AD8226 [ADI]

Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier; 宽电源电压范围,轨到轨输出仪表放大器
AD8226
型号: AD8226
厂家: ADI    ADI
描述:

Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier
宽电源电压范围,轨到轨输出仪表放大器

仪表放大器
文件: 总16页 (文件大小:415K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Wide Supply Range, Rail-to-Rail  
Output Instrumentation Amplifier  
AD8226  
Preliminary Technical Data  
FEATURES  
PIN CONFIGURATION  
Gain set with 1 external resistor  
Gain r a n g e : 1 to 1000  
AD8226  
1
2
3
4
8
7
6
5
–IN  
+V  
S
R
R
V
OUT  
G
G
Input voltage goes to ground  
Input overdrive protection  
V e r y w ide power supply range  
Dual supply: 1.3 V t o 18 V  
Single supply: 2.6 V to 36 V  
Bandwidt h ( G = 1): 800 kHz  
CMRR (G = 1): 78 dB minimum  
Input noise: 22 nV/r t(Hz)  
REF  
–V  
+IN  
S
TOP VIEW  
(Not to Scale)  
Figure 1.  
Typical s u p p l y c u r r e n t : 350 µA  
SOIC-8 and MSOP-8 packages  
APPLICATIONS  
Industrial process controls  
Bridge amplifiers  
Medical instrumentation  
Portable data acquisition  
Multichannel systems  
GENERAL DESCRIPTION  
Th e A D 8 2 2 6 i s a l o w c o s t i n s t r u m e n t a t i o n a m p l i f i e r t h a t r e q u i r e s  
only one external resistor to set any gain between 1 and 1000.  
Table 1. Instrumentation Amplifiers by Category  
General Z e r o  
Purpose Drift  
Military L o w  
Grade P o w e r  
High Speed  
PGA  
The AD8226 is designed to work with a very wide range of  
volta ge s. It can operate on supplies ranging from 1.2 V to  
18 V (2.4 V to 36 V s i ng l e s uppl y ) . The AD8226 comes with  
rail-to-rail output and a wide input range that includes the  
ability to go slightly below the negative supply. In addition, the  
AD8226 inputs can withstand voltages beyond the rail.  
AD82201 AD82311 AD620  
AD6271  
AD6231  
AD82261  
AD8250  
AD8251  
AD8253  
AD8221  
AD8222  
AD8290  
AD621  
AD82931 AD524  
AD82241 AD85531 AD526  
AD8228  
AD85561 AD624  
AD85571  
The AD8226 is perfect for multichannel, space-cons traine d  
a p p l i c a t i o n s . Being a low power and low cost amplifier allows  
multiple channels to be used.  
1 R a i l -to-rail output.  
The AD8226 has three grades. The A grade is the lower cost  
version and is specifie d for temperatures f rom −40°C to +85°C.  
The B grade is the higher performance version and is specified  
from −40°C to +85°C. The C grade version is the higher  
temperature version and is specified from −40°C to +105°C. All  
models are operational from −40°C to +125°C; behavior a t  
these temperatures is shown in the typical performance curves.  
The AD8226 is available in MSOP and SOIC packages.  
Rev. PrA  
In fo rm atio n fu rn ish ed b y A n alo g D evices is b elieved to b e accu rate an d reliab le. H o w ever, n o  
resp o n sib ilityisassu m ed b yA n alo g D evicesfo ritsu se,n o rfo ran yin frin g em en tso fp aten tso ro th er  
rightsofthird p artiesthatm ayresultfrom itsuse.Sp ecificationssub jecttochangew ithoutnotice.N o  
licen se is g ran ted b y im p licatio n o r o th erw ise u n d er an y p aten t o r p aten t rig h ts o f A n alo g D evices.  
Trad em arksan d reg istered trad em arksareth ep ro p ertyo fth eirresp ectiveo w n ers.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2008 Analog Devices, Inc. All rights reserved.  
AD8226  
Preliminary Technical Data  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
A rchit e c tu re ...................................................................................9  
Gain Selection................................................................................9  
Input Prote c t ion ............................................................................9  
Reference Terminal .................................................................... 10  
Input Voltage Range ................................................................... 10  
L ayout .......................................................................................... 10  
Input Bias Current Return Path ............................................... 11  
Radio Frequency Interference (RFI)........................................ 11  
Outline Dimensi ons ....................................................................... 12  
Ordering Guide .......................................................................... 13  
Appl i c a t i o ns ....................................................................................... 1  
Pin Configuration............................................................................. 1  
General Description ......................................................................... 1  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 7  
Thermal Resistance ...................................................................... 7  
E S D C a u t i o n .................................................................................. 7  
Pin Configuration and Function Descriptions ............................. 8  
T he or y of Op e rat ion ........................................................................ 9  
Rev. PrA | P a g e 2 of 16  
Preliminary Technical Data  
AD8226  
SPECIFICATIONS  
+VS = +15 V, VS = −15 V, VREF = 0 V, TA = 25°C, G = 1, RL = 10 kΩ, unless otherwise noted.  
Table 2.  
A, C Grade  
Typ  
B Grade  
Typ  
Parameter  
Conditions  
Min  
Max  
Min  
Max  
Unit  
COMMON-M O D E REJECTION RATIO  
(CMRR)  
CMRR DC to 60 Hz  
G = 1  
G = 10  
G = 100  
G = 1000  
NOISE  
VCM = –10 V to +10 V  
76  
90  
105  
105  
86  
dB  
dB  
dB  
dB  
100  
105  
105  
Total Noise:  
eN = eNI2 + (eNO/G2)  
Voltage Noise, 1 kHz  
Input Voltage Noise, eNI  
Output Voltage Noise, eNO  
RTI  
VIN+, VIN−, VREF = 0  
f = 0.1 Hz to 10 Hz  
22  
120  
22  
120  
nV/√Hz  
nV/√Hz  
G = 1  
G = 10  
G = 100 to 1000  
Current Noise  
3
3
µV p-p  
µV p-p  
µV p-p  
fA/√Hz  
pA p-p  
0.8  
0.6  
100  
3
0.8  
0.6  
100  
3
f = 1 kHz  
f = 0.1 Hz to 10 Hz  
VOLTAGE OFFSET  
Total offset voltage :  
VOS = VO S I + (VO S O /G)  
VS = 5 V to 15 V  
TA = TMIN t o T MAX  
TA = TMIN t o T MAX  
VS = 5 V to 15 V  
TA = TMIN t o T MAX  
TA = TMIN t o T MAX  
VS = 5 V to 15 V  
Input Offset, VOSI  
Over Temperature  
Average temperature coefficient  
Output Offset, VO SO  
Over Temperature  
Average temperature coefficient  
Offset RTI vs. Supply (PSR)  
G = 1  
500  
200  
µV  
µV  
1500  
15  
750  
7
µV  
mV  
µV/°C  
2
2
80  
90  
dB  
dB  
dB  
dB  
G = 10  
G = 100  
G = 1000  
100  
105  
105  
105  
105  
105  
INPUT CURRENT  
Input Bias Current  
Over Temperature  
Average temperature coefficient  
Input Offset Current  
Over Temperature  
Average temperature coefficient  
REFERENCE INPUT  
RIN  
10  
5
20  
30  
40  
10  
5
20  
30  
40  
nA  
nA  
pA/°C  
nA  
nA  
TA = TMIN t o T MAX  
TA = TMIN t o T MAX  
100  
100  
3
5
2
5
TA = TMIN t o T MAX  
TA = TMIN t o T MAX  
5
5
pA/°C  
100  
7
100  
7
kΩ  
µA  
V
IIN  
Voltage Range  
−VS  
+VS  
−VS  
+VS  
Reference Gain to Output  
Reference Gain Error  
1
0.01  
1
0.01  
V/V  
%
Rev. PrA | P a g e 3 of 16  
AD8226  
Preliminary Technical Data  
A, C Grade  
Typ  
B Grade  
Typ  
Parameter  
DYNAMIC RESPONSE  
Small Signal –3 dB Bandwidth  
G = 1  
Conditions  
Min  
Max  
Min  
Max  
Unit  
1000  
150  
15  
1000  
150  
15  
kHz  
kHz  
kHz  
kHz  
G = 10  
G = 100  
G =1000  
1.5  
1.5  
Settling Time 0.01%  
G = 1  
G = 10  
G = 100  
G = 1000  
10 V step  
22  
22  
50  
600  
0.5  
1
22  
22  
50  
600  
0.5  
1
µs  
µs  
µs  
µs  
V/µs  
V/µs  
Slew Rate  
G = 1  
G = 5 to 100  
G = 1 + (49.4kΩ/RG)  
GAIN  
Gain Range  
Gain Error  
G = 1  
G = 10  
G = 100  
1
1000  
1
1000  
V/V  
VOUT 10 V  
0.07  
0.3  
0.3  
0.02  
0.1  
0.1  
%
%
%
%
G = 1000  
0.3  
0.1  
Gain Nonlinearity  
G = 1  
G = 100  
G = 1000  
G = 1-100  
VOUT = –10 V to +10 V  
RL = 10 kΩ  
RL = 10 kΩ  
RL = 10 kΩ  
RL = 2kΩ  
ppm  
ppm  
ppm  
ppm  
Gain vs. Temperature  
G = 1  
TA = TMIN t o T MAX  
TA = TMIN t o T MAX  
VS = 1.35 V to 36 V  
2
10  
–50  
2
5
–50  
ppm/°C  
ppm/°C  
G > 11  
INPUT  
Input Impedance  
Differential  
Common Mode  
Input Operating Voltage Range2  
2||2  
2||2  
2||2  
2||2  
GΩ||pF  
GΩ||pF  
V
V
V
V
TA = 25°C  
TA = –40°C  
TA = 105°C  
TA = TMIN t o T MAX  
VS = 1.35 V to 36 V  
RL = 10 kΩ to ground  
TA = TMIN t o T MAX  
RL = 100 kΩ to ground  
TA = TMIN t o T MAX  
−VS − 0.1  
−VS − 0.15  
−VS − 0.05  
+VS −40  
+VS − 0.7 −VS − 0.1  
+VS − 0.9 −VS − 0.15  
+VS − 0.6 −VS − 0.05  
+VS − 0.7  
+VS − 0.9  
+VS − 0.6  
−VS +40  
Input Overvoltage Range  
OUTPUT  
Output Swing  
−VS +40  
+VS −40  
−VS + 0.2  
−VS + 0.3  
−VS + 0.1  
−VS + 0.1  
+VS − 0.2 −VS + 0.2  
+VS − 0.3 −VS + 0.3  
+VS − 0.1 −VS + 0.1  
+VS − 0.1 −VS + 0.1  
−VS + 0.2  
+VS − 0.3  
−VS + 0.1  
−VS + 0.1  
13  
V
Over Temperature  
Output Swing  
Over Temperature  
Short-Circuit Current  
POWER SUPPLY  
V
V
V
mA  
13  
Operating Range  
Dual supply operation  
TA = TMIN t o T MAX  
1.3  
18  
1.3  
18  
V
µA  
µA  
Quiescent Current  
Over Temperature  
TEMPERATURE RANGE  
Specified Performance: TM I N to TM A X  
350  
400  
+85  
350  
400  
A and B grades  
C grade  
–40  
–40  
–40  
−40  
−40  
+85  
°C  
°C  
+105  
+125  
Operational  
+125  
1 Does not include the effects of external resistor RG  
2 Input voltage range of the AD8226 input stage. Input range depends on common mode voltage, differential voltage, gain, and reference voltage. Se e t he Input  
V o l t a g e R a n g e section in the Theory of Operation for more information.  
Rev. PrA | P a g e 4 of 16  
Preliminary Technical Data  
AD8226  
+VS = 2.7 V, –VS = 0 V, VREF = 0 V, TA = 25°C, G = 1, RL = 10 kΩ, unless otherwise noted.  
Table 3.  
A,C Grade  
B Grade  
Typ  
Parameter  
Conditions  
Min  
Typ  
Max  
Min  
Max  
Unit  
COMMON-M O D E REJECTION RATIO  
(CMRR)  
CMRR DC to 60 Hz  
G = 1  
G = 10  
G = 100  
G = 1000  
VCM = 0 V to 1.7 V  
76  
90  
105  
105  
86  
dB  
dB  
dB  
dB  
100  
105  
105  
Total Noise:  
NOISE  
eN = eNI2 + (eNO/G2)  
Voltage Noise, 1 kHz  
Input Voltage Noise, eNI  
Output Voltage Noise, eNO  
RTI  
VIN+, VIN−, VREF= 0  
22  
120  
22  
120  
nV/√Hz  
nV/√Hz  
f = 0.1 Hz to 10 Hz  
G = 1  
G = 10  
3
3
µV p-p  
µV p-p  
µV p-p  
fA/√Hz  
pA p-p  
0.8  
0.6  
100  
3
0.8  
0.6  
100  
3
G = 100 to 1000  
Current Noise  
f = 1 kHz  
f = 0.1 Hz to 10 Hz  
VOLTAGE OFFSET  
Total offset voltage :  
VOS = VO S I + (VO S O /G)  
VS = 0 V to 1.7 V  
TA = TMIN t o T MAX  
TA = TMIN t o T MAX  
VS = 0 V to 1.7 V  
TA = TMIN t o T MAX  
TA = TMIN t o T MAX  
VS = 0 V to 1.7 V  
Input Offset, VOSI  
Over Temperature  
Average TC  
Output Offset, VO SO  
Over Temperature  
Average TC  
Offset RTI vs. Supply (PSR)  
G = 1  
G = 10  
300  
150  
µV  
µV  
µV/°C  
µV  
mV  
0.1  
2
4
1200  
0.1  
2
2
750  
15  
7
µV/°C  
80  
90  
dB  
dB  
dB  
dB  
100  
105  
105  
105  
105  
105  
G = 100  
G = 1000  
INPUT CURRENT  
Input Bias Current  
Over Temperature  
Average TC  
Input Offset Current  
Over Temperature  
Average TC  
10  
5
20  
30  
40  
10  
5
20  
30  
40  
nA  
nA  
pA/°C  
nA  
nA  
TA = TMIN t o T MAX  
TA = TMIN t o T MAX  
100  
100  
3
5
2
5
TA = TMIN t o T MAX  
TA = TMIN t o T MAX  
5
5
pA/°C  
REFERENCE INPUT  
RIN  
IIN  
Voltage Range  
Reference Gain to Output  
Reference Gain Error  
DYNAMIC RESPONSE  
Small Signal –3 dB Bandwidth  
G = 1  
100  
7
100  
7
kΩ  
µA  
V
V/V  
%
−VS  
+VS  
−VS  
+VS  
1
1
0.01  
0.01  
1000  
150  
15  
1000  
150  
15  
kHz  
kHz  
kHz  
kHz  
G = 10  
G = 100  
G =1000  
1.5  
1.5  
Rev. PrA | P a g e 5 of 16  
AD8226  
Preliminary Technical Data  
A,C Grade  
B Grade  
Parameter  
Settling Time 0.01%  
G = 1  
G = 1 0  
G = 100  
G = 1000  
Slew Rate  
Conditions  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
2 V step  
22  
22  
50  
600  
0.5  
1
22  
22  
50  
600  
0.5  
1
µs  
µs  
µs  
µs  
V/µs  
V/µs  
G = 1  
G = 5 to 100  
G = 1 + (49.4 kΩ/RG)  
GAIN  
Gain Range  
Gain Error  
G = 1  
G = 10  
G = 100  
1
1000  
1
1000  
V/V  
VOUT = 0 V to 1.7 V  
0.07  
0.3  
0.3  
0.02  
0.1  
0.1  
%
%
%
%
G = 1000  
0.3  
0.1  
Gain Nonlinearity  
G = 1  
G = 100  
G = 1000  
G = 1-100  
VOUT = 0 V to 1.7 V  
RL = 10 kΩ  
RL = 10 kΩ  
RL = 10 kΩ  
RL = 2 kΩ  
ppm  
ppm  
ppm  
ppm  
Gain vs. Temperature  
G = 1  
G > 11  
TA = TMIN t o T MAX  
TA = TMIN t o T MAX  
2
10  
−50  
2
5
–50  
ppm/°C  
ppm/°C  
INPUT  
−VS = 0V; +VS = 2.7 V to 36 V  
Input Impedance  
Differential  
Common Mode  
Input Operating Voltage Range2  
2||2  
2||2  
2||2  
2||2  
GΩ||pF  
GΩ||pF  
TA = 25°C  
TA = –40°C  
TA = 105°C  
TA = TMIN t o T MAX  
− 0.1  
+VS − 0.7  
+VS − 0.9  
+VS − 0.6  
−VS +40  
− 0.1  
+VS − 0.7  
+VS − 0.9  
+VS − 0.6  
−VS +40  
V
V
V
− 0.15  
− 0.05  
+VS −40  
− 0.15  
− 0.05  
+VS −40  
Input Overvoltage Range  
OUTPUT  
Output Swing  
Over Temperature  
Output Swing  
Over Temperature  
Short-Circuit Current  
POWER SUPPLY  
−VS = 0V; +VS = 2.7 V to 36 V  
RL = 10 kΩ to opposite supply  
TA = TMIN t o T MAX  
RL = 100 kΩ to opposite supply  
TA = TMIN t o T MAX  
0.2  
0.3  
0.1  
0.1  
+VS − 0.2  
+VS − 0.3  
+VS − 0.1  
+VS − 0.1  
0.2  
0.3  
0.1  
0.1  
−VS + 0.2  
+VS − 0.3  
−VS + 0.1  
−VS + 0.1  
V
V
V
V
13  
13  
mA  
Operating Range  
Single supply operation  
TA = TMIN t o T MAX  
2.6  
36  
2.6  
36  
350  
V
µA  
µA  
Quiescent Current  
Over Temperature  
TEMPERATURE RANGE  
Specified Performance: TM I N to TM A X  
300  
350  
300  
A and B grades  
C grade  
–40  
–40  
–40  
+85  
–40  
–40  
+85  
°C  
°C  
+105  
+125  
Operational  
+125  
1 Does not include the effects of external resistor RG  
2 Input voltage range of the AD8226 input stage. Input range depends on common mode voltage, differential voltage, gain, and reference voltage. Se e t he Input  
V o l t a g e R a n g e section in the Theory of Operation for more information.  
Rev. PrA | P a g e 6 of 16  
Preliminary Technical Data  
AD8226  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
THERMAL RESISTANCE  
θJA is specified for a device in free air.  
Parameter  
Rating  
Supply Voltage  
18 V  
Table 5.  
Package  
Output Short-Circuit Current  
Maximum Voltage at −IN or +IN  
Minimum Voltage at −IN or +IN  
R E F V o lt a g e  
Indefinite  
−Vs + 40V  
+Vs − 40V  
V s  
θJA  
Unit  
°C/W  
°C/W  
8-Lead MSOP, 4-Layer JEDEC Board  
8-L e a d S O I C , 4-Layer JEDEC Board  
135  
121  
Differential Input Voltage  
Storage Temperature Range  
Operating Temperature Range1  
Maximum Junction Temperature  
ESD  
40V  
−65°C to +150°C  
−40°C to +125°C  
140°C  
ESD CAUTION  
Human Body Model  
Charge Device Model  
2 kV  
1 kV  
1 Temperature range for specified performance is either −40°C to +85 °C or  
− 4 0 ° C t o + 105°C, depending on grade.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. PrA | P a g e 7 of 16  
AD8226  
Preliminary Technical Data  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
AD8226  
1
2
3
4
8
7
6
5
–IN  
+V  
S
R
R
V
OUT  
G
G
REF  
–V  
+IN  
S
TOP VIEW  
(Not to Scale)  
Figure 2. Pin Configuration  
Table 6. Pin Function Descriptions  
P in N o .  
Mnemonic Description  
1
2, 3  
4
5
6
−IN  
RG  
Negative Input.  
Gain Setting Pins. Place gain resistor between these two pins.  
Positive Input.  
Negative Supply.  
Reference. Must be driven by low impedance.  
Output.  
Positive Supply.  
+IN  
−VS  
REF  
VOUT  
+VS  
7
8
Rev. PrA | P a g e 8 of 16  
Preliminary Technical Data  
AD8226  
THEORY OF OPERATION  
+V  
–V  
+V  
–V  
S
S
R
G
NODE 3  
NODE 4  
R3  
50kΩ  
S
S
R1  
2.47kΩ  
R2  
2.47kΩ  
+V  
–V  
S
R4  
50kΩ  
NODE 2  
OUT  
REF  
A3  
+V  
–V  
NODE 1  
R5  
50kΩ  
S
+V  
–V  
+V  
–V  
S
S
R6  
50kΩ  
S
Q1  
Q2  
+IN  
–IN  
A1  
A2  
S
S
S
U
R
R
B
B
B
DIFFERENCE  
AMPLIFIER STAGE  
GAIN STAGE  
Figure 3. Simplified Schematic  
ARCHITECTURE  
GAIN SELECTION  
The AD8226 is based on the classic three op amp top olog y. T his  
topology has two stages: a preamplifier to provide differential  
amplification, followed by a difference amplifier to remove the  
common-mode voltage. Fig u re 3 shows a simplified schematic of  
the AD8226.  
Placing a resistor across the RG terminals sets the gain of the  
AD8226, which can be calculated by referring to Table 7 or by  
using the following gain equ a t i o n :  
49.4 kΩ  
RG =  
G 1  
The first stage works as follows: in ord e r to maintain a constant  
voltage across the Bias Resistor RB, Amplifier A1 must keep  
Node 3 a constant diode drop above the positive input voltage.  
Similarly, Amplifier A2 keeps Node 4 at a constant diode drop  
above the negative input voltage. Therefore a replica of the  
differential input voltage is placed across the gain setting  
resistor, RG. The current that flows across this resistance must  
also flow through the R1 and R2 resistors, creating a gained  
differential signal between the A2 and A1 outputs. Note that, in  
addition to a gained differential signal, the original common-  
mode signal, shifted a diode drop down, is also still present.  
Table 7. Gains Achieved Using 1% Resistors  
1% Standard Table Value of RG (Ω)  
Calculated Gain  
49.9 k  
12.4 k  
5.49 k  
2.61 k  
1.00 k  
499  
1.990  
4.984  
9.998  
19.93  
50.40  
100.0  
249  
199.4  
100  
495.0  
49.9  
991.0  
The second stage is a difference amplifier, composed of A3 and  
four 50 kΩ resistors. The purpose of this stage is to remove the  
com m on-mode signal from the amplified differential signal.  
The AD8226 defaults to G = 1 when no gain resistor is used.  
The tolerance and gain drift of the RG resistor should be added  
to the AD8226s specifications to determine the total gain  
accuracy of the system. When the gain resistor is not used,  
gain error and gain drift are minimal.  
Because the input amplifiers employ a current feedback  
architecture, the gain-bandwidth product of the AD8226  
increases with gain, resulting in a system that does not suffer  
from the expected bandwidth loss of voltage feedback  
architectures at higher gains.  
INPUT PROTECTION  
The transfer function of the AD8226 is  
The input terminals of the AD8226 have input protection that  
allows the i nput voltage to go beyond the rails without  
damaging the part. Maximum voltage is –Vs+40 V and  
minimum voltage is +Vs-40 V. For example: with 15 V  
supplies, the part can withstand input voltages of 25 V; with a  
5 V single supply, maximum input voltage is 40 V and  
minimum input voltage is 35 V.  
VOUT = G(VIN+ VIN−) + VREF  
where  
49.4 kΩ  
G =1+  
RG  
Rev. PrA | P a g e 9 of 16  
AD8226  
Preliminary Technical Data  
(VDIFF )(GAIN)  
REFERENCE TERMINAL  
+VCM +VREF  
2
The output voltage of the AD8226 is developed with respect to  
the potential on the reference terminal. This is useful when the  
output signal needs to be offset to a precise midsupply level. For  
e x a m p l e, a voltage source can be tied to the REF pin to level-  
shift the output so that the AD8226 can drive a single-supply  
ADC. The REF pin is protected with ESD diodes and should  
not exceed either +VS or − V S by more than 0.3 V.  
<
+VS 1.6V  
2
The com m on-mode input range shifts upwards with temper-  
a t u r e . At cold temperatures, the part requires an extra 200 mV  
of he a d ro om f rom the positive supply, and operation near the  
negative supply has more margin. C onve rs e ly, hot temperatures  
r e q u i r e l e s s h e a d r o o m f r o m t h e p o s itive supply, but are the worst-  
case conditions for input voltages near the negative supply.  
For the best performance, source impedance to the REF  
terminal should be kept below 2 Ω. As shown in Fig u re 3, the  
reference terminal, REF, is at one end of a 50 kΩ resistor.  
Additional impedance at the REF terminal adds to this 50 kΩ  
resistor and results in amplification of the signal connected to  
the positive input. The amplification from the additional RREF  
LAYOUT  
To ensure optimum performance of the AD8226 at the PCB  
level, care must be taken in the design of the board layout.  
The AD8226 pins are arranged in a logical manner to aid in  
this task.  
can be computed by 2(50 kΩ + RREF)/100 kΩ + RREF  
.
1
2
3
4
8
7
6
5
+V  
–IN  
Only the positive signal path is amplified; the negative path  
is unaffected. This uneven amplification degrades CMRR.  
S
R
G
V
OUT  
R
REF  
–V  
G
INCORRECT  
CORRECT  
+IN  
S
AD8226  
TOP VIEW  
(Not to Scale)  
AD8226  
AD8226  
Figure 5. Pinout Diagram  
REF  
REF  
V
Common-Mode Rejection Ratio over Frequency  
V
+
Poor layout can cause some of the common-mode signals to be  
converted to differential signals before re a chi ng the in-a m p .  
Such conversions occur when one input path has a frequency  
response t h a t i s d i f f e r e n t f r o m t h e o t h e r. To k e e p C M R R a c r o s s  
fre q u e n c y h i g h , i nput source impedance and capacitance of each  
path should be closely matched. Additional source resistance in  
t h e in p u t p a t h ( f o r e x a m p le , f o r i n p u t p r o t e c t i o n ) s h o u l d b e p l a c e d  
close to the in-amp inputs, which minimizes their interaction  
with parasitic capacitance from the PCB traces.  
OP1177  
Figure 4. Driving the Reference Pin  
INPUT VOLTAGE RANGE  
The three op amp architecture of the AD8226 applies gain in  
the first stage before removing c om m on-m o d e volta ge in the  
difference amplifier stage. In addition, the input transistors in  
the first stage shift the common mode voltage up one diode  
drop (about 650 mV.) Therefore, internal nodes between the  
first and second stages (nodes 1 and 2 in Fig u re 3) experience a  
combinat ion of gained signal, c om m on-mode signal, and  
650 mV. This combined signal can be limited by the voltage  
supplies even when the individual input and output signals are  
not. Fig u re X X through Fig u re X X show the allowable  
com m on-mode input voltage range s for v a riou s output v olta ge s  
and supply voltages.  
Parasitic capacitance at the gain setting pins can also affect  
CMRR over frequency. If the board design has a component  
at the gain setting pins (for example, a switch or jumper), the  
part should be chosen so that the parasitic capacitance is as  
small as possible.  
Power Supplies  
A stable dc voltage should be used to power the instrumenta-  
tion amplifier. Noise on the supply pins can adversely affect  
p e r form ance.  
The following formulas can also be used to understand how the  
reference voltage (VREF), common mode input voltage (VCM),  
and differential input voltage (VDIFF) interact. These two  
formulas, along with the input range specifications in Table 1  
and Table 3, set the boundaries where the part operates with  
best performance.  
A 0.1 µF capacitor should be placed as close as possible to each  
s upp ly pi n . As shown in Fig u re 6, a 10 µF tantalum capacitor  
can be used farther away from the part. In most cases, it can be  
shared by other precision integrated circuits.  
(VDIFF )(GAIN)  
VS 0.4 V <  
+ VCM < + VS 0.9 V  
2
Rev. PrA | P a g e 10 of 16  
Preliminary Technical Data  
AD8226  
+V  
S
R A D I O FR E Q U E NC Y INTERFERENCE (RFI)  
RF rectification is often a problem when amplifiers are used in  
a p p l i c a t i o n s h a v i n g s t r o n g R F s i g n a l s . T h e d i s t u r b a n c e c a n a p p e a r  
a s a s m a l l d c o f f s e t v o l t a g e . H i g h f r e q u e n c y s i g n a l s c a n b e f i l t e r e d  
with a low-pass RC network placed at the input of the instru-  
mentation amplifier, as shown in Fig u re 8. The f i l t e r l i m i t s t h e  
i n p u t s i g n a l b a n d w i d t h , a c c o r d i n g t o t h e f o l l o w i n g r e l a t i o n s h i p :  
0.1µF  
10µF  
+IN  
–IN  
V
OUT  
AD8226  
LOAD  
REF  
1
FilterFrequencyDIFF  
=
R(2C  
D
+ C )  
C
0.1µF  
10µF  
1
–V  
S
FilterFrequencyCM  
where CD 10 CC.  
=
RC  
C
Figure 6. Supply Decoupling, REF, and Output Referred to Local Ground  
References  
+V  
S
The output voltage of the AD8226 is developed with respect to  
the potential on the reference terminal. Care should be taken to  
tie REF to the appropriate local ground.  
0.1µF  
10µF  
C
1nF  
C
INPUT BIAS CURRENT RETURN PATH  
R
+IN  
–IN  
4.02kΩ  
The input bias current of the AD8226 must have a return path  
to g rou nd . When the source, such as a thermocou ple , cann ot  
provide a return current path, one should be created, as shown  
in Fig u re 7.  
V
C
D
10nF  
OUT  
R
G
AD8226  
R
REF  
4.02kΩ  
C
C
1nF  
INCORRECT  
+V  
CORRECT  
+V  
0.1µF  
10µF  
S
S
–V  
S
Figure 8. RFI Suppression  
AD8226  
AD8226  
CD a f f e c t s t h e d i f f e r e n c e s i g n a l , a n d C C a f f e c t s t h e c o m m o n -m o d e  
signal. Values of R and CC should be chosen to minimize RFI.  
M i s m a t c h b e t w e e n t h e R × C C a t t h e p o s i t i v e i n p u t a n d t h e R × C C  
at t h e n e g at ive i nput d e g r a d e s t h e C MR R o f t h e A D 8 2 2 6. By using  
a value of CD one magnitude larger than CC, the effect of the  
mismatch is reduced, and performance is improved.  
REF  
REF  
REF  
REF  
–V  
–V  
S
S
TRANSFORMER  
TRANSFORMER  
+V  
+V  
S
S
AD8226  
AD8226  
REF  
10MΩ  
–V  
–V  
S
S
THERMOCOUPLE  
THERMOCOUPLE  
+V  
+V  
S
S
C
C
C
R
R
1
fHIGH-PASS  
=
AD8226  
2πRC  
AD8226  
C
REF  
–V  
–V  
S
S
CAPACITIVELY COUPLED  
CAPACITIVELY COUPLED  
Figure 7. Creating an IB I A S Path  
Rev. PrA | P a g e 11 of 16  
AD8226  
Preliminary Technical Data  
OUTLINE DIMENSIONS  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
0.65 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.00  
0.38  
0.22  
0.23  
0.08  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 9. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-A A  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 10. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
Rev. PrA | P a g e 12 of 16  
Preliminary Technical Data  
AD8226  
ORDERING GUIDE  
Model  
Temperature Range  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
Package Description  
PackageOption  
RM-8  
RM-8  
RM-8  
R-8  
R-8  
R-8  
RM-8  
RM-8  
RM-8  
R-8  
R-8  
R-8  
RM-8  
RM-8  
RM-8  
R-8  
Branding  
Y16  
Y16  
AD8226ARMZ1  
AD8226ARMZ-RL1  
AD8226ARMZ-R71  
AD8226ARZ1  
AD8226ARZ-RL1  
AD8226ARZ-R71  
AD8226BRMZ1  
AD8226BRMZ-RL1  
AD8226BRMZ-R71  
AD8226BRZ1  
8-Lead MSOP  
8-Lead MSOP, 13" Tape and Reel  
8-Lead MSOP, 7" Tape and Reel  
8-L e a d SOIC_N  
8-L e a d SOIC_N, 13" Tape and Reel  
8-L e a d SOIC_N, 7" Tape and Reel  
8-Lead MSOP  
8-Lead MSOP, 13" Tape and Reel  
8-Lead MSOP, 7" Tape and Reel  
8-L e a d SOIC_N  
8-L e a d SOIC_N, 13" Tape and Reel  
8-L e a d SOIC_N, 7" Tape and Reel  
8-Lead MSOP  
8-Lead MSOP, 13" Tape and Reel  
8-Lead MSOP, 7" Tape and Reel  
8-L e a d SOIC_N  
8-L e a d SOIC_N, 13" Tape and Reel  
8-L e a d SOIC_N, 7" Tape and Reel  
Y16  
Y1M  
Y1M  
Y1M  
AD8226BRZ-RL1  
AD8226ARZ-R71  
AD8226CRMZ1  
AD8226CRMZ-RL1  
AD8226CRMZ-R71  
AD8226CRZ1  
Y1Y  
Y1Y  
Y1Y  
AD8226CRZ-RL1  
AD8226CRZ-R71  
R-8  
R-8  
1 Z = RoHS Compliant Part.  
Rev. PrA | P a g e 13 of 16  
AD8226  
NOTES  
Preliminary Technical Data  
Rev. PrA | P a g e 14 of 16  
Preliminary Technical Data  
NOTES  
AD8226  
Rev. PrA | P a g e 15 of 16  
AD8226  
NOTES  
Preliminary Technical Data  
©2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
PR07036-0-10/08(PrA)  
Rev. PrA | Page 16 of 16  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY