AD8278 [ADI]

Low Power, Wide Supply Range, Low Cost Difference Amplifier, G = ½, 2; 低功耗,宽电源电压范围,低成本差动放大器,G = ½ , 2
AD8278
型号: AD8278
厂家: ADI    ADI
描述:

Low Power, Wide Supply Range, Low Cost Difference Amplifier, G = ½, 2
低功耗,宽电源电压范围,低成本差动放大器,G = ½ , 2

放大器
文件: 总24页 (文件大小:601K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Power, Wide Supply Range,  
Low Cost Difference Amplifier, G = ½, 2  
AD8278  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
+VS  
Wide input range beyond supplies  
Rugged input overvoltage protection  
Low supply current: 200 μA maximum  
Low power dissipation: 0.5 mW at VS = 2.5 V  
Bandwidth: 1 MHz (G = ½)  
CMRR: 80 dB minimum, dc to 20 kHz (G = ½)  
Low offset voltage drift: 2 μV/°C maximum (B Grade)  
Low gain drift: 1 ppm/°C maximum (B Grade)  
Enhanced slew rate: 1.4 V/μs  
7
AD8278  
20k  
40kΩ  
40kΩ  
2
5
6
–IN  
+IN  
SENSE  
OUT  
20kΩ  
3
1
REF  
4
Wide power supply range:  
–VS  
Single supply: 2 V to 36 V  
Dual supplies: 2 V to 18 V  
Figure 1.  
8-lead SOIC and MSOP packages  
Table 1. Difference Amplifiers by Category  
Low  
Distortion  
High  
Voltage  
Current  
APPLICATIONS  
Sensing1  
Low Power  
AD8276  
AD8277  
Voltage measurement and monitoring  
Current measurement and monitoring  
Instrumentation amplifier building block  
Portable, battery-powered equipment  
Test and measurement  
AD8270  
AD8271  
AD8273  
AD8274  
AMP03  
AD628  
AD629  
AD8202 (U)  
AD8203 (U)  
AD8205 (B)  
AD8206 (B)  
AD8216 (B)  
1 U = unidirectional, B = bidirectional.  
GENERAL DESCRIPTION  
The AD8278 is a general-purpose difference amplifier intended  
for precision signal conditioning in power critical applications  
that require both high performance and low power. The AD8278  
provides exceptional common-mode rejection ratio (80 dB) and  
high bandwidth while amplifying signals well beyond the supply  
rails. The on-chip resistors are laser-trimmed for excellent gain  
accuracy and high CMRR. They also have extremely low gain  
drift vs. temperature.  
The AD8278 can be used as a difference amplifier with G = ½  
or G = 2. It can also be connected in a high precision, single-  
ended configuration for non-inverting and inverting gains of  
−½, −2, +3, +2, +1½, +1, or +½. The AD8278 provides an  
integrated precision solution that has a smaller size, lower cost,  
and better performance than a discrete alternative.  
The AD8278 operates on single supplies (2.0 V to 36 V) or dual  
supplies ( 2 V to 18 V). The maximum quiescent supply current  
is 200 μA, which makes it ideal for battery-operated and portable  
systems.  
The common-mode range of the amplifier extends to almost  
triple the supply voltage (for G = ½), making it ideal for single-  
supply applications that require a high common-mode voltage  
range. The internal resistors and ESD circuitry at the inputs also  
provide overvoltage protection to the op amp.  
The AD8278 is available in the space-saving 8-lead MSOP  
and SOIC packages. It is specified for performance over the  
industrial temperature range of −40°C to +85°C and is fully  
RoHS compliant.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2009 Analog Devices, Inc. All rights reserved.  
 
AD8278  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Performance Characteristics ..............................................9  
Theory of Operation ...................................................................... 16  
Circuit Information.................................................................... 16  
Driving the AD8278................................................................... 16  
Input Voltage Range................................................................... 16  
Power Supplies............................................................................ 17  
Applications Information.............................................................. 18  
Configurations............................................................................ 18  
Instrumentation Amplifier........................................................ 19  
Outline Dimensions....................................................................... 20  
Ordering Guide .......................................................................... 21  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 7  
Thermal Resistance ...................................................................... 7  
Maximum Power Dissipation ..................................................... 7  
Short-Circuit Current .................................................................. 7  
ESD Caution.................................................................................. 7  
Pin Configurations and Function Descriptions ........................... 8  
REVISION HISTORY  
7/09—Revision 0: Initial Version  
Rev. 0 | Page 2 of 24  
 
AD8278  
SPECIFICATIONS  
VS = ±± V o ±± V, VREF = 0 V, TA = 2±°C, RL = ꢁ0 kΩ connecꢀed ꢀo ground, G = ½ difference amplifier configuraꢀion, unless  
oꢀherwise noꢀed.  
Table 2.  
G = ½  
Grade B  
Typ  
Grade A  
Typ  
Parameter  
Conditions  
Min  
Max  
Min  
Max  
Unit  
INPUT CHARACTERISTICS  
System Offset1  
50  
100  
100  
50  
2
250  
250  
μV  
μV  
vs. Temperature  
Average Temperature  
Coefficient  
TA = −40°C to +85°C  
TA = −40°C to +85°C  
VS = 5 V to 18 V  
0.3  
1
2.5  
5
5
μV/°C  
μV/V  
vs. Power Supply  
Common-Mode Rejection VS = 15 V, VCM  
= 27 V,  
Ratio (RTI)  
Input Voltage Range2  
Impedance3  
RS = 0 Ω  
80  
74  
dB  
V
−3(VS + 0.1)  
+3(VS − 1.5) −3(VS + 0.1)  
+3(VS − 1.5)  
Differential  
120  
30  
120  
30  
kΩ  
kΩ  
Common Mode  
DYNAMIC PERFORMANCE  
Bandwidth  
1
1.4  
1
1.4  
MHz  
V/μs  
Slew Rate  
1.1  
1.1  
Settling Time to 0.01%  
10 V step on output,  
CL = 100 pF  
9
10  
9
10  
μs  
μs  
Settling Time to 0.001%  
GAIN  
Gain Error  
Gain Drift  
Gain Nonlinearity  
OUTPUT CHARACTERISTICS  
Output Voltage Swing4  
0.005 0.02  
0.01  
0.05  
5
10  
%
TA = −40°C to +85°C  
VOUT = 20 V p-p  
1
5
ppm/°C  
ppm  
VS = 15 V, RL = 10 kΩ  
TA = −40°C to +85°C  
−VS + 0.2  
+VS − 0.2  
−VS + 0.2  
+VS − 0.2  
V
Short-Circuit Current Limit  
Capacitive Load Drive  
NOISE5  
15  
200  
15  
200  
mA  
pF  
Output Voltage Noise  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
1.4  
47  
1.4  
47  
ꢀV p-p  
nV/√Hz  
50  
50  
POWER SUPPLY  
Supply Current6  
vs. Temperature  
Operating Voltage Range7  
TEMPERATURE RANGE  
Operating Range  
200  
250  
18  
200  
250  
18  
ꢀA  
ꢀA  
V
TA = −40°C to +85°C  
2
2
−40  
+125  
−40  
+125  
°C  
1 Includes input bias and offset current errors, RTO (referred to output)  
2 The input voltage range may also be limited by absolute maximum input voltage or by the output swing. See the Input Voltage Range section in the Theory of  
Operation for details.  
3 Internal resistors are trimmed to be ratio matched and have 20% absolute accuracy.  
4 Output voltage swing varies with supply voltage and temperature. See Figure 20 through Figure 23 for details.  
5 Includes amplifier voltage and current noise, as well as noise from internal resistors.  
6 Supply current varies with supply voltage and temperature. See Figure 24 and Figure 26 for details.  
7 Unbalanced dual supplies can be used, such as −VS = −0.5 V and +VS = +2 V. The positive supply rail must be at least 2 V above the negative supply and reference  
voltage.  
Rev. 0 | Page 3 of 24  
 
 
 
AD8278  
VS = 5 V to 15 V, VREF = 0 V, TA = 25°C, RL = 10 kΩ connected to ground, G = 2 difference amplifier configuration, unless  
otherwise noted.  
Table 3.  
G = 2  
Grade B  
Typ  
Grade A  
Typ  
Parameter  
Conditions  
Min  
Max  
Min  
Max  
Unit  
INPUT CHARACTERISTICS  
System Offset1  
100  
0.6  
200  
200  
100  
2
500  
500  
μV  
μV  
vs. Temperature  
Average Temperature  
Coefficient  
TA = −40°C to +85°C  
TA = −40°C to +85°C  
VS = 5 V to 18 V  
2
5
5
10  
μV/°C  
μV/V  
vs. Power Supply  
Common-Mode  
Rejection Ratio (RTI)  
Input Voltage Range2  
Impedance3  
VS = 15 V, VCM  
RS = 0 Ω  
= 27 V,  
86  
80  
dB  
V
−1.5(VS + 0.1)  
+1.5(VS − 1.5) −1.5(VS + 0.1)  
+1.5(VS − 1.5)  
Differential  
120  
30  
120  
30  
kΩ  
kΩ  
Common Mode  
DYNAMIC PERFORMANCE  
Bandwidth  
550  
1.4  
550  
1.4  
kHz  
V/μs  
Slew Rate  
1.1  
1.1  
Settling Time to 0.01%  
10 V step on output,  
CL = 100 pF  
10  
11  
10  
11  
μs  
μs  
Settling Time to 0.001%  
GAIN  
Gain Error  
Gain Drift  
0.005 0.02  
1
0.01  
0.05  
5
%
ppm/°  
C
TA = −40°C to +85°C  
VOUT = 20 V p-p  
Gain Nonlinearity  
5
10  
ppm  
OUTPUT CHARACTERISTICS  
Output Voltage Swing4  
VS = 15 V, RL = 10 kΩ  
TA = −40°C to +85°C  
−VS + 0.2  
+VS − 0.2  
−VS + 0.2  
+VS − 0.2  
V
Short-Circuit Current  
Limit  
Capacitive Load Drive  
NOISE5  
15  
350  
15  
350  
mA  
pF  
Output Voltage Noise  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
2.8  
90  
2.8  
90  
ꢀV p-p  
nV/√Hz  
95  
95  
POWER SUPPLY  
Supply Current6  
vs. Temperature  
Operating Voltage  
Range7  
200  
250  
18  
200  
250  
18  
ꢀA  
ꢀA  
V
TA = −40°C to +85°C  
2
2
TEMPERATURE RANGE  
Operating Range  
−40  
+125  
−40  
+125  
°C  
1 Includes input bias and offset current errors, RTO (referred to output).  
2 The input voltage range may also be limited by absolute maximum input voltage or by the output swing. See the Input Voltage Range section in the Theory of  
Operation for details.  
3 Internal resistors are trimmed to be ratio matched and have 20% absolute accuracy.  
4 Output voltage swing varies with supply voltage and temperature. See Figure 20 through Figure 23 for details.  
5 Includes amplifier voltage and current noise, as well as noise from internal resistors.  
6 Supply current varies with supply voltage and temperature. See Figure 24 and Figure 26 for details.  
7 Unbalanced dual supplies can be used, such as −VS = −0.5 V and +VS = +2 V. The positive supply rail must be at least 2 V above the negative supply and reference  
voltage.  
Rev. 0 | Page 4 of 24  
 
AD8278  
VS = +2.7 V to < 5 V, VREF = midsupply, TA = 25°C, RL = 10 kΩ connected to midsupply, G = ½ difference amplifier configuration, unless  
otherwise noted.  
Table 4.  
G = ½  
Grade B  
Typ  
Grade A  
Typ  
Parameter  
Conditions  
Min  
Max  
Min  
Max  
Unit  
INPUT CHARACTERISTICS  
System Offset1  
75  
150  
150  
75  
2
250  
250  
μV  
μV  
vs. Temperature  
Average Temperature  
Coefficient  
TA = −40°C to +85°C  
TA = −40°C to +85°C  
VS = 5 V to 18 V  
0.3  
1
2.5  
5
5
μV/°C  
μV/V  
vs. Power Supply  
Common-Mode Rejection VS = 2.7 V, VCM = 0 V  
Ratio (RTI)  
to 2.4 V, RS = 0 Ω  
80  
74  
74  
dB  
VS = 5 V, VCM = −10 V  
to +7 V, RS = 0 Ω  
80  
dB  
V
Input Voltage Range2  
Impedance3  
−3(VS + 0.1)  
+3(VS − 1.5) −3(VS + 0.1)  
+3(VS − 1.5)  
Differential  
120  
30  
120  
30  
kΩ  
kΩ  
Common Mode  
DYNAMIC PERFORMANCE  
Bandwidth  
870  
1.3  
870  
1.3  
kHz  
V/μs  
Slew Rate  
Settling Time to 0.01%  
2 V step on output,  
CL = 100 pF, VS = 2.7 V  
7
7
μs  
GAIN  
Gain Error  
Gain Drift  
0.005 0.02  
1
0.01  
0.05  
5
%
ppm/°C  
TA = −40°C to +85°C  
OUTPUT CHARACTERISTICS  
Output Swing4  
RL = 10 kΩ ,  
TA = −40°C to +85°C  
−VS + 0.1  
+VS − 0.15  
−VS + 0.1  
+VS − 0.15  
V
Short-Circuit Current Limit  
Capacitive Load Drive  
NOISE5  
10  
200  
10  
200  
mA  
pF  
Output Voltage Noise  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
1.4  
47  
1.4  
47  
ꢀV p-p  
nV/√Hz  
50  
50  
POWER SUPPLY  
Supply Current6  
TA = −40°C to +85°C  
200  
36  
200  
36  
ꢀA  
V
Operating Voltage Range  
TEMPERATURE RANGE  
Operating Range  
2.0  
2.0  
−40  
+125  
−40  
+125  
°C  
1 Includes input bias and offset current errors, RTO (referred to output).  
2 The input voltage range may also be limited by absolute maximum input voltage or by the output swing. See the Input Voltage Range section in the Theory of Operation  
section for details.  
3 Internal resistors are trimmed to be ratio matched and have 20% absolute accuracy.  
4 Output voltage swing varies with supply voltage and temperature. See Figure 20 through Figure 23 for details.  
5 Includes amplifier voltage and current noise, as well as noise from internal resistors.  
6 Supply current varies with supply voltage and temperature. See Figure 25 and Figure 26 for details.  
Rev. 0 | Page 5 of 24  
 
AD8278  
VS = +2.7 V to < 5 V, VREF = midsupply, TA = 25°C, RL = 10 kΩ connected to midsupply, G = 2 difference amplifier configuration, unless  
otherwise noted.  
Table 5.  
G = 2  
Grade B  
Typ  
Grade A  
Typ Max  
Parameter  
Conditions  
Min  
Max  
Min  
Unit  
INPUT CHARACTERISTICS  
System Offset1  
150  
0.6  
300  
300  
150 500  
500  
μV  
μV  
vs. Temperature  
Average Temperature  
Coefficient  
TA = −40°C to +85°C  
TA = −40°C to +85°C  
VS = 5 V to 18 V  
2
5
3
5
μV/°C  
μV/V  
vs. Power Supply  
10  
Common-Mode Rejection VS = 2.7 V, VCM = 0 V  
Ratio (RTI)  
to 2.4 V, RS = 0 Ω  
86  
80  
80  
dB  
VS = 5 V, VCM = −10 V  
to +7 V, RS = 0 Ω  
86  
dB  
V
Input Voltage Range2  
Impedance3  
−1.5(VS + 0.1)  
+1.5(VS − 1.5) −1.5(VS + 0.1)  
+1.5(VS − 1.5)  
Differential  
120  
30  
120  
30  
kΩ  
kΩ  
Common Mode  
DYNAMIC PERFORMANCE  
Bandwidth  
450  
1.3  
450  
1.3  
kHz  
V/μs  
Slew Rate  
Settling Time to 0.01%  
2 V step on output,  
CL = 100 pF, VS = 2.7 V  
9
9
μs  
GAIN  
Gain Error  
Gain Drift  
0.005  
0.02  
1
0.01 0.05  
5
%
TA = −40°C to +85°C  
ppm/°C  
OUTPUT CHARACTERISTICS  
Output Swing4  
RL = 10 kΩ,  
TA = −40°C to +85°C  
−VS + 0.1  
+VS − 0.15  
−VS + 0.1  
+VS − 0.15  
V
Short-Circuit Current Limit  
Capacitive Load Drive  
NOISE5  
10  
200  
10  
200  
mA  
pF  
Output Voltage Noise  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
2.8  
94  
2.8  
94  
ꢀV p-p  
nV/√Hz  
100  
100  
POWER SUPPLY  
Supply Current6  
TA = −40°C to +85°C  
200  
36  
220  
36  
ꢀA  
V
Operating Voltage Range  
TEMPERATURE RANGE  
Operating Range  
2.0  
2.0  
−40  
+125  
−40  
+125  
°C  
1 Includes input bias and offset current errors, RTO (referred to output).  
2 The input voltage range may also be limited by absolute maximum input voltage or by the output swing. See the Input Voltage Range section in the Theory of Operation  
section for details.  
3 Internal resistors are trimmed to be ratio matched and have 20% absolute accuracy.  
4 Output voltage swing varies with supply voltage and temperature. See Figure 20 through Figure 23 for details.  
5 Includes amplifier voltage and current noise, as well as noise from internal resistors.  
6 Supply current varies with supply voltage and temperature. See Figure 25 and Figure 26 for details.  
Rev. 0 | Page 6 of 24  
 
AD8278  
ABSOLUTE MAXIMUM RATINGS  
Table 6.  
2.0  
1.6  
1.2  
0.8  
0.4  
0
T
MAX = 150°C  
J
Parameter  
Rating  
Supply Voltage  
18 V  
Maximum Voltage at Any Input Pin  
Minimum Voltage at Any Input Pin  
Storage Temperature Range  
Specified Temperature Range  
Package Glass Transition Temperature (TG)  
−VS + 40 V  
+VS − 40 V  
−65°C to +150°C  
−40°C to +85°C  
150°C  
SOIC  
θ
= 121°C/W  
JA  
MSOP  
= 135°C/W  
θ
JA  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
–50  
–25  
0
25  
50  
75  
100  
125  
AMBIENT TEMERATURE (°C)  
Figure 2. Maximum Power Dissipation vs. Ambient Temperature  
SHORT-CIRCUIT CURRENT  
THERMAL RESISTANCE  
The AD8278 has built-in, short-circuit protection that limits the  
output current (see Figure 27 for more information). While the  
short-circuit condition itself does not damage the part, the heat  
generated by the condition can cause the part to exceed its  
maximum junction temperature, with corresponding negative  
effects on reliability. Figure 2 and Figure 27, combined with  
knowledge of the supply voltages and ambient temperature of the  
part can be used to determine whether a short circuit will cause  
the part to exceed its maximum junction temperature.  
The θJA values in Table 7 assume a 4-layer JEDEC standard  
board with zero airflow.  
Table 7. Thermal Resistance  
Package Type  
8-Lead MSOP  
8-Lead SOIC  
θJA  
Unit  
°C/W  
°C/W  
135  
121  
MAXIMUM POWER DISSIPATION  
The maximum safe power dissipation for the AD8278 is limited  
by the associated rise in junction temperature (TJ) on the die. At  
approximately 150°C, which is the glass transition temperature,  
the properties of the plastic change. Even temporarily exceeding  
this temperature limit may change the stresses that the package  
exerts on the die, permanently shifting the parametric performance  
of the amplifiers. Exceeding a temperature of 150°C for an  
extended period may result in a loss of functionality.  
ESD CAUTION  
Rev. 0 | Page 7 of 24  
 
 
 
 
 
AD8278  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
REF  
–IN  
1
2
3
4
8
7
6
5
NC  
REF  
–IN  
1
2
3
4
8
7
6
5
NC  
AD8278  
TOP VIEW  
(Not to Scale)  
AD8278  
+VS  
+VS  
TOP VIEW  
+IN  
OUT  
SENSE  
+IN  
–VS  
OUT  
SENSE  
(Not to Scale)  
–VS  
NC = NO CONNECT  
NC = NO CONNECT  
Figure 3. MSOP Pin Configuration  
Figure 4. SOIC Pin Configuration  
Table 8. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
2
3
4
5
6
7
8
REF  
−IN  
+IN  
−VS  
SENSE  
OUT  
+VS  
NC  
Reference Voltage Input.  
Inverting Input.  
Noninverting Input.  
Negative Supply.  
Sense Terminal.  
Output.  
Positive Supply.  
No Connect.  
Rev. 0 | Page 8 of 24  
 
AD8278  
TYPICAL PERFORMANCE CHARACTERISTICS  
VS = 15 V, TA = 25°C, RL = 10 kꢀ connected to ground, G = ½ difference amplifier configuration, unless otherwise noted.  
600  
500  
400  
300  
200  
100  
0
80  
N = 3840  
MEAN = –16.8  
SD = 41.7673  
60  
40  
20  
0
–20  
–40  
–60  
–80  
–100  
REPRESENTATIVE DATA  
–150  
–100  
–50  
0
50  
100  
150  
–50  
–35  
–20  
–5  
10  
25  
40  
55  
70  
85  
SYSTEM OFFSET VOLTAGE (µV)  
TEMPERATURE (°C)  
Figure 5. Distribution of Typical System Offset Voltage, G = 2  
Figure 8. System Offset vs. Temperature, Normalized at 25°, G = ½  
800  
20  
15  
N = 3837  
MEAN = 7.78  
SD = 13.569  
700  
600  
500  
400  
300  
200  
100  
0
10  
5
0
–5  
–10  
–15  
–20  
–25  
REPRESENTATIVE DATA  
–30  
–60  
–40  
–20  
0
20  
40  
60  
–50  
–35  
–20  
–5  
10  
25  
40  
55  
70  
85  
CMRR (µV/V)  
TEMPERATURE (°C)  
Figure 6. Distribution of Typical Common-Mode Rejection, G = 2  
Figure 9. Gain Error vs. Temperature, Normalized at 25°C, G = ½  
10  
30  
V
= ±15V  
5
0
20  
10  
S
–5  
0
V
= ±5V  
S
–10  
–15  
–10  
–20  
–30  
REPRESENTATIVE DATA  
–20  
–50  
–35  
–20  
–5  
10  
25  
40  
55  
70  
85  
–20  
–15  
–10  
–5  
0
5
10  
15  
20  
TEMPERATURE (°C)  
OUTPUT VOLTAGE (V)  
Figure 7. CMRR vs. Temperature, Normalized at 25°C, G = ½  
Figure 10. Input Common-Mode Voltage vs. Output Voltage,  
15 V and 5 V Supplies, G = ½  
Rev. 0 | Page 9 of 24  
 
AD8278  
10  
8
5
4
V = MIDSUPPLY  
REF  
V
= MIDSUPPLY  
V
= 5V  
REF  
S
V
= 5V  
S
6
3
4
2
2
0
1
V
= 2.7V  
S
–2  
–4  
–6  
–8  
V
= 2.7V  
0
S
–1  
–2  
–3  
–10  
–0.5  
0.5  
1.5  
2.5  
3.5  
4.5  
5.5  
–0.5  
0.5  
1.5  
2.5  
3.5  
4.5  
5.5  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 11. Input Common-Mode Voltage vs. Output Voltage,  
5 V and 2.7 V Supplies, VREF = Midsupply, G = ½  
Figure 14. Input Common-Mode Voltage vs. Output Voltage,  
5 V and 2.7 V Supplies, VREF = Midsupply, G = 2  
12  
6
V
= 0V  
V
= 0V  
REF  
REF  
10  
8
V
= 5V  
S
5
4
V
= 5V  
S
6
3
4
2
2
1
V
= 2.7V  
S
0
V
= 2.7V  
S
0
–2  
–4  
–6  
–1  
–2  
–0.5  
0.5  
1.5  
2.5  
3.5  
4.5  
5.5  
–0.5  
0.5  
1.5  
2.5  
3.5  
4.5  
5.5  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 12. Input Common-Mode Voltage vs. Output Voltage,  
5 V and 2.7 V Supplies, VREF = 0 V, G = ½  
Figure 15. Input Common-Mode Voltage vs. Output Voltage,  
5 V and 2.7 V Supplies, VREF = 0 V, G = 2  
30  
18  
V
= ±15V  
12  
S
20  
10  
GAIN = 2  
6
0
GAIN = ½  
–6  
0
V
= ±5V  
S
–12  
–10  
–20  
–30  
–18  
–24  
–30  
–36  
–20  
–15  
–10  
–5  
0
5
10  
15  
20  
100  
1k  
10k  
100k  
1M  
10M  
OUTPUT VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 13. Input Common-Mode Voltage vs. Output Voltage,  
15 V and 5 V Supplies, G = 2  
Figure 16. Gain vs. Frequency, 15 V Supplies  
Rev. 0 | Page 10 of 24  
AD8278  
18  
12  
+V  
S
–0.1  
–0.2  
–0.3  
–0.4  
GAIN = 2  
GAIN = ½  
6
0
–6  
T
T
T
T
= –40°C  
A
A
A
A
= +25°C  
= +85°C  
= +125°C  
–12  
–18  
–24  
–30  
–36  
+0.4  
+0.3  
+0.2  
+0.1  
–V  
S
100  
1k  
10k  
100k  
1M  
10M  
2
4
6
8
10  
12  
14  
16  
18  
FREQUENCY (Hz)  
SUPPLY VOLTAGE (±V )  
S
Figure 17. Gain vs. Frequency, +2.7 V Single Supply  
Figure 20. Output Voltage Swing vs. Supply Voltage and Temperature,  
RL = 10 kΩ  
120  
100  
80  
60  
40  
20  
0
+V  
S
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
GAIN = 2  
GAIN = ½  
T
T
T
T
= –40°C  
= +25°C  
= +85°C  
= +125°C  
A
A
A
A
+1.2  
+1.0  
+0.8  
+0.6  
+0.4  
+0.2  
–V  
S
1
10  
100  
1k  
10k  
100k  
1M  
2
4
6
8
10  
12  
14  
16  
18  
FREQUENCY (Hz)  
SUPPLY VOLTAGE (±V )  
S
Figure 21. Output Voltage Swing vs. Supply Voltage and Temperature,  
RL = 2 kΩ  
Figure 18. CMRR vs. Frequency  
+V  
S
120  
100  
80  
60  
40  
20  
0
–4  
–8  
–PSRR  
T
T
T
T
= –40°C  
= +25°C  
= +85°C  
= +125°C  
A
A
A
A
+PSRR  
+8  
+4  
–V  
S
1k  
10k  
100k  
1
10  
100  
1k  
10k  
100k  
1M  
LOAD RESISTANCE ()  
FREQUENCY (Hz)  
Figure 19. PSRR vs. Frequency  
Figure 22. Output Voltage Swing vs. RL and Temperature, VS = 15 V  
Rev. 0 | Page 11 of 24  
 
 
 
AD8278  
+V  
250  
200  
150  
100  
50  
S
V
= MIDSUPPLY  
REF  
–0.5  
–1.0  
–1.5  
–2.0  
T
T
T
T
= –40°C  
= +25°C  
= +85°C  
= +125°C  
A
A
A
A
V
= ±15V  
S
+2.0  
+1.5  
+1.0  
+0.5  
V
= +2.7V  
S
–V  
0
–50  
S
0
1
2
3
4
5
6
7
8
9
10  
–30  
–10  
10  
30  
50  
70  
90  
110  
130  
130  
130  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
Figure 23. Output Voltage Swing vs. IOUT and Temperature, VS = 15 V  
Figure 26. Supply Current vs. Temperature  
180  
30  
25  
20  
15  
10  
5
170  
160  
150  
140  
130  
120  
I
SHORT+  
0
–5  
–10  
–15  
–20  
I
SHORT–  
50  
0
2
4
6
8
10  
12  
14  
16  
18  
–50  
–30  
–10  
10  
30  
70  
90  
110  
SUPPLY VOLTAGE (±V)  
TEMPERATURE (°C)  
Figure 24. Supply Current vs. Dual-Supply Voltage, VIN = 0 V  
Figure 27. Short-Circuit Current vs. Temperature  
180  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
–SLEW RATE  
170  
160  
150  
140  
130  
120  
+SLEW RATE  
0
5
10  
15  
20  
25  
30  
35  
40  
–50  
–30  
–10  
10  
30  
50  
70  
90  
110  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 25. Supply Current vs. Single-Supply Voltage, VIN = 0 V, VREF = 0 V  
Figure 28. Slew Rate vs. Temperature, VIN = 20 V p-p, 1 kHz  
Rev. 0 | Page 12 of 24  
 
 
 
 
 
 
 
 
 
AD8278  
8
6
4
1V/DIV  
2
3.64µs TO 0.01%  
4.12µs TO 0.001%  
0
–2  
–4  
–6  
–8  
0.002%/DIV  
4µs/DIV  
TIME (µs)  
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
OUTPUT VOLTAGE (V)  
Figure 29. Gain Nonlinearity, VS = 15 V, RL ≥ 2 kΩ, G = ½  
Figure 32. Large-Signal Pulse Response and Settling Time, 2 V Step,  
VS = 2.7 V, G = ½  
8
6
4
2
0
5V/DIV  
7.6µs TO 0.01%  
9.68µs TO 0.001%  
–2  
0.002%/DIV  
–4  
–6  
–8  
40µs/DIV  
TIME (µs)  
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
OUTPUT VOLTAGE (V)  
Figure 33. Large-Signal Pulse Response and Settling Time, 10 V Step,  
VS = 15 V, G = 2  
Figure 30. Gain Nonlinearity, VS = 15 V, RL ≥ 2 kΩ, G = 2  
5V/DIV  
1V/DIV  
6.24µs TO 0.01%  
7.92µs TO 0.001%  
4.34µs TO 0.01%  
5.12µs TO 0.001%  
0.002%/DIV  
0.002%/DIV  
40µs/DIV  
4µs/DIV  
TIME (µs)  
TIME (µs)  
Figure 31. Large-Signal Pulse Response and Settling Time, 10 V Step,  
VS = 15 V, G = ½  
Figure 34. Large-Signal Pulse Response and Settling Time, 2 V Step,  
VS = 2.7 V  
Rev. 0 | Page 13 of 24  
 
AD8278  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
V
= ±5V  
S
= ±2.5V  
S
10µs/DIV  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 35. Large-Signal Step Response, G = ½  
Figure 38. Maximum Output Voltage vs. Frequency, VS = 5 V, 2.7 V  
NO LOAD  
R
= 200pF  
L
R
= 147pF  
L
R
= 247pF  
L
10µs/DIV  
40µs/DIV  
Figure 36. Large-Signal Step Response, G = 2  
Figure 39. Small-Signal Step Response for Various Capacitive Loads, G = ½  
30  
V
= ±15V  
S
25  
20  
15  
10  
5
V
= ±5V  
S
R
= 100pF  
L
R
= 200pF  
L
R
= 247pF  
L
R
= 347pF  
L
0
100  
40µs/DIV  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 37. Maximum Output Voltage vs. Frequency, VS = 15 V, 5 V  
Figure 40. Small-Signal Step Response for Various Capacitive Loads, G = 2  
Rev. 0 | Page 14 of 24  
AD8278  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
1k  
100  
10  
±2V  
±5V  
GAIN = 2  
GAIN = ½  
±15V  
±18V  
0
0
50  
100  
150  
200  
250  
0.1  
1
10  
100  
1k  
10k  
100k  
CAPACITIVE LOAD (pF)  
FREQUENCY (Hz)  
Figure 41. Small-Signal Overshoot vs. Capacitive Load, RL ≥ 2 kΩ, G = ½  
Figure 43. Voltage Noise Density vs. Frequency  
35  
GAIN = 2  
30  
25  
±2V  
20  
15  
±5V  
GAIN = ½  
±15V  
10  
±18V  
5
0
1s/DIV  
0
50  
100  
150  
200  
250  
300  
350  
CAPACITIVE LOAD (pF)  
Figure 42. Small-Signal Overshoot vs. Capacitive Load, RL ≥ 2 kΩ, G = 2  
Figure 44. 0.1 Hz to 10 Hz Voltage Noise  
Rev. 0 | Page 15 of 24  
AD8278  
THEORY OF OPERATION  
AC Performance  
CIRCUIT INFORMATION  
Component sizes and trace lengths are much smaller in an IC  
than on a PCB, so the corresponding parasitic elements are also  
smaller. This results in better ac performance of the AD8278.  
For example, the positive and negative input terminals of the  
AD8278 op amp are intentionally not pinned out. By not  
connecting these nodes to the traces on the PCB, their capacitance  
remains low and balanced, resulting in improved loop stability  
and excellent common-mode rejection over frequency.  
The AD8278 consists of a low power, low noise op amp and  
four laser-trimmed on-chip resistors. These resistors can be  
externally connected to make a variety of amplifier confi-  
gurations, including difference, noninverting, and inverting  
configurations. Taking advantage of the integrated resistors  
of the AD8278 provides the designer with several benefits  
over a discrete design, including smaller size, lower cost, and  
better ac and dc performance.  
+VS  
DRIVING THE AD8278  
7
AD8278  
20k  
Care should be taken to drive the AD8278 with a low impedance  
source: for example, another amplifier. Source resistance of even  
a few kilohms (kꢀ) can unbalance the resistor ratios and,  
therefore, significantly degrade the gain accuracy and common-  
mode rejection of the AD8278. Because all configurations present  
several kilohms (kꢀ) of input resistance, the AD8278 does not  
require a high current drive from the source and so is easy to  
drive.  
40kΩ  
2
5
6
–IN  
+IN  
SENSE  
OUT  
40kΩ  
20kΩ  
3
1
REF  
4
–VS  
INPUT VOLTAGE RANGE  
Figure 45. Functional Block Diagram  
The AD8278 is able to measure input voltages beyond the supply  
rails. The internal resistors divide down the voltage before it  
reaches the internal op amp, and provide protection to the op  
amp inputs. Figure 46 shows an example of how the voltage  
division works in a difference amplifier configuration. For the  
AD8278 to measure correctly, the input voltages at the input  
nodes of the internal op amp must stay below 1.5 V of the  
positive supply rail and can exceed the negative supply rail by  
0.1 V. Refer to the Power Supplies section for more details.  
R2  
DC Performance  
Much of the dc performance of op amp circuits depends on the  
accuracy of the surrounding resistors. Using superposition to  
analyze a typical difference amplifier circuit, as is shown in  
Figure 46, the output voltage is found to be  
R2  
R1 + R2  
R4  
R3  
R4  
R3  
VOUT = VIN +  
1 +  
V  
IN −  
(V  
)
IN+  
This equation demonstrates that the gain accuracy and common-  
mode rejection ratio of the AD8278 is determined primarily by  
the matching of resistor ratios. Even a 0.1% mismatch in one  
resistor degrades the CMRR to 69 dB for a G = 2 difference  
amplifier.  
R1 + R2  
R4  
R3  
R1  
V
V
IN–  
IN+  
R2  
The difference amplifier output voltage equation can be reduced to  
R2  
R1 + R2  
(V  
)
IN+  
R4  
VOUT  
=
(
VIN + VIN −  
)
Figure 46. Voltage Division in the Difference Amplifier Configuration  
R3  
The AD8278 has integrated ESD diodes at the inputs that provide  
overvoltage protection. This feature simplifies system design by  
eliminating the need for additional external protection circuitry,  
and enables a more robust system.  
as long as the following ratio of the resistors is tightly matched:  
R2 R4  
=
R1 R3  
The resistors on the AD8278 are laser trimmed to match accurately.  
As a result, the AD8278 provides superior performance over a  
discrete solution, enabling better CMRR, gain accuracy, and  
gain drift, even over a wide temperature range.  
The voltages at any of the inputs of the parts can safely range  
from +VS − 40 V up to −VS + 40 V. For example, on 10 V  
supplies, input voltages can go as high as 30 V. Care should be  
taken to not exceed the +VS − 40 V to −VS + 40 V input limits  
to avoid risking damage to the parts.  
Rev. 0 | Page 16 of 24  
 
 
 
 
 
 
 
 
 
 
AD8278  
The AD8278 is typically specified at single- and dual-supplies,  
but it can be used with unbalanced supplies as well; for example,  
−VS = −5 V, +VS = 20 V. The difference between the two supplies  
must be kept below 36 V. The positive supply rail must be at  
least 2 V above the negative supply and reference voltage.  
R1  
POWER SUPPLIES  
The AD8278 operates extremely well over a very wide range of  
supply voltages. It can operate on a single supply as low as 2 V  
and as high as 36 V, under appropriate setup conditions.  
For best performance, the user must exercise care that the setup  
conditions ensure that the internal op amp is biased correctly.  
The internal input terminals of the op amp must have sufficient  
voltage headroom to operate properly. Proper operation of the  
part requires at least 1.5 V between the positive supply rail and  
the op amp input terminals. This relationship is expressed in  
the following equation:  
(V  
)
REF  
R1 + R2  
R4  
R3  
R1  
R2  
V
REF  
R1  
R1 + R2  
(V  
)
REF  
R1  
R1 + R2  
VREF < +VS 1.5 V  
Figure 47. Ensure Sufficient Voltage Headroom on the Internal Op Amp  
Inputs  
For example, when operating on a +VS= 2 V single supply and  
Use a stable dc voltage to power the AD8278. Noise on the  
supply pins can adversely affect performance. Place a bypass  
capacitor of 0.1 ꢁF between each supply pin and ground, as  
close as possible to each supply pin. Use a tantalum capacitor  
of 10 ꢁF between each supply and ground. It can be farther  
away from the supply pins and, typically, it can be shared by  
other precision integrated circuits.  
VREF = 0 V, it can be seen from Figure 47 that the op amps input  
terminals are biased at 0 V, allowing more than the required 1.5 V  
headroom. However, if VREF = 1 V under the same conditions, the  
input terminals of the op amp are biased at 0.66 V (G = ½). Now  
the op amp does not have the required 1.5 V headroom and can  
not function. Therefore, the user needs to increase the supply  
voltage or decrease VREF to restore proper operation.  
Rev. 0 | Page 17 of 24  
 
 
 
AD8278  
APPLICATIONS INFORMATION  
CONFIGURATIONS  
20kΩ  
20kΩ  
40kΩ  
40kΩ  
5
1
2
6
–IN  
+IN  
The AD8278 can be configured in several ways, as a difference  
amplifier or a single-ended amplifier (see Figure 48 to Figure 54).  
All of these configurations have excellent gain accuracy and  
gain drift because they rely on the internal matched resistors.  
Note that Figure 50 shows the AD8278 as a difference amplifier  
with a midsupply reference voltage at the noninverting input.  
This allows the AD8278 to be used as a level shifter, which is  
appropriate in single-supply applications that are referenced  
to midsupply. Table 9 lists several single-ended amplifier  
configurations that are not illustrated.  
OUT  
3
V
= MIDSUPPLY  
REF  
V
= 2(V  
IN+  
V ) + V  
INREF  
OUT  
Figure 51. Difference Amplifier, Gain = 2, Referenced to Midsupply  
40k  
20kΩ  
2
5
6
IN  
OUT  
20kΩ  
40kΩ  
1
40kΩ  
20kΩ  
2
5
3
–IN  
OUT  
6
V
= –½V  
IN  
OUT  
Figure 52. Inverting Amplifier, Gain = −½  
40kΩ  
20kΩ  
3
1
+IN  
40k  
20kΩ  
2
5
6
V
= ½(V  
IN+  
V )  
IN−  
OUT  
OUT  
Figure 48. Difference Amplifier, Gain = ½  
20kΩ  
40kΩ  
1
3
IN  
20kΩ  
20kΩ  
40kΩ  
5
1
2
6
–IN  
OUT  
V
= 1.5V  
IN  
OUT  
Figure 53. Noninverting Amplifier, Gain = 1.5  
40kΩ  
3
+IN  
20kΩ  
40kΩ  
5
2
6
OUT  
V
= 2(V  
IN+  
V )  
IN−  
OUT  
Figure 49. Difference Amplifier, Gain = 2  
20kΩ  
40kΩ  
3
1
IN  
40kΩ  
40kΩ  
20kΩ  
2
3
5
6
–IN  
+IN  
OUT  
V
= 2V  
OUT  
IN  
Figure 54. Noninverting Amplifier, Gain = 2  
20kΩ  
1
V
= MIDSUPPLY  
REF  
V
= ½(V  
IN+  
V ) + V  
INREF  
OUT  
Figure 50. Difference Amplifier, Gain = ½, Referenced to Midsupply  
Table 9. Difference and Single-Ended Amplifier Configurations  
Amplifier Configuration  
Signal Gain  
Pin 1 (REF)  
GND  
IN+  
GND  
GND  
IN  
IN  
GND  
IN  
Pin 2 (VIN−)  
Pin 3 (VIN+)  
IN+  
GND  
GND  
GND  
IN  
IN  
IN  
GND  
IN  
GND  
Pin 5 (SENSE)  
Difference Amplifier  
Difference Amplifier  
+½  
+2  
−½  
−2  
+3⁄2  
+3  
+½  
+1  
IN−  
OUT  
IN  
OUT  
GND  
OUT  
GND  
GND  
OUT  
OUT  
OUT  
IN−  
OUT  
IN  
OUT  
GND  
OUT  
OUT  
GND  
GND  
Single-Ended Inverting Amplifier  
Single-Ended Inverting Amplifier  
Single-Ended Non Inverting Amplifier  
Single-Ended Non Inverting Amplifier  
Single-Ended Non Inverting Amplifier  
Single-Ended Non Inverting Amplifier  
Single-Ended Non Inverting Amplifier  
Single-Ended Non Inverting Amplifier  
+1  
+2  
GND  
IN  
Rev. 0 | Page 18 of 24  
 
 
 
 
 
AD8278  
–IN  
As with the other inputs, the reference must be driven with a  
low impedance source to maintain the internal resistor ratio. An  
example using the low power, low noise OP1177 as a reference  
is shown in Figure 55.  
A1  
40kΩ  
R
R
F
20kΩ  
20kΩ  
R
G
V
OUT  
INCORRECT  
CORRECT  
40kΩ  
AD8278  
F
REF  
= (1 + 2R /R ) (V – V ) × 2  
IN+ IN–  
A2  
+IN  
V
OUT  
F
G
AD8278  
AD8278  
Figure 56. Low Power Precision Instrumentation Amplifier  
REF  
REF  
V
V
Table 10. Low Power Op Amps  
Op Amp (A1, A2) Features  
+
OP1177  
AD8506  
AD8607  
AD8617  
AD8667  
Dual micropower op amp  
Precision dual micropower op amp  
Low cost CMOS micropower op amp  
Dual precision CMOS micropower op amp  
Figure 55. Driving the Reference Pin  
INSTRUMENTATION AMPLIFIER  
It is preferable to use dual op amps for the high impedance inputs,  
because they have better matched performance and track each  
other over temperature. The AD8278 difference amplifier can-  
cels out common-mode errors from the input op amps, if they  
track each other. The differential gain accuracy of the in-amp  
is proportional to how well the input feedback resistors (RF)  
match each other. The CMRR of the in-amp increases as the  
differential gain is increased (1 + 2RF/RG), but a higher gain  
also reduces the common-mode voltage range. Note that dual  
supplies must be used for proper operation of this configuration.  
The AD8278 can be used as a building block for a low power,  
low cost instrumentation amplifier. An instrumentation amplifier  
provides high impedance inputs and delivers high common-  
mode rejection. Combining the AD8278 with an Analog Devices,  
Inc., low power amplifier (see Table 10) creates a precise, power  
efficient voltage measurement solution suitable for power  
critical systems.  
Refer to A Designer’s Guide to Instrumentation Amplifiers for  
more design ideas and considerations.  
Rev. 0 | Page 19 of 24  
 
 
 
AD8278  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 57. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body (R-8)  
Dimensions shown in millimeters and (inches)  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
0.65 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.00  
0.38  
0.22  
0.23  
0.08  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 58. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
Rev. 0 | Page 20 of 24  
 
AD8278  
ORDERING GUIDE  
Model  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
Branding  
AD8278ARZ1  
8-Lead SOIC_N  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
AD8278ARZ-R71  
AD8278ARZ-RL1  
AD8278BRZ1  
8-Lead SOIC_N, 7" Tape and Reel  
8-Lead SOIC_N, 13" Tape and Reel  
8-Lead SOIC_N  
8-Lead SOIC_N, 7" Tape and Reel  
8-Lead SOIC_N, 13" Tape and Reel  
8-Lead MSOP  
8-Lead MSOP, 7" Tape and Reel  
8-Lead MSOP, 13" Tape and Reel  
8-Lead MSOP  
8-Lead MSOP, 7" Tape and Reel  
8-Lead MSOP, 13" Tape and Reel  
AD8278BRZ-R71  
AD8278BRZ-RL1  
AD8278ARMZ1  
AD8278ARMZ-R71  
AD8278ARMZ-RL1  
AD8278BRMZ1  
AD8278BRMZ-R71  
AD8278BRMZ-RL1  
Y21  
Y21  
Y21  
Y22  
Y22  
Y22  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 21 of 24  
 
 
AD8278  
NOTES  
Rev. 0 | Page 22 of 24  
AD8278  
NOTES  
Rev. 0 | Page 23 of 24  
AD8278  
NOTES  
©2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08308-0-7/09(0)  
Rev. 0 | Page 24 of 24  
 

相关型号:

AD8278ARMZ

Low Power, Wide Supply Range, Low Cost Difference Amplifier, G = ½, 2
ADI

AD8278ARMZ-R7

Low Power, Wide Supply Range, Low Cost Difference Amplifier, G = ½, 2
ADI

AD8278ARMZ-RL

Low Power, Wide Supply Range, Low Cost Difference Amplifier, G = ½, 2
ADI

AD8278ARZ

Low Power, Wide Supply Range, Low Cost Difference Amplifier, G = ½, 2
ADI

AD8278ARZ-R7

Low Power, Wide Supply Range, Low Cost Difference Amplifier, G = ½, 2
ADI

AD8278ARZ-RL

Low Power, Wide Supply Range, Low Cost Difference Amplifier, G = ½, 2
ADI

AD8278BRMZ

Low Power, Wide Supply Range, Low Cost Difference Amplifier, G = ½, 2
ADI

AD8278BRMZ-R7

Low Power, Wide Supply Range, Low Cost Difference Amplifier, G = ½, 2
ADI

AD8278BRMZ-RL

Low Power, Wide Supply Range, Low Cost Difference Amplifier, G = ½, 2
ADI

AD8278BRZ

Low Power, Wide Supply Range, Low Cost Difference Amplifier, G = ½, 2
ADI

AD8278BRZ-R7

Low Power, Wide Supply Range, Low Cost Difference Amplifier, G = ½, 2
ADI

AD8278BRZ-RL

Low Power, Wide Supply Range, Low Cost Difference Amplifier, G = ½, 2
ADI