTIAL DRIVE  
For best ac performance, an op amp with at least a 2 MHz gain  
bandwidth and a 1 V/μs slew rate is recommended. Good choices  
for op amps are the AD8641, AD8515, and AD820.  
+IN  
+OUT  
AD8226  
–IN  
Keep trace lengths from the resistors to the inverting terminal  
of the op amp as short as possible. Excessive capacitance at this  
node can cause the circuit to be unstable. If capacitance cannot  
be avoided, use lower value resistors.  
REF  
R
R
V
BIAS  
+
OP AMP  
For best linearity and ac performance, a minimum positive  
supply voltage (+VS) is required. Table 9 shows the minimum  
supply voltage required for optimum performance. In this mode,  
–OUT  
RECOMMENDED OP AMPS: AD8515, AD8641, AD820.  
VCM_MAX indicates the maximum common-mode voltage expected  
RECOMMENDED R VALUES: 5kto 20k.  
at the input of the AD8226.  
Figure 64. Differential Output Using an Op Amp  
Figure 64 shows how to configure the AD8226 for differ-  
ential output.  
Table 9. Minimum Positive Supply Voltage  
Temperature  
Less than −10°C  
−10°C to 25°C  
More than 25°C  
Equation  
The differential output is set by the following equation:  
+VS > (VCM_MAX + VBIAS)/2 + 1.4 V  
+VS > (VCM_MAX + VBIAS)/2 + 1.25 V  
+VS > (VCM_MAX + VBIAS)/2 + 1.1 V  
V
DIFF_OUT = VOUT+ VOUT− = Gain × (VIN+ VIN−  
The common-mode output is set by the following equation:  
CM_OUT = (VOUT+ VOUT−)/2= VBIAS  
)
V
The advantage of this circuit is that the dc differential accuracy  
depends on the AD8226, not on the op amp or the resistors. In  
addition, this circuit takes advantage of the precise control that the  
AD8226 has of its output voltage relative to the reference voltage.  
Although the dc performance and resistor matching of the op amp  
affect the dc common-mode output accuracy, such errors are  
likely to be rejected by the next device in the signal chain and  
therefore typically have little effect on overall system accuracy.  
Rev. A | Page 23 of 28  
 
 
 
AD8226  
Option 1 shows the minimum configuration required to drive  
a charge-sampling ADC. The capacitor provides charge to the  
ADC sampling capacitor while the resistor shields the AD8226  
from the capacitance. To keep the AD8226 stable, the RC time  
constant of the resistor and capacitor needs to stay above 5 μs.  
This circuit is mainly useful for lower frequency signals.  
PRECISION STRAIN GAGE  
The low offset and high CMRR over frequency of the AD8226  
make it an excellent candidate for performing bridge measure-  
ments. The bridge can be connected directly to the inputs of the  
amplifier (see Figure 65).  
5V  
Option 2 shows a circuit for driving higher speed signals. It uses a  
precision op amp (AD8616) with relatively high bandwidth and  
output drive. This amplifier can drive a resistor and capacitor with  
a much higher time constant and is therefore suited for higher  
frequency applications.  
10µF  
0.1µF  
350  
350Ω  
350Ω  
350Ω  
+IN  
–IN  
+
R
AD8226  
G
Option 3 is useful for applications where the AD8226 needs to  
run off a large voltage supply but drive a single-supply ADC.  
In normal operation, the AD8226 output stays within the ADC  
range, and the AD8616 simply buffers it. However, in a fault  
condition, the output of the AD8226 may go outside the supply  
range of both the AD8616 and the ADC. This is not an issue in  
the circuit, however, because the 10 kΩ resistor between the two  
amplifiers limits the current into the AD8616 to a safe level.  
2.5V  
Figure 65. Precision Strain Gage  
DRIVING AN ADC  
Figure 66 shows several methods for driving an ADC. The  
ADuC7026 microcontroller was chosen for this example because it  
contains ADCs with an unbuffered, charge-sampling architecture  
that is typical of most modern ADCs. This type of architecture  
typically requires an RC buffer stage between the ADC and  
amplifier to work correctly.  
OPTION 1: DRIVING LOW FREQUENCY SIGNALS  
3.3V  
3.3V  
AV  
DD  
100Ω  
ADC0  
AD8226  
REF  
100nF  
ADuC7026  
OPTION 2: DRIVING HIGH FREQUENCY SIGNALS  
3.3V  
3.3V  
AD8226  
10Ω  
REF  
ADC1  
AD8616  
10nF  
OPTION 3: PROTECTING ADC FROM LARGE VOLTAGES  
+15V  
AD8226  
–15V  
3.3V  
10kΩ  
10Ω  
REF  
AD8616  
ADC2  
AGND  
10nF  
Figure 66. Driving an ADC  
Rev. A | Page 24 of 28  
 
 
 
AD8226  
OUTLINE DIMENSIONS  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
0.65 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.00  
0.38  
0.22  
0.23  
0.08  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 67. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 68. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Model  
Temperature Range  
−40°C to +125°C  
Package Description  
Package Option  
Branding  
Y18  
Y18  
AD8226ARMZ1  
AD8226ARMZ-RL1  
AD8226ARMZ-R71  
AD8226ARZ1  
AD8226ARZ-RL1  
AD8226ARZ-R71  
AD8226BRMZ1  
AD8226BRMZ-RL1  
AD8226BRMZ-R71  
AD8226BRZ1  
8-Lead MSOP  
RM-8  
RM-8  
RM-8  
R-8  
R-8  
R-8  
RM-8  
RM-8  
RM-8  
R-8  
R-8  
R-8  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
8-Lead MSOP, 13" Tape and Reel  
8-Lead MSOP, 7" Tape and Reel  
8-Lead SOIC_N  
8-Lead SOIC_N, 13" Tape and Reel  
8-Lead SOIC_N, 7" Tape and Reel  
8-Lead MSOP  
8-Lead MSOP, 13" Tape and Reel  
8-Lead MSOP, 7" Tape and Reel  
8-Lead SOIC_N  
8-Lead SOIC_N, 13" Tape and Reel  
8-Lead SOIC_N, 7" Tape and Reel  
Y18  
Y19  
Y19  
Y19  
AD8226BRZ-RL1  
AD8226BRZ-R71  
1 Z = RoHS Compliant Part.  
Rev. A | Page 25 of 28  
 
AD8226  
NOTES  
Rev. A | Page 26 of 28  
AD8226  
NOTES  
Rev. A | Page 27 of 28  
AD8226  
NOTES  
©2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07036-0-7/09(A)  
Rev. A | Page 28 of 28  

相关型号:

AD8226BRZ-RL

Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier
ADI

AD8226CRMZ

Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier
ADI

AD8226CRMZ-R7

Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier
ADI

AD8226CRMZ-RL

Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier
ADI

AD8226CRZ

Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier
ADI

AD8226CRZ-R7

Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier
ADI

AD8226CRZ-RL

Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier
ADI

AD8227

Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier
ADI

AD8227ARMZ

Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier
ADI

AD8227ARMZ-R7

Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier
ADI

AD8227ARMZ-R71

Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier
ADI

AD8227ARMZ-RL

Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier
ADI