AD8273_08 [ADI]

Dual-Channel, Audio Difference Amplifier; 双通道音频差分放大器
AD8273_08
型号: AD8273_08
厂家: ADI    ADI
描述:

Dual-Channel, Audio Difference Amplifier
双通道音频差分放大器

放大器
文件: 总16页 (文件大小:423K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual-Channel,  
Audio Difference Amplifier  
AD8273  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
+V  
S
Two gain settings  
11  
Gain of ½ (−6 dB)  
Gain of 2 (+6 dB)  
12k  
6kΩ  
2
12  
13  
0.05% maximum gain error  
10 ppm maximum gain drift  
Excellent ac specifications  
20 V/μs minimum slew rate  
800 ns to 0.01% settling time  
Low distortion: 0.004%, 20 Hz to 20 kHz  
High accuracy dc performance  
77 dB minimum CMRR  
700 μV maximum offset voltage  
14-lead SOIC package  
Supply current: 2.5 mA maximum per channel  
Supply range: 2.5 V to 18 V  
12kΩ  
12kΩ  
6kΩ  
6kΩ  
3
6
14  
10  
9
8
12kΩ  
6kΩ  
5
4
–V  
S
Figure 1.  
APPLICATIONS  
High performance audio  
Instrumentation amplifier building blocks  
Level translators  
Automatic test equipment  
Sin/Cos encoders  
GENERAL DESCRIPTION  
Table 1. Difference Amplifiers by Category  
The AD8273 is a low distortion, dual-channel amplifier with  
internal gain setting resistors. With no external components,  
it can be configured as a high performance difference amplifier  
(G = ½ or 2), inverting amplifier (G = ½ or 2), or noninverting  
amplifier (G = 1½ or 3).  
Low  
Distortion  
High  
Voltage  
Single-Supply  
Unidirectional  
Single-Supply  
Bidirectional  
AD8270  
AD8273  
AMP03  
AD628  
AD629  
AD8202  
AD8203  
AD8205  
AD8206  
AD8216  
The AD8273 operates on both single and dual supplies and only  
requires 2.5 mA maximum supply current for each amplifier.  
It is specified over the industrial temperature range of −40°C to  
+85°C and is fully RoHS compliant.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2008 Analog Devices, Inc. All rights reserved.  
 
AD8273  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Pin Configuration and Function Descriptions..............................5  
Typical Performance Characteristics ..............................................6  
Theory of Operation ...................................................................... 11  
Configurations............................................................................ 11  
Power Supplies............................................................................ 11  
Outline Dimensions....................................................................... 13  
Ordering Guide .......................................................................... 13  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
Maximum Power Dissipation ..................................................... 4  
ESD Caution.................................................................................. 4  
REVISION HISTORY  
1/08—Revision 0: Initial Version  
Rev. 0 | Page 2 of 16  
 
AD8273  
SPECIFICATIONS  
VS = 15 V, VREF = 0 V, TA = 25°C, G = ½, RL = 2 kΩ, unless otherwise noted.  
Table 2.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
Bandwidth  
Slew Rate  
Settling Time to 0.1%  
Settling Time to 0.01%  
Channel Separation  
NOISE/DISTORTION1  
THD + Noise  
20  
MHz  
V/μs  
ns  
ns  
dB  
20  
10 V step on output, CL = 100 pF  
10 V step on output, CL = 100 pF  
f = 1 kHz  
670  
750  
130  
750  
800  
f = 1 kHz, VOUT = 10 V p-p, 600 Ω load  
20 kHz BW  
f = 20 Hz to 20 kHz  
f = 1 kHz  
0.004  
−106  
3.5  
%
dBu  
μV rms  
nV/√Hz  
Noise Floor, RTO2  
Output Voltage Noise (Referred to Output)  
26  
GAIN  
Gain Error  
Gain Drift  
Gain Nonlinearity  
0.05  
10  
%
−40°C to +85°C  
VOUT = 10 V p-p, 600 Ω load  
VOUT = 5 V p-p, 600 Ω load  
2
200  
50  
ppm/°C  
ppm  
ppm  
INPUT CHARACTERISTICS  
Offset3  
Referred to output  
−40°C to +85°C  
VS = 2.5 V to 18 V  
100  
3
2
700  
μV  
vs. Temperature  
vs. Power Supply  
Common-Mode Rejection Ratio  
Input Voltage Range4  
Impedance5  
μV/°C  
μV/V  
dB  
10  
VCM  
=
40 V, RS = 0 Ω, referred to input  
77  
86  
−3VS + 4.5  
+3VS − 4.5  
V
Differential  
Common Mode6  
VCM = 0 V  
36  
9
kΩ  
kΩ  
OUTPUT CHARACTERISTICS  
Output Swing  
−VS + 1.5  
+VS − 1.5  
V
Short-Circuit Current Limit  
Sourcing  
Sinking  
G = ½  
100  
60  
200  
1200  
mA  
mA  
pF  
pF  
Capacitive Load Drive  
G = 2  
POWER SUPPLY  
Supply Current (per Amplifier)  
TEMPERATURE RANGE  
Specified Performance  
2.5  
mA  
°C  
−40  
+85  
1 Includes amplifier voltage and current noise, as well as noise of internal resistors.  
2 dBu = 20 log (V rms /0.7746).  
3 Includes input bias and offset current errors.  
4 May also be limited by absolute maximum input voltage or by the output swing. See the Absolute Maximum Ratings section and Figure 9 through Figure 12 for  
details.  
5 Internal resistors are trimmed to be ratio matched but have 20% absolute accuracy.  
6 Common mode is calculated looking into both inputs. Common-mode impedance looking into only one input is 18 kΩ.  
Rev. 0 | Page 3 of 16  
 
AD8273  
ABSOLUTE MAXIMUM RATINGS  
MAXIMUM POWER DISSIPATION  
Table 3.  
The maximum safe power dissipation for the AD8273 is limited  
by the associated rise in junction temperature (TJ) on the die. At  
approximately 150°C, which is the glass transition temperature,  
the plastic changes its properties. Even temporarily exceeding  
this temperature limit may change the stresses that the package  
exerts on the die, permanently shifting the parametric performance  
of the amplifiers. Exceeding a temperature of 150°C for an  
extended period can result in a loss of functionality.  
Parameter  
Rating  
Supply Voltage  
Output Short-Circuit Current  
18 V  
Observe  
derating curve  
40 V  
40 V  
3 mA  
−65°C to +130°C  
−40°C to +85°C  
Voltage at Any Input Pin  
Differential Input Voltage  
Current into Any Input Pin  
Storage Temperature Range  
Specified Temperature Range  
Thermal Resistance  
The AD8273 has built-in, short-circuit protection that limits the  
output current to approximately 100 mA (see Figure 2 for more  
information). While the short-circuit condition itself does not  
damage the part, the heat generated by the condition can cause  
the part to exceed its maximum junction temperature, with  
corresponding negative effects on reliability.  
θJA  
θJC  
105°C/W  
36°C/W  
150°C  
Package Glass Transition Temperature (TG)  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
2.0  
T
JA  
MAX = 150°C  
J
θ
= 105°C/W  
1.6  
1.2  
0.8  
0.4  
0
–50  
–25  
0
25  
50  
75  
100  
125  
AMBIENT TEMPERATURE (°C)  
Figure 2. Maximum Power Dissipation vs. Ambient Temperature  
ESD CAUTION  
Rev. 0 | Page 4 of 16  
 
 
AD8273  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
NC  
–12A  
+12A  
1
2
3
4
5
6
7
14 +6A  
13 OUTA  
12 –6A  
AD8273  
–V  
TOP VIEW  
11 +V  
S
S
(Not to Scale)  
+12B  
–12B  
NC  
10 –6B  
9
8
OUTB  
+6B  
NC = NO CONNECT  
Figure 3. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1, 7  
2
3
NC  
No Connect.  
−12A  
+12A  
−VS  
The 12 kΩ resistor connects to the negative terminal of Op Amp A.  
The 12 kΩ resistor connects to the positive terminal of Op Amp A.  
Negative Supply.  
4
5
6
8
9
10  
11  
12  
13  
14  
+12B  
−12B  
+6B  
OUTB  
−6B  
+VS  
−6A  
OUTA  
+6A  
The 12 kΩ resistor connects to the positive terminal of Op Amp B.  
The 12 kΩ resistor connects to the negative terminal of Op Amp B.  
The 6 kΩ resistor connects to the positive terminal of Op Amp B.  
Op Amp B Output.  
The 6 kΩ resistor connects to the negative terminal of Op Amp B.  
Positive Supply.  
The 6 kΩ resistor connects to the negative terminal of Op Amp A.  
Op Amp A Output.  
The 6 kΩ resistor connects to the positive terminal of Op Amp A.  
Rev. 0 | Page 5 of 16  
 
AD8273  
TYPICAL PERFORMANCE CHARACTERISTICS  
VS = 15 V, TA = 25°C, G = ½, difference amplifier configuration, unless otherwise noted.  
500  
N: 1641  
MEAN: –9.5  
SD: 228.4  
100  
80  
60  
40  
20  
0
400  
300  
200  
100  
0
–100  
–200  
–300  
–400  
–500  
REPRESENTATIVE SAMPLES  
–500  
–250  
0
250  
500  
–45 –30 –15  
0
15 30 45 60 75 90 105 120  
TEMPERATURE (°C)  
V
±15V (µV/V)  
OSO  
Figure 4. Typical Distribution of System Offset Voltage,  
G = ½, Referred to Output  
Figure 7. System Offset vs. Temperature, Normalized at 25°C,  
Referred to Output  
150  
100  
50  
N: 1649  
MEAN: –0.59  
SD: 37.3  
120  
100  
80  
60  
40  
20  
0
0
–50  
–100  
–150  
REPRESENTATIVE SAMPLES  
–200  
–150  
–100  
–50  
0
50  
100  
150  
–45 –30 –15  
0
15 30 45 60 75 90 105 120  
TEMPERATURE (°C)  
CMRR ±15V (µV/V)  
Figure 5. Typical Distribution of CMRR, G = ½, Referred to Input  
Figure 8. Gain Error vs. Temperature, Normalized at 25°C  
50  
70  
60  
G = ½  
0, +40  
40  
30  
50  
40  
–13.5, +26.5  
+13.5, +26.5  
30  
20  
20  
10  
10  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–10  
–20  
–30  
–40  
–50  
–13.5, –26.5  
+13.5, –26.5  
–70  
0, –40  
0
REPRESENTATIVE SAMPLES  
–80  
–15  
–10  
–5  
5
10  
15  
–45 –30 –15  
0
15 30 45 60 75 90 105 120  
TEMPERATURE (°C)  
OUTPUT VOLTAGE (V)  
Figure 6. CMRR vs. Temperature, Normalized at 25°C  
Figure 9. Input Common-Mode Voltage vs. Output Voltage,  
Gain = ½, 15 V Supplies  
Rev. 0 | Page 6 of 16  
 
 
AD8273  
18  
15  
12  
9
140  
120  
100  
80  
G = ½  
POSITIVE PSRR  
NEGATIVE PSRR  
–3.5, +14  
±5V SUPPLIES  
+3.5, +7  
6
–1, +4  
3
+1, +2  
±2.5V  
SUPPLIES  
0
60  
–3  
–6  
–9  
–12  
–15  
–18  
–1, –2  
+1, –4  
40  
–3.5,–7  
20  
+3.5, –14  
3 4  
0
–4  
–3  
–2  
–1  
0
1
2
1
10  
100  
1k  
10k  
100k  
1M  
OUTPUT VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 13. Power Supply Rejection vs. Frequency, G = ½, Referred to Output  
Figure 10. Input Common-Mode Voltage vs. Output Voltage,  
Gain = ½, 5 V and 2.5 V Supplies  
50  
32  
0, +40  
G = 2  
+13.5, +36.25  
±15V SUPPLY  
40  
30  
28  
24  
20  
16  
12  
–13.5, +36.25  
20  
10  
0
–10  
–20  
–30  
–40  
–50  
±5V SUPPLY  
8
+13.5, –36.25  
10  
–13.5, –36.25  
–10  
4
0, –40  
0
0
100  
–15  
–5  
5
15  
1k  
10k  
100k  
1M  
10M  
OUTPUT VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 14. Maximum Output Voltage vs. Frequency  
Figure 11. Input Common-Mode Voltage vs. Output Voltage,  
Gain = 2, 15 V Supplies  
8
10  
5
G = 2  
–3.5, +6.125  
G = 2  
6
4
±5V SUPPLIES  
+3.5, +4.375  
0
–1, +1.175  
2
+1, +1.25  
±2.5V  
SUPPLIES  
G = ½  
–5  
0
–1, –1.25  
–2  
–4  
–6  
–8  
+1, –1.175  
–10  
–15  
–20  
–3.5, –4.375  
+3.5, –6.125  
100  
1k  
10k  
100k  
1M  
10M  
100M  
–4  
–3  
–2  
–1  
0
1
2
3
4
FREQUENCY(Hz)  
OUTPUT VOLTAGE (V)  
Figure 15. Gain vs. Frequency  
Figure 12. Input Common-Mode Voltage vs. Output Voltage,  
Gain = 2, 5 V and 2.5 V Supplies  
Rev. 0 | Page 7 of 16  
 
AD8273  
+V  
120  
S
–40°C  
+25°C  
+V – 3  
GAIN = 2  
GAIN = ½  
S
100  
80  
+125°C  
+V – 6  
S
+85°C  
–V + 6  
S
+125°C  
+85°C  
60  
+25°C  
–V + 3  
S
–40°C  
–V  
S
40  
100  
0
20  
40  
60  
80  
100  
1k  
10k  
100k  
1M  
CURRENT (mA)  
FREQUENCY (Hz)  
Figure 19. Output Voltage vs. IOUT  
Figure 16. Common-Mode Rejection vs. Frequency, Referred to Input  
120  
I
SHORT+  
C
= 100pF  
LOAD  
100  
80  
60  
40  
20  
0
–20  
–40  
–60  
–80  
–100  
–120  
NO LOAD  
600  
2kΩ  
I
SHORT–  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
1µs/DIV  
TEMPERATURE (°C)  
Figure 20. Small Signal Step Response, Gain = 2  
Figure 17. Short-Circuit Current vs. Temperature  
+V  
S
+85°C  
+125°C  
C
= 100pF  
LOAD  
+V – 2  
+25°C  
–40°C  
S
+V – 4  
S
0
NO LOAD  
–V + 2  
S
+125°C  
600Ω  
2kΩ  
–V + 4  
S
–40°C  
+25°C  
+85°C  
–V  
S
200  
1k  
10k  
1µs/DIV  
R
()  
LOAD  
Figure 18. Output Voltage Swing vs. RLOAD, VS = 15 V  
Figure 21. Small Signal Step Response, Gain = ½  
Rev. 0 | Page 8 of 16  
AD8273  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2.5V  
5V  
15V  
18V  
0
20  
40  
60  
80  
100 120 140 160 180 200  
1µs/DIV  
CAPACITANCE (pF)  
Figure 22. Small Signal Pulse Response with 500 pF Capacitor Load, Gain = 2  
Figure 25. Small Signal Overshoot vs. Capacitive Load,  
G = ½, 600 Ω in Parallel with Capacitive Load  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2.5V  
5V  
15V  
18V  
0
200  
400  
600  
800  
1000  
1200  
1µs/DIV  
CAPACITANCE (pF)  
Figure 23. Small Signal Pulse Response for 100 pF Capacitive Load,  
Gain = ½  
Figure 26. Small Signal Overshoot vs. Capacitive Load,  
G = 2, No Resistive Load  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
2.5V  
80  
5V  
70  
15V  
2.5V  
15V  
5V  
60  
18V  
50  
40  
30  
20  
10  
0
18V  
0
20  
40  
60  
80  
100 120 140 160 180 200  
0
200  
400  
600  
800  
1000  
1200  
CAPACITANCE (pF)  
CAPACITANCE (pF)  
Figure 24. Small Signal Overshoot vs. Capacitive Load, G = ½,  
No Resistive Load  
Figure 27. Small Signal Overshoot vs. Capacitive Load,  
G = 2, 600 Ω in Parallel with Capacitive Load  
Rev. 0 | Page 9 of 16  
AD8273  
0.1  
0.01  
GAIN = ½  
GAIN = 2  
0.001  
0.0001  
20  
200  
FREQUENCY (Hz)  
2k  
20k  
1µs/DIV  
Figure 28. Large Signal Pulse Response Gain = ½  
Figure 31. THD+N vs. Frequency, VOUT = 10 V p-p  
10000  
1000  
100  
GAIN = 2  
GAIN = ½  
10  
1
10  
100  
1k  
10k  
100k  
1µs/DIV  
FREQUENCY (Hz)  
Figure 29. Large Signal Pulse Response, Gain = 2  
Figure 32. Voltage Noise Density vs. Frequency, Referred to Output  
40  
35  
30  
25  
20  
15  
10  
5
G = 2  
+SR  
–SR  
G = ½  
0
–40  
–20  
0
20  
40  
60  
80  
100  
120  
1s/DIV  
TEMPERATURE (°C)  
Figure 30.Slew Rate vs. Temperature  
Figure 33. 0.1 Hz to 10 Hz Voltage Noise, RTO  
Rev. 0 | Page 10 of 16  
AD8273  
THEORY OF OPERATION  
The AD8273 has two channels, each consisting of a high  
precision, low distortion op amp and four trimmed resistors.  
Although such a circuit can be built discretely, placing the  
resistors on the chip offers advantages to board designers that  
include better dc specifications, better ac specification, and  
lower production costs.  
6kΩ  
12kΩ  
12  
2
–IN1  
OUT1  
13  
6kΩ  
6kΩ  
12kΩ  
12kΩ  
3
14  
10  
+IN1  
–IN2  
6
9
The resistors on the AD8273 are laser trimmed and tightly  
matched. Specifications that depend on the resistor matching,  
such as gain drift, common-mode rejection, and gain accuracy,  
are better than can be achieved with standard discrete resistors.  
OUT2  
6kΩ  
12kΩ  
5
8
+IN2  
The positive and negative input terminals of the AD8273  
op amp are not pinned out intentionally. Keeping these nodes  
internal means their capacitance is considerably lower than it  
would be in discrete designs. Lower capacitance at these nodes  
means better loop stability and improved common-mode  
rejection vs. frequency.  
V
= 2 (V  
V  
)
OUT  
IN+  
IN−  
Figure 35. Difference Amplifier, G = 2  
12k  
6kΩ  
2
12  
13  
IN1  
OUT1  
The internal resistors of the AD8273 lower production cost.  
One part rather than several is placed on the board, which  
improves both board build time and reliability.  
6kΩ  
14  
3
12kΩ  
CONFIGURATIONS  
12kΩ  
6kΩ  
6
10  
9
IN2  
The AD8273 can be configured in several different ways; see  
Figure 34 to Figure 41. Because these configurations rely on the  
internal, matched resistors, these configurations have excellent  
gain accuracy and gain drift.  
OUT2  
6kΩ  
8
5
12kΩ  
POWER SUPPLIES  
V
= ½ V  
IN  
OUT  
A stable dc voltage should be used to power the AD8273. Noise  
on the supply pins can adversely affect performance. A bypass  
capacitor of 0.1 μF should be placed between each supply pin  
and ground, as close to each pin as possible. A tantalum  
capacitor of 10 μF should also be used between each supply and  
ground. It can be farther away from the AD8273 and typically  
can be shared by other precision integrated circuits.  
Figure 36. Inverting Amplifier, G = ½  
6k  
12kΩ  
12  
2
IN1  
OUT1  
13  
12kΩ  
6kΩ  
3
14  
The AD8273 is specified at 15 V, but it can be used with  
unbalanced supplies as well, for example, −VS = 0 V, +VS = 20 V.  
The difference between the two supplies must be kept below 36 V.  
6kΩ  
12kΩ  
10  
6
9
IN2  
OUT2  
12kΩ  
6kΩ  
5
8
12kΩ  
6kΩ  
2
12  
13  
–IN1  
OUT1  
V
= 2 V  
IN  
OUT  
12kΩ  
12kΩ  
6kΩ  
6kΩ  
3
6
14  
Figure 37. Inverting Amplifier, G = 2  
+IN1  
–IN2  
10  
9
OUT2  
12kΩ  
6kΩ  
5
8
+IN2  
V
= ½ (V  
IN+  
V )  
IN−  
OUT  
Figure 34. Difference Amplifier, G = ½  
Rev. 0 | Page 11 of 16  
 
 
AD8273  
12k  
6kΩ  
12k  
6kΩ  
2
12  
13  
2
12  
13  
OUT1  
OUT1  
6kΩ  
14  
3
IN1  
12kΩ  
12kΩ  
6kΩ  
6kΩ  
3
6
12kΩ  
14  
IN1  
12kΩ  
6kΩ  
10  
9
6
10  
9
OUT2  
OUT2  
6kΩ  
8
5
IN2  
V
12kΩ  
6kΩ  
12kΩ  
5
8
IN2  
V
= 1½ V  
= ½ V  
OUT  
IN  
OUT  
IN  
Figure 40. Noninverting Amplifier, G = 1.5  
Figure 38. Noninverting Amplifier, G = ½  
6kΩ  
12kΩ  
6k  
12kΩ  
12  
2
12  
2
OUT1  
OUT1  
13  
13  
3
12kΩ  
6kΩ  
IN1  
6kΩ  
6kΩ  
12kΩ  
12kΩ  
3
14  
10  
14  
IN1  
6kΩ  
12kΩ  
10  
6
9
6
9
OUT2  
OUT2  
12kΩ  
6kΩ  
5
8
IN2  
V
6kΩ  
12kΩ  
8
5
IN2  
= 3 V  
V
= 2 V  
IN  
OUT  
IN  
OUT  
Figure 39. Noninverting Amplifier, G = 2  
Figure 41. Noninverting Amplifier, G = 3  
Rev. 0 | Page 12 of 16  
 
AD8273  
OUTLINE DIMENSIONS  
8.75 (0.3445)  
8.55 (0.3366)  
8
7
14  
1
6.20 (0.2441)  
5.80 (0.2283)  
4.00 (0.1575)  
3.80 (0.1496)  
1.27 (0.0500)  
BSC  
0.50 (0.0197)  
0.25 (0.0098)  
45°  
1.75 (0.0689)  
1.35 (0.0531)  
0.25 (0.0098)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
1.27 (0.0500)  
0.40 (0.0157)  
0.51 (0.0201)  
0.31 (0.0122)  
0.25 (0.0098)  
0.17 (0.0067)  
COMPLIANT TO JEDEC STANDARDS MS-012-AB  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 42. 14-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body (R-14)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
Package Option  
AD8273ARZ1  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
14-Lead SOIC_N  
14-Lead SOIC_N, 7" Tape and Reel  
14-Lead SOIC_N, 13" Tape and Reel  
R-14  
R-14  
R-14  
AD8273ARZ-R71  
AD8273ARZ-RL1  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 13 of 16  
 
 
AD8273  
NOTES  
Rev. 0 | Page 14 of 16  
AD8273  
NOTES  
Rev. 0 | Page 15 of 16  
AD8273  
NOTES  
©2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06981-0-1/08(0)  
Rev. 0 | Page 16 of 16  

相关型号:

AD8274

Very Low Distortion, Precision Difference Amplifier
ADI

AD8274

G = 0.2, Level Translation, 16-Bit ADC Driver
AAVID

AD8274ARMZ

Very Low Distortion, Precision Difference Amplifier
AAVID

AD8274ARMZ-R7

Very Low Distortion, Precision Difference Amplifier
AAVID

AD8274ARMZ-RL

Very Low Distortion, Precision Difference Amplifier
AAVID

AD8274ARZ

Very Low Distortion, Precision Difference Amplifier
AAVID

AD8274ARZ-R7

Very Low Distortion, Precision Difference Amplifier
AAVID

AD8274ARZ-RL

Very Low Distortion, Precision Difference Amplifier
AAVID

AD8274_11

Very Low Distortion, Precision Difference Amplifier
AAVID

AD8275

G = 0.2, Level Translation, 16-Bit ADC Driver
ADI

AD8275ARMZ

G = 0.2, Level Translation, 16-Bit ADC Driver
ADI

AD8275ARMZ-R7

G = 0.2, Level Translation, 16-Bit ADC Driver
ADI