AD824ARZ-14 [ADI]

Single Supply, Rail-to-Rail Low Power, FET-Input Op Amp; 单电源,轨到轨,低功耗, FET输入运算放大器
AD824ARZ-14
型号: AD824ARZ-14
厂家: ADI    ADI
描述:

Single Supply, Rail-to-Rail Low Power, FET-Input Op Amp
单电源,轨到轨,低功耗, FET输入运算放大器

运算放大器 放大器电路 光电二极管 PC
文件: 总16页 (文件大小:1372K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Single Supply, Rail-to-Rail  
Low Power, FET-Input Op Amp  
AD824  
PIN CONFIGURATIONS  
FEATURES  
Single Supply Operation: 3 V to 30 V  
Very Low Input Bias Current: 2 pA  
Wide Input Voltage Range  
Rail-to-Rail Output Swing  
Low Supply Current: 500 A/Amp  
Wide Bandwidth: 2 MHz  
Slew Rate: 2 V/s  
16-Lead Epoxy SOIC  
(R Suffix)  
14-Lead Epoxy SOIC  
(R Suffix)  
OUT D  
–IN D  
OUT A  
–IN A  
+IN A  
V+  
1
2
3
4
5
6
7
8
16  
15  
OUT A  
–IN A  
+IN A  
V+  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUT D  
–IN D  
+IN D  
V–  
14 +IN D  
No Phase Reversal  
AD824  
13  
12  
V–  
AD824  
TOP VIEW  
+IN B  
–IN B  
OUT B  
+IN C  
APPLICATIONS  
(Not to Scale)  
+IN C  
–IN C  
OUT C  
+IN B  
–IN B  
OUT B  
Photo Diode Preamplifier  
Battery Powered Instrumentation  
Power Supply Control and Protection  
Medical Instrumentation  
Remote Sensors  
11 –IN C  
OUT C  
NC  
10  
9
8
NC  
NC = NO CONNECT  
Low Voltage Strain Gage Amplifiers  
DAC Output Amplifier  
GENERAL DESCRIPTION  
The FET input combined with laser trimming provides an input  
that has extremely low bias currents with guaranteed offsets  
below 1 mV. This enables high accuracy designs even with  
high source impedances. Precision is combined with low  
noise, making the AD824 ideal for use in battery powered  
medical equipment.  
The AD824 is a quad, FET input, single supply amplifier, fea-  
turing rail-to-rail outputs. The combination of FET inputs and  
rail-to-rail outputs makes the AD824 useful in a wide variety of  
low voltage applications where low input current is a primary  
consideration.  
The AD824 is guaranteed to operate from a 3 V single supply  
up to ±15 V dual supplies. AD824AR-3V Parametric Perfor-  
mance at 3 V is fully guaranteed.  
Applications for the AD824 include portable medical equipment,  
photo diode preamplifiers and high impedance transducer  
amplifiers.  
Fabricated on ADI’s complementary bipolar process, the AD824  
has a unique input stage that allows the input voltage to safely  
extend beyond the negative supply and to the positive supply  
without any phase inversion or latchup. The output voltage  
swings to within 15 mV of the supplies. Capacitive loads to  
350 pF can be handled without oscillation.  
The ability of the output to swing rail-to-rail enables designers  
to build multistage filters in single supply systems and maintain  
high signal-to-noise ratios.  
The AD824 is specified over the extended industrial (–40C to  
+85C) temperature range and is available in narrow 14-lead  
and 16-lead SOIC packages.  
REV. C  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
AD824–SPECIFICATIONS  
ELECTRICAL SPECIFICATIONS (@ VS = 5.0 V, VCM = 0 V, VOUT = 0.2 V, TA = 25C unless otherwise noted)  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage AD824A  
VOS  
IB  
0.1  
1.0  
1.5  
12  
4000  
10  
mV  
mV  
pA  
pA  
pA  
pA  
V
dB  
dB  
dB  
WʈpF  
TMIN to TMAX  
Input Bias Current  
Input Offset Current  
2
300  
2
T
MIN to TMAX  
TMIN to TMAX  
CM = 0 V to 2 V  
IOS  
300  
Input Voltage Range  
Common-Mode Rejection Ratio  
–0.2  
66  
60  
3.0  
CMRR  
AVO  
V
80  
74  
VCM = 0 V to 3 V  
TMIN to TMAX  
60  
Input Impedance  
Large Signal Voltage Gain  
1013ʈ3.3  
VO = 0.2 V to 4.0 V  
RL = 2 kW  
20  
50  
250  
180  
40  
V/mV  
V/mV  
V/mV  
V/mV  
mV/C  
RL = 10 kW  
RL = 100 kW  
100  
1000  
400  
2
TMIN to TMAX, RL = 100 kW  
Offset Voltage Drift  
DVOS/DT  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
ISOURCE = 20 mA  
4.975  
4.97  
4.80  
4.75  
4.988  
4.985  
4.85  
4.82  
15  
V
V
V
V
mV  
mV  
mV  
mV  
mA  
mA  
W
TMIN to TMAX  
I
T
SOURCE = 2.5 mA  
MIN to TMAX  
ISINK = 20 mA  
MIN to TMAX  
SINK = 2.5 mA  
Output Voltage Low  
VOL  
25  
30  
150  
200  
T
I
20  
120  
140  
±12  
±10  
100  
TMIN to TMAX  
Sink/Source  
TMIN to TMAX  
f = 1 MHz, AV = 1  
Short Circuit Limit  
ISC  
Open-Loop Impedance  
ZOUT  
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = 2.7 V to 12 V  
70  
66  
80  
dB  
dB  
mA  
TMIN to TMAX  
Supply Current/Amplifier  
TMIN to TMAX  
500  
600  
DYNAMIC PERFORMANCE  
Slew Rate  
Full-Power Bandwidth  
Settling Time  
Gain Bandwidth Product  
Phase Margin  
Channel Separation  
SR  
BWP  
tS  
GBP  
fo  
CS  
RL = 10 kW, AV = 1  
2
V/ms  
kHz  
ms  
MHz  
Degrees  
dB  
1% Distortion, VO = 4 V p-p  
VOUT = 0.2 V to 4.5 V, to 0.01%  
150  
2.5  
2
50  
–123  
No Load  
f = 1 kHz, RL = 2 kW  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
Current Noise Density  
Total Harmonic Distortion  
en p-p  
en  
in  
0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz  
2
16  
0.8  
0.005  
mV p-p  
nV/÷Hz  
fA/÷Hz  
%
THD  
f = 10 kHz, RL = 0, AV = +1  
–2–  
REV. C  
AD824  
ELECTRICAL SPECIFICATIONS (@ VS = 15.0 V, VOUT = 0 V, TA = 25C unless otherwise noted)  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage AD824A  
VOS  
IB  
0.5  
0.6  
4
500  
25  
3
2.5  
4.0  
35  
mV  
mV  
pA  
pA  
pA  
pA  
pA  
V
TMIN to TMAX  
VCM = 0 V  
TMIN to TMAX  
Input Bias Current  
4000  
IB  
IOS  
VCM = –10 V  
Input Offset Current  
20  
13  
TMIN to TMAX  
500  
Input Voltage Range  
Common-Mode Rejection Ratio  
–15  
70  
66  
CMRR  
AVO  
VCM = –15 V to 13 V  
TMIN to TMAX  
80  
dB  
dB  
WʈpF  
Input Impedance  
Large Signal Voltage Gain  
1013ʈ3.3  
Vo = –10 V to +10 V;  
RL = 2 kW  
12  
50  
300  
200  
50  
V/mV  
V/mV  
V/mV  
V/mV  
mV/C  
RL = 10 kW  
RL = 100 kW  
200  
2000  
1000  
2
TMIN to TMAX, RL = 100 kW  
Offset Voltage Drift  
DVOS/DT  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
ISOURCE = 20 mA  
MIN to TMAX  
SOURCE = 2.5 mA  
14.975  
14.970  
14.80  
14.988  
14.985  
14.85  
V
V
V
T
I
TMIN to TMAX  
14.75  
14.82  
V
Output Voltage Low  
VOL  
ISINK = 20 mA  
–14.985 –14.975  
V
V
V
V
mA  
W
T
MIN to TMAX  
–14.98  
–14.88  
–14.86  
±20  
–14.97  
–14.85  
–14.8  
ISINK = 2.5 mA  
MIN to TMAX  
T
Short Circuit Limit  
Open-Loop Impedance  
ISC  
ZOUT  
Sink/Source, TMIN to TMAX  
f = 1 MHz, AV = 1  
±8  
100  
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = 2.7 V to 15 V  
70  
68  
80  
dB  
dB  
mA  
mA  
TMIN to TMAX  
Supply Current/Amplifier  
VO = 0 V  
TMIN to TMAX  
560  
625  
675  
DYNAMIC PERFORMANCE  
Slew Rate  
Full-Power Bandwidth  
Settling Time  
Gain Bandwidth Product  
Phase Margin  
SR  
BWP  
tS  
GBP  
fo  
CS  
RL = 10 kW, AV = 1  
2
33  
6
2
50  
–123  
V/ms  
kHz  
ms  
MHz  
Degrees  
dB  
1% Distortion, VO = 20 V p-p  
VOUT = 0 V to 10 V, to 0.01%  
Channel Separation  
f = 1 kHz, RL =2 kW  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
Current Noise Density  
Total Harmonic Distortion  
en p-p  
en  
in  
0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz  
f =10 kHz, VO = 3 V rms,  
RL = 10 kW  
2
16  
1.1  
mV p-p  
nV/÷Hz  
fA/÷Hz  
THD  
0.005  
%
–3–  
REV. C  
AD824–SPECIFICATIONS  
ELECTRICAL SPECIFICATIONS  
(@ VS = 3.0 V, VCM = 0 V, VOUT = 0.2 V, TA = 25C unless otherwise noted)  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage AD824A -3 V  
VOS  
IB  
0.2  
1.0  
1.5  
12  
4000  
10  
mV  
mV  
pA  
pA  
pA  
pA  
V
TMIN to TMAX  
TMIN to TMAX  
TMIN to TMAX  
Input Bias Current  
Input Offset Current  
2
250  
2
IOS  
250  
Input Voltage Range  
0
1
Common-Mode Rejection Ratio  
CMRR  
AVO  
VCM = 0 V to 1 V  
TMIN to TMAX  
58  
56  
74  
dB  
dB  
WʈpF  
Input Impedance  
Large Signal Voltage Gain  
1013ʈ3.3  
VO = 0.2 V to 2.0 V  
RL = 2 kW  
10  
30  
180  
90  
20  
65  
500  
250  
2
V/mV  
V/mV  
V/mV  
V/mV  
mV/C  
RL = 10 kW  
RL = 100 kW  
TMIN to TMAX, RL = 100 kW  
Offset Voltage Drift  
DVOS/DT  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
ISOURCE = 20 mA  
2.975  
2.97  
2.8  
2.988  
2.985  
2.85  
2.82  
15  
V
V
V
V
mV  
mV  
mV  
mV  
mA  
mA  
W
TMIN to TMAX  
ISOURCE = 2.5 mA  
MIN to TMAX  
T
2.75  
Output Voltage Low  
VOL  
ISINK = 20 mA  
TMIN to TMAX  
25  
30  
150  
200  
20  
I
T
SINK = 2.5 mA  
MIN to TMAX  
120  
140  
±8  
±6  
100  
Short Circuit Limit  
ISC  
ISC  
ZOUT  
Sink/Source  
Sink/Source, TMIN to TMAX  
f = 1 MHz, AV = 1  
Open-Loop Impedance  
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = 2.7 V to 12 V,  
TMIN to TMAX  
VO = 0.2 V, TMIN to TMAX  
70  
66  
dB  
dB  
mA  
Supply Current/Amplifier  
500  
600  
DYNAMIC PERFORMANCE  
Slew Rate  
Full-Power Bandwidth  
Settling Time  
Gain Bandwidth Product  
Phase Margin  
SR  
BWP  
tS  
GBP  
fo  
CS  
RL =10 kW, AV = 1  
2
300  
2
2
50  
–123  
V/ms  
kHz  
ms  
MHz  
Degrees  
dB  
1% Distortion, VO = 2 V p-p  
VOUT = 0.2 V to 2.5 V, to 0.01%  
Channel Separation  
f = 1 kHz, RL = 2 kW  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
Current Noise Density  
Total Harmonic Distortion  
en p-p  
en  
in  
0.1 Hz to 10 Hz  
f = 1 kHz  
2
16  
0.8  
0.01  
mV p-p  
nV/÷Hz  
fA/÷Hz  
%
THD  
f = 10 kHz, RL = 0, AV = +1  
–4–  
REV. C  
AD824  
(@ V = 5.0 V, VCM = 0 V, TA = 25C unless otherwise noted)  
WAFER TEST LIMITS  
S
Parameter  
Symbol  
Conditions  
Limit  
Unit  
Offset Voltage  
Input Bias Current  
VOS  
IB  
1.0  
12  
mV max  
pA max  
Input Offset Current  
IOS  
20  
pA  
Input Voltage Range  
VCM  
CMRR  
PSRR  
AVO  
VOH  
VOL  
ISY  
–0.2 to 3.0  
66  
70  
15  
4.975  
25  
600  
V min  
dB min  
mV/V  
V/mV min  
V min  
mV max  
mA max  
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large Signal Voltage Gain  
Output Voltage High  
Output Voltage Low  
VCM = 0 V to 2 V  
V = + 2.7 V to +12 V  
RL = 2 kW  
ISOURCE = 20 mA  
ISINK = 20 mA  
Supply Current/Amplifier  
VO = 0 V, RL = •  
NOTE  
Electrical tests and wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for  
standard product dice. Consult factory to negotiate specifications based on dice lot qualifications through sample lot assembly and testing.  
ABSOLUTE MAXIMUM RATINGS1  
V
CC  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±18 V  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . –VS – 0.2 V to +VS  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . ±30 V  
Output Short Circuit Duration to GND . . . . . . . . . Indefinite  
Storage Temperature Range  
R-14, R-16 Packages . . . . . . . . . . . . . . . . –65C to +150C  
Operating Temperature Range  
AD824A . . . . . . . . . . . . . . . . . . . . . . . . . . . –40C to +85C  
Junction Temperature Range  
R-14, R-16 Packages . . . . . . . . . . . . . . . . –65C to +150C  
Lead Temperature Range (Soldering 60 sec) . . . . . . . . . 300C  
I5  
I6  
Q18  
Q29  
R1  
J1  
R2  
R9  
Q21 Q27  
Q4  
Q6  
C3  
Q5  
J2  
Q20  
Q23  
Q19  
Q22  
+IN  
R7  
Q7  
C2  
C4  
R13  
–IN  
R15  
V
OUT  
2
Q24 Q25  
Package Type  
qJA  
qJC  
Unit  
Q8  
C1  
14-Lead SOIC (R)  
16-Lead SOIC (R)  
120  
92  
36  
27  
C/W  
C/W  
Q2  
Q3  
Q31  
Q28  
NOTES  
Q26  
R12  
I1  
R14  
I2  
R17  
1 Absolute maximum ratings apply to packaged parts unless otherwise noted.  
2 qJA is specified for the worst case conditions, i.e., qJA is specified for device in socket  
for P-DIP packages; qJA is specified for device soldered in circuit board for SOIC  
package.  
I3  
V
I4  
EE  
Figure 1. Simplified Schematic of 1/4 AD824  
ORDERING GUIDE  
Temperature  
Range  
Package  
Description  
Package  
Option  
Model  
AD824AR-14  
AD824AR-14-3V –40C to +85C 14-Pin SOIC  
AD824AR-16  
–40C to +85C 14-Pin SOIC  
R-14  
R-14  
R-16  
–40C to +85C 16-Pin SOIC  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the AD824 features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. C  
–5–  
AD824Typical Performance Characteristics  
V
=
15V  
V
= 5V  
S
80  
60  
40  
20  
0
S
80  
60  
40  
20  
0
NO LOAD  
NO LOAD  
45  
45  
90  
90  
135  
180  
135  
180  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
100  
90  
100  
90  
10  
10  
0%  
0%  
50mV  
1µs  
50mV  
1µs  
TPC 1. Open-Loop Gain/Phase and Small Signal  
Response, VS = ±15 V, No Load  
TPC 3. Open-Loop Gain/Phase and Small Signal  
Response, VS = 5 V, No Load  
V
=
15V  
V
= 5V  
= 220pF  
S
L
80  
60  
40  
20  
0
60  
40  
20  
S
L
C
= 100pF  
C
45  
90  
45  
135  
180  
90  
0
135  
180  
–20  
100  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
100  
90  
100  
90  
10  
10  
0%  
0%  
50mV  
1µs  
50mV  
1µs  
TPC 2. Open-Loop Gain/Phase and Small Signal  
Response, VS = ±15 V, CL = 100 pF  
TPC 4. Open-Loop Gain/Phase and Small Signal  
Response, VS = 5 V, CL = 220 pF  
–6–  
REV. C  
AD824  
V
= 3V  
60  
40  
20  
S
NO LOAD  
t
µs  
9.950  
100  
90  
45  
90  
135  
180  
0
10  
0%  
–20  
5V  
2µs  
1k  
10k  
100k  
1M  
10M  
t
µs  
10.810  
100  
90  
100  
90  
10  
10  
0%  
0%  
50mV  
1µs  
5V  
2µs  
TPC 5. Open-Loop Gain/Phase and Small Signal  
Response, VS = 3 V, No Load  
TPC 7. Slew Rate, RL = 10k  
V
= 3V  
= 220pF  
60  
40  
20  
S
L
C
100  
90  
45  
V
OUT  
90  
10  
135  
180  
0%  
0
100µs  
5V  
–20  
TPC 8. Phase Reversal with Inputs Exceeding Supply by 1 V  
1k  
10k  
100k  
1M  
10M  
0.8  
0.7  
0.6  
100  
90  
0.5  
SOURCE  
0.4  
0.3  
0.2  
10  
0%  
SINK  
0.1  
50mV  
1µs  
0
1ꢀ  
5ꢀ  
10ꢀ  
50100ꢀ  
500ꢀ  
1m  
5m  
10m  
LOAD CURRENT – A  
TPC 6. Open-Loop Gain/Phase and Small Signal  
Response, VS = 3 V, CL = 220 pF  
TPC 9. Output Voltage to Supply Rail vs. Sink and Source  
Load Currents  
REV. C  
–7–  
AD824  
14  
12  
10  
8
COUNT = 60  
3V  
V
S
15V  
60  
40  
20  
6
4
2
5
10  
15  
20  
FREQUENCY – kHz  
0
–2.5 –2.0 –1.5 –1.0 –0.5  
0
0.5 1.0 1.5 2.0  
2.5  
OFFSET VOLTAGE DRIFT  
TPC 10. Voltage Noise Density  
TPC 13. TC VOS Distribution, –55C to +125C, VS = 5, 0  
150  
0.1  
V
= 5, 0  
S
R
A
= 0  
= +1  
L
V
125  
100  
75  
V
= +3  
= +5  
S
0.010  
0.001  
V
S
50  
25  
V
= 15  
S
0
0.0001  
–25  
20  
100  
1k  
FREQUENCY – Hz  
10k 20k  
–60 –40 –20  
0
20  
40  
60  
80 100 120  
140  
TEMPERATURE –  
C
TPC 11. Total Harmonic Distortion  
TPC 14. Input Offset Current vs. Temperature  
280  
240  
200  
160  
120  
80  
100k  
V
= 5, 0  
COUNT = 860  
S
10k  
1k  
100  
10  
1
40  
0
–0.5 –0.4 –0.3 –0.2 –0.1  
0
0.1 0.2 0.3 0.4 0.5  
20  
40  
60  
80  
100  
C
120  
140  
OFFSET VOLTAGE – mV  
TEMPERATURE –  
TPC 12. Input Offset Distribution, VS = 5, 0  
TPC 15. Input Bias Current vs. Temperature  
–8–  
REV. C  
AD824  
120  
100  
80  
60  
40  
20  
0
1k  
100  
10  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
1
10  
100  
1k  
10k  
100k  
FREQUENCY – Hz  
FREQUENCY – Hz  
TPC 16. Common-Mode Rejection vs. Frequency  
TPC 19. Input Voltage Noise Spectral Density vs.  
Frequency  
–40  
–60  
120  
100  
80  
60  
40  
20  
0
–80  
–100  
–120  
100  
1k  
10k  
FREQUENCY – Hz  
100k  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY – Hz  
TPC 17. THD vs. Frequency, 3 V rms  
TPC 20. Power Supply Rejection vs. Frequency  
100  
80  
60  
40  
20  
100  
80  
60  
40  
20  
0
30  
25  
20  
15  
10  
5
15V  
3, 0V  
0
–20  
–20  
0
10  
100  
1k  
10k  
100k  
1M  
10M  
1k  
3k  
10k  
30k  
100k  
300k  
1M  
FREQUENCY – Hz  
INPUT FREQUENCY – Hz  
TPC 18. Open-Loop Gain and Phase vs. Frequency  
TPC 21. Large Signal Frequency Response  
REV. C  
–9–  
AD824  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
5V  
5µs  
100  
90  
1 TO 4  
1 TO 2  
10  
1 TO 3  
0%  
10  
100  
1k  
FREQUENCY – Hz  
10k  
100k  
TPC 22. Crosstalk vs. Frequency  
TPC 25. Large Signal Response  
10k  
1k  
100  
10  
1
2750  
2500  
2250  
2000  
1750  
1500  
1250  
1000  
V
= 15V  
S
V
= 3, 0  
S
.1  
.01  
10  
100  
1k  
10k  
100k  
1M  
10M  
–60 –40 –20  
0
20  
40  
60  
80 100 120  
140  
FREQUENCY – Hz  
TEMPERATURE –  
C
TPC 23. Output Impedance vs. Frequency, Gain = +1  
TPC 26. Supply Current vs. Temperature  
1000  
100  
10  
V
V
=
15V  
S
S
= 3, 0  
20mV  
500ns  
100  
90  
V
– V  
S
OL  
V
– V  
OH  
S
10  
0%  
0
0.01  
0.10  
1.0  
10.0  
LOAD CURRENT – mA  
TPC 24. Small Signal Response, Unity Gain Follower,  
TPC 27. Output Saturation Voltage  
10kʈ100 pF Load  
–10–  
REV. C  
AD824  
APPLICATION NOTES  
A current-limiting resistor should be used in series with the  
input of the AD824 if there is a possibility of the input voltage  
exceeding the positive supply by more than 300 mV or if an  
input voltage will be applied to the AD824 when ±VS = 0. The  
amplifier will be damaged if left in that condition for more than  
10 seconds. A 1 kW resistor allows the amplifier to withstand up  
to 10 V of continuous overvoltage and increases the input volt-  
age noise by a negligible amount.  
INPUT CHARACTERISTICS  
In the AD824, n-channel JFETs are used to provide a low  
offset, low noise, high impedance input stage. Minimum input  
common-mode voltage extends from 0.2 V below –VS to 1 V less  
than +VS. Driving the input voltage closer to the positive rail will  
cause a loss of amplifier bandwidth.  
The AD824 does not exhibit phase reversal for input voltages  
up to and including +VS. Figure 2a shows the response of an  
AD824 voltage follower to a 0 V to 5 V (+VS) square wave input.  
The input and output are superimposed. The output tracks the  
input up to +VS without phase reversal. The reduced bandwidth  
above a 4 V input causes the rounding of the output wave form.  
For input voltages greater than +VS, a resistor in series with  
the AD824’s noninverting input will prevent phase reversal at  
the expense of greater input voltage noise. This is illustrated in  
Figure 2b.  
Input voltages less than –VS are a completely different story.  
The amplifier can safely withstand input voltages 20 V below  
the minus supply voltage as long as the total voltage from the  
positive supply to the input terminal is less than 36 V. In addition,  
the input stage typically maintains picoamp level input currents  
across that input voltage range.  
OUTPUT CHARACTERISTICS  
The AD824’s unique bipolar rail-to-rail output stage swings  
within 15 mV of the positive and negative supply voltages. The  
AD824’s approximate output saturation resistance is 100 W for  
both sourcing and sinking. This can be used to estimate output  
saturation voltage when driving heavier current loads. For  
instance, the saturation voltage will be 0.5 V from either supply  
with a 5 mA current load.  
1V  
2µs  
100  
90  
For load resistances over 20 kW, the AD824’s input error  
voltage is virtually unchanged until the output voltage is driven  
to 180 mV of either supply.  
10  
GND  
0%  
1V  
1V  
If the AD824’s output is overdriven so as to saturate either of  
the output devices, the amplifier will recover within 2 ms of its  
input returning to the amplifier’s linear operating region.  
(a)  
Direct capacitive loads will interact with the amplifier’s effective  
output impedance to form an additional pole in the amplifier’s  
feedback loop, which can cause excessive peaking on the pulse  
response or loss of stability. Worst case is when the amplifier is  
used as a unity gain follower. TPC 4 and 6 show the AD824’s  
pulse response as a unity gain follower driving 220 pF. Configu-  
rations with less loop gain, and as a result less loop bandwidth,  
will be much less sensitive to capacitance load effects. Noise  
gain is the inverse of the feedback attenuation factor provided  
by the feedback network in use.  
10µs  
1V  
100  
90  
+V  
S
10  
GND 0%  
1V  
(b)  
Figure 3 shows a method for extending capacitance load drive  
capability for a unity gain follower. With these component val-  
ues, the circuit will drive 5,000 pF with a 10% overshoot.  
+5V  
R
P
V
IN  
V
OUT  
+V  
S
0.01F  
8
100ꢃ  
1/4  
V
IN  
Figure 2. (a) Response with RP = 0; VIN from 0 to +VS  
(b) VIN = 0 to + VS + 200 m V  
VOUT = 0 to + VS  
AD824  
V
OUT  
0.01F  
4
C
L
–V  
S
RP = 49.9 kW  
20pF  
Since the input stage uses n-channel JFETs, input current  
during normal operation is positive; the current flows out from  
the input terminals. If the input voltage is driven more positive  
than +VS – 0.4 V, the input current will reverse direction as  
internal device junctions become forward biased. This is  
illustrated in TPC 8.  
20kꢃ  
Figure 3. Extending Unity Gain Follower Capacitive Load  
Capability Beyond 350 pF  
REV. C  
–11–  
AD824  
APPLICATIONS  
Table I. AD824 In Amp Performance  
VS = 3 V, 0 V VS = 5 V  
74 dB 80 dB  
Single Supply Voltage-to-Frequency Converter  
The circuit shown in Figure 4 uses the AD824 to drive a low  
power timer, which produces a stable pulse of width t1. The  
positive going output pulse is integrated by R1-C1 and used as  
one input to the AD824, which is connected as a differential  
integrator. The other input (nonloading) is the unknown voltage,  
VIN. The AD824 output drives the timer trigger input, closing  
the overall feedback loop.  
Parameters  
CMRR  
Common-Mode  
Voltage Range  
3 dB BW, G = 10  
G = 100  
–0.2 V to +2 V –5.2 V to +4 V  
180 kHz  
18 kHz  
180 kHz  
18 kHz  
tSETTLING  
2 V Step (VS = 0 V, 3 V)  
5 V (VS = ±5 V)  
Noise @ f = 1 kHz, G = 10  
2 ms  
10V  
U4  
5 ms  
270 nV/÷Hz  
2.2 mV/÷Hz  
REF02  
C5  
270 nV/÷Hz  
0.1F  
2
V
= 5V  
G = 100 2.2 mV/÷Hz  
REF  
6
5
CMOS  
R
10kꢃ  
**  
OUT2  
OUT1  
3
SCALE  
74HCO4  
C3  
0.1F  
5µs  
4
U3B  
U3A  
2
4
3
1
100  
90  
U2  
CMOS 555  
0.01F, 2%  
4
8
R2  
U1  
R3*  
C1  
R
V+  
499k, 1%  
116kꢃ  
6
THR  
OUT  
3
5
1/4  
2
7
TR  
10  
AD824  
R1  
CV  
0%  
DIS  
499k, 1%  
C6  
390pF  
5%  
1V  
GND  
0VTO 2.5V  
1
C4  
FULL SCALE  
(NPO)  
C2  
0.1F  
Figure 5a. Pulse Response of In Amp to a 500 mV p-p  
Input Signal; VS = 5 V, 0 V; Gain = 10  
0.01F, 2%  
NOTES  
=V /(VREF t1), t1 = 1.1 R3 C6  
f
OUT  
IN  
= 25kHz f AS SHOWN.  
S
R1  
R2  
R3  
R4  
R5  
R6  
OHMTEK  
* = 1% METAL FILM, <50ppm/C TC  
** = 10%, 20T FILM, <100ppm/C TC  
PART # 1043  
V
90kꢃ  
9kꢃ  
1kꢃ  
1kꢃ  
9kꢃ  
90kꢃ  
REF  
t1 = 33s FOR f  
= 20kHz @V = 2.0V  
IN  
OUT  
G = 10  
G = 100  
G = 100  
G = 10  
Figure 4. Single Supply Voltage-to-Frequency Converter  
+V  
S
Typical AD824 bias currents of 2 pA allow megaohm-range  
source impedances with negligible dc errors. Linearity errors on  
the order of 0.01% full scale can be achieved with this circuit.  
This performance is obtained with a 5 V single supply, which  
delivers less than 3 mA to the entire circuit.  
0.1F  
2
3
6
1/4  
1
1/4  
AD824  
7
AD824  
R
P
V
V
5
OUT  
IN1  
11  
1kꢃ  
R
P
Single Supply Programmable Gain Instrumentation Amplifier  
The AD824 can be configured as a single supply instrumenta-  
tion amplifier that is able to operate from single supplies down  
to 5 V or dual supplies up to ±15 V. AD824 FET inputs’ 2 pA  
bias currents minimize offset errors caused by high unbalanced  
source impedances.  
V
IN2  
1kꢃ  
R6  
R4 + R5  
(G = 10)V  
= (V  
IN1  
–V ) (1+  
IN2  
) +V  
REF  
OUT  
R5 + R6  
R4  
(G = 100)V  
= (V  
IN1  
–V ) (1+  
IN2  
) +V  
REF  
OUT  
FOR R1 = R6, R2 = R5 AND R3 = R4  
An array of precision thin-film resistors sets the in amp gain to  
be either 10 or 100. These resistors are laser-trimmed to ratio  
match to 0.01% and have a maximum differential TC of 5 ppm/C.  
Figure 5b. A Single Supply Programmable  
Instrumentation Amplifier  
–12–  
REV. C  
AD824  
3 Volt, Single Supply Stereo Headphone Driver  
The AD824 exhibits good current drive and THD+N perfor-  
mance, even at 3 V single supplies. At 1 kHz, total harmonic  
distortion plus noise (THD+N) equals –62 dB (0.079%) for a  
300 mV p-p output signal. This is comparable to other single  
supply op amps that consume more power and cannot run on 3 V  
power supplies.  
of 4.5 V can be used to drive an A/D converter front end. The  
other half of the AD824 is configured as a unity-gain inverter  
and generates the other bridge input of –4.5 V. Resistors R1 and  
R2 provide a constant current for bridge excitation. The AD620  
low power instrumentation amplifier is used to condition the  
differential output voltage of the bridge. The gain of the AD620  
is programmed using an external resistor RG and determined by:  
In Figure 6, each channel’s input signal is coupled via a 1 mF  
Mylar capacitor. Resistor dividers set the dc voltage at the  
noninverting inputs so that the output voltage is midway between  
the power supplies (1.5 V). The gain is 1.5. Each half of the  
AD824 can then be used to drive a headphone channel. A 5 Hz  
high-pass filter is realized by the 500 mF capacitors and the  
headphones, which can be modeled as 32 ohm load resistors to  
ground. This ensures that all signals in the audio frequency  
range (20 Hz–20 kHz) are delivered to the headphones.  
49.4 kW  
RG  
G =  
+ 1  
A 3.3 V/5 V Precision Sample-and-Hold Amplifier  
In battery-powered applications, low supply voltage operational  
amplifiers are required for low power consumption. Also, low  
supply voltage applications limit the signal range in precision  
analog circuitry. Circuits like the sample-and-hold circuit shown  
in Figure 8, illustrate techniques for designing precision analog  
circuitry in low supply voltage applications. To maintain high  
signal-to-noise ratios (SNRs) in a low supply voltage application  
requires the use of rail-to-rail, input/output operational amplifi-  
ers. This design highlights the ability of the AD824 to operate  
rail-to-rail from a single 3 V/5 V supply, with the advantages of  
high input impedance. The AD824, a quad JFET-input op amp,  
is well suited to S/H circuits due to its low input bias currents  
(3 pA, typical) and high input impedances (3 ¥ 1013 W, typical).  
The AD824 also exhibits very low supply currents so the total  
supply current in this circuit is less than 2.5 mA.  
3V  
0.1F  
0.1F  
95.3kꢃ  
1F  
CHANNEL 1  
1/4  
MYLAR  
47.5kAD824  
500F  
95.3kꢃ  
L
4.99kꢃ  
10kꢃ  
10kꢃ  
HEADPHONES  
32IMPEDANCE  
3.3/5V  
R1  
3.3/5V  
R
0.1F  
4.99kꢃ  
AD824A  
50kꢃ  
3
4
1
1/4  
47.5kꢃ  
1F  
A1  
FALSE GROUND (FG)  
AD824  
2
R2  
50kꢃ  
500F  
CHANNEL 2  
11  
R4  
2kꢃ  
MYLAR  
3.3/5V  
13  
Figure 6. 3 Volt Single Supply Stereo Headphone Driver  
ADG513  
FG  
15  
14  
Low Dropout Bipolar Bridge Driver  
R5  
16  
9
The AD824 can be used for driving a 350 ohm Wheatstone  
bridge. Figure 7 shows one half of the AD824 being used to  
buffer the AD589—a 1.235 V low power reference. The output  
2kꢃ  
11  
10  
AD824B  
CH  
500pF  
5
7
2
3
A2  
+V  
S
6
1
8
10  
9
\
49.9kꢃ  
+1.235V  
8
R1  
A3  
+
20ꢃ  
V
OUT  
7
4
6
5
1/4  
TO A/D CONVERTER  
REFERENCE INPUT  
AD824C  
AD824  
AD589  
C
AD824D  
10kꢃ  
26.4k, 1%  
350ꢃ  
FG  
14  
500pF  
+V  
S
12  
1%  
A4  
SAMPLE/  
HOLD  
FG  
350ꢃ  
3
2
13  
7
6
AD824  
R
G
350ꢃ  
350ꢃ  
5
Figure 8. 3.3 V/5.5 V Precision Sample and Hold  
4
10kꢃ  
V
In many single supply applications, the use of a false ground  
generator is required. In this circuit, R1 and R2 divide the  
supply voltage symmetrically, creating the false ground voltage  
at one-half the supply. Amplifier A1 then buffers this voltage  
creating a low impedance output drive. The S/H circuit is con-  
figured in an inverting topology centered around this false  
ground level.  
REF  
–V  
S
1%  
10kꢃ  
1/4  
1%  
+V  
+5V  
–5V  
S
–4.5V  
AD824  
1F  
1F  
0.1F  
GND  
0.1F  
–V  
R2  
20ꢃ  
–V  
S
S
Figure 7. Low Dropout Bipolar Bridge Driver  
REV. C  
–13–  
AD824  
A design consideration in sample-and-hold circuits is voltage  
droop at the output caused by op amp bias and switch leakage  
currents. By choosing a JFET op amp and a low leakage CMOS  
switch, this design minimizes droop rate error to better than  
0.1 mV/ms in this circuit. Higher values of CH will yield a lower  
droop rate. For best performance, CH and C2 should be poly-  
styrene, polypropylene or Teflon capacitors. These types of  
capacitors exhibit low leakage and low dielectric absorption. Addi-  
tionally, 1% metal film resistors were used throughout the design.  
less than 2 mV over the entire 0 V to 3.3 V/5 V signal range.  
Another method of reducing pedestal error is to reduce the pulse  
amplitude applied to the control pins. In order to control the  
ADG513, only 2.4 V are required for the “ON” state and  
0.8 V for the “OFF” state. If possible, use an input control  
signal whose amplitude ranges from 0.8 V to 2.4 V instead of a  
full range 0 V to 3.3 V/5 V for minimum pedestal error.  
Other circuit features include an acquisition time of less than  
3 ms to 1%; reducing CH and C2 will speed up the acquisition  
time further, but an increased pedestal error will result. Settling  
time is less than 300 ns to 1%, and the sample-mode signal BW  
is 80 kHz.  
In the sample mode, SW1 and SW4 are closed, and the output  
is VOUT = –VIN. The purpose of SW4, which operates in parallel  
with SW1, is to reduce the pedestal, or hold step, error by  
injecting the same amount of charge into the noninverting input  
of A3 that SW1 injects into the inverting input of A3. This  
creates a common-mode voltage across the inputs of A3 and is  
then rejected by the CMR of A3; otherwise, the charge injection  
from SW1 would create a differential voltage step error that  
would appear at VOUT. The pedestal error for this circuit is  
The ADG513 was chosen for its ability to work with 3 V/5 V  
supplies and for having normallyopen and normallyclosed preci-  
sion CMOS switches on a dielectrically isolated process. SW2 is  
not required in this circuit; however, it was used in parallel with  
SW3 to provide a lower RON analog switch.  
–14–  
REV. C  
AD824  
* AD824 SPICE Macro-model  
9/94, Rev. A *  
G15 98  
(9,98) 1E-6  
*
* OUTPUT STAGE  
*
ES 26  
(18,98) 1  
RS 26  
500  
IB1 98  
2.404E-3  
IB2 23  
2.404E-3  
D10 21  
DY  
D11 98  
DY  
C16 20  
2E-12  
C17 24  
2E-12  
DQ197  
DQ  
Q2 20  
22 NPN  
Q3 24  
22 PNP  
DQ224  
DQ  
Q5 25  
97 PNP 20  
Q6 25  
51 NPN 20  
VP 96  
0
18  
ARG/ADI  
*
* Copyright 1994 by Analog Devices, Inc.  
*
98  
22  
21  
98  
98  
23  
25  
25  
20  
21  
23  
51  
20  
24  
97  
52  
0
* Refer to “README.DOC” file for License Statement.  
Use of this model indicates your acceptance with  
the terms and provisions in the License Statement. *  
* Node assignments  
*
noninverting input  
| inverting input  
| | positive supply  
*
*
*
| |  
| |  
| |  
|
|
|
negative supply  
|
|
*
output  
|
*
.SUBCKT AD824  
1 2 99 50 25  
*
* INPUT STAGE & POLE AT 3.1 MHz  
*
R3  
5
99  
99  
2
1.193E3  
R4  
6
1.193E3  
CIN 1  
4E-12  
C2  
5
6
19.229E-12  
I1 4 50  
IOS 1  
1E-12  
108E-6  
2
EOS 7  
1
5
6
POLY(1) (12,98) 100E-6 1  
J1 4 2  
JX  
J2 4 7  
VN 51  
0
JX  
EP 96  
(99,0) 1  
EN 52  
(50,0) 1  
R25 30  
5E6  
R26 30  
5E6  
FSY1  
0 VP 1  
FSY2  
50VN 1  
DC125  
DX  
DC250  
DX  
*
*
* GAIN STAGE & DOMINANT POLE  
*
EREF  
0 (30,0) 1  
0
98  
98  
25  
9
99  
50  
99  
0
R5  
2.205E6  
C3  
9
9
54E-12  
G1 98  
(6,5) 0.838E-3  
V1  
-1  
8
98  
10  
10  
9
99  
25  
V2 98  
-1  
D1  
DX  
D2  
DX  
*
9
* MODELS USED  
*
8
.MODEL JX NJF(BETA=3.2526E-3 VTO=-2.000 IS=2E-12) .MODEL  
NPN NPN(BF=120 VAF=150 VAR=15 RB=2E3  
+ RE=4 RC=550 IS=1E-16)  
.MODEL PNP PNP(BF=120 VAF=150 VAR=15 RB=2E3 + RE=4  
RC=750 IS=1E-16)  
* COMMON-MODE GAIN NETWORK WITH ZERO AT 1 kHz *  
R21 11  
1E6  
R22 12  
100  
C14 11  
159E-12  
E13 11  
12  
98  
12  
98  
.MODEL DX D(IS=1E-15)  
.MODEL DY D()  
.MODEL DQ D(IS=1E-16)  
.ENDS AD824  
POLY(2) (2,98) (1,98) 0 0.5 0.5  
*
* POLE AT 10 MHz  
*
R23 18  
1E6  
98  
98  
C15 18  
15.9E-15  
REV. C  
–15–  
AD824  
OUTLINE DIMENSIONS  
14-Lead Standard Small Outline Package [SOIC]  
16-Lead Standard Small Outline Package [SOIC]  
Narrow Body  
(R-14)  
Dimensions shown in millimeters and (inches)  
Wide Body  
(R-16)  
Dimensions shown in millimeters and (inches)  
8.75 (0.3445)  
8.55 (0.3366)  
10.50 (0.4134)  
10.10 (0.3976)  
14  
1
8
7
16  
1
9
8
4.00 (0.1575)  
3.80 (0.1496)  
6.20 (0.2441)  
5.80 (0.2283)  
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
1.75 (0.0689)  
1.35 (0.0531)  
1.27 (0.0500)  
BSC  
0.50 (0.0197)  
0.25 (0.0098)  
؋
 45؇  
0.25 (0.0098)  
0.10 (0.0039)  
8؇  
0؇  
1.27 (0.0500)  
0.75 (0.0295)  
0.25 (0.0098)  
2.65 (0.1043)  
2.35 (0.0925)  
0.51 (0.0201)  
0.33 (0.0130)  
BSC  
SEATING  
PLANE  
؋
 45؇  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.19 (0.0075)  
COPLANARITY  
0.10  
0.30 (0.0118)  
0.10 (0.0039)  
COMPLIANT TO JEDEC STANDARDS MS-012AB  
8؇  
0؇  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
0.51 (0.0201)  
0.33 (0.0130)  
SEATING  
PLANE  
1.27 (0.0500)  
0.40 (0.0157)  
0.32 (0.0126)  
0.23 (0.0091)  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MS-013AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
Revision History  
Location  
Page  
2/03–Data Sheet changed from REV. B to REV. C.  
Deleted N Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Universal  
Edits to GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Edits to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Edits to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Edits to Figure 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Edits to Figure 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
1/02–Data Sheet changed from REV. A to REV. B.  
Edits to ELECTRICAL SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2, 3  
Edits to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Edits to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Deleted DICE CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
–16–  
REV. C  

相关型号:

AD824ARZ-14-3V

Single Supply, Rail-to-Rail Low Power, FET-Input Quad Op Amp
ADI

AD824ARZ-14-3V

QUAD OP-AMP, 4000uV OFFSET-MAX, 2MHz BAND WIDTH, PDSO14, PLASTIC, SOIC-14
ROCHESTER

AD824ARZ-14-3V-RL

Single Supply, Rail-to-Rail Low Power, FET-Input Quad Op Amp
ADI

AD824ARZ-14-REEL7

Single Supply, Rail-to-Rail Low Power, FET-Input Op Amp
ADI

AD824ARZ-14-REEL7

QUAD OP-AMP, 4000uV OFFSET-MAX, 2MHz BAND WIDTH, PDSO14, ROHS COMPLIANT, PLASTIC, MS-012AB, SOIC-14
ROCHESTER

AD824BN

Single Supply, Rail-to-Rail Low Power, FET-Input Op Amp
ADI

AD824_03

Single Supply, Rail-to-Rail Low Power, FET-Input Op Amp
ADI

AD824_15

Single Supply, Rail-to-Rail Low Power, FET-Input Op Amp
ADI

AD825

Low Cost, General Purpose High Speed JFET Amplifier
ADI

AD8250

12MHz 20V/us G=1,2,5,10 Programmable Gain iCMOS Instrumentation Amplifier
ADI

AD8250-EVAL

12MHz 20V/us G=1,2,5,10 Programmable Gain iCMOS Instrumentation Amplifier
ADI

AD8250-EVALZ

10 MHz, 20 V/μs, G = 1, 2, 5, 10 iCMOS Programmable Gain Instrumentation Amplifier
ADI