AD8235 [ADI]

40 μA Micropower Instrumentation Amplifier in WLCSP Package; 40 μA微功耗仪表放大器,采用WLCSP封装
AD8235
型号: AD8235
厂家: ADI    ADI
描述:

40 μA Micropower Instrumentation Amplifier in WLCSP Package
40 μA微功耗仪表放大器,采用WLCSP封装

仪表放大器
文件: 总20页 (文件大小:508K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
40 μA Micropower Instrumentation  
Amplifier in WLCSP Package  
AD8235  
FEATURES  
CONNECTION DIAGRAM  
RG  
Low power  
+VS  
A1  
–VS  
D1  
RG  
RG  
B3  
C3  
40 μA maximum supply current  
6 nA shutdown current  
Low input currents  
ESD  
PROTECTION  
ESD  
PROTECTION  
SDN  
A2  
B1  
50 pA input bias current  
25 pA input offset current  
High Common Mode Rejection Ratio (CMRR)  
110 dB CMRR , G = 100  
Space saving  
ESD  
PROTECTION  
C1  
REF  
210k  
52.5kΩ  
52.5kΩ  
210kΩ  
OP AMP  
A
ESD  
PROTECTION  
VOUT  
OP AMP  
B
B2  
D2  
NC  
NC  
WLCSP package  
ESD  
ESD  
PROTECTION  
PROTECTION  
Zero input crossover distortion  
Versatile  
AD8235  
A3  
D3  
Rail-to-rail input and output  
Shutdown  
+IN  
–IN  
Figure 1.  
Gain set with single resistor (G = 5 to 200)  
AD8236: ꢀSOIC package version of AD8235  
PIN CONFIGURATION  
BALL A1  
INDICATOR  
APPLICATIONS  
1
2
3
Medical instrumentation  
Low-side current sense  
Portable electronics  
+V  
–IN  
SDN  
S
A
B
V
OUT  
RG  
RG  
+IN  
NC  
NC  
GENERAL DESCRIPTION  
REF  
The AD8235 is the smallest and lowest power instrumentation  
amplifier in the industry. It is available in a 1.5 mm × 2.2 mm  
wafer level chip scale package (WLCSP). The AD8235 draws  
a maximum quiescent current of 40 μA. In addition, it draws a  
maximum 500 nA of current during shutdown mode, making  
it an excellent instrumentation amplifier for battery powered,  
portable applications.  
C
D
–V  
S
TOP VIEW  
(BALL SIDE DOWN)  
Not to Scale  
NC = NO CONNECT  
Figure 2. 11-Ball WLCSP (CB-11-1)  
The AD8235 can operate on supply voltages as low as 1.8 V. The  
input stage allows for wide rail-to-rail input voltage range without  
the crossover distortion, common in other designs. The rail-to-  
rail output enables easy interfacing to ADCs.  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
G = 5  
V
V
= 5V  
S
= 2.5V  
REF  
The AD8235 is an excellent choice for signal conditioning. Its  
low input bias current of 50 pA and high CMRR of 110 dB  
(G = 100) offer tremendous value for its size and low power.  
It is specified over the extended industrial temperature range of  
−40°C to 125°C.  
G = 5  
V
V
= 1.8V  
S
= 0.9V  
REF  
–0.5  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
OUTPUT VOLTAGE (V)  
Figure 3. Wide Common-Mode Voltage Range vs. Output Voltage  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2009 Analog Devices, Inc. All rights reserved.  
 
AD8235  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Shutdown Feature....................................................................... 15  
Layout Recommendations ........................................................ 15  
Reference Terminal .................................................................... 16  
Power Supply Regulation and Bypassing ................................ 16  
Input Bias Current Return Path ............................................... 17  
Input Protection ......................................................................... 17  
RF Interference ........................................................................... 17  
Common-Mode Input Voltage Range..................................... 18  
Applications Information.............................................................. 19  
AC-Coupled Instrumentation Amplifier................................ 19  
Low Power Heart Rate Monitor ............................................... 19  
Outline Dimensions....................................................................... 20  
Ordering Guide .......................................................................... 20  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Connection Diagram ....................................................................... 1  
Pin Configuration............................................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 7  
Thermal Resistance ...................................................................... 7  
Pin Configuration and Function Descriptions............................. 8  
Typical Performance Characteristics ............................................. 9  
Theory of Operation ...................................................................... 14  
Basic Operation .......................................................................... 14  
Gain Selection............................................................................. 14  
REVISION HISTORY  
8/09—Revision 0: Initial Version  
Rev. 0 | Page 2 of 20  
 
AD8235  
SPECIFICATIONS  
+VS = 5 V, VS = 0 V (GND), VREF = 2.5 V, TA = 25°C, G = 5, RLOAD = 100 kΩ to GND, SDN pin tied to +VS, unless otherwise noted.  
Table 1.  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
COMMON-MODE REJECTION RATIO (CMRR)  
CMRR DC  
VS = 2.ꢀ V, VREF = 0 V  
VCM = −1.8 V to +1.8 V  
G = ꢀ  
90  
94  
dB  
dB  
dB  
dB  
G = 10  
90  
100  
110  
110  
G = 100  
100  
100  
G = 200  
NOISE  
Voltage Noise Spectral Density, RTI  
RTI, 0.1 Hz to 10 Hz  
G = ꢀ  
f = 1 kHz, G = ꢀ  
76  
nV/√Hz  
4
4
1ꢀ  
μV p-p  
μV p-p  
fA/√Hz  
G = 200  
Current Noise  
VOLTAGE OFFSET  
Input Offset, VOS  
Average Temperature Coefficient (TC)  
Offset RTI vs. Supply (PSR)  
G = ꢀ  
2.ꢀ  
mV  
μV/°C  
−40°C to +12ꢀ°C  
VS = 1.8 V to ꢀ V  
0.7  
100  
110  
110  
110  
120  
126  
130  
130  
dB  
dB  
dB  
dB  
G = 10  
G = 100  
G = 200  
INPUT CURRENT  
Input Bias Current  
Overtemperature  
1
ꢀ0  
pA  
pA  
pA  
pA  
pA  
pA  
−40°C to +8ꢀ°C  
−40°C to +12ꢀ°C  
100  
600  
2ꢀ  
ꢀ0  
130  
Input Offset Current  
Overtemperature  
0.ꢀ  
−40°C to +8ꢀ°C  
−40°C to +12ꢀ°C  
DYNAMIC RESPONSE  
Small Signal Bandwidth, −3 dB  
G = ꢀ  
23  
9
kHz  
kHz  
kHz  
kHz  
G = 10  
G = 100  
0.8  
0.4  
G = 200  
Settling Time 0.01%  
G = ꢀ  
VOUT = 4 V step  
444  
4ꢀ6  
992  
1816  
μs  
μs  
μs  
μs  
G = 10  
G = 100  
G = 200  
Slew Rate  
G = ꢀ to 100  
9
mV/μs  
Rev. 0 | Page 3 of 20  
 
 
AD8235  
Parameter  
GAIN  
Test Conditions  
Min  
Typ  
Max  
Unit  
Gain Range  
Gain Error  
G = ꢀ + 420 kΩ/RG  
2001  
V/V  
VS = 2.ꢀ V, VREF = 0 V, VOUT = −2 V to +2 V  
G = ꢀ  
0.00ꢀ  
0.03  
0.06  
0.1ꢀ  
0.0ꢀ  
0.2  
%
%
%
%
G = 10  
G = 100  
0.2  
G = 200  
0.3  
Nonlinearity  
G = ꢀ  
RL = 10 kΩ or 100 kΩ  
−40°C to +12ꢀ°C  
2
10  
10  
10  
10  
ppm  
ppm  
ppm  
ppm  
G = 10  
1.2  
0.ꢀ  
0.ꢀ  
G = 100  
G = 200  
Gain vs. Temperature  
G = ꢀ  
0.3ꢀ  
1.ꢀ  
ppm/°C  
ppm/°C  
G > 10  
−ꢀ0  
INPUT  
Differential Impedance  
Common-Mode Impedance  
Input Voltage Range  
OUTPUT  
440||1.6  
110||6.2  
GΩ||pF  
GΩ||pF  
V
−40°C to +12ꢀ°C  
0
+VS  
Output Voltage High, VOH  
RL = 100 kΩ  
4.98  
4.98  
4.9  
4.99  
4.9ꢀ  
2
V
−40°C to +12ꢀ°C  
RL = 10 kΩ  
V
V
−40°C to +12ꢀ°C  
RL = 100 kΩ  
4.9  
V
Output Voltage Low, VOL  
mV  
mV  
mV  
mV  
mA  
−40°C to +12ꢀ°C  
RL = 10 kΩ  
10  
2ꢀ  
30  
−40°C to +12ꢀ°C  
Short-Circuit Limit, ISC  
REFERENCE INPUT  
RIN  
ꢀꢀ  
−IN, +IN = 0 V  
210  
20  
kΩ  
nA  
V
IIN  
Voltage Range  
Gain to Output  
SHUTDOWN OPERATION  
Shutdown current  
−VS  
+VS  
1
6
V/V  
ꢀ00  
1.ꢀ  
nA  
μA  
−40°C to +12ꢀ°C  
SDN PIN INPUT VOLTAGE RANGE  
VOH  
−40°C to +12ꢀ°C  
−40°C to +12ꢀ°C  
+VS − 0.ꢀ  
−VS  
+VS  
V
V
VOL  
−VS + 0.ꢀ  
POWER SUPPLY  
Operating Range  
Quiescent Current  
Overtemperature  
TEMPERATURE RANGE  
For Specified Performance  
1.8  
ꢀ.ꢀ  
40  
ꢀ0  
V
30  
μA  
μA  
−40°C to +12ꢀ°C  
−40  
+12ꢀ  
°C  
1 Although the specifications of the AD823ꢀ list only low to midrange gains, gains can be set beyond 200.  
Rev. 0 | Page 4 of 20  
 
AD8235  
+VS = 1.8 V, VS = 0 V (GND), VREF = 0.9 V, TA = 25°C, G = 5, RLOAD = 100 kΩ to GND, SDN pin tied to +VS, unless otherwise noted.  
Table 2.  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
COMMON-MODE REJECTION RATIO (CMRR)  
CMRR DC  
VS = 0.9 V, VREF = 0 V  
VCM = −0.6 V to +0.6 V  
G = ꢀ  
90  
94  
dB  
dB  
dB  
dB  
G = 10  
90  
100  
110  
110  
G = 100  
100  
100  
G = 200  
NOISE  
Voltage Noise Spectral Density, RTI  
RTI, 0.1 Hz to 10 Hz  
G = ꢀ  
f = 1 kHz, G = ꢀ  
76  
nV/√Hz  
4
4
1ꢀ  
μV p-p  
μV p-p  
fA/√Hz  
G = 200  
Current Noise  
VOLTAGE OFFSET  
Input Offset, VOS  
Average Temperature Coefficient (TC)  
Offset RTI vs. Supply (PSR)  
G = ꢀ  
2.ꢀ  
mV  
μV/°C  
−40°C to +12ꢀ°C  
VS = 1.8 V to ꢀ V  
0.7  
100  
110  
110  
110  
120  
126  
130  
130  
dB  
dB  
dB  
dB  
G = 10  
G = 100  
G = 200  
INPUT CURRENT  
Input Bias Current  
Overtemperature  
1
ꢀ0  
pA  
pA  
pA  
pA  
pA  
pA  
−40°C to +8ꢀ°C  
−40°C to +12ꢀ°C  
100  
600  
2ꢀ  
ꢀ0  
130  
Input Offset Current  
Overtemperature  
0.ꢀ  
−40°C to +8ꢀ°C  
−40°C to +12ꢀ°C  
DYNAMIC RESPONSE  
Small Signal Bandwidth, –3 dB  
G = ꢀ  
23  
9
kHz  
kHz  
kHz  
kHz  
G = 10  
G = 100  
0.8  
0.4  
G = 200  
Settling Time 0.01%  
G = ꢀ  
VOUT = 1.4 V step  
143  
μs  
μs  
μs  
μs  
G = 10  
178  
G = 100  
1000  
1864  
G = 200  
Slew Rate  
G = ꢀ to 100  
11  
mV/μs  
Rev. 0 | Page ꢀ of 20  
 
AD8235  
Parameter  
GAIN  
Test Conditions  
Min  
Typ  
Max  
Unit  
Gain Range  
Gain Error  
G = ꢀ + 420 kΩ/RG  
2001  
V/V  
VS = 0.9 V, VREF = 0 V, VOUT = −0.6 V to +0.6 V  
G = ꢀ  
0.00ꢀ  
0.03  
0.06  
0.1ꢀ  
0.0ꢀ  
0.2  
%
%
%
%
G = 10  
G = 100  
0.2  
G = 200  
0.3  
Nonlinearity  
G = ꢀ  
RL = 10 kΩ or 100 kΩ  
−40°C to +12ꢀ°C  
1
10  
10  
10  
10  
ppm  
ppm  
ppm  
ppm  
G = 10  
1
G = 100  
0.ꢀ  
0.4  
G = 200  
Gain vs. Temperature  
G = ꢀ  
0.3ꢀ  
1.ꢀ  
ppm/°C  
ppm/°C  
G > 10  
−ꢀ0  
INPUT  
Differential Impedance  
Common-Mode Impedance  
Input Voltage Range  
OUTPUT  
440||1.6  
110||6.2  
GΩ||pF  
GΩ||pF  
V
−40°C to +12ꢀ°C  
0
+VS  
Output Voltage High, VOH  
RL = 100 kΩ  
1.78  
1.78  
1.6ꢀ  
1.6ꢀ  
1.79  
1.7ꢀ  
2
V
−40°C to +12ꢀ°C  
RL = 10 kΩ  
V
V
−40°C to +12ꢀ°C  
RL = 100 kΩ  
V
Output Voltage Low, VOL  
mV  
mV  
mV  
mV  
mA  
−40°C to +12ꢀ°C  
RL = 10 kΩ  
12  
6
2ꢀ  
2ꢀ  
−40°C to +12ꢀ°C  
Short-Circuit Limit, ISC  
REFERENCE INPUT  
RIN  
−IN, +IN = 0 V  
210  
20  
kΩ  
nA  
V
IIN  
Voltage Range  
Gain to Output  
SHUTDOWN OPERATION  
Shutdown Current  
−VS  
+VS  
1
6
V/V  
ꢀ00  
1.ꢀ  
nA  
μA  
−40°C to +12ꢀ°C  
SDN PIN INPUT VOLTAGE RANGE  
VOH  
−40°C to +12ꢀ°C  
−40°C to +12ꢀ°C  
+VS − 0.ꢀ  
−VS  
+VS  
V
V
VOL  
−VS + 0.ꢀ  
TEMPERATURE RANGE  
For Specified Performance  
−40  
+12ꢀ  
°C  
1 Although the specifications of the AD823ꢀ list only low to midrange gains, gains can be set beyond 200.  
Rev. 0 | Page 6 of 20  
 
AD8235  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 3.  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages. This  
was measured using a standard 4-layer board, unless otherwise  
specified.  
Parameter  
Rating  
Supply Voltage  
6 V  
ꢀꢀ mA  
VS  
VS  
−6ꢀ°C to +12ꢀ°C  
−40°C to +12ꢀ°C  
12ꢀ°C  
Output Short-Circuit Current  
Input Voltage (Common Mode)  
Differential Input Voltage  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature  
ESD  
Human Body Model  
Charge Device Model  
Machine Model  
Table 4. Thermal Resistance  
Package Type  
PCB  
Power (W)  
0.2ꢀ  
1.2ꢀ  
θJA (°C/W)  
139.1  
130  
11-Ball WLCSP CB-11-1  
1S0P1  
2S2P2  
0.2ꢀ  
69.ꢀ  
1.ꢀ kV  
0.ꢀ kV  
200 V  
1.2ꢀ  
68.3  
1 Simulated thermal numbers per JESDꢀ1-9:  
1-layer PCB (1S0P), low effective thermal conductivity test board.  
2 4-layer PCB (2S2P), high effective thermal conductivity test board.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
ESD CAUTION  
Rev. 0 | Page 7 of 20  
 
 
 
AD8235  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
BALL A1  
INDICATOR  
1
2
3
+V  
–IN  
SDN  
S
A
B
V
OUT  
RG  
RG  
+IN  
NC  
NC  
REF  
C
D
–V  
S
TOP VIEW  
(BALL SIDE DOWN)  
Not to Scale  
NC = NO CONNECT  
Figure 4. Pin Configuration (Top View Looking Through Package)  
Table 5. Pin Function Descriptions  
Pin No. Mnemonic Description  
A1  
B1  
C1  
D1  
A2  
B2, D2  
A3  
B3, C3  
D3  
+VS  
VOUT  
REF  
−VS  
SDN  
NC  
−IN  
RG  
+IN  
Positive Power Supply Terminal.  
Output Terminal.  
Reference Voltage Terminal. Drive this terminal with a low impedance voltage source to level-shift the output.  
Negative Power Supply Terminal.  
Shutdown Pin. Tie to −VS for shutdown. Tie to +VS for normal operation.  
No Connect. Leave both pins floating. Should not connect to any potential.  
Negative Input Terminal (True Differential Input).  
Gain Setting Terminals. Place resistor across the RG pins.  
Positive Input Terminal (True Differential Input).  
Rev. 0 | Page 8 of 20  
 
AD8235  
TYPICAL PERFORMANCE CHARACTERISTICS  
G = 5, +VS = 5 V, VREF = 2.5 V, RL = 100 kꢀ tied to GND, TA = 25°C, SDN pin connected to +VS, unless otherwise noted  
2400  
2100  
1800  
1500  
1200  
900  
GAIN = 5  
600  
300  
5µV/DIV  
1s/DIV  
0
–40  
–30  
–20  
–10  
0
10  
20  
30  
40  
3000  
10k  
CMRR (µV/V)  
Figure 5. CMRR Distribution  
Figure 8. 0.1 Hz to 10 Hz RTI Voltage Noise  
400  
350  
300  
250  
200  
150  
100  
50  
GAIN = 200  
5µV/DIV  
1s/DIV  
0
–3000  
–2000  
–1000  
0
1000  
2000  
V
(µV)  
OSI  
Figure 9. 0.1 Hz to 10 Hz RTI Voltage Noise  
Figure 6. Typical Distribution of Input Offset Voltage  
140  
1k  
100  
10  
120  
100  
80  
60  
40  
20  
0
GAIN = 200  
GAIN = 100  
INTERNAL  
CLIPPING  
GAIN = 5  
GAIN = 200  
BANDWIDTH  
LIMITED  
GAIN = 10  
GAIN = 5  
0.1  
1
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
FREQUNCY (Hz)  
FREQUENCY (Hz)  
Figure 7. Voltage Noise Spectral Density vs. Frequency  
Figure 10. Positive PSRR vs. Frequency, RTI,  
VS = 0.9 V, 2.5 V, VREF = 0 V  
Rev. 0 | Page 9 of 20  
 
AD8235  
120  
100  
80  
10  
5
GAIN = 100  
GAIN = 10  
GAIN = 5  
GAIN = 200  
60  
0
40  
–5  
–10  
20  
0
0.1  
1
10  
100  
1k  
10k  
100k  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 11. Negative PSRR vs. Frequency, RTI, VS = 0.9 V, 2.5 V, VREF = 0 V  
Figure 14. Change in CMRR vs. Temperature, G = 5, Normalized at 25°C  
120  
60  
50  
40  
GAIN = 200  
100  
80  
GAIN = 100  
GAIN = 10  
30  
20  
60  
40  
20  
0
GAIN = 200  
GAIN = 100  
10  
GAIN = 5  
0
–10  
–20  
–30  
–40  
GAIN = 10  
GAIN = 5  
1k  
0.1  
1
10  
100  
10k  
100k  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 12. CMRR vs. Frequency, RTI  
Figure 15. Gain vs. Frequency, VS = 1.8 V, 5 V  
120  
100  
80  
60  
40  
20  
0
6
5
4
3
2
1
0
GAIN = 200  
GAIN = 100  
GAIN = 5  
GAIN = 10  
0.1  
1
10  
100  
1k  
10k 100k  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 13. CMRR vs. Frequency, 1 kΩ Source Imbalance, RTI  
Figure 16. Maximum Output Voltage vs. Frequency  
Rev. 0 | Page 10 of 20  
AD8235  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
(4.98V, 4.737V)  
(0.01V, 4.24V)  
R
R
= 100kTIED TO GND  
= 10kTIED TO GND  
LOAD  
LOAD  
(4.98V, 0.767V)  
(0.01V, 0.27V)  
V
= 5V  
S
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
–0.5  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 20. Input Common-Mode Voltage Range vs. Output Voltage,  
G = 5, VS = 5 V, VREF = 2.5 V  
Figure 17. Gain Nonlinearity, G = 5  
5.0  
4.5  
(4.994V, 4.75V)  
(0.01V, 4.25V)  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
TWO CURVES REPRESENTED:  
R
= 10kAND 100kTIED TO GND  
LOAD  
(4.994V, 0.076V)  
(0.01V, 0.026V)  
V
= 5V  
S
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
–0.5  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 18. Gain Nonlinearity, G = 10  
Figure 21. Input Common-Mode Voltage Range vs. Output Voltage,  
G = 200, VS = 5 V, VREF = 2.5 V  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
(1.78V, 1.704V)  
(0.0069V, 1.52V)  
TWO CURVES REPRESENTED:  
R
= 10kAND 100kTIED TO GND  
LOAD  
(1.78V, 0.274V)  
(0.0069V, 0.09V)  
V
= 5V  
S
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
–0.2  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 19. Gain Nonlinearity, G = 200  
Figure 22. Input Common-Mode Voltage Range vs. Output Voltage,  
G = 5, VS = 1.8 V, VREF = 0.9 V  
Rev. 0 | Page 11 of 20  
 
AD8235  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
(1.75V, 1.705V)  
(0.03V, 1.533V)  
444μs TO 0.01%  
(1.75V, 0.275V)  
(0.03V, 0.103V)  
0
–0.2  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
OUTPUT VOLTAGE (V)  
1ms/DIV  
Figure 23. Input Common-Mode Voltage Range vs. Output Voltage,  
G = 200, VS = 1.8 V, VREF = 0.9 V  
Figure 26. Large Signal Pulse Response and Settling Time,  
VS = 2.5 V, VREF = 0 V, RLOAD = 10 kΩ to VREF  
+V  
S
–0.001  
–0.002  
–0.003  
+125°C  
+85°C  
+25°C –40°C  
143.2μs TO 0.01%  
+0.003  
+0.002  
+0.001  
+85°C +25°C  
2.8  
+125°C  
–40°C  
3.3  
–V  
S
1.8  
2.3  
3.8  
4.3  
4.8  
1ms/DIV  
SUPPLY VOLTAGE (V)  
Figure 24. Output Voltage Swing vs. Supply Voltage,  
VS = 0.9 V, 2.5 V, VREF = 0 V, RLOAD = 100 kΩ Tied to −VS  
Figure 27. Large Signal Pulse Response and Settling Time,  
VS = 0.9 V, VREF = 0 V, RLOAD = 10 kΩ to VREF  
+V  
S
–0.1  
–40°C  
+25°C  
+85°C  
+125°C  
–0.2  
–0.3  
+0.003  
+0.002  
+0.001  
+125°C  
+85°C  
+25°C  
–40°C  
–V  
S
100µs/DIV  
1k  
10k  
100k  
R
()  
LOAD  
Figure 25. Output Voltage Swing vs. Load Resistance,  
VS = 0.9 V, 2.5 V, VREF = 0 V, RLOAD = 100 kΩ Tied to −VS  
Figure 28. Small Signal Pulse Response, G = 5,  
VS = 2.5 V, VREF = 0 V, RLOAD = 100 kΩ to VREF, CL = 100 pF  
Rev. 0 | Page 12 of 20  
 
AD8235  
500  
400  
300  
200  
100  
0
100µs/DIV  
0
1
2
3
4
OUTPUT VOLTAGE STEP SIZE (V)  
Figure 29. Small Signal Pulse Response, G = 5, CL = 100 pF,  
VS = 0.9 V, VREF = 0 V, RLOAD = 100 kΩ to VREF  
Figure 32. Settling Time vs. Output Voltage Step Size,  
VS = 2.5 V, VREF = 0 V, RLOAD = 10 kΩ Tied to VREF  
40  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
1.8V  
5V  
1ms/DIV  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
Figure 30. Small Signal Pulse Response, G = 200,  
CL = 100 pF, VS = 2.5 V, VREF = 0 V, RLOAD = 100 kΩ to VREF  
Figure 33. Total Supply Current vs. Temperature  
600  
500  
400  
300  
200  
100  
0
V
= 5V  
S
V
= 1.8V  
S
–100  
1ms/DIV  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
Figure 31. Small Signal Pulse Response, G = 200,  
Figure 34. Total Supply Current During Shutdown vs. Temperature  
CL = 100 pF, VS = 0.9 V, VREF = 0 V, RLOAD = 100 kΩ to VREF  
Rev. 0 | Page 13 of 20  
AD8235  
THEORY OF OPERATION  
R
G
+V  
–V  
S
S
RG  
RG  
B3  
C3  
A1  
D1  
ESD  
ESD  
PROTECTION  
PROTECTION  
SDN  
A2  
B1  
ESD  
PROTECTION  
C1  
REF  
210k  
52.5k52.5kꢀ  
210kꢀ  
OP AMP  
A
ESD  
PROTECTION  
V
OP AMP  
B
B2  
D2  
NC  
NC  
OUT  
ESD  
ESD  
PROTECTION  
PROTECTION  
AD8235  
A3  
D3  
+IN  
–IN  
Figure 35. Simplified Schematic  
5V  
SDN  
The AD8235 is a monolithic, two-op amp instrumentation  
amplifier. It is designed for low power, portable applications  
where size and low quiescent current are paramount. The  
AD8235 is offered in a WLCSP package, minimizing layout  
area. Additional features that make this part optimal for  
portable applications include a rail-to-rail input and output  
stage that offers more dynamic range when operating on low  
voltage batteries. Unlike traditional rail-to-rail input amplifiers  
that use a complementary differential pair stage and suffer from  
nonlinearity, the AD8235 uses a novel architecture to internally  
boost the supply rail, allowing the amplifier to operate rail-to-  
rail yet still deliver a low 0.5 ppm of nonlinearity. In addition,  
the two-op amp instrumentation amplifier architecture offers a  
wide operational common-mode voltage range. Additional  
information is provided in the Common-Mode Input Voltage  
Range section. Precision, laser-trimmed resistors provide the  
AD8235 with a high CMRR of 90 dB (minimum) at G = 5 and  
gain accuracy of 0.05% (maximum).  
0.1µF  
OUT  
+IN  
RG  
VINP  
+V  
S
GAIN SETTING  
RESISTOR  
V
AD8235  
OUT  
RG  
–IN  
REF  
VINM  
V
REF  
–V  
S
Figure 36. Basic Setup  
GAIN SELECTION  
Placing a resistor across the RG terminals sets the gain of the  
AD8235. The gain may be derived by referring to Table 6 or by  
using the following equation:  
420 kΩ  
RG  
=
G 5  
Table 6. Gains Achieved Using 1% Resistors  
1% Standard Table Value of RG (kΩ)  
Calculated Gain  
BASIC OPERATION  
422  
210  
140  
10ꢀ  
84.ꢀ  
28  
9.31  
4.42  
2.1ꢀ  
6.0  
7.0  
8.0  
9.0  
10.0  
20.0  
ꢀ0.1  
100.0  
200.3  
The AD8235 amplifies the difference between its positive input  
(+IN) and its negative input (−IN). The REF pin allows the user  
to level-shift the output signal. This is convenient when interfacing  
to a filter or analog-to-digital converter (ADC). The basic setup  
is shown in Figure 36. Figure 39 shows an example configuration  
for operating the AD8235 with dual supplies. The equation for  
the AD8235 is as follows:  
V
OUT = G × (VINP VINM) + VREF  
If no gain setting resistor is installed, the default gain, G, is 5.  
The Gain Selection section describes how to program the gain, G.  
The AD8235 defaults to G = 5 when no gain resistor is used.  
Gain accuracy is determined by the absolute tolerance of RG.  
The TC of the external gain resistor increases the gain drift of  
the instrumentation amplifier. Gain error and gain drift are at  
a minimum when the gain resistor is not used.  
Rev. 0 | Page 14 of 20  
 
 
 
 
 
 
AD8235  
SHUTDOWN FEATURE  
The AD8235 includes a shutdown pin (SDN) that further  
enhances the flexibility and ease of use in portable applications  
where power consumption is critical. A logic level signal can be  
applied to this pin to switch to shutdown mode, even when the  
supply is still on.  
When connecting the SDN pin to +VS or applying a voltage  
within +VS − 0.5 V, the AD8235 operates in its normal condition  
and, therefore, draws approximately 40 μA of supply current.  
When connecting the SDN pin to −VS, or any voltage within −VS +  
0.5 V, the AD8235 operates in shutdown mode and, therefore,  
draws less than 500 nA of supply current, offering considerable  
power savings.  
TRACE  
WIDTH  
PAD OPENING  
MASK OPENING  
Figure 37. Pad Opening  
In cases where the AD8235 is operating in shutdown mode, if  
a voltage potential exists at the REF pin, and there is a load to  
−VS at the output of the part, some additional current draw is  
noticeable. In this mode, a path from the REF pin to −VS exists,  
leading to some additional current draw from the reference.  
Typically, this current is negligible because the output of the  
AD8235 is driving a high impedance node, such as the input of  
an ADC.  
Pad Type  
For the actual board fabrication, the following types of  
pads/land patterns are used for surface mount assembly:  
Nonsolder mask defined (NSMD). The metal pad on the  
PCB (to which the I/O is attached) is smaller than the  
solder mask opening.  
Solder mask defined (SMD). The solder mask opening is  
smaller than the metal pad.  
LAYOUT RECOMMENDATIONS  
The critical board design parameters, as it pertains to a WLCSP  
package, are pad opening, pad type, pad finish, and board  
thickness.  
Because the copper etching process has tighter control than the  
solder mask opening process, NSMD is preferred over SMD.  
The solder mask opening on NSMD pads is larger than the  
copper pads, allowing the solder to attach to the sides of the  
copper pad and improving the reliability of the solder joints.  
Pad Opening  
Based on the IPC (Institute for Printed Circuits) standard, the  
pad opening equals the UBM (Under Bump Metallurgy)  
opening. The typical pad openings for the AD8235 shown in  
Figure 37 are:  
Pad Finish  
The finish layer on the metal pads has a significant effect on  
assembly yield and reliability. The typical metal pad finishes  
used are organic surface preservative (OSP) and electroless  
nickel immersion gold (ENIG). The thickness of the OSP finish  
on a metal pad is 0.2 ꢁm to 0.5 ꢁm. This finish evaporates during  
the reflow soldering process and interfacial reactions occur  
between the solder and metal pad. The ENIG finish consists  
of 5 ꢁm of electroless nickel and 0.02 ꢁm to 0.05 μm of gold.  
During reflow soldering, the gold layer dissolves rapidly, followed  
by reaction between the nickel and solder. It is extremely important  
to keep the thickness of gold below 0.05 ꢁm to prevent the  
formation of brittle intermetallic compounds.  
250 μm (0.5 mm pitch WLCSP)  
The solder mask opening is 100 ꢁm plus the pad opening (or  
350 μm in the case of the AD8235). The trace width should be  
less than two-thirds of the pad opening. Increasing the trace  
width can cause reduction in the stand-off height of the solder  
bump. Therefore, maintaining the proper trace width ratio is  
important to ensure the reliability of the solder connections.  
Rev. 0 | Page 1ꢀ of 20  
 
 
AD8235  
INCORRECT  
CORRECT  
Board Thickness  
Typical board thicknesses used in the industry range from  
0.4 mm to 1.6 mm and are most applicable for the AD8235. The  
thickness selected depends on the required robustness of the  
populated system assembly. The thinner board results in smaller  
shear stress range, creep shear strain range, and creep strain  
energy density range in the solder joints under the thermal  
loading. Therefore, the thinner build-up board leads to longer  
thermal fatigue life of solder joints [John H. Lau and S.W. Ricky  
Lee]1  
AD8235  
AD8235  
REF  
REF  
V
V
+
OP AMP  
Figure 38. Driving the REF Pin  
Grounding  
POWER SUPPLY REGULATION AND BYPASSING  
The output voltage of the AD8235 is developed with respect to  
the potential on the reference terminal, REF. To ensure the most  
accurate output, the trace from the REF pin should either be  
connected to the AD8235 local ground (see Figure 39) or  
connected to a voltage that is referenced to the AD8235 local  
ground (Figure 36).  
The AD8235 has high power supply rejection ration (PSRR).  
However, for optimal performance, a stable dc voltage should be  
used to power the instrumentation amplifier. Noise on the supply  
pins can adversely affect performance. As in all linear circuits,  
bypass capacitors must be used to decouple the amplifier.  
A 0.1 μF capacitor should be placed close to each supply pin.  
A 10 μF tantalum capacitor can be used farther away from the  
part (see Figure 39). In most cases, it can be shared by other  
precision integrated circuits.  
REFERENCE TERMINAL  
The reference terminal, REF, is at one end of a 210 kꢀ resistor  
(see Figure 35). The output of the instrumentation amplifier  
is referenced to the voltage on the REF terminal; this is useful  
when the output signal needs to be offset to voltages other than  
common. For example, a voltage source can be tied to the REF  
pin to level-shift the output so that the AD8235 can interface  
with an ADC. The allowable reference voltage range is a function  
of the gain, common-mode input, and supply voltages. The REF  
pin should not exceed either +VS or −VS by more than 0.5 V.  
+V  
S
0.1µF  
10µF  
SDN  
+IN  
–IN  
V
OUT  
AD8235  
LOAD  
For best performance, especially in cases where the output is not  
measured with respect to the REF terminal, source impedance to  
the REF terminal should be kept low because parasitic resistance  
can adversely affect CMRR and gain accuracy. Figure 38  
demonstrates how an op amp is configured to provide a low  
source impedance to the REF terminal when a midscale  
reference voltage is desired.  
REF  
–V  
S
0.1µF  
10µF  
–V  
S
Figure 39. Supply Decoupling, REF, and Output Referred to Ground  
1John H. Lau and S.W. Ricky Lee, “Effects of Build-Up Printed Circuit Board  
Thickness on the Solder Joint Reliability of a Wafer Level Chip Scale Package  
(WLCSP),” IEEE Transactions on Components and Packaging Technologies,  
Vol.2ꢀ, No.1, March 2002, pages 3-14.  
Rev. 0 | Page 16 of 20  
 
 
 
AD8235  
+V  
+V  
S
S
AD8235  
AD8235  
REF  
REF  
–V  
–V  
S
S
TRANSFORMER  
TRANSFORMER  
+V  
+V  
S
S
C
C
R
R
1
fHIGH-PASS  
=
AD8235  
2πRC  
AD8235  
REF  
REF  
–V  
–V  
S
S
AC-COUPLED  
AC-COUPLED  
Figure 40. Creating an IBIAS Path  
RF INTERFERENCE  
INPUT BIAS CURRENT RETURN PATH  
RF rectification is often a problem in applications where there are  
large RF signals. The problem appears as a small dc offset voltage.  
The AD8235, by its nature, has a 3.1 pF gate capacitance, CG, at  
each input. Matched series resistors form a natural low-pass filter  
that reduces rectification at high frequency (see Figure 41). The  
relationship between external, matched series resistors and the  
internal gate capacitance is expressed as  
The AD8235 input bias current is extremely small at less than  
50 pA. Nonetheless, the input bias current must have a return  
path to common. When the source, such as a transformer,  
cannot provide a return current path, one should be created  
(see Figure 40).  
INPUT PROTECTION  
All terminals of the AD8235 are protected against ESD. In addition,  
the input structure allows for dc overload conditions a diode drop  
above the positive supply and a diode drop below the negative  
supply. Voltages beyond a diode drop of the supplies cause the  
ESD diodes to conduct and enable current to flow through the  
diode. Therefore, an external resistor should be used in series  
with each of the inputs to limit current for voltages above +VS.  
In either scenario, the AD8235 safely handles a continuous 6 mA  
current at room temperature.  
1
FilterFreqDIFF  
FilterFreqCM  
=
2πRCG  
1
=
2πRCG  
+V  
S
0.1µF  
10µF  
SDN  
For applications where the AD8235 encounters extreme  
overload voltages, as in cardiac defibrillators, external series  
resistors and low leakage diode clamps, such as BAV199Ls,  
FJH1100s, or SP720s, should be used.  
+IN  
R
R
C
C
G
V
OUT  
AD8235  
–V  
S
G
REF  
–V  
S
–IN  
0.1µF  
10µF  
–V  
S
Figure 41. RFI Filtering Without External Capacitors  
Rev. 0 | Page 17 of 20  
 
 
 
AD8235  
To eliminate high frequency common-mode signals while using  
smaller source resistors, a low-pass RC network can be placed  
at the input of the instrumentation amplifier (see Figure 42).  
The filter limits the input signal bandwidth according to the  
following relationship:  
COMMON-MODE INPUT VOLTAGE RANGE  
The common-mode input voltage range is a function of the  
input voltages, reference voltage, supplies, and the output of  
Internal Op Amp A. Figure 35 shows the internal nodes of the  
AD8235. Figure 20 to Figure 23 show the common-mode  
voltage ranges for typical supply voltages and gains.  
1
FilterFreqDIFF  
FilterFreqCM  
=
2πR(2 CD +CC + CG )  
If the supply voltages and reference voltage are not represented  
in Figure 20 to Figure 23, the following methodology can be  
used to calculate the acceptable common-mode voltage range:  
1
=
2πR(CC + CG )  
1. Adhere to the input, output, and reference voltage ranges  
shown in Table 1 and Table 2.  
2. Calculate the output of Internal Op Amp A. The following  
equation calculates this output:  
Mismatched CC capacitors result in mismatched low-pass filters.  
The imbalance causes the AD8235 to treat what is a common-  
mode signal as a differential signal. To reduce the effect of  
mismatched external CC capacitors, select a value of CD greater  
than 10× CC. This sets the differential filter frequency lower than  
the common-mode frequency.  
52.5 kΩ  
VDIFF  
2
VREF  
4
5
4
A =  
V
VDIFF −  
CM  
RG  
+V  
S
where:  
0.1µF  
1nF  
10µF  
V
V
V
V
DIFF is defined as the difference in input voltages,  
DIFF = VINP − VINM.  
CM is defined as the common-mode voltage,  
CM = (VINP + VINM)/2.  
SDN  
C
C
C
C
D
C
R
+IN  
4.02kꢀ  
V
OUT  
If no gain setting resistor, RG, is installed, set RG to infinity.  
3. Keep A within 10 mV of either supply rail. This is valid over  
the −40°C to +125°C temperature range.  
10nF  
1nF  
AD8235  
R
REF  
–IN  
4.02kꢀ  
−VS + 10 mV < A < +VS – 10 mV  
Figure 42. RFI Suppression  
Rev. 0 | Page 18 of 20  
 
 
 
AD8235  
APPLICATIONS INFORMATION  
AC-COUPLED INSTRUMENTATION AMPLIFIER  
LOW POWER HEART RATE MONITOR  
An integrator can be tied to the AD8235 in feedback to create a  
high-pass filter, as shown in Figure 43. This circuit can be used  
to reject dc voltages and offsets. At low frequencies, the impedance  
of the capacitor, C, is high. Therefore, the gain of the integrator  
is high. DC voltage at the output of the AD8235 is inverted and  
gained by the integrator. The inverted signal is injected back into  
the REF pin, nulling the output. In contrast, at high frequencies,  
the integrator has low gain because the impedance of C is low.  
Voltage changes at high frequencies are inverted but at a low  
gain. The signal is injected into the REF pins, but it is not enough to  
null the output. At very high frequencies, the capacitor appears as  
a short. The op amp is at unity gain. High frequency signals are,  
therefore, allowed to pass.  
The low power and small size of the AD8235 make it an excellent  
choice for heart rate monitors. As shown in Figure 44, the  
AD8235 measures the biopotential signals from the body. It  
rejects common-mode signals and serves as the primary gain  
stage set at G = 5. The 4.7 μF capacitor and the 100 kΩ resistor  
set the −3 dB cutoff of the high-pass filter that follows the  
instrumentation amplifier. It rejects any differential dc offsets  
that may develop from the half-cell overpotential of the electrode.  
A secondary gain stage, set at G = 403, amplifies the ECG signal,  
which is then sent into a second-order, low-pass, Bessel filter  
with −3 dB cutoff at 48 Hz. The 324 Ω resistor and 1 ꢁF capacitor  
serve as an antialiasing filter. The 1 μF capacitor also serves as a  
charge reservoir for the ADC switched capacitor input stage.  
When a signal exceeds fHIGH-PASS, the AD8235 outputs the high-  
pass filtered input signal.  
This circuit was designed and tested using the AD8609, low  
power, quad op amp. The fourth op amp is configured as a Schmitt  
trigger to indicate if the right arm or left arm electrodes fall off  
the body. Used in conjunction with the 953 kΩ resistors at the  
inputs of the AD8235, the resistors pull the inputs apart when  
the electrodes fall off the body. The Schmitt trigger sends an  
active low signal to indicate a leads off condition.  
+V  
S
0.1µF  
SDN  
+IN  
–IN  
1
fHIGH-PASS  
=
2πRC  
The reference electrode (right leg) is set tied to ground. Likewise,  
the shield of the electrode cable is also tied to ground. Some  
portable heart rate monitors do not have a third electrode. In  
such cases, the negative input of the AD8235 can be tied to GND.  
AD8235  
R
REF  
C
+V  
S
Note that this circuit is shown, solely, to demonstrate the capability  
of the AD8235. Additional effort must be made to ensure  
compliance with medical safety guidelines.  
0.1µF  
AD8603  
+V  
S
V
REF  
10µF  
Figure 43. AC-Coupled Circuit  
+2.5V  
–2.5V  
20k  
1kꢀ  
+2.5V  
+2.5V  
5kꢀ  
AD8609  
LEADS OFF DETECTION  
INTERRUPT  
LEADS OFF  
0.1µF  
680nF  
953kꢀ  
SDN  
+2.5V  
0.1µF  
RA  
LA  
AD8235  
24.9kꢀ  
4.02kꢀ  
IN-AMP  
AD8609  
324ꢀ  
AD8609  
0.1µF  
10-BIT ADC  
MCU + ADC  
100kꢀ  
RL  
953kꢀ  
1kꢀ  
402kꢀ  
220nF  
1µF  
0.1µF  
4.7µF  
–2.5V  
–2.5V  
–2.5V  
+2.5V  
AD8609  
1kꢀ  
–2.5V  
Figure 44. Example Low Power Heart Rate Monitor Schematic  
Rev. 0 | Page 19 of 20  
 
 
 
AD8235  
OUTLINE DIMENSIONS  
0.657  
0.602  
0.546  
1.61  
1.57  
1.53  
0.348  
0.328  
0.308  
0.020  
REF  
SEATING  
PLANE  
3
2
1
A
BALL A1  
IDENTIFIER  
1.50  
REF  
2.08  
2.04  
2.00  
B
C
D
0.330  
0.310  
0.290  
0.50  
REF  
0.230  
0.212  
0.192  
TOP VIEW  
(BALL SIDE DOWN)  
BOTTOM VIEW  
(BALL SIDE UP)  
0.04 MAX  
0.355  
0.330  
0.304  
COPLANARITY  
1.00  
REF  
0.280  
0.250  
0.220  
Figure 45. 11-Ball, Backside-Coated, Wafer Level Chip Scale Package [WLCSP]  
(CB-11-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
AD823ꢀACBZ-P71  
Temperature Range  
Package Description  
Package Option  
Branding  
−40°C to + 12ꢀ°C  
11-Ball [WLCSP]  
CB-11-1  
H20  
1 Z = RoHS Compliant Part.  
©2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08211-0-8/09(0)  
Rev. 0 | Page 20 of 20  
 
 

相关型号:

AD8235ACBZ-P7

40 μA Micropower Instrumentation Amplifier in WLCSP Package
ADI

AD8236

Wide Supply Range, Rail-to-Rail
ADI

AD8236ARMZ

OP-AMP, 3500 uV OFFSET-MAX, PDSO8, ROHS COMPLIANT, MO-187AA, MSOP-8
ROCHESTER

AD8236ARMZ-R7

OP-AMP, 3500 uV OFFSET-MAX, PDSO8, ROHS COMPLIANT, MO-187AA, MSOP-8
ROCHESTER

AD8236ARMZ-R7

40 &#181;A Micropower Instrumentation Amplifier
ADI

AD8236ARMZ-R71

40 μA Micropower Instrumentation Amplifier with Zero Crossover Distortion
ADI

AD8236ARMZ-RL

40 &#181;A Micropower Instrumentation Amplifier
ADI

AD8236ARMZ-RL1

40 μA Micropower Instrumentation Amplifier with Zero Crossover Distortion
ADI

AD8236ARMZ1

40 μA Micropower Instrumentation Amplifier with Zero Crossover Distortion
ADI

AD8237

Micropower, Zero Drift, True Rail-to-Rail Instrumentation Amplifier
ADI

AD8237ARMZ

Micropower, Zero Drift, True Rail-to-Rail Instrumentation Amplifier
ADI

AD8237ARMZ-R7

Micropower, Zero Drift, True Rail-to-Rail Instrumentation Amplifier
ADI