AD8290ACPZ-RL1 [ADI]

G = 50, CMOS Sensor Amplifier with Current Excitation;
AD8290ACPZ-RL1
型号: AD8290ACPZ-RL1
厂家: ADI    ADI
描述:

G = 50, CMOS Sensor Amplifier with Current Excitation

文件: 总21页 (文件大小:489K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
G = 50, CMOS Sensor Amplifier  
with Current Excitation  
AD8290  
FEATURES  
GENERAL DESCRIPTION  
Supply voltage range: 2.6 V to 5.5 V  
Low power  
1.2 mA + 2× excitation current  
0.5 μA shutdown current  
Low input bias current: 100 pA  
High CMRR: 120 dB  
Space savings: 16-lead, 3.0 mm × 3.0 mm × 0.55 mm LFCSP  
Excitation current  
The AD8290 contains both an adjustable current source to  
drive a sensor and a difference amplifier to amplify the signal  
voltage. The amplifier is set for a fixed gain of 50. The AD8290  
is an excellent solution for both the drive and the sensing aspects  
required for pressure, temperature, and strain gage bridges.  
In addition, because the AD8290 operates with low power,  
works with a range of low supply voltages, and is available in a  
low profile package, it is suitable for drive/sense circuits in  
portable electronics as well.  
300 μA to 1300 μA range  
Set with external resistor  
The AD8290 is available in a lead free 3.0 mm × 3.0 mm ×  
0.55 mm package and is operational over the industrial  
temperature range of −40°C to +85°C.  
APPLICATIONS  
Bridge and sensor drives  
Portable electronics  
FUNCTIONAL BLOCK DIAGRAM  
C
FILTER  
ENBL  
R
SET  
11  
6
5
3
V
CC  
2
13  
15  
10  
GND  
C
BRIDGE  
4
ADC  
ANTI-  
ALIASING  
FILTER  
14  
AD8290  
V
REF  
NC  
NC  
1
NC  
7
NC  
NC  
12  
NC  
16  
8
9
Figure 1.  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 www.analog.com  
Fax: 781.461.3113 ©2007–2008 Analog Devices, Inc. All rights reserved.  
 
AD8290* Product Page Quick Links  
Last Content Update: 11/01/2016  
Comparable Parts  
Design Resources  
View a parametric search of comparable parts  
• AD8290 Material Declaration  
• PCN-PDN Information  
• Quality And Reliability  
• Symbols and Footprints  
Documentation  
Data Sheet  
• AD8290: G = 50, CMOS Sensor Amplifier with Current  
Excitation Data Sheet  
Discussions  
View all AD8290 EngineerZone Discussions  
Technical Books  
• A Designer's Guide to Instrumentation Amplifiers, 3rd  
Edition, 2006  
Sample and Buy  
Visit the product page to see pricing options  
Reference Materials  
Technical Articles  
Technical Support  
Submit a technical question or find your regional support  
number  
• Auto-Zero Amplifiers  
• High-performance Adder Uses Instrumentation Amplifiers  
* This page was dynamically generated by Analog Devices, Inc. and inserted into this data sheet. Note: Dynamic changes to  
the content on this page does not constitute a change to the revision number of the product data sheet. This content may be  
frequently modified.  
AD8290  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Current Source............................................................................ 15  
Applications Information.............................................................. 16  
Typical Connections .................................................................. 16  
Current Excitation...................................................................... 16  
Enable/Disable Function........................................................... 16  
Output Filtering.......................................................................... 16  
Clock Feedthrough..................................................................... 16  
Maximizing Performance Through Proper Layout............... 17  
Power Supply Bypassing............................................................ 17  
Dual-Supply Operation ............................................................. 17  
Pressure Sensor Bridge Application......................................... 18  
Temperature Sensor Application.............................................. 19  
ADC/Microcontroller................................................................ 19  
Outline Dimensions....................................................................... 20  
Ordering Guide .......................................................................... 20  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 7  
Theory of Operation ...................................................................... 14  
Amplifier...................................................................................... 14  
High Power Supply Rejection (PSR) and Common-Mode  
Rejection (CMR) ........................................................................ 14  
1/f Noise Correction .................................................................. 14  
REVISION HISTORY  
2/08—Rev. SpA to Rev. B  
Changes to Features Section............................................................ 1  
Changes to Amplifier Section and Figure 43.............................. 14  
Changes to Current Source Section ............................................. 15  
Changes to Current Excitation Section, Output Filtering  
Section, Clock Feedthrough Section, and Figure 45.................. 16  
Changes to Figure 46...................................................................... 17  
8/07—Revision SpA  
7/07—Revision 0: Initial Version  
Rev. B | Page 2 of 20  
 
AD8290  
SPECIFICATIONS  
VCC = 2.6 V to 5.0 V, TA = 25°C, CFILTER = 6.8 nF, output antialiasing capacitor = 68 nF, RSET = 3 kΩ, common-mode input = 0.6 V, unless  
otherwise noted.  
Table 1.  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
COMMON-MODE REJECTION RATIO (CMRR) Input voltage (VINP − VINN  
)
range of 0.2 V to VCC − 1.7 V  
CMRR DC  
NOISE  
110  
120  
0.75  
900  
dB  
Amplifier and VREF  
VOLTAGE OFFSET  
Output Offset  
Input referred, f = 0.1 Hz to 10 Hz  
μV p-p  
mV  
Reference is internal and set to  
900 mV nominal  
865  
935  
Output Offset TC  
PSR  
−40°C < TA < +85°C  
−300  
50  
+300  
μV/°C  
dB  
120  
INPUT CURRENT  
Input Bias Current  
Input Offset Current  
DYNAMIC RESPONSE  
Small Signal Bandwidth –3 dB  
−1000  
−2000  
100  
200  
+1000  
+2000  
pA  
pA  
With external filter capacitors,  
CFILTER = 6.8 nF and output  
0.25  
kHz  
antialiasing capacitor = 68 nF  
GAIN  
Gain  
50  
0.5  
V/V  
%
Gain Error  
−1.0  
−25  
+1.0  
+25  
Gain Nonlinearity  
Gain Drift  
0.0075  
15  
%
−40°C < TA < +85°C  
ppm/°C  
INPUT  
Differential Input Impedance  
Input Voltage Range  
OUTPUT  
50||1  
MΩ||pF  
V
0.2  
VCC − 1.7  
Output Voltage Range  
VOUT = Gain × (VINP − VINN) +  
Output Offset  
0.075  
VCC − 0.075  
V
Output Series Resistance  
CURRENT EXCITATION  
10 20%  
kΩ  
Excitation Current Range  
Excitation Current Accuracy  
Excitation Current Drift  
Excitation current = 0.9 V/RSET  
−40°C < TA < +85°C  
300  
1300  
+1.0  
+250  
3000  
μA  
−1.0  
−250  
692  
%
50  
ppm/°C  
Ω
External Resistor for Setting  
Excitation Current (RSET  
)
Excitation Current Power  
Supply Rejection  
Excitation Current Pin Voltage  
−2.0  
0
+0.2  
+2.0  
μA/V  
VCC − 1.0  
V
Excitation Current Output Resistance  
Required Capacitor from Ground to  
100  
0.1  
MΩ  
μF  
Excitation Current Pin (CBRIDGE  
)
ENABLE  
ENBL High Level  
VCC < 2.9 V  
VCC > 2.9 V  
VCC − 0.5  
2.4  
VCC  
VCC  
0.8  
V
V
ENBL Low Level  
GND  
V
Start-Up Time for ENBL  
5.0  
ms  
Rev. B | Page 3 of 20  
 
 
AD8290  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
POWER SUPPLY  
Operating Range  
Quiescent Current  
2.6  
5.5  
V
1.2 + 2×  
1.8 + 2×  
mA  
excitation current excitation current  
Shutdown Current  
0.5  
10  
μA  
°C  
TEMPERATURE RANGE  
For Operational Performance  
−40  
+85  
Rev. B | Page 4 of 20  
AD8290  
ABSOLUTE MAXIMUM RATINGS  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 2.  
Parameter  
Supply Voltage  
Input Voltage  
Differential Input Voltage1  
Output Short-Circuit Duration to GND  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range  
Lead Temperature (Soldering, 10 sec)  
Rating  
6 V  
+VSUPPLY  
VSUPPLY  
Indefinite  
−65°C to +150°C  
−40°C to +85°C  
−65°C to +150°C  
300°C  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
1 Differential input voltage is limited to 5.0 V, the supply voltage, or  
whichever is less.  
Table 3.  
Package Type  
θJA  
θJC  
Unit  
16-Lead LFCSP (0.55 mm)  
42.5  
7.7  
°C/W  
ESD CAUTION  
Rev. B | Page 5 of 20  
 
 
AD8290  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
NC  
VCC  
1
2
3
12 NC  
AD8290  
TOP  
VIEW  
(Not to Scale)  
11 RSET  
GND  
NC  
ENBL  
10  
9
VOUT 4  
NC = NO CONNECT  
Figure 2. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
3
4
NC  
VCC  
ENBL  
VOUT  
Tie to Ground1 or Pin 16.  
Positive Power Supply Voltage.  
Logic 1 enables the part, and Logic 0 disables the part.  
Open End of Internal 10 kΩ Resistor. Tie one end of external antialiasing filter capacitor (6.8 nF) to this pin, and tie  
the other end to ground.1  
5
6
7
8
CF2  
CF1  
NC  
NC  
NC  
GND  
RSET  
NC  
IOUT  
VINN  
VINP  
NC  
Tie one end of the CFILTER (68 nF) that is in parallel with the internal gain resistor to this pin.  
Tie the other end of the CFILTER (68 nF) that is in parallel with the internal gain resistor to this pin.  
Tie to Ground.1  
Tie to Ground.1  
9
Tie to Ground.1  
10  
11  
12  
13  
14  
15  
16  
Ground1 or Negative Power Supply Voltage.  
Tie one end of Resistor RSET to this pin to set the excitation current and tie the other end of Resistor RSET to Pin 10.  
Tie to Ground.1  
Excitation Current Output. Tie one end of CBRIDGE (0.1 μF) to this pin and tie the other end of CBRIDGE to ground.1  
Negative Input Terminal.  
Positive Input Terminal.  
Tie to Ground1 or Pin 1.  
17/Pad NC  
Pad should be floating and not tied to any potential.  
1 During dual-supply operation, ground becomes the negative power supply voltage.  
Rev. B | Page 6 of 20  
 
 
AD8290  
TYPICAL PERFORMANCE CHARACTERISTICS  
35  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
0
0
892  
894  
896  
898  
900  
902  
904  
906  
908  
0.2988  
0.2994  
0.3000  
0.3006  
0.3012  
0.2991  
0.2997  
0.3003  
0.3009  
OUTPUT VOLTAGE (mV)  
EXCITATION CURRENT (mA)  
Figure 3. Output Offset Voltage at 2.6 V Supply  
Figure 6. Excitation Output Current for 3 kΩ RSET at 2.6 V Supply  
35  
30  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
0
0
892  
894  
896  
898  
900  
902  
904  
906  
908  
0.2988  
0.2994  
0.3000  
0.3006  
0.3012  
0.2991  
0.2997  
0.3003  
0.3009  
OUTPUT VOLTAGE (mV)  
EXCITATION CURRENT (mA)  
Figure 4. Output Offset Voltage at 3.6 V Supply  
Figure 7. Excitation Output Current for 3 kΩ RSET at 3.6 V Supply  
35  
30  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
0
0
892  
894  
896  
898  
900  
902  
904  
906  
908  
0.2988  
0.2994  
0.3000  
0.3006  
0.3012  
0.2991  
0.2997  
0.3003  
0.3009  
OUTPUT VOLTAGE (mV)  
EXCITATION CURRENT (mA)  
Figure 5. Output Offset Voltage at 5.0 V Supply  
Figure 8. Excitation Output Current for 3 kΩ RSET at 5.0 V Supply  
Rev. B | Page 7 of 20  
 
AD8290  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
0
0
1.296 1.297 1.298 1.299 1.300 1.301 1.302 1.303 1.304 1.305  
–0.60 –0.56 –0.52 –0.48 –0.44 –0.40 –0.36 –0.32 –0.28  
GAIN ERROR (%)  
EXCITATION CURRENT (mA)  
Figure 9. Output Excitation Current for 692 Ω RSET at 2.6 V Supply  
Figure 12. Percent Gain Error at 2.6 V Supply  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
0
0
1.296 1.297 1.298 1.299 1.300 1.301 1.302 1.303 1.304 1.305  
–0.60 –0.56 –0.52 –0.48 –0.44 –0.40 –0.36 –0.32 –0.28  
GAIN ERROR (%)  
EXCITATION CURRENT (mA)  
Figure 10. Output Excitation Current for 692 Ω RSET at 3.6 V Supply  
Figure 13. Percent Gain Error at 3.6 V Supply  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
0
0
1.296 1.297 1.298 1.299 1.300 1.301 1.302 1.303 1.304 1.305  
–0.60 –0.56 –0.52 –0.48 –0.44 –0.40 –0.36 –0.32 –0.28  
GAIN ERROR (%)  
EXCITATION CURRENT (mA)  
Figure 11. Output Excitation Current for 692 Ω RSET at 5.0 V Supply  
Figure 14. Percent Gain Error at 5.0 V Supply  
Rev. B | Page 8 of 20  
AD8290  
40  
35  
30  
25  
20  
15  
10  
5
50  
40  
30  
20  
10  
0
0
–35  
–15  
5
25  
45  
65  
85  
105  
125  
0.0030  
0.0040  
0.0050  
0.0060  
0.0070  
0.0070  
0.0150  
0.0035  
0.0045  
0.0055  
0.0065  
DRIFT (µV/°C)  
NONLINEARITY (%)  
Figure 18. Output Offset Voltage Drift from −40°C to +85°C at 2.6 V Supply  
Figure 15. Percent Nonlinearity at 2.6 V Supply  
50  
35  
30  
25  
20  
15  
10  
5
40  
30  
20  
10  
0
0
–35  
–15  
5
25  
45  
65  
85  
105  
125  
0.0030  
0.0040  
0.0050  
0.0060  
0.0035  
0.0045  
0.0055  
0.0065  
DRIFT (µV/°C)  
NONLINEARITY (%)  
Figure 19. Output Offset Voltage Drift from −40°C to +85°C at 3.6 V Supply  
Figure 16. Percent Nonlinearity at 3.6 V Supply  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
40  
30  
20  
10  
0
0
–35  
–15  
5
25  
45  
65  
85  
105  
125  
0.0030  
0.0060  
0.0090  
0.0120  
0.0045  
0.0075  
0.0105  
0.0135  
DRIFT (µV/°C)  
NONLINEARITY (%)  
Figure 20. Output Offset Voltage Drift from −40°C to +85°C at 5.0 V Supply  
Figure 17. Percent Nonlinearity at 5.0 V Supply  
Rev. B | Page 9 of 20  
AD8290  
45  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
0
0
5
20  
35  
50  
65  
80  
95  
110  
125  
10  
20  
30  
40  
50  
60  
70  
80  
90  
DRIFT (ppm/°C)  
DRIFT (ppm/°C)  
Figure 21. Excitation Current Drift from −40°C to +85°C at  
2.6 V Supply, RSET = 3 kΩ  
Figure 24. Excitation Current Drift from −40°C to +85°C at  
2.6 V Supply, RSET = 692 Ω  
40  
45  
40  
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
5
20  
35  
50  
65  
80  
95  
110  
125  
DRIFT (ppm/°C)  
DRIFT (ppm/°C)  
Figure 22. Excitation Current Drift from −40°C to +85°C at  
3.6 V Supply, RSET = 3 kΩ  
Figure 25. Excitation Current Drift from −40°C to +85°C at  
3.6 V Supply, RSET = 692 Ω  
45  
40  
40  
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
5
20  
35  
50  
65  
80  
95  
110  
125  
DRIFT (ppm/°C)  
DRIFT (ppm/°C)  
Figure 23. Excitation Current Drift from −40°C to +85°C at  
5.0 V Supply, RSET = 3 kΩ  
Figure 26. Excitation Current Drift from −40°C to +85°C at  
5.0 V Supply, RSET = 692 Ω  
Rev. B | Page 10 of 20  
AD8290  
40  
35  
30  
25  
20  
15  
10  
5
100  
10  
1
0
–16.0 –15.5 –15.0 –14.5 –14.0 –13.5 –13.0 –12.5 –12.0  
DRIFT (ppm/°C)  
1
10  
100  
1k  
10k  
FREQUENCY (Hz)  
Figure 27. Gain Drift from −40°C to +85°C at 2.6 V Supply  
Figure 30. Frequency Response for Supply Range of 2.6 V to 5.0 V  
(External CFILTER = 6.8 nF, Antialiasing Capacitor = 68 nF)  
310  
308  
306  
304  
302  
300  
298  
296  
294  
292  
40  
35  
30  
25  
20  
15  
10  
5
290  
0
2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25 5.50  
–16.0 –15.5 –15.0 –14.5 –14.0 –13.5 –13.0 –12.5 –12.0  
DRIFT (ppm/°C)  
POWER SUPPLY (V)  
Figure 31. Low Excitation Current vs. Power Supply  
Figure 28. Gain Drift from −40°C to +85°C at 3.6 V Supply  
1.310  
1.308  
1.306  
1.304  
1.302  
1.300  
1.298  
1.296  
1.294  
1.292  
40  
35  
30  
25  
20  
15  
10  
5
1.290  
0
2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25 5.50  
–16.0 –15.5 –15.0 –14.5 –14.0 –13.5 –13.0 –12.5 –12.0  
DRIFT (ppm/°C)  
POWER SUPPLY (V)  
Figure 32. High Excitation Current vs. Power Supply  
Figure 29. Gain Drift from −40°C to +85°C at 5.0 V Supply  
Rev. B | Page 11 of 20  
AD8290  
50.0  
49.9  
49.8  
49.7  
49.6  
49.5  
310  
305  
300  
295  
290  
285  
2.6V SUPPLY  
3.6V SUPPLY  
2.6V SUPPLY  
5V SUPPLY  
3.6V SUPPLY  
5.0V SUPPLY  
280  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
–55 –45 –35 –25 –15 –5  
5
15 25 35 45 55 65 75 85 95  
PIN VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 33. Low Excitation Current vs. Excitation Current Pin Voltage  
Figure 36. Gain vs. Temperature  
1.32  
1.31  
1.30  
0.305  
0.304  
0.303  
0.302  
0.301  
0.300  
0.299  
0.298  
0.297  
0.296  
0.295  
2.6V SUPPLY  
5.0V SUPPLY  
1.29  
3.6V SUPPLY  
2.6V SUPPLY  
3.6V SUPPLY  
1.28  
5.0V SUPPLY  
1.27  
1.26  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
–45 –35 –25 –15 –5  
5
15 25 35 45 55 65 75 85 95  
PIN VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 34. High Excitation Current vs. Excitation Current Pin Voltage  
Figure 37. Excitation Current vs. Temperature, RSET = 3 kΩ  
0.905  
0.904  
0.903  
1.315  
1.310  
1.305  
1.300  
1.295  
1.290  
1.285  
2.6V SUPPLY  
0.902  
5.0V SUPPLY  
3.6V SUPPLY  
0.901  
3.6V SUPPLY  
2.6V SUPPLY  
0.900  
0.899  
5.0V SUPPLY  
0.898  
0.897  
0.896  
0.895  
–45 –35 –25 –15 –5  
5
15 25 35 45 55 65 75 85 95  
–45 –35 –25 –15 –5  
5
15 25 35 45 55 65 75 85 95  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 35. Output Offset Voltage vs. Temperature  
Figure 38. Excitation Current vs. Temperature, RSET = 692 Ω  
Rev. B | Page 12 of 20  
AD8290  
1000  
100  
10  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
5.0V SUPPLY  
3.6V SUPPLY  
2.6V SUPPLY  
1
0.01  
–45 –35 –25 –15 –5  
5
15 25 35 45 55 65 75 85 95  
0.1  
1
10  
100  
1000  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 39. Quiescent Current vs. Temperature (Excludes 2× Excitation Current)  
Figure 41. Input-Referred Noise vs. Frequency  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
ENBL PIN  
VOLTAGE  
(0V TO 5V)  
OUTPUT OFFSET  
VOLTAGE  
–0.1  
–10  
–5  
0
5
10  
15  
20  
TIME (10s/DIV)  
TIME (ms)  
Figure 40. 0.01 Hz to 10 Hz Input-Referred Noise  
Figure 42. ENBL Pin Voltage for 5.0 V Supply vs.  
Output Offset Voltage Start-Up Time  
Rev. B | Page 13 of 20  
AD8290  
THEORY OF OPERATION  
AMPLIFIER  
HIGH POWER SUPPLY REJECTION (PSR) AND  
COMMON-MODE REJECTION (CMR)  
The amplifier of the AD8290 is a precision current-mode  
correction instrumentation amplifier. It is internally set to a  
fixed gain of 50. The current-mode correction topology results  
in excellent accuracy.  
PSR and CMR indicate the amount that the offset voltage of an  
amplifier changes when its common-mode input voltage or power  
supply voltage changes. The autocorrection architecture of the  
AD8290 continuously corrects for offset errors, including those  
induced by changes in input or supply voltage, resulting in  
exceptional rejection performance. The continuous autocorrection  
provides great CMR and PSR performances over the entire  
operating temperature range (−40°C to +85°C).  
Figure 43 shows a simplified diagram illustrating the basic  
operation of the instrumentation amplifier within the AD8290  
(without correction). The circuit consists of a voltage-to-current  
amplifier (M1 to M6), followed by a current-to-voltage amplifier  
(R2 and A1). Application of a differential input voltage forces a  
current through R1, resulting in a conversion of the input  
voltage to a signal current. Transistors M3 to M6 transfer twice  
the signal current to the inverting input of the op amp, A1. A1  
and R2 form a current-to-voltage converter to produce a rail-to-  
1/f NOISE CORRECTION  
Flicker noise, also known as 1/f noise, is noise inherent in the  
physics of semiconductor devices and decreases 10 dB per decade.  
The 1/f corner frequency of an amplifier is the frequency at which  
the flicker noise is equal to the broadband noise of the amplifier. At  
lower frequencies, flicker noise dominates causing large errors  
in low frequency or dc applications.  
rail output voltage, VOUT  
.
Op Amp A1 is a high precision auto-zero amplifier. This  
amplifier preserves the performance of the autocorrecting,  
current-mode amplifier topology while offering the user a true  
voltage-in, voltage-out instrumentation amplifier. Offset errors  
are corrected internally.  
Flicker noise appears as a slowly varying offset error that is  
reduced by the autocorrection topology of the AD8290, allowing  
the AD8290 to have lower noise near dc than standard low  
noise instrumentation amplifiers.  
An internal 0.9 V reference voltage is applied to the noninverting  
input of A1 to set the output offset level. External Capacitor  
CFILTER is used to filter out correction noise.  
V
CC  
C
FILTER  
M5  
M6  
I – I  
I
R2  
I
R1  
INP  
R1  
2I  
R1  
I – I  
R1  
R3  
2R2  
R1  
V
– V  
INP INN  
I + I  
V
= V +  
REF  
R1  
OUT  
(V  
– V  
)
INN  
I
=
R1  
A1  
R1  
V
BIAS  
VINP  
VINN  
M3  
M4  
M1  
M2  
V
= 0.9V  
REF  
2I  
2I  
EXTERNAL  
Figure 43. Simplified Schematic of the Instrumentation Amplifier Within the AD8290  
Rev. B | Page 14 of 20  
 
 
AD8290  
CURRENT SOURCE  
PRECISION CURRENT  
MIRROR  
The AD8290 generates an excitation current that is  
programmable with an external resistor, RSET, as shown in  
Figure 44. A1 and M1 are configured to produce 0.9 V across  
M1  
RSET, which is based on an internal 0.9 V reference and creates a  
A1  
current equal to 0.9 V/RSET internal to the AD8290. This current  
is passed to a precision current mirror and a replica of the current  
is sourced from the IOUT pin. This current can be used for the  
excitation of a sensor bridge. CBRIDGE is used to filter noise from  
the current excitation circuit.  
V
= 0.9V  
REF  
GND  
RSET  
IOUT  
R
SET  
C
BRIDGE  
SENSOR  
BRIDGE  
Figure 44. Current Excitation  
Rev. B | Page 15 of 20  
 
 
AD8290  
APPLICATIONS INFORMATION  
For bandwidths greater than 10 Hz, an additional single-pole  
RC filter of 235 Hz is required on the output, which is also  
recommended when driving an ADC requiring an antialiasing  
filter. Internal to the AD8290 is a series 10 kΩ resistor at the  
output (R3 in Figure 43) and using an external 68 nF capacitor  
to ground produces an RC filter of 235 Hz on the output as well.  
These two filters produce an overall bandwidth of approximately  
160 Hz for the output signal.  
TYPICAL CONNECTIONS  
Figure 45 shows the typical connections for single-supply  
operation when used with a sensor bridge.  
CURRENT EXCITATION  
In Figure 45, RSET is used to set the excitation current sourced at  
the IOUT pin. The formula for the excitation current IOUT is  
I
OUT = (900/RSET) mA  
In addition, when driving low impedances, the internal series  
10 kΩ resistor creates a voltage divider at the output. If it is  
necessary to access the output of the internal amplifier prior  
to the 10 kΩ resistor, it is available at the CF2 pin.  
where RSET is the resistor between Pin 10 (GND) and Pin 11  
(RSET).  
The AD8290 is internally set by the factory to provide the  
current excitation described by the previous formula (within the  
tolerance range listed in Table 1). The range of RSET is 692 Ω to  
3 kΩ, resulting in a corresponding IOUT of 1300 μA to 300 μA,  
respectively.  
For applications with low bandwidths (<10 Hz), only the first  
filter capacitor (CFILTER) is required. In this case, the high  
frequency noise from the auto-zero amplifier (output amplifier)  
is not filtered before the following stage.  
ENABLE/DISABLE FUNCTION  
CLOCK FEEDTHROUGH  
Pin 3 (ENBL) provides the enabling/disabling function of the  
AD8290 to conserve power when the device is not needed. A  
Logic 1 turns the part on and allows it to operate normally. A  
Logic 0 disables the output and excitation current and reduces  
the quiescent current to less than 10 μA.  
The AD8290 uses two synchronized clocks to perform  
autocorrection. The input voltage-to-current amplifiers  
are corrected at 60 kHz.  
Trace amounts of these clock frequencies can be observed at  
the output. The amount of feedthrough is dependent upon the  
gain because the autocorrection noise has an input- and output-  
referred term. The correction feedthrough is also dependent  
The turn-on time upon switching Pin 3 high is dominated  
by the output filters. When the device is disabled, the output  
becomes high impedance, enabling the muxing application of  
multiple AD8290 instrumentation amplifiers.  
upon the values of the external capacitors, C2 and CFILTER  
.
OUTPUT FILTERING  
Filter Capacitor CFILTER is required to limit the amount of  
switching noise present at the output. The recommended  
bandwidth of the filter created by CFILTER and an internal  
100 kΩ is 235 Hz. Select CFILTER based on  
CFILTER = 1/(235 × 2 × π × 100 kΩ) = 6.8 nF  
C
FILTER  
6.8nF  
5.0V  
R
SET  
11  
6
5
3
692TO 3kΩ  
RSET  
CF1  
CF2  
ENBL  
VCC  
2
C1  
0.1µF  
13 IOUT  
AD8290  
14  
15  
10  
4
VINN  
VINP  
GND  
VOUT  
V
OUT  
C2  
68nF  
C
BRIDGE  
NC  
1
NC  
7
NC  
8
NC  
9
NC  
12  
NC  
16  
NC = NO CONNECT  
NOTES  
LAYOUT CONSIDERATIONS:  
1. KEEP C1 CLOSE TO PIN 2 AND PIN 10.  
2. KEEP R CLOSE TO PIN 11.  
SET  
Figure 45. Typical Single-Supply Connections  
Rev. B | Page 16 of 20  
 
 
AD8290  
DUAL-SUPPLY OPERATION  
MAXIMIZING PERFORMANCE THROUGH PROPER  
LAYOUT  
The AD8290 can be configured to operate in dual-supply mode.  
An example of such a circuit is shown in Figure 46, where the  
AD8290 is powered by 1.8 V supplies. When operating with  
dual supplies, pins that are normally referenced to ground in the  
single-supply mode, now need to be referenced to the negative  
supply. These pins include the following: Pin 1, Pin 7, Pin 8, Pin 9,  
Pin 10, Pin 12, and Pin 16. External components, such as RSET, the  
sensing bridge, and the antialiasing filter capacitor at the output,  
should also be referenced to the negative supply. Additionally,  
two bypass capacitors should be added beyond what is necessary  
for single-supply operation: one between the negative supply  
and ground, and the other between the positive and negative  
supplies.  
To achieve the maximum performance of the AD8290, care  
should be taken in the circuit board layout. The PCB surface  
must remain clean and free of moisture to avoid leakage currents  
between adjacent traces. Surface coating of the circuit board  
reduces surface moisture and provides a humidity barrier,  
reducing parasitic resistance on the board.  
RSET should be placed close to RSET (Pin 11) and GND (Pin 10).  
The paddle on the bottom of the package should not be connected  
to any potential and should be floating.  
For high impedance sources, the PCB traces from the AD8290  
inputs should be kept to a minimum to reduce input bias  
current errors.  
When operating in dual-supply mode, the specifications change  
and become relative to the negative supply. The input voltage  
range minimum shifts from 0.2 V to 0.2 V above the negative  
supply (in this example: −1.6 V), the output voltage range shifts  
from a minimum of 0.075 V to 0.075 V above the negative supply  
(in this example: −1.725 V), and the excitation current pin  
voltage minimum shifts from 0 V to −1.8 V in this example.  
The maximum specifications of these three parameters are  
specified relative to VCC in Table 1 and do not change.  
POWER SUPPLY BYPASSING  
The AD8290 uses internally generated clock signals to perform  
autocorrection. As a result, proper bypassing is necessary to  
achieve optimum performance. Inadequate or improper bypassing  
of the supply lines can lead to excessive noise and offset voltage.  
A 0.1 μF surface-mount capacitor should be connected between  
Pin 2 (VCC) and Pin 10 (GND) when operating with a single  
supply and should be located as close as possible to those two pins.  
For other specifications, both the minimum and maximum  
specifications change. The output offset shifts from a minimum  
of +865 mV and maximum of +935 mV to a minimum of  
−935 mV and a maximum of −865 mV in the example. In  
addition, the logic levels for the ENBL operation should be  
adjusted accordingly.  
C
FILTER  
6.8nF  
1.8V  
R
SET  
692TO 3kΩ  
C3  
0.1µF  
11  
6
5
3
RSET  
CF1  
CF2  
ENBL  
–1.8V  
VCC  
2
C1  
0.1µF  
13 IOUT  
–1.8V  
10  
GND  
AD8290  
C5  
0.1µF  
14  
15  
VINN  
VINP  
V
4
VOUT  
OUT  
C2  
68nF  
C
BRIDGE  
NC  
1
NC  
7
NC  
8
NC  
9
NC  
12  
NC  
16  
–1.8V  
–1.8V  
NC = NO CONNECT  
NOTES  
LAYOUT CONSIDERATIONS:  
1. KEEP C1 CLOSE TO PIN 2 AND PIN 10.  
2. KEEP C3 CLOSE TO PIN 2.  
3. KEEP C5 CLOSE TO PIN 10.  
4. KEEP R  
CLOSE TO PIN 11.  
SET  
Figure 46. Typical Dual-Supply Connections  
Rev. B | Page 17 of 20  
 
 
AD8290  
The specifications for the bridge are show in Table 5 and the  
chosen conditions for the AD8290 are listed in Table 6.  
PRESSURE SENSOR BRIDGE APPLICATION  
Given its excitation current range, the AD8290 provides a good  
match with pressure sensor circuits. Two such sensors are the  
Fujikura FGN-615PGSR and the Honeywell HPX050AS. Figure 47  
shows the AD8290 paired with the Honeywell bridge and the  
appropriate connections. In this example, a resistor, RP, is added  
to the circuit to ensure that the maximum output voltage of the  
AD8290 is not exceeded. Depending on the sensors specifications,  
RP may not be necessary.  
Given these specifications, calculations should be made to ensure  
that the AD8290 is operating within its required ranges. The  
combination of the excitation current and RP must be chosen  
to ensure that the conditions stay within the minimum and  
maximum specifications of the AD8290. For this example,  
because the specifications of the HPX050AS are for a bridge  
excitation voltage of 3.0 V, care must be taken to scale the  
resulting voltage calculations to the actual bridge voltage. The  
required calculations are shown in Table 7.  
C
FILTER  
6.8nF  
3.3V  
R
SET  
2.7k  
11  
6
5
3
RSET  
CF1  
CF2  
ENBL  
VCC  
2
13 IOUT  
C1  
R
2kΩ  
P
C
BRIDGE  
0.1µF  
8
0.1µF  
AD8290  
10  
GND  
HPX050AS  
14  
15  
VINN  
VINP  
2
6
4
VOUT  
4
5
C2  
68nF  
NC  
1
NC  
7
NC  
8
NC  
9
NC  
12  
NC  
16  
NC = NO CONNECT  
Figure 47. HPX050AS Pressure Sensor Application  
Table 5. HPX050AS Specifications  
Bridge Impedance (Ω)  
Rated Offset (mV)  
Rated Output Span (mV)  
Minimum  
4000  
Maximum  
Minimum  
−30  
Maximum  
Minimum  
Maximum  
Bridge Excite Voltage (V)  
6000  
+30  
0
80  
3.0  
Table 6. Typical AD8290 Conditions for Pressure Sensor Circuit  
AD8290 VCC (V)  
Excitation Current (μA)  
Parallel Resistor RP (Ω)  
3.3 (2.6 to 5.5)  
333.3 (300 to 1300)  
2000  
Table 7. Pressure Sensor Circuit Calculations Compared to AD8290 Minimum/Maximum Specifications  
Specification  
Calculation  
Unit  
mA  
Ω
Allowable Range of AD8290  
Supply Current  
Current Setting Resistor (RSET  
1.867  
2700  
)
692 Ω to 3000 Ω  
Minimum Equivalent Resistance to IOUT Pin  
Maximum Equivalent Resistance to IOUT Pin  
Minimum Current into Bridge  
1333  
1500  
83.333  
111.111  
0.222  
0.250  
0.444  
0.500  
0.218  
Ω
Ω
μA  
μA  
V
V
V
V
V
Maximum Current into Bridge  
Minimum Bridge Midpoint Voltage (Excluding Offset/Span)  
Maximum Bridge Midpoint Voltage (Excluding Offset/Span)  
Minimum Voltage at Current Output Pin (IOUT)  
Maximum Voltage at Current Output Pin (IOUT)  
Input Voltage Minimum  
>0.0 V  
<2.3 V  
>0.2 V  
Input Voltage Maximum  
0.266  
V
<1.6 V  
Output Voltage Minimum  
Output Voltage Maximum  
0.643  
1.852  
V
V
>0.075 V  
<3.225 V  
Rev. B | Page 18 of 20  
 
 
 
 
 
AD8290  
ADC/MICROCONTROLLER  
TEMPERATURE SENSOR APPLICATION  
In both of the previous applications, an ADC or a microcontroller  
can be used to follow the AD8290 to convert the output analog  
signal to digital. For example, if there are multiple sensors in the  
system, the six channel ADuC814ARU microcontoller is an  
excellent candidate to interface with multiple AD8290s.  
The AD8290 can be used with a temperature sensor. Figure 48  
shows the AD8290 in conjunction with an RTD, in this  
example, a 2-wire PT100. The specifications for the sensor are  
shown in Table 8 and the chosen conditions for the AD8290 are  
listed in Table 9.  
Once again, care must be taken when picking the excitation  
current and RG such that the minimum and maximum  
specifications of the AD8290 are not exceeded. Sample  
calculations are shown in Table 10.  
C
FILTER  
6.8nF  
3.3V  
R
SET  
3k  
11  
6
5
3
RSET  
CF1  
CF2  
ENBL  
VCC  
2
13 IOUT  
C1  
0.1µF  
C
BRIDGE  
0.1µF  
AD8290  
10  
GND  
15  
14  
VINP  
VINN  
RTD  
4
VOUT  
R
G
698Ω  
C2  
68nF  
NC  
1
NC  
7
NC  
8
NC  
9
NC  
12  
NC  
16  
NC = NO CONNECT  
Figure 48. PT100 Temperature Sensor Application Connections  
Table 8. PT100 Specifications  
RTD Minimum @ 0°C  
100 Ω  
RTD Maximum @ 100°C  
138.5 Ω  
Table 9. Typical AD8290 Conditions for Temperature Sensor Circuit  
AD8290 VCC (V)  
Excitation Current (μA)  
Resistor from RTD to GND, RG (Ω)  
3.30 (2.6 to 5.5)  
300 (300 to 1300)  
698  
Table 10. Temperature Sensor Circuit Calculations Compared to AD8290 Minimum/Maximum Specifications  
Specification  
Calculation  
Unit  
mA  
Ω
Allowable Range of AD8290  
Supply Current  
Current Setting Resistor (RSET  
1.8  
3000  
)
692 Ω to 3000 Ω  
Minimum Equivalent Resistance to IOUT Pin  
Maximum Equivalent Resistance to IOUT Pin  
Minimum Voltage @ Current Output Pin (IOUT)  
Maximum Voltage @ Current Output Pin (IOUT)  
Input Voltage Minimum  
Input Voltage Maximum  
Output Voltage Minimum  
Output Voltage Maximum  
798  
Ω
Ω
V
V
V
V
V
V
836.5  
0.239  
0.251  
0.209  
0.251  
2.365  
3.013  
>0.0 V  
<2.3 V  
>0.2 V  
<1.6 V  
>0.075 V  
<3.225 V  
Rev. B | Page 19 of 20  
 
 
 
 
 
AD8290  
OUTLINE DIMENSIONS  
3.00  
BSC SQ  
INDEX  
AREA  
PIN 1  
INDICATOR  
13  
12  
16  
1
1.80  
1.70 SQ  
1.55  
EXPOSED  
PAD  
9
4
0.50  
BSC  
8
5
0.40 MAX  
0.30 NOM  
TOP VIEW  
BOTTOM VIEW  
0.60  
0.55  
0.51  
0.05 MAX  
0.02 NOM  
SEATING  
PLANE  
0.30  
0.25  
0.18  
0.08 REF  
COMPLIANT TO JEDEC STANDARDS MO-248-UEED.  
Figure 49. 16-Lead Lead Frame Chip Scale Package [LFCSP_UQ]  
3 mm × 3 mm Body, Ultra Thin Quad  
(CP-16-12)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
AD8290ACPZ-R21  
AD8290ACPZ-R71  
AD8290ACPZ-RL1  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
16-Lead LFCSP_UQ  
16-Lead LFCSP_UQ  
16-Lead LFCSP_UQ  
Package Option  
CP-16-12  
CP-16-12  
Branding  
Y0J  
Y0J  
CP-16-12  
Y0J  
1 Z = RoHS Compliant Part.  
©2007–2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06745-0-2/08(B)  
Rev. B | Page 20 of 20  
 
 
 

相关型号:

AD8290_16

G = 50, CMOS Sensor Amplifier with Current Excitation
ADI

AD8293

Low Noise, Low Gain Drift, G = 2000
ADI

AD8293G160

Low Cost, Zero-Drift In-Amp with Filter and Fixed Gain
ADI

AD8293G160ARJZ-R2

Low Cost, Zero-Drift In-Amp with Filter and Fixed Gain
ADI

AD8293G160ARJZ-R7

Low Cost, Zero-Drift In-Amp with Filter and Fixed Gain
ADI

AD8293G160ARJZ-RL

Low Cost, Zero-Drift In-Amp with Filter and Fixed Gain
ADI

AD8293G160BRJZ-R2

Low Cost, Zero-Drift In-Amp with Filter and Fixed Gain
ADI

AD8293G160BRJZ-R7

Low Cost, Zero-Drift In-Amp with Filter and Fixed Gain
ADI

AD8293G160BRJZ-RL

Low Cost, Zero-Drift In-Amp with Filter and Fixed Gain
ADI

AD8293G80

Low Cost, Zero-Drift In-Amp with Filter and Fixed Gain
ADI

AD8293G80ARJZ-R2

Low Cost, Zero-Drift In-Amp with Filter and Fixed Gain
ADI

AD8293G80ARJZ-R7

Low Cost, Zero-Drift In-Amp with Filter and Fixed Gain
ADI