AD8231TCPZ-EP-R7 [ADI]

Zero Drift, Digitally Programmable Instrumentation Amplifier;
AD8231TCPZ-EP-R7
型号: AD8231TCPZ-EP-R7
厂家: ADI    ADI
描述:

Zero Drift, Digitally Programmable Instrumentation Amplifier

放大器
文件: 总20页 (文件大小:598K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Zero Drift, Digitally Programmable  
Instrumentation Amplifier  
Data Sheet  
AD8231-EP  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Digitally/pin-programmable gain  
G = 1, 2, 4, 8, 16, 32, 64, or 128  
Specified from −55°C to +125°C  
50 nV/°C maximum input offset drift  
10 ppm/°C maximum gain drift  
Excellent dc performance  
80 dB minimum CMR, G = 1  
15 µV maximum input offset voltage  
500 pA maximum bias current  
0.7 µV p-p noise (0.1 Hz to 10 Hz)  
Good ac performance  
1
2
3
4
12  
11  
10  
9
NC  
–INA  
+INA  
NC  
+V  
–V  
S
LOGIC  
IN-AMP  
S
OUTA  
REF  
OP  
AD8231-EP  
AMP  
2.7 MHz bandwidth, G = 1  
1.1 V/μs slew rate  
Rail-to-rail output  
Figure 1.  
Shutdown/multiplex  
Extra op amp  
Single-supply range: 3 V to 6 V  
Dual-supply range: 1.5 V to 3 V  
Table 1. Instrumentation and Difference Amplifiers by  
Category  
High  
Performance  
Low  
Cost  
High  
Voltage  
Mil  
Grade  
Low  
Power  
Digital  
Gain  
ENHANCED PRODUCT FEATURES  
AD8221  
AD82201  
AD8222  
AD82241  
AD6231  
AD85531  
AD628  
AD629  
AD620 AD6271 AD82311  
Supports defense and aerospace applications (AQEC  
standard)  
Military temperature range (−55°C to +125°C)  
Controlled manufacturing baseline  
One assembly/test site  
AD621  
AD524  
AD526  
AD624  
AD8250  
AD8251  
AD85551  
AD85561  
AD85571  
One fabrication site  
Enhanced product change notification  
Qualification data available on request  
1 Rail-to-rail output.  
GENERAL DESCRIPTION  
The AD8231-EP also includes an uncommitted op amp that can  
be used for additional gain, differential signal driving, or filtering.  
Like the in-amp, the op amp has an auto-zero architecture, rail-  
to-rail input, and rail-to-rail output.  
The AD8231-EP is a low drift, rail-to-rail, instrumentation  
amplifier with software-programmable gains of 1, 2, 4, 8, 16, 32, 64,  
or 128. The gains are programmed via digital logic or pin  
strapping.  
The AD8231-EP includes a shutdown feature that reduces current  
to a maximum of 1 µA. In shutdown, both amplifiers also have  
a high output impedance, which allows easy multiplexing of  
multiple amplifiers without additional switches.  
The AD8231-EP is ideal for applications that require precision  
performance over a wide temperature range, such as industrial  
temperature sensing and data logging. Because the gain setting  
resistors are internal, maximum gain drift is only 10 ppm/°C for  
gains of 1 to 32. Because of the auto-zero input stage, maximum  
input offset is 15 µV and maximum input offset drift is just  
50 nV/°C. CMRR is 80 dB for G = 1, increasing to 110 dB at  
higher gains.  
The AD8231-EP is specified over the military temperature  
range of −55°C to +125°C. It is available in a 4 mm × 4 mm 16-  
lead LFCSP.  
Additional application and technical information can be found  
in the AD8231 data sheet.  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2011–2017 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
AD8231-EP  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
ESD Caution...................................................................................7  
Pin Configuration and Function Descriptions..............................8  
Typical Performance Characteristics ..............................................8  
Instrumentation Amplifier Performance Curves......................9  
Operational Amplifier Performance Curves .......................... 15  
Performance Curves Valid for Both Amplifiers..................... 17  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 18  
Enhanced Product Features ............................................................ 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 7  
Thermal Resistance ...................................................................... 7  
Maximum Power Dissipation ..................................................... 7  
REVISION HISTORY  
11/2017—Rev. 0 to Rev. A  
Changed CP-16-4 to CP-16-17 .................................... Throughout  
Updated Outline Dimensions....................................................... 18  
Changes to Ordering Guide .......................................................... 18  
5/2011—Revision 0: Initial Version  
Rev. A | Page 2 of 20  
 
Data Sheet  
AD8231-EP  
SPECIFICATIONS  
VS = 5 V, V REF = 2.5 V, G = 1, RL = 10 kΩ, TA = 25°C, unless otherwise noted.  
Table 2.  
Parameter  
Test Conditions/Comments  
VOS RTI = VOSI + VOSO/G  
TA = −55°C to +125°C  
TA = −55°C to +125°C  
Min  
Typ  
Max  
Unit  
INSTRUMENTATION AMPLIFIER  
Offset Voltage  
Input Offset, VOSI  
4
0.01  
15  
15  
0.05  
30  
µV  
µV/°C  
µV  
Average Temperature Drift  
Output Offset, VOSO  
Average Temperature Drift  
Input Currents  
0.05  
0.5  
µV/°C  
Input Bias Current  
250  
20  
500  
5
100  
0.5  
pA  
nA  
pA  
nA  
TA = −55°C to +125°C  
Input Offset Current  
TA = −55°C to +125°C  
Gains  
1, 2, 4, 8, 16, 32, 64, or 128  
Gain Error  
G = 1  
G = 2 to 128  
Gain Drift  
G = 1 to 32  
G = 64  
0.05  
0.8  
%
%
TA = −55°C to +125°C  
3
4
10  
3
5
10  
20  
30  
ppm/°C  
ppm/°C  
ppm/°C  
ppm  
G = 128  
Linearity  
0.2 V to 4.8 V, 10 kΩ load  
0.2 V to 4.8 V, 2 kΩ load  
ppm  
CMRR  
G = 1  
G = 2  
G = 4  
G = 8  
G = 16  
G = 32  
G = 64  
G = 128  
Noise  
Input Voltage Noise, eni  
80  
86  
92  
98  
104  
110  
110  
110  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
en = √(eni2 + (eno/G)2), VIN+, VIN− = 2.5 V  
f = 1 kHz  
f = 1 kHz, TA = −55°C  
f = 1 kHz, TA = 125°C  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz, TA = −55°C  
f = 1 kHz, TA = 125°C  
f = 0.1 Hz to 10 Hz  
f = 10 Hz  
32  
27  
39  
0.7  
58  
50  
70  
1.1  
20  
nV/√Hz  
nV/√Hz  
nV/√Hz  
µV p-p  
nV/√Hz  
nV/√Hz  
nV/√Hz  
µV p-p  
fA/√Hz  
Output Voltage Noise, eno  
Current Noise  
Other Input Characteristics  
Common-Mode Input Impedance  
Power Supply Rejection Ratio  
Input Operating Voltage Range  
Reference Input  
10||5  
115  
GΩ||pF  
dB  
V
100  
0.05  
4.95  
+5.2  
Input Impedance  
Voltage Range  
28  
kΩ  
V
−0.2  
Rev. A | Page 3 of 20  
 
AD8231-EP  
Data Sheet  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
Dynamic Performance  
Bandwidth  
G = 1  
G = 2  
2.7  
2.5  
MHz  
MHz  
Gain Bandwidth Product  
G = 4 to 128  
Slew Rate  
7
1.1  
MHz  
V/µs  
Output Characteristics  
Output Voltage High  
RL = 100 kΩ to ground  
RL = 10 kΩ to ground  
RL = 100 kΩ to 5 V  
RL = 10 kΩ to 5 V  
4.9  
4.8  
4.94  
4.88  
60  
80  
70  
V
V
mV  
mV  
mA  
Output Voltage Low  
100  
200  
Short-Circuit Current  
Digital Interface  
Input Voltage Low  
TA = −55°C to +125°C  
TA = −55°C to +125°C  
TA = −55°C to +125°C  
TA = −55°C to +125°C  
1.0  
V
V
ns  
ns  
Input Voltage High  
Setup Time to CS High  
Hold Time after CS High  
4.0  
50  
20  
OPERATIONAL AMPLIFIER  
Input Characteristics  
Offset Voltage, VOS  
5
15  
µV  
Temperature Drift  
Input Bias Current  
TA = −55°C to +125°C  
TA = −55°C to +125°C  
TA = −55°C to +125°C  
0.01  
250  
0.06  
500  
5
100  
0.5  
4.95  
µV/°C  
pA  
nA  
pA  
nA  
Input Offset Current  
20  
Input Voltage Range  
Open-Loop Gain  
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
Voltage Noise Density  
Voltage Noise  
0.05  
100  
100  
100  
V
120  
120  
110  
20  
V/mV  
dB  
dB  
nV/√Hz  
µV p-p  
f = 0.1 Hz to 10 Hz  
0.4  
Dynamic Performance  
Gain Bandwidth Product  
Slew Rate  
1
0.5  
MHz  
V/µs  
Output Characteristics  
Output Voltage High  
RL = 100 kΩ to ground  
RL = 10 kΩ to ground  
RL = 100 kΩ to 5 V  
RL = 10 kΩ to 5 V  
4.9  
4.8  
4.96  
4.92  
60  
80  
70  
V
V
mV  
mV  
mA  
Output Voltage Low  
100  
200  
Short-Circuit Current  
BOTH AMPLIFIERS  
Power Supply  
Quiescent Current  
Quiescent Current (Shutdown)  
4
0.01  
5
1
mA  
µA  
Rev. A | Page 4 of 20  
Data Sheet  
AD8231-EP  
VS = 3.0 V, VREF = 1.5 V, TA = 25°C, G = 1, RL = 10 kΩ, unless otherwise noted.  
Table 3.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
INSTRUMENTATION AMPLIFIER  
Offset Voltage  
VOS RTI = VOSI + VOSO/G  
Input Offset, VOSI  
4
15  
µV  
Average Temperature Drift  
Output Offset, VOSO  
Average Temperature Drift  
Input Currents  
0.01  
15  
0.05  
0.05  
30  
0.5  
µV/°C  
µV  
µV/°C  
Input Bias Current  
250  
20  
500  
5
100  
0.5  
pA  
nA  
pA  
nA  
TA = −55°C to +125°C  
Input Offset Current  
TA = −55°C to +125°C  
Gains  
1, 2, 4, 8, 16, 32, 64, or 128  
Gain Error  
G = 1  
0.05  
0.8  
%
%
G = 2 to 128  
Gain Drift  
G = 1 to 32  
G = 64  
G = 128  
CMRR  
TA = −55°C to +125°C  
3
4
10  
10  
20  
30  
ppm/°C  
ppm/°C  
ppm/°C  
G = 1  
G = 2  
G = 4  
G = 8  
G = 16  
G = 32  
G = 64  
G = 128  
Noise  
80  
86  
92  
98  
104  
110  
110  
110  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
en = √(eni2 + (eno/G)2)  
IN+, VIN− = 2.5 V, TA = 25°C  
V
Input Voltage Noise, eni  
f = 1 kHz  
40  
35  
48  
0.8  
72  
62  
83  
1.4  
20  
nV/√Hz  
nV/√Hz  
nV/√Hz  
µV p-p  
nV/√Hz  
nV/√Hz  
nV/√Hz  
µV p-p  
fA/√Hz  
f = 1 kHz, TA = −55°C  
f = 1 kHz, TA = 125°C  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz, TA = −55°C  
f = 1 kHz, TA = 125°C  
f = 0.1 Hz to 10 Hz  
f = 10 Hz  
Output Voltage Noise, eno  
Current Noise  
Other Input Characteristics  
Common-Mode Input Impedance  
Power Supply Rejection Ratio  
Input Operating Voltage Range  
Reference Input  
10||5  
115  
GΩ||pF  
dB  
V
100  
0.05  
2.95  
+3.2  
Input Impedance  
Voltage Range  
28  
kΩ||pF  
V
−0.2  
Rev. A | Page 5 of 20  
AD8231-EP  
Data Sheet  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Dynamic Performance  
Bandwidth  
G = 1  
G = 2  
2.7  
2.5  
MHz  
MHz  
Gain Bandwidth Product  
G = 4 to 128  
Slew Rate  
7
1.1  
MHz  
V/µs  
Output Characteristics  
Output Voltage High  
RL = 100 kΩ to ground  
RL = 10 kΩ to ground  
RL = 100 kΩ to 3 V  
RL = 10 kΩ to 3 V  
2.9  
2.8  
2.94  
2.88  
60  
80  
40  
V
V
mV  
mV  
mA  
Output Voltage Low  
100  
200  
Short-Circuit Current  
Digital Interface  
Input Voltage Low  
TA = −55°C to +125°C  
TA = −55°C to +125°C  
TA = −55°C to +125°C  
TA = −55°C to +125°C  
0.7  
V
V
ns  
ns  
Input Voltage High  
Setup Time to CS High  
Hold Time after CS High  
2.3  
60  
20  
OPERATIONAL AMPLIFIERS  
Input Characteristics  
Offset Voltage, VOS  
5
15  
µV  
Temperature Drift  
Input Bias Current  
TA = −55°C to +125°C  
TA = −55°C to +125°C  
TA = −55°C to +125°C  
0.01  
250  
0.06  
500  
5
100  
0.5  
2.95  
µV/°C  
pA  
nA  
pA  
nA  
Input Offset Current  
20  
Input Voltage Range  
Open-Loop Gain  
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
Voltage Noise Density  
Voltage Noise  
0.05  
100  
100  
100  
V
120  
120  
110  
27  
V/mV  
dB  
dB  
nV/√Hz  
µV p-p  
f = 0.1 Hz to 10 Hz  
0.6  
Dynamic Performance  
Gain Bandwidth Product  
Slew Rate  
1
0.5  
MHz  
V/µs  
Output Characteristics  
Output Voltage High  
RL = 100 kΩ to ground  
RL = 10 kΩ to ground  
RL = 100 kΩ to 3 V  
RL = 10 kΩ to 3 V  
2.9  
2.8  
2.96  
2.82  
60  
80  
40  
V
V
mV  
mV  
mA  
Output Voltage Low  
100  
200  
Short-Circuit Current  
BOTH AMPLIFIERS  
Power Supply  
Quiescent Current  
Quiescent Current (Shutdown)  
3.5  
0.01  
4.5  
1
mA  
µA  
Rev. A | Page 6 of 20  
Data Sheet  
AD8231-EP  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 4.  
Parameter  
Rating  
Table 5.  
Thermal Pad  
Supply Voltage  
6 V  
Indefinite1  
−VS − 0.3 V to +VS + 0.3 V  
−VS − 0.3 V to +VS + 0.3 V  
–65°C to +150°C  
–55°C to +125°C  
θJA  
54  
96  
Unit  
°C/W  
°C/W  
Output Short-Circuit Current  
Input Voltage (Common-Mode)  
Differential Input Voltage  
Storage Temperature Range  
Operational Temperature Range  
Soldered to Board  
Not Soldered to Board  
The θJA values in Table 5 assume a 4-layer JEDEC standard  
board. If the thermal pad is soldered to the board, it is  
also assumed it is connected to a plane. θJC at the exposed pad  
is 6.3°C /W.  
Package Glass Transition Temperature 130°C  
ESD (Human Body Model)  
ESD (Charged Device Model)  
ESD (Machine Model)  
1.5 kV  
1.5 kV  
0.2 kV  
MAXIMUM POWER DISSIPATION  
The maximum safe power dissipation for the AD8231-EP is  
limited by the associated rise in junction temperature (TJ) on  
the die. At approximately 130°C, which is the glass transition  
temperature, the plastic changes its properties. Even  
temporarily exceeding this temperature limit may change the  
stresses that the package exerts on the die, permanently shifting  
the parametric performance of the amplifiers. Exceeding a  
temperature of 130°C for an extended period can result in a loss  
of functionality.  
1 For junction temperatures between 105°C and 130°C, short-circuit operation  
beyond 1000 hours can impact part reliability.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
ESD CAUTION  
Rev. A | Page 7 of 20  
 
 
 
 
 
AD8231-EP  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
NC 1  
–INA (IN-AMP –IN) 2  
+INA (IN-AMP +IN) 3  
NC 4  
12 +V  
S
–V  
11  
10  
9
S
AD8231-EP  
TOP VIEW  
(Not to Scale)  
OUTA (IN-AMP OUT)  
REF  
NOTES  
1. NC = NO CONNECT. DO NOT CONNECT TO THIS PIN.  
2. THE EXPOSED PAD CAN BE CONNECTED TO THE  
NEGATIVE SUPPLY (–V ) OR LEFT FLOATING.  
S
Figure 2. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin Number  
Mnemonic  
Description  
1
2
3
4
5
6
7
8
9
NC  
No Connect. Do not connect to this pin.  
Instrumentation Amplifier Negative Input.  
Instrumentation Amplifier Positive Input.  
No Connect. Do not connect to this pin.  
Shutdown.  
−INA (IN-AMP −IN)  
+INA (IN-AMP +IN)  
NC  
SDN  
+INB  
−INB  
Operational Amplifier Positive Input.  
Operational Amplifier Negative Input.  
Operational Amplifier Output.  
Instrumentation Amplifier Reference Pin. It should be driven with a low impedance. Output is  
referred to this pin.  
OUTB (OP AMP OUT)  
REF  
10  
11  
12  
13  
14  
15  
16  
OUTA (IN-AMP OUT)  
Instrumentation Amplifier Output.  
Negative Power Supply. Connect to ground in single-supply applications.  
Positive Power Supply.  
Chip Select. Enables digital logic interface.  
Gain Setting Bit (LSB).  
Gain Setting Bit.  
−VS  
+VS  
CS  
A0  
A1  
A2  
Gain Setting Bit (MSB).  
EPAD  
Exposed Pad. Can be connected to the negative supply (−VS) or left floating.  
Rev. A | Page 8 of 20  
 
 
Data Sheet  
AD8231-EP  
TYPICAL PERFORMANCE CHARACTERISTICS  
INSTRUMENTATION AMPLIFIER PERFORMANCE CURVES  
1000  
1400  
1200  
1000  
800  
600  
400  
200  
0
N: 5956  
MEAN: 0.977167  
SD: 11.8177  
N: 5956  
MEAN: –48.0779  
SD: 21.0433  
800  
600  
400  
200  
0
–100 –80 –60 –40 –20  
0
20  
40  
60  
80  
100  
–500 –400 –300 –200 –100  
0
100 200 300 400 500  
CMRR (µV/V)  
GAIN ERROR (µV/V)  
Figure 3. Instrumentation Amplifier CMR Distribution, G = 1  
Figure 6. Instrumentation Amplifier Gain Distribution, G = 1  
800  
1400  
N: 5956  
MEAN: 2.06788  
SD: 1.07546  
700  
600  
500  
400  
300  
200  
100  
0
1200  
1000  
800  
600  
400  
200  
0
–15  
–10  
–5  
0
5
10  
15  
–55 –45 –35 –25 –15 –5  
5
15 25 35 45 55 65 75  
V
(µV)  
TEMPERATURE (°C)  
OSI  
Figure 7. Instrumentation Amplifier Input Offset Voltage Drift,  
−55°C to +125°C  
Figure 4. Instrumentation Amplifier Input Offset Voltage Distribution  
20  
15  
10  
5
800  
N: 5956  
MEAN: 10.3901  
SD: 3.9553  
700  
600  
500  
400  
300  
200  
100  
0
0
–5  
–10  
–30  
–20  
–10  
0
10  
20  
30  
–55 –45 –35 –25 –15 –5  
5
15 25 35 45 55 65 75  
V
(µV)  
TEMPERATURE (°C)  
OSO  
Figure 8. Instrumentation Amplifier Output Offset Drift, −55°C to +125°C  
Figure 5. Instrumentation Amplifier Output Offset Voltage Distribution  
Rev. A | Page 9 of 20  
 
AD8231-EP  
Data Sheet  
2000  
6
5
4
3
2
1
0
V
V
= MIDSUPPLY  
= MIDSUPPLY  
REF  
CM  
0V, 4.96V  
1500  
1000  
500  
0
5V SINGLE SUPPLY  
4.92V, 2.5V  
0V, 2.96V  
3V SINGLE SUPPLY  
3V  
5V  
2.92V, 1.5V  
4
0V, 0.04V  
–500  
–55 –40 –25 –10  
5
20 35 50 65 80 95 110 125  
0
1
2
3
5
6
TEMPERATURE (°C)  
OUTPUT VOLTAGE (V)  
Figure 9. Instrumentation Amplifier Bias Current vs. Temperature  
Figure 12. Instrumentation Amplifier Input Common-Mode Range vs.  
Output Voltage, VREF = 0 V  
2.0  
1.5  
1.0  
0.5  
0
6
1.5V, 4.96V  
5
0.02V, 4.22V  
4
5V SINGLE SUPPLY  
1.5V, 2.96V  
4.98V, 3.22V  
4.98V, 1.78V  
3
2
1
0
–0.5  
–1.0  
0.02V, 2.22V  
0.02V, 0.78V  
2.98V, 2.22V  
3V SINGLE SUPPLY  
2.98V, 0.78V  
1.5V, 0.04V  
+V = +2.5V  
S
–1.5  
–2.0  
–V = –2.5V  
S
V
= 0V  
REF  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
–2.5 –2.0 –1.5 –1.0 –0.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
OUTPUT VOLTAGE (V)  
V
(V)  
CM  
Figure 13. Instrumentation Amplifier Input Common-Mode Range vs.  
Output Voltage, VREF = 1.5 V  
Figure 10. Instrumentation Amplifier Bias Current vs.  
Common-Mode Voltage, 5 V  
6
1.0  
0.8  
2.5V, 4.96V  
5
0.6  
5V SINGLE SUPPLY  
4
0.4  
4.98V, 3.72V  
0.02V, 3.72V  
0.2  
3
2
1
0
0
2.98V, 2.72V  
2.5V, 2.96V  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0.02V, 1.72V  
0.02V, 1.28V  
3V SINGLE  
SUPPLY  
4.98V,1.28V  
+V = +1.5V  
S
–V = –1.5V  
2.5V, 0.04V  
S
V
= 0V  
2.98V, 0.28V  
3.0 3.5 4.0  
OUTPUT VOLTAGE (V)  
REF  
0
0.5  
1.0  
1.5  
2.0  
2.5  
4.5  
5.0  
–1.5 –1.2 –0.9 –0.6 –0.3  
0
0.3  
0.6  
0.9  
1.2  
1.5  
V
(V)  
CM  
Figure 11. Instrumentation Amplifier Bias Current vs.  
Common-Mode Voltage, 3 V  
Figure 14. Instrumentation Amplifier Input Common-Mode Range vs.  
Output Voltage, VREF = 2.5 V  
Rev. A | Page 10 of 20  
Data Sheet  
AD8231-EP  
20  
15  
50  
G = 128  
40  
G = 64  
G = 32  
G = 16  
G = 8  
G = 4  
G = 2  
G = 1  
G = 1  
10  
30  
5
G = 8  
20  
G = 128  
0
10  
–5  
0
–10  
–15  
–20  
–25  
–30  
–10  
–20  
–30  
–40  
100  
–55 –40 –25 –10  
5
20 35 50 65 80 95 110 125  
1k  
10k  
100k  
1M  
10M  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 18. Instrumentation Amplifier CMRR vs. Temperature  
Figure 15. Instrumentation Amplifier Gain vs. Frequency  
140  
1000  
G = 1  
G = 8  
800  
900  
120  
100  
80  
60  
40  
20  
0
600  
G = 128  
200  
0
G = 1  
–200  
–400  
–600  
–800  
–1000  
G = 128  
–55 –40 –25 –10  
5
20 35 50 65 80 95 110 125  
1
10  
100  
1k  
10k  
100k  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 16. Instrumentation Amplifier Gain Drift vs. Temperature  
Figure 19. Instrumentation Amplifier Positive PSRR vs. Frequency  
140  
140  
G = 128  
G = 1  
G = 8  
120  
120  
100  
G = 8  
100  
80  
G = 128  
G = 1  
60  
40  
20  
0
80  
60  
40  
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
100k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 17. Instrumentation Amplifier CMRR vs. Frequency  
Figure 20. Instrumentation Amplifier Negative PSRR vs. Frequency  
Rev. A | Page 11 of 20  
AD8231-EP  
Data Sheet  
100  
10  
G = +128, 0.4µV/DIV  
G = +1, 1µV/DIV  
1
0.1  
0.01  
1s/DIV  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 21. Instrumentation Amplifier 0.1 Hz to 10 Hz Noise  
Figure 24. Instrumentation Amplifier Current Noise Spectral Density  
100  
G = +1  
G = +8  
G = +128  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
20mV/DIV  
5µs/DIV  
1
10  
100  
FREQUENCY (Hz)  
1k  
Figure 25. Instrumentation Amplifier Small Signal Pulse Response, G = 1,  
RL = 2 kΩ, CL = 500 pF  
Figure 22. Instrumentation Amplifier Voltage Noise Spectral Density vs.  
Frequency, 5 V, 1 Hz to 1000 Hz  
1000  
G = +1  
G = +8  
G = +128  
500pF  
800pF  
300pF  
NO  
LOAD  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
20mV/DIV  
4µs/DIV  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 26. Instrumentation Amplifier Small Signal Pulse Response for Various  
Capacitive Loads, G = 1  
Figure 23. Instrumentation Amplifier Voltage Noise Spectral Density vs.  
Frequency, 5 V, 1 Hz to 1 MHz  
Rev. A | Page 12 of 20  
Data Sheet  
AD8231-EP  
G = +8  
G = +32  
G = +128  
2V/DIV  
17.6µs TO 0.01%  
21.4µs TO 0.001%  
0.001%/DIV  
100µs/DIV  
20mV/DIV  
10µs/DIV  
Figure 27. Instrumentation Amplifier Small Signal Pulse Response, G = 4, 16,  
and 128, RL = 2 kΩ, CL = 500 pF  
Figure 30. Instrumentation Amplifier Large Signal Pulse Response,  
G = 128, VS = 5 V  
25  
20  
0.001%  
2V/DIV  
15  
0.01%  
3.95µs TO 0.01%  
4µs TO 0.001%  
10  
5
0.001%/DIV  
10µs/DIV  
0
1
10  
100  
1k  
GAIN (V/V)  
Figure 28. Instrumentation Amplifier Large Signal Pulse Response,  
G = 1, VS = 5 V  
Figure 31. Instrumentation Amplifier Settling Time vs.  
Gain for a 4 V p-p Step, VS = 5 V  
25  
20  
15  
10  
5
0.001%  
2V/DIV  
0.01%  
3.75µs TO 0.01%  
3.8µs TO 0.001%  
0.001%/DIV  
10µs/DIV  
0
1
10  
100  
1k  
GAIN (V/V)  
Figure 29. Instrumentation Amplifier Large Signal Pulse Response,  
G = 8, VS = 5 V  
Figure 32. Instrumentation Amplifier Settling Time vs.  
Gain for a 2 V p-p Step, VS = 3 V  
Rev. A | Page 13 of 20  
AD8231-EP  
Data Sheet  
+V  
+V  
S
S
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
+1.0  
+0.8  
+0.6  
+0.4  
+0.2  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
+1.0  
+0.8  
+0.6  
+0.4  
+0.2  
+25°C  
–55°C  
+25°C  
–55°C  
–V  
–V  
S
S
0.1  
1
10  
100  
0.1  
1
10  
100  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
Figure 33. Instrumentation Amplifier Output Voltage Swing vs.  
Output Current, VS = 3 V  
Figure 34. Instrumentation Amplifier Output Voltage Swing vs.  
Output Current, VS = 5 V  
Rev. A | Page 14 of 20  
Data Sheet  
AD8231-EP  
OPERATIONAL AMPLIFIER PERFORMANCE CURVES  
100  
80  
60  
40  
20  
0
–90  
NO  
LOAD  
–100  
–110  
–120  
–130  
–140  
–150  
300pF  
76° PHASE  
MARGIN  
800pF  
1nF  
1.5nF  
R
C
= 10k  
= 200pF  
L
L
20mV/DIV  
5µs/DIV  
–20  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 38. Operational Amplifier Small Signal Response for  
Various Capacitive Loads, VS = 3 V  
Figure 35. Operational Amplifier Open-Loop Gain and Phase vs.  
Frequency, VS = 5 V  
100  
–90  
NO  
LOAD  
80  
60  
40  
20  
0
–100  
–110  
–120  
–130  
–140  
–150  
1nF2kΩ  
1.5nF2kΩ  
72° PHASE  
MARGIN  
R
C
= 10kΩ  
= 200pF  
L
L
–20  
10  
100  
1k  
10k  
100k  
1M  
10M  
TIME (5µs/DIV)  
FREQUENCY (Hz)  
Figure 39. Operational Amplifier Large Signal Transient Response, VS = 5 V  
Figure 36. Operational Amplifier Open-Loop Gain and Phase vs.  
Frequency, VS = 3 V  
NO  
LOAD  
1nF  
2nF  
800pF  
NO  
LOAD  
1nF2kΩ  
1.5nF2kΩ  
1.5nF  
20mV/DIV  
5µs/DIV  
TIME (5µs/DIV)  
Figure 40. Operational Amplifier Large Signal Transient Response, VS = 3 V  
Figure 37. Operational Amplifier Small Signal Response for  
Various Capacitive Loads, VS = 5 V  
Rev. A | Page 15 of 20  
 
AD8231-EP  
Data Sheet  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
+V  
S
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
+1.0  
+0.8  
+0.6  
+0.4  
+0.2  
+25°C  
–55°C  
0
1
–V  
S
0.1  
10  
100  
1k  
10k  
100k  
1
10  
100  
OUTPUT CURRENT (mA)  
FREQUENCY (Hz)  
Figure 44. Operational Amplifier Output Voltage Swing vs.  
Output Current, VS = 3 V  
Figure 41. Operational Amplifier Voltage Spectral Noise Density vs. Frequency  
+V  
S
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
+1.0  
+0.8  
+0.6  
+0.4  
+0.2  
3.5  
V
V
= ±2.5V  
= ±1.5V  
S
S
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
+25°C  
–55°C  
–V  
S
0.1  
–0.5  
1
10  
100  
–55 –40 –25 –10  
5
20 35 50 65 80 95 110 125  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
Figure 45. Operational Amplifier Output Voltage Swing vs.  
Output Current, VS = 5 V  
Figure 42. Operational Amplifier Bias Current vs. Temperature  
140  
400  
300  
200  
100  
+PSRR  
120  
100  
80  
60  
40  
20  
0
V
= ±2.5V  
S
–PSRR  
0
–100  
–200  
–300  
–400  
V
= ±1.5V  
S
–3  
–2  
–1  
0
1
2
3
1
10  
100  
1k  
10k  
100k  
V
(V)  
CM  
FREQUENCY (Hz)  
Figure 46. Operational Amplifier Power Supply Rejection Ratio  
Figure 43. Operational Amplifier Bias Current vs. Common Mode  
Rev. A | Page 16 of 20  
Data Sheet  
AD8231-EP  
PERFORMANCE CURVES VALID FOR BOTH AMPLIFIERS  
7
160  
140  
120  
100  
80  
G = 8  
G = 128  
6
5
G = 1  
4
+25°C  
3
–55°C  
60  
2
1
0
40  
20  
SOURCE CHANNEL: OP AMP AT G = 1  
0
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
5.9  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
SUPPLY VOLTAGE (V)  
Figure 48. Channel Separation vs. Frequency  
Figure 47. Supply Current vs. Supply Voltage  
Rev. A | Page 17 of 20  
 
AD8231-EP  
Data Sheet  
OUTLINE DIMENSIONS  
DETAIL A  
(JEDEC 95)  
4.10  
4.00 SQ  
3.90  
0.35  
0.30  
0.25  
PIN 1  
INDICATOR  
PIN 1  
INDIC ATOR AREA OPTIONS  
(SEE DETAIL A)  
13  
16  
0.65  
BSC  
12  
1
2.70  
2.60 SQ  
2.50  
EXPOSED  
PAD  
4
9
5
8
0.45  
0.40  
0.35  
0.20 MIN  
BOTTOM VIEW  
TOP VIEW  
SIDE VIEW  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WGGC.  
Figure 49. 16-Lead Lead Frame Chip Scale Package [LFCSP]  
4 mm × 4 mm Body and 0.75 mm Package Height  
(CP-16-17)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
AD8231TCPZ-EP-R7  
Temperature Range  
Package Description  
Package Option  
CP-16-17  
−55°C to +125°C  
16-Lead LFCSP, 7Tape and Reel  
1 Z = RoHS Compliant Part.  
Rev. A | Page 18 of 20  
 
 
Data Sheet  
NOTES  
AD8231-EP  
Rev. A | Page 19 of 20  
AD8231-EP  
NOTES  
Data Sheet  
©2011–2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D09707-0-11/17(A)  
Rev. A | Page 20 of 20  

相关型号:

AD8231WACPZ-RL

Zero Drift, Digitally Programmable Instrumentation Amplifier
ADI

AD8231_07

Zero Drift, Digital Programmable Instrumentation Amplifier
ADI

AD8231_1

Zero Drift, Digitally Programmable Instrumentation Amplifier
ADI

AD8232

Single-Lead, Heart Rate Monitor Front End
ADI

AD8232-EVALZ

Single-Lead, Heart Rate Monitor Front End
ADI

AD8232ACPZ

Single-Lead, Heart Rate Monitor Front End
ADI

AD8232ACPZ-R7

Single-Lead, Heart Rate Monitor Front End
ADI

AD8232ACPZ-RL

Single-Lead, Heart Rate Monitor Front End
ADI

AD8232ACPZ-WP

Single-Lead, Heart Rate Monitor Front End
ADI

AD8233

Fitness and activity heart rate monitors
ADI

AD8233ACBZ-R7

50 µA, 2 mm x 1.7 mm WLCSP, Low Noise, Heart Rate Monitor for Wearable Products
ADI

AD8233CB-EBZ

Fitness and activity heart rate monitors
ADI