AD826ANZ [ADI]

High-Speed, Low-Power Dual Operational Amplifier; 高速,低功耗双路运算放大器
AD826ANZ
型号: AD826ANZ
厂家: ADI    ADI
描述:

High-Speed, Low-Power Dual Operational Amplifier
高速,低功耗双路运算放大器

运算放大器
文件: 总15页 (文件大小:731K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High-Speed, Low-Power  
Dual Operational Amplifier  
a
AD826  
FEATURES  
CONNECTION DIAGRAM  
8-Lead Plastic Mini-DIP and SO Package  
High Speed:  
50 MHz Unity Gain Bandwidth  
350 V/s Slew Rate  
70 ns Settling Time to 0.01%  
Low Power:  
7.5 mA Max Power Supply Current Per Amp  
Easy to Use:  
Drives Unlimited Capacitive Loads  
50 mA Min Output Current Per Amplifier  
Specified for +5 V, 5 V and 15 V Operation  
2.0 V p-p Output Swing into a 150 Load  
(VS = +5 V)  
8
OUT1  
1
2
3
V+  
7
OUT2  
–IN2  
+IN2  
–IN1  
+IN1  
6
5
V–  
4
AD826  
Good Video Performance  
Differential Gain & Phase Error of 0.07% & 0.11ꢃ  
Excellent DC Performance:  
2.0 mV Max Input Offset Voltage  
The AD826 features high output current drive capability of  
50 mA min per amp, and is able to drive unlimited capacitive  
loads. With a low power supply current of 15 mA max for both  
amplifiers, the AD826 is a true general purpose operational  
amplifier.  
APPLICATIONS  
Unity Gain ADC/DAC Buffer  
Cable Drivers  
8- and 10-Bit Data Acquisition Systems  
Video Line Driver  
Active Filters  
The AD826 is ideal for power sensitive applications such as video  
cameras and portable instrumentation. The AD826 can operate  
from a single +5 V supply, while still achieving 25 MHz of band-  
width. Furthermore the AD826 is fully specified from a single  
+5 V to 15 V power supplies.  
PRODUCT DESCRIPTION  
The AD826 is a dual, high speed voltage feedback op amp. It  
is ideal for use in applications which require unity gain stability  
and high output drive capability, such as buffering and cable  
driving. The 50 MHz bandwidth and 350 V/µs slew rate make  
the AD826 useful in many high speed applications including:  
video, CATV, copiers, LCDs, image scanners and fax machines.  
The AD826 excels as an ADC/DAC buffer or active filter in  
data acquisition systems and achieves a settling time of 70 ns  
to 0.01%, with a low input offset voltage of 2 mV max. The  
AD826 is available in small 8-lead plastic mini-DIP and SO  
packages.  
1kꢂ  
V  
S
500ns  
5V  
3.3F  
100  
90  
C
= 100pF  
L
0.01F  
V
IN 1kꢂ  
50ꢂ  
2
HP PULSE  
GENERATOR  
TEKTRONIX  
P6201 FET  
PROBE  
TEKTRONIX  
7A24 FET  
PREAMP  
1/2  
AD826  
1
V
OUT  
3
10  
C
= 1000pF  
L
0.01F  
3.3F  
0%  
C
L
5V  
V  
S
Driving a Large Capacitive Load  
REV. C  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700 www.analog.com  
Fax: © Analog Devices, Inc.,  
781/461-3113  
2010  
(@ T = +25C, unless otherwise noted)  
AD826–SPECIFICATIONS  
A
Parameter  
Conditions  
VS  
Min Typ Max  
Unit  
DYNAMIC PERFORMANCE  
Unity Gain Bandwidth  
5 V  
30  
45  
25  
10  
25  
10  
35  
50  
29  
20  
55  
20  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
15 V  
0, +5 V  
5 V  
15 V  
0, +5 V  
Bandwidth for 0.1 dB Flatness  
Full Power Bandwidth1  
Gain = +1  
VOUT = 5 V p-p  
R
V
R
R
LOAD = 500 Ω  
OUT = 20 V p-p  
LOAD = 1 kΩ  
LOAD = 1 kΩ  
5 V  
15.9  
MHz  
15 V  
5 V  
15 V  
0, +5 V  
5 V  
15 V  
5 V  
5.6  
250  
350  
200  
45  
45  
70  
MHz  
V/µs  
V/µs  
V/µs  
ns  
ns  
ns  
Slew Rate  
200  
300  
150  
Gain = –1  
Settling Time to 0.1%  
to 0.01%  
–2.5 V to +2.5 V  
0 V–10 V Step, AV = –1  
–2.5 V to +2.5 V  
0 V–10 V Step, AV = –1  
15 V  
70  
ns  
NOISE/HARMONIC PERFORMANCE  
Total Harmonic Distortion  
Input Voltage Noise  
Input Current Noise  
Differential Gain Error  
(R1 = 150 )  
FC = 1 MHz  
f = 10 kHz  
f = 10 kHz  
NTSC  
15 V  
5 V, 15 V  
5 V, 15 V  
15 V  
5 V  
0, +5 V  
–78  
15  
1.5  
0.07 0.1  
0.12 0.15  
0.15  
dB  
nV/Hz  
pA/Hz  
%
%
%
Gain = +2  
Differential Phase Error  
(R1 = 150 )  
NTSC  
Gain = +2  
15 V  
5 V  
0, +5 V  
0.11 0.15  
0.12 0.15  
0.15  
Degrees  
Degrees  
Degrees  
DC PERFORMANCE  
Input Offset Voltage  
5 V to 15 V  
5 V, 15 V  
5 V, 15 V  
5 V  
0.5  
2
3
mV  
mV  
µV/°C  
µA  
T
MIN to TMAX  
Offset Drift  
Input Bias Current  
10  
3.3  
6.6  
10  
4.4  
300  
500  
TMIN  
TMAX  
µA  
µA  
nA  
nA  
nA/°C  
Input Offset Current  
25  
0.3  
4
TMIN to TMAX  
Offset Current Drift  
Open-Loop Gain  
VOUT  
= 2.5 V  
R
T
R
LOAD = 500 Ω  
MIN to TMAX  
LOAD = 150 Ω  
2
1.5  
1.5  
V/mV  
V/mV  
V/mV  
3
VOUT  
=
10 V  
15 V  
15 V  
R
T
LOAD = 1 kΩ  
3.5  
2
6
5
V/mV  
V/mV  
MIN to TMAX  
VOUT  
= 7.5 V  
RLOAD = 150 (50 mA Output)  
2
4
V/mV  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
300  
1.5  
+3.8 +4.3  
–2.7 –3.4  
kΩ  
pF  
V
Input Common-Mode Voltage Range  
5 V  
V
15 V  
+13  
–12  
+14.3  
–13.4  
V
V
0, +5 V  
+3.8 +4.3  
+1.2 +0.9  
V
V
Common-Mode Rejection Ratio  
VCM  
VCM  
TMIN to TMAX  
=
=
2.5 V, TMIN–TMAX  
12 V  
5 V  
15 V  
15 V  
80  
86  
80  
100  
120  
100  
dB  
dB  
dB  
REV. C  
–2–  
AD826  
Parameter  
Conditions  
VS  
5 V  
5 V  
15 V  
Min  
Typ  
Max Unit  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
RLOAD = 500 Ω  
RLOAD = 150 Ω  
RLOAD = 1 kΩ  
RLOAD = 500 Ω  
RLOAD = 500 Ω  
3.3  
3.2  
13.3  
12.8  
+1.5,  
+3.5  
50  
3.8  
3.6  
13.7  
13.4  
V
V
V
V
15 V  
0, +5 V  
V
Output Current  
15 V  
5 V  
0, +5 V  
15 V  
mA  
mA  
mA  
mA  
50  
30  
Short-Circuit Current  
Output Resistance  
90  
8
Open Loop  
MATCHING CHARACTERISTICS  
Dynamic  
Crosstalk  
Gain Flatness Match  
Slew Rate Match  
f = 5 MHz  
G = +1, f = 40 MHz  
G = –1  
15 V  
15 V  
15 V  
–80  
0.2  
10  
dB  
dB  
V/µs  
DC  
Input Offset Voltage Match  
Input Bias Current Match  
Open-Loop Gain Match  
TMIN–TMAX  
5 V to 15 V  
5 V to 15 V  
0.5  
2
0.8  
mV  
µA  
TMIN–TMAX  
0.06  
VO = 10 V, RLOAD = 1 k,  
TMIN–TMAX  
= 12 V, TMIN–TMAX  
5 V to 15 V, TMIN–TMAX  
15 V  
15 V  
0.15  
80  
80  
0.01  
100  
100  
mV/V  
dB  
dB  
Common-Mode Rejection Ratio Match VCM  
Power Supply Rejection Ratio Match  
POWER SUPPLY  
Operating Range  
Dual Supply  
Single Supply  
2.5  
+5  
18  
V
+36  
7.5  
7.5  
7.5  
7.5  
V
Quiescent Current/Amplifier  
5 V  
6.6  
mA  
mA  
mA  
mA  
dB  
TMIN to TMAX  
5 V  
15 V  
15 V  
TMIN to TMAX  
VS = 5 V to 15 V, TMIN to TMAX  
6.8  
86  
Power Supply Rejection Ratio  
75  
NOTES  
1Full power bandwidth = slew rate/2 π VPEAK  
.
ESD SUSCEPTIBILITY  
Specifications subject to change without notice.  
ESD (electrostatic discharge) sensitive device. Electrostatic charges  
as high as 4000 volts, which readily accumulate on the human  
body and on test equipment, can discharge without detection.  
Although the AD826 features proprietary ESD protection cir-  
cuitry, permanent damage may still occur on these devices  
if they are subjected to high energy electrostatic discharges.  
Therefore, proper ESD precautions are recommended to avoid  
any performance degradation or loss of functionality.  
ABSOLUTE MAXIMUM RATINGS1  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Internal Power Dissipation2  
Plastic (N) . . . . . . . . . . . . . . . . . . . . . See Derating Curves  
Small Outline (R) . . . . . . . . . . . . . . . . See Derating Curves  
Input Voltage (Common Mode) . . . . . . . . . . . . . . . . . . . VS  
18 V  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . .  
6 V  
2.0  
Output Short Circuit Duration . . . . . . . See Derating Curves  
Storage Temperature Range (N, R) . . . . . . . –65°C to +125°C  
Operating Temperature Range . . . . . . . . . . –40°C to +85°C  
Lead Temperature Range (Soldering 10 seconds) . . . +300°C  
T
J
= +150C  
8-LEAD MINI-DIP PACKAGE  
1.5  
1.0  
0.5  
0
NOTES  
1Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability .  
2Specification is for device in free air: 8-lead plastic package, θJA = 100°C/watt;  
8-lead SOIC package, θJA = 155°C/watt.  
8-LEAD SOIC PACKAGE  
50 40 30 20 10  
0
10 20 30 40 50 60 70 80 90  
AMBIENT TEMPERATURE –  
C  
Maximum Power Dissipation vs. Temperature for Different  
Package Types  
REV. C  
–3–  
AD826 – Typical Characteristics  
7.7  
20  
15  
7.2  
6.7  
6.2  
5.7  
+V  
CM  
CM  
+85C  
+25C  
10  
5
V  
40C  
0
0
5
10  
SUPPLY VOLTAGE Volts  
15  
20  
0
5
10  
SUPPLY VOLTAGE Volts  
15  
20  
Figure 1. Common-Mode Voltage Range vs. Supply  
Figure 4. Quiescent Supply Current per Amp vs. Supply  
Voltage for Various Temperatures  
20  
15  
400  
350  
300  
250  
200  
R
= 500V  
L
10  
5
R
= 150V  
L
0
0
5
10  
15  
20  
0
5
10  
SUPPLY VOLTAGE Volts  
15  
20  
SUPPLY VOLTAGE Volts  
Figure 2. Output Voltage Swing vs. Supply  
Figure 5. Slew Rate vs. Supply Voltage  
30  
25  
100  
10  
V
= 15V  
S
20  
15  
10  
5
1
0.1  
0.01  
V
= 5V  
S
0
10  
100  
1k  
10k  
1k  
10k  
100k  
1M  
10M  
100M  
LOAD RESISTANCE ꢂ  
FREQUENCY Hz  
Figure 3. Output Voltage Swing vs. Load Resistance  
Figure 6. Closed-Loop Output Impedance vs. Frequency  
–4–  
REV. C  
AD826  
7
100  
+100  
PHASE 5V OR  
15V SUPPLIES  
6
5
80  
60  
40  
20  
0
+80  
+60  
+40  
+20  
0
GAIN 15V SUPPLIES  
4
3
2
1
GAIN 5V SUPPLIES  
RL = 1kꢂ  
10k  
20  
60 40 20  
0
20  
40  
60  
80  
100 120 140  
1k  
100k  
1M  
10M  
100M  
1G  
TEMPERATURE –  
C  
FREQUENCY Hz  
Figure 7. Input Bias Current vs. Temperature  
Figure 10. Open-Loop Gain and Phase Margin  
vs. Frequency  
130  
7
15V  
6
110  
SOURCE CURRENT  
5
90  
5V  
SINK CURRENT  
4
3
2
70  
50  
30  
1
100  
60 40 20  
0
20  
40  
60  
80  
100 120 140  
1k  
10k  
LOAD RESISTANCE ꢂ  
TEMPERATURE –  
C  
Figure 8. Short Circuit Current vs. Temperature  
Figure 11. Open-Loop Gain vs. Load Resistance  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
80  
60  
40  
20  
80  
PHASE MARGIN  
POSITIVE  
SUPPLY  
NEGATIVE  
SUPPLY  
60  
GAIN BANDWIDTH  
40  
20  
60 40 20  
0
20  
40  
60  
80  
100 120 140  
100  
1k  
10k  
100k  
1M  
10M  
100M  
TEMPERATURE –  
C  
FREQUENCY Hz  
Figure 9. Unity Gain Bandwidth and Phase Margin  
vs. Temperature  
Figure 12. Power Supply Rejection vs. Frequency  
REV. C  
–5–  
AD826  
40  
50  
60  
70  
80  
90  
100  
140  
V
= 1V p-p  
IN  
GAIN = +2  
120  
100  
80  
2
ND HARMONIC  
3
RD HARMONIC  
1M  
60  
100  
1k  
10k  
100k  
10M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY Hz  
FREQUENCY Hz  
Figure 13. Common-Mode Rejection vs. Frequency  
Figure 16. Harmonic Distortion vs. Frequency  
30  
50  
40  
30  
20  
10  
0
R
= 1kꢂ  
L
20  
10  
0
R
= 150ꢂ  
L
100k  
1M  
10M  
100M  
3
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY Hz  
FREQUENCY Hz  
Figure 14. Large Signal Frequency Response  
Figure 17. Input Voltage Noise Spectral Density  
380  
10  
0.1%  
8
6
4
360  
340  
320  
300  
1%  
1%  
0.01%  
2
0
2  
4  
6  
8  
10  
0.01%  
0.1%  
0
20  
40  
60  
80  
100  
120  
140  
160  
60 40 20  
0
20  
40  
60  
80  
100 120 140  
SETTLING TIME ns  
TEMPERATURE –  
C  
Figure 15. Output Swing and Error vs. Settling Time  
Figure 18. Slew Rate vs. Temperature  
–6–  
REV. C  
AD826  
5
4
5
4
0.1dB  
1kꢂ  
0.1dB  
FLATNESS  
15V 3pF 16MHz  
781ꢂ  
V
FLATNESS  
S
V
C
C
1kꢂ  
S
15V  
5V  
5V  
55MHz  
20MHz  
20MHz  
VIN  
3
3
2
VOUT  
VOUT  
150ꢂ  
CC  
VIN  
5V  
5V  
4pF 14MHz  
6pF 12MHz  
2
V
S
= 15V  
1
1
V
= 15V  
S
0
0
V
= 5V  
= 5V  
S
1  
2  
3  
4  
5  
1  
2  
3  
4  
5  
V
= 5V  
S
V
= 5V  
S
V
S
100k  
1M  
10M  
FREQUENCY Hz  
100M  
100k  
1M  
10M  
100M  
FREQUENCY HZ  
Figure 22. Closed-Loop Gain vs. Frequency, Gain = –1  
Figure 19. Closed-Loop Gain vs. Frequency  
1.0  
0.8  
0.6  
0.4  
0.2  
0.13  
0.10  
0.07  
DIFF GAIN  
0.13  
V
= 15V  
S
0
0.2  
0.4  
0.6  
0.8  
1.0  
0.12  
0.11  
0.10  
V
= 5V  
S
DIFF PHASE  
V
= +5V  
S
100k  
1M  
10M  
100M  
5  
10  
SUPPLY VOLTAGE Volts  
15  
FREQUENCY Hz  
Figure 20. Differential Gain and Phase vs. Supply Voltage  
Figure 23. Gain Flatness Matching vs. Supply, G = +1  
V  
V
OUT  
S
30  
40  
50  
0.1F  
1F  
8
5
6
3
2
1
7
1/2  
AD826  
1/2  
AD826  
60  
V
IN  
5V  
4
R
= 150ꢂ  
L
70  
80  
0.1F  
1F  
R
R
L
L
15V  
L
90  
R
= 1kꢂ  
V  
S
100  
R
= 150FOR V = 5V, 1kFOR V = 15V  
S S  
L
110  
10k  
100k  
1M  
FREQUENCY Hz  
10M  
100M  
USE GROUND PLANE  
PINOUT SHOWN IS FOR MINIDIP PACKAGE  
Figure 24. Crosstalk Test Circuit  
Figure 21. Crosstalk vs. Frequency  
REV. C  
–7–  
AD826  
1kꢂ  
V  
S
3.3F  
0.01F  
V
TEKTRONIX  
P6201 FET  
PROBE  
TEKTRONIX  
7A24  
PREAMP  
OUT  
1/2  
AD826  
R
IN  
100ꢂ  
PULSE (LS)  
OR  
V
IN  
FUNCTION (SS)  
GENERATOR  
50ꢂ  
0.01F  
3.3F  
R
L
V  
S
Figure 25. Noninverting Amplifier Configuration  
50ns  
200mV  
50ns  
5V  
100  
90  
100  
90  
10  
10  
0%  
0%  
200mV  
5V  
Figure 26. Noninverting Large Signal Pulse Response,  
Figure 28. Noninverting Small Signal Pulse Response,  
RL = 1 k  
RL = 1 kΩ  
5V  
50ns  
200mV  
50ns  
100  
90  
100  
90  
10  
10  
0%  
0%  
5V  
200mV  
Figure 27. Noninverting Large Signal Pulse Response,  
RL = 150 Ω  
Figure 29. Noninverting Small Signal Pulse Response,  
RL = 150 Ω  
–8–  
REV. C  
AD826  
1kꢂ  
V  
S
3.3F  
0.01F  
R
IN  
1kꢂ  
PULSE (LS)  
OR FUNCTION (SS)  
GENERATOR  
V
IN  
TEKTRONIX  
7A24  
PREAMP  
TEKTRONIX  
P6201 FET  
PROBE  
1/2  
AD826  
50ꢂ  
V
OUT  
0.01F  
3.3F  
R
L
V  
S
Figure 30. Inverting Amplifier Configuration  
5V  
200mV  
50ns  
50ns  
100  
90  
100  
90  
10  
10  
0%  
0%  
200mV  
5V  
Figure 31. Inverting Large Signal Pulse Response,  
Figure 33. Inverting Small Signal Pulse Response,  
RL = 1 kΩ  
RL = 1 kΩ  
5V  
200mV  
50ns  
50ns  
100  
90  
100  
90  
10  
10  
0%  
0%  
5V  
200mV  
Figure 32. Inverting Large Signal Pulse Response,  
Figure 34. Inverting Small Signal Pulse Response,  
RL = 150 Ω  
RL = 150 Ω  
REV. C  
–9–  
AD826  
THEORY OF OPERATION  
The AD826 is a low cost, wide band, high performance dual  
operational amplifier which can drive heavy capacitive and  
resistive loads. It also achieves a constant slew rate, bandwidth  
and settling time over its entire specified temperature range.  
For high performance circuits, it is recommended that a  
“balancing” resistor be used to reduce the offset errors caused  
by bias current flowing through the input and feedback resistors.  
The balancing resistor equals the parallel combination of RIN  
and RF and thus provides a matched impedance at each input  
terminal. The offset voltage error will then be reduced by more  
than an order of magnitude.  
The AD826 (Figure 35) consists of a degenerated NPN  
differential pair driving matched PNPs in a folded-cascode gain  
stage. The output buffer stage employs emitter followers in a  
class AB amplifier which delivers the necessary current to the  
load while maintaining low levels of distortion.  
APPLYING THE AD826  
The AD826 is a breakthrough dual amp that delivers precision  
and speed at low cost with low power consumption. The AD826  
offers excellent static and dynamic matching characteristics,  
combined with the ability to drive heavy resistive and capacitive  
loads. As with all high frequency circuits, care should be taken  
to maintain overall device performance as well as their matching.  
The following items are presented as general design considerations.  
+V  
S
C
F
OUTPUT  
Circuit Board Layout  
Input and output runs should be laid out so as to physically  
isolate them from remaining runs. In addition, the feedback  
resistor of each amplifier should be placed away from the  
feedback resistor of the other amplifier, since this greatly  
reduces inter-amp coupling.  
–IN  
+IN  
Choosing Feedback and Gain Resistors  
In order to prevent the stray capacitance present at each  
amplifiers summing junction from limiting its performance,  
the feedback resistors should be ≤1 kΩ. Since the summing  
junction capacitance may cause peaking, a small capacitor  
(1 pF–5pF) maybe paralleled with RF to neutralize this effect.  
Finally, sockets should be avoided, because of their tendency to  
increase interlead capacitance.  
–V  
S
NULL1  
NULL8  
Figure 35. Simplified Schematic  
The capacitor, CF, in the output stage mitigates the effect of  
capacitive loads. With low capacitive loads, the gain from the  
compensation node to the output is very close to unity. In this  
case, CF is bootstrapped and does not contribute to the overall  
compensation capacitance of the device. As the capacitive load  
is increased, a pole is formed with the output impedance of the  
output stage. This reduces the gain, and therefore, CF is  
incompletely bootstrapped. Effectively, some fraction of CF  
contributes to the overall compensation capacitance, reducing  
the unity gain bandwidth. As the load capacitance is further  
increased, the bandwidth continues to fall, maintaining the  
stability of the amplifier.  
Power Supply Considerations  
To ensure the proper operation of the AD826, connect the  
positive supply before the negative supply. Also, proper power  
supply decoupling is critical to preserve the integrity of high  
frequency signals. In carefully laid out designs, decoupling  
capacitors should be placed in close proximity to the supply  
pins, while their lead lengths should be kept to a minimum.  
These measures greatly reduce undesired inductive effects on  
the amplifiers response.  
Though two 0.1 μF capacitors will typically be effective in  
decoupling the supplies, several capacitors of different values  
can be paralleled to cover a wider frequency range.  
INPUT CONSIDERATIONS  
An input protection resistor (RIN in Figure 25) is required in  
circuits where the input to the AD826 will be subjected to  
transient or continuous overload voltages exceeding the 6 ꢀ  
maximum differential limit. This resistor provides protection  
for the input transistors by limiting their maximum base current.  
-10-  
Rev. C  
AD826  
SINGLE SUPPLY OPERATION  
R3 and C2 reduce the effect of the power supply changes on the  
An exciting feature of the AD826 is its ability to perform well in a  
single supply configuration (see Figure 37). The AD826 is ideally  
suited for applications that require low power dissipation and high  
output current and those which need to drive large capacitive  
loads, such as high speed buffering and instrumentation.  
1
output by low-pass filtering with a corner at  
.
2πR3C2  
The values for RL and CL were chosen to demonstrate the  
AD826s exceptional output drive capability. In this configura-  
tion, the output is centered around 2.5 V. In order to eliminate  
the static dc current associated with this level, C3 was inserted  
in series with RL.  
Referring to Figure 36, careful consideration should be given to  
the proper selection of component values. The choices for this  
particular circuit are: (R1 + R3)ʈR2 combine with C1 to form a  
low frequency corner of approximately 30 Hz.  
V  
S
500mV  
100  
90  
R3  
1kꢂ  
3.3F  
C2  
0.1F  
0.01F  
R1  
9kꢂ  
10  
C
C
OUT  
1/2  
AD826  
C1  
1F  
0%  
V
OUT  
V
R
150ꢂ  
IN  
L
L
500mV  
100ns  
200pF  
R2  
10kꢂ  
C3  
0.1F  
Figure 37. Single Supply Pulse Response, G = +1,  
RL = 150 , CL = 200 pF  
Figure 36. Single Supply Amplifier Configuration  
1kꢂ  
PARALLEL AMPS PROVIDE 100 mA TO LOAD  
V  
1F  
S
By taking advantage of the superior matching characteristics of  
the AD826, enhanced performance can easily be achieved by  
employing the circuit in Figure 38. Here, two identical cells are  
paralleled to obtain even higher load driving capability than that  
of a single amplifier (100 mA min guaranteed). R1 and R2 are  
included to limit current flow between amplifier outputs that  
would arise in the presence of any residual mismatch.  
0.1F  
1kꢂ  
R1  
5ꢂ  
1/2  
AD826  
V
V
OUT  
IN  
R
L
R2  
5ꢂ  
1/2  
AD826  
1kꢂ  
0.1F  
1F  
V  
S
1kꢂ  
Figure 38. Parallel Amp Configuration  
REV. C  
–11–  
AD826  
SINGLE-ENDED TO DIFFERENTIAL LINE DRIVER  
Outstanding CMRR (> 80 dB @ 5 MHz), high bandwidth, wide  
supply voltage range, and the ability to drive heavy loads, make  
the AD826 an ideal choice for many line driving applications.  
In this application, the AD830 high speed video difference  
amp serves as the differential line receiver on the end of a back  
terminated, 50 ft., twisted-pair transmission line (see Figure 40).  
The overall system is configured in a gain of +1 and has a 3 dB  
bandwidth of 14 MHz. Figure 39 is the pulse response with a  
2 V p-p, 1 MHz signal input.  
2V  
200ns  
100  
90  
10  
0%  
2V  
Figure 39. Pulse Response  
15V  
0.01F  
15V  
0.01F  
0.1F  
50 FEET TWISTED PAIR  
0.1F  
Z = 72ꢂ  
I
N
2.2F  
36ꢂ  
1/2  
AD826  
1.05kꢂ  
5pF  
36ꢂ  
36ꢂ  
V
OUT  
BNC  
AD830  
1.05kꢂ  
1.05kꢂ  
1.05kꢂ  
5pF  
36ꢂ  
1/2  
AD826  
0.01F  
0.1F  
0.01F  
15V  
15V  
0.1F  
2.2F  
Figure 40. Differential Line Driver  
1.1kꢂ  
LOW DISTORTION LINE DRIVER  
The AD826 can quickly be turned into a powerful, low distor-  
tion line driver (see Figure 41). In this arrangement the AD826  
can comfortably drive a 75 back-terminated cable, with a  
5 MHz, 2 V p-p input; all of this while achieving the harmonic  
distortion performance outlined in the following table.  
V  
1F  
S
1kꢂ  
0.1F  
1/2  
AD826  
Configuration  
2nd Harmonic  
78.5 dBm  
R
7.5ꢂ  
C
1. No Load  
1kꢂ  
2. 150 RL Only  
3. 150 RL 7.5 RC  
63.8 dBm  
1kꢂ  
70.4 dBm  
R
L
75ꢂ  
1/2  
AD826  
In this application one half of the AD826 operates at a gain of  
2.1 and supplies the current to the load, while the other pro-  
vides the overall system gain of 2. This is important for two  
reasons: the first is to keep the bandwidth of both amplifiers the  
same, and the second is to preserve the AD826s ability to oper-  
ate from low supply voltages. RC varies with the load and must  
be chosen to satisfy the following equation:  
75ꢂ  
1F  
75ꢂ  
0.1F  
Figure 41. Low Distortion Amplifier  
RC = MRL  
where M is defined by [(M+ 1) GS = GD] and GD = Drivers Gain,  
GS = System Gain.  
–12–  
REV. C  
AD826  
1kꢂ  
V  
HIGH PERFORMANCE ADC BUFFER  
Figure 42 is a schematic of a 12-bit high speed analog-to-digital  
converter. The AD826 dual op amp takes a single ended input  
and drives the AD872 A/D converter differentially, thus reduc-  
ing 2nd harmonic distortion. Figure 43 is a FFT of a 1 MHz  
input, sampled at 10 MHz with a THD of 78 dB. The AD826  
can be used to amplify low level signals so that the entire range  
of the converter is used. The ability of the AD826 to perform on  
S
0.1F  
1kꢂ  
1/2  
AD826  
V
INA  
50ꢂ  
COAX  
CABLE  
V
IN  
AD872  
12-BIT  
10MSPS  
ADC  
a
5 volt supply or even with a single 5 volts combined with its  
500mV  
p-p MAX  
52.5ꢂ  
rapid settling time and ability to deliver high current to compli-  
cated loads make it a very good flash A/D converter buffer as  
well as a very useful general purpose building block.  
1/2  
AD826  
V
INB  
1kꢂ  
V  
0.1F  
5V  
S
100F  
25V  
V  
COMMON  
S
100F  
25V  
1kꢂ  
V  
5V  
S
Figure 42. A Differential Input Buffer for High  
Bandwidth ADCs  
Figure 43. FFT, Buffered A/D Converter  
REV. C  
–13–  
AD826  
OUTLINE DIMENSIONS  
0.400 (10.16)  
0.365 (9.27)  
0.355 (9.02)  
8
1
5
4
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54)  
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210 (5.33)  
MAX  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.115 (2.92)  
0.015 (0.38)  
GAUGE  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
SEATING  
PLANE  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
0.070 (1.78)  
0.060 (1.52)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MS-001  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
Figure 44. 8-Lead Plastic Dual In-Line Package [PDIP]  
Narrow Body (N-8)  
Dimensions shown in inches and (millimeters)  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 45. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body (R-8)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Model1  
AD826AN  
AD826ANZ  
AD826AR  
AD826AR-REEL  
AD826AR-REEL7  
AD826ARZ  
AD826ARZ-REEL  
AD826ARZ-REEL7  
Temperature Range  
Package Description  
8-Lead PDIP  
8-Lead PDIP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
Package Option  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
N-8  
N-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
1 Z = RoHS Compliant Part.  
-14-  
Rev. C  
AD826  
REVISION HISTORY  
Changed Power Supply Bypassing Section to Power Supply  
Considerations Section...................................................................10  
Changes to Power Supply Considerations Section ....................10  
Updated Outline Dimensions........................................................14  
Changes to Ordering Guide...........................................................14  
©2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08950-0-4/10(C)  
Rev. C  
-15-  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY