AD829AR-EBZ [ADI]

High Speed, Low Noise Video Op Amp; 高速,低噪声视频运算放大器
AD829AR-EBZ
型号: AD829AR-EBZ
厂家: ADI    ADI
描述:

High Speed, Low Noise Video Op Amp
高速,低噪声视频运算放大器

运算放大器
文件: 总20页 (文件大小:385K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Speed, Low Noise  
Video Op Amp  
Data Sheet  
AD829  
FEATURES  
CONNECTION DIAGRAM  
OFFSET NULL  
1
2
3
4
8
7
6
5
OFFSET NULL  
High speed  
120 MHz bandwidth, gain = −1  
230 V/µs slew rate  
90 ns settling time to 0.1%  
Ideal for video applications  
0.02% differential gain  
AD829  
–IN  
+IN  
+V  
S
OUTPUT  
TOP VIEW  
(Not to Scale)  
–V  
C
COMP  
S
Figure 1. 8-Lead PDIP (N), CERDIP (Q), and SOIC (R)  
0.04° differential phase  
Low noise  
3
2
1
20 19  
1.7 nV/√Hz input voltage noise  
1.5 pA/√Hz input current noise  
Excellent dc precision  
1 mV maximum input offset voltage (over temperature)  
0.3 µV/°C input offset drift  
Flexible operation  
18 NC  
+V  
4
5
6
7
8
NC  
–IN  
NC  
+IN  
NC  
17  
16 NC  
AD829  
TOP VIEW  
(Not to Scale)  
OUTPUT  
15  
14 NC  
9
10 11 12 13  
Specified for 5 V to 15 V operation  
3 V output swing into a 150 Ω load  
External compensation for gains 1 to 20  
5 mA supply current  
NC = NO CONNECT  
Figure 2. 20-Terminal LCC  
Operating as a traditional voltage feedback amplifier, the AD829  
provides many of the advantages that a transimpedance amplifier  
offer. A bandwidth >50 MHz can be maintained for a range of  
gains through the replacement of the external compensation  
capacitor. The AD829 and the transimpedance amplifier are both  
unity-gain stable and provide similar voltage noise performance  
(1.7 nV/√Hz); however, the current noise of the AD829  
(1.5 pA/√Hz) is less than 10% of the noise of transimpedance  
amplifiers. The inputs of the AD829 are symmetrical.  
Available in tape and reel in accordance with EIA-481A standard  
GENERAL DESCRIPTION  
The " % is a low noise (1.7 nV/√Hz), high speed op amp with  
custom compensation that provides the user with gains of 1 to 20  
while maintaining a bandwidth >50 MHz. Its 0.04° differential  
phase and 0.02% differential gain performance at 3.58 MHz and  
4.43 MHz, driving reverse-terminated 50 Ω or 75 Ω cables, makes  
it ideally suited for professional video applications. The AD829  
achieves its 230 V/µs uncompensated slew rate and 750 MHz  
gain bandwidth while requiring only 5 mA of current from  
power supplies.  
PRODUCT HIGHLIGHTS  
1. The input voltage noise of 2 nV/√Hz, current noise of  
1.5 pA/√Hz, and 50 MHz bandwidth for gains of 1 to 20  
make the AD829 an ideal preamp.  
The external compensation pin of the AD829 gives it  
2. A differential phase error of 0.04 and a 0.02% differential  
gain error, at the 3.58 MHz NTSC, 4.43 MHz PAL, and  
SECAM color subcarrier frequencies, make the op amp an  
outstanding video performer for driving reverse-terminated  
50 Ω and 75 Ω cables to 1 V (at their terminated end).  
3. The AD829 can drive heavy capacitive loads.  
4. Performance is fully specified for operation from 5 V  
to 15 V supplies.  
5. The AD829 is available in PDIP, CERDIP, and small outline  
packages. Chips and MIL-STD-883B parts are also available.  
The 8-lead SOIC is available for the extended temperature  
range (−40°C to +125°C).  
exceptional versatility. For example, compensation can be  
selected to optimize the bandwidth for a given load and power  
supply voltage. As a gain-of-2 line driver, the −3 dB bandwidth  
can be increased to 95 MHz at the expense of 1 dB of peaking.  
Its output can also be clamped at its external compensation pin.  
The AD829 exhibits excellent dc performance. It offers a minimum  
open-loop gain of 30 V/mV into loads as low as 500 Ω, a low input  
voltage noise of 1.7 nV/√Hz, and a low input offset voltage of 1 mV  
maximum. Common-mode rejection and power supply rejection  
ratios are both 120 dB.  
This op amp is also useful in multichannel, high speed data  
conversion where its fast (90 ns to 0.1%) settling time is important.  
In such applications, the AD829 serves as an input buffer for 8-bit to  
10-bit ADCs and as an output I/V converter for high speed DACs.  
Rev. I  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2011 Analog Devices, Inc. All rights reserved.  
 
 
 
 
AD829  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Test Circuits..................................................................................... 11  
Theory of Operation ...................................................................... 12  
Externally Compensating the AD829...................................... 12  
Shunt Compensation ................................................................. 12  
Current Feedback Compensation ............................................ 13  
Low Error Video Line Driver ................................................... 15  
General Description......................................................................... 1  
Connection Diagram ....................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Characteristics .............................................................. 5  
Metallization Photo...................................................................... 5  
ESD Caution.................................................................................. 5  
Typical Performance Characteristics ............................................. 6  
High Gain Video Bandwidth, 3-Op-Amp Instrumentation  
Amplifier ..................................................................................... 16  
Outline Dimensions....................................................................... 17  
Ordering Guide .......................................................................... 19  
REVISION HISTORY  
10/11—Rev. H to Rev. I  
Change to Table 2 ............................................................................. 5  
2/03—Rev. E to Rev. F  
Renumbered Figures .........................................................Universal  
Changes to Product Highlights .......................................................1  
Changes to Specifications.................................................................2  
Changes to Absolute Maximum Ratings........................................4  
Changes to Ordering Guide.............................................................4  
Updated Outline Dimensions....................................................... 13  
4/09—Rev. G to Rev. H  
Changes to Features.......................................................................... 1  
Changes to Quiescent Current Parameter, Table 1 ...................... 4  
Changes to Table 2 ............................................................................ 5  
Added Thermal Characteristics Section and Table 3 .................. 5  
Updated Outline Dimensions ....................................................... 17  
Changes to Ordering Guide .......................................................... 19  
4/04—Rev. F to Rev. G  
Added Figure 1; Renumbered Sequentially .................................. 4  
Changes to Ordering Guide ............................................................ 5  
Updated Table I............................................................................... 11  
Updated Figure 15 .......................................................................... 12  
Updated Figure 16 .......................................................................... 13  
Updated Outline Dimensions ....................................................... 14  
Rev. I | Page 2 of 20  
 
Data Sheet  
AD829  
SPECIFICATIONS  
TA = 25°C and VS = 15 V dc, unless otherwise noted.  
Table 1.  
AD829JR  
Min Typ  
AD829AR  
Max Min Typ  
AD829AQ/AD829S  
Parameter  
Conditions  
VS  
Max Min Typ  
Max  
Unit  
INPUT OFFSET VOLTAGE  
tMIN to tMAX  
±5 V,  
0.2  
±
0.2  
±
0.±  
0.5  
mV  
±±5 V  
±
±
0.5  
7
mV  
µV/°C  
Offset Voltage Drift  
±5 V,  
±±5 V  
0.3  
3.3  
0.3  
3.3  
0.3  
3.3  
INPUT BIAS CURRENT  
±5 V,  
7
7
µA  
±±5 V  
tMIN to tMAX  
8.2  
9.5  
9.5  
µA  
nA  
INPUT OFFSET CURRENT  
±5 V,  
50  
500  
50  
500  
50  
500  
±±5 V  
tMIN to tMAX  
500  
500  
500  
nA  
Offset Current Drift  
OPEN-LOOP GAIN  
± 5 V,  
±±5 V  
0.5  
65  
40  
0.5  
65  
40  
0.5  
65  
40  
nA/°C  
VO = ±2.5 V,  
RL = 500 Ω  
RL = ±50 Ω  
tMIN to tMAX  
VO = ±±0 V,  
RL = ± kΩ  
RL = 500 Ω  
tMIN to tMAX  
±5 V  
30  
20  
30  
30  
V/mV  
V/mV  
V/mV  
V/mV  
20  
50  
20  
50  
±±5 V 50  
±00  
85  
±00  
85  
±00  
85  
V/mV  
V/mV  
20  
20  
20  
DYNAMIC PERFORMANCE  
Gain Bandwidth Product  
±5 V  
±±5 V  
±5 V  
600  
750  
25  
600  
750  
25  
600  
750  
25  
MHz  
MHz  
MHz  
Full Power Bandwidth±, 2  
VO = 2 V p-p,  
RL = 500 Ω  
VO = 20 V p-p, ±±5 V  
RL = ± kΩ  
3.6  
3.6  
3.6  
MHz  
Slew Rate2  
RL = 500 Ω  
RL = ± kΩ  
AV = –±9  
±5 V  
±±5 V  
±50  
230  
±50  
230  
±50  
230  
V/µs  
V/µs  
Settling Time to 0.±%  
−2.5 V to  
+2.5 V  
±0 V step  
CL = ±0 pF  
RL = ± kΩ  
±5 V  
65  
90  
65  
90  
65  
90  
ns  
ns  
±±5 V  
±±5 V  
Phase Margin2  
60  
60  
60  
Degrees  
%
DIFFERENTIAL GAIN ERROR3  
DIFFERENTIAL PHASE ERROR3  
COMMON-MODE REJECTION  
RL = ±00 Ω,  
CCOMP = 30 pF  
±±5 V  
±±5 V  
±5 V  
0.02  
0.02  
0.02  
RL = ±00 Ω,  
CCOMP = 30 pF  
0.04  
0.04  
0.04  
Degrees  
VCM = ±2.5 V  
VCM = ±±2 V  
tMIN to tMAX  
±00  
±20  
±20  
±00  
±00  
96  
±20  
±20  
±00  
±00  
96  
±20  
±20  
dB  
dB  
dB  
dB  
±±5 V ±00  
96  
98  
POWER SUPPLY REJECTION  
VS = ±4.5 V  
to ±±8 V  
±20  
98  
±20  
98  
±20  
tMIN to tMAX  
f = ± kHz  
f = ± kHz  
94  
±±5 V  
94  
94  
dB  
INPUT VOLTAGE NOISE  
INPUT CURRENT NOISE  
±.7  
±.5  
2
±.7  
±.5  
2
±.7  
±.5  
2
nV/√Hz  
pA/√Hz  
±±5 V  
Rev. I | Page 3 of 20  
 
AD829  
Data Sheet  
AD829JR  
Min Typ  
AD829AR  
Max Min Typ  
AD829AQ/AD829S  
Max Min Typ Max  
Parameter  
Conditions  
VS  
Unit  
INPUT COMMON-MODE  
VOLTAGE RANGE  
±5 V  
+4.3  
+4.3  
+4.3  
V
−3.8  
+±4.3  
−3.8  
+±4.3  
−3.8  
+±4.3  
V
V
±±5 V  
−±3.8  
−±3.8  
−±3.8  
V
OUTPUT VOLTAGE SWING  
RL = 500 Ω  
RL = ±50 Ω  
RL = 50 Ω  
RL = ± kΩ  
RL = 500 Ω  
±5 V  
±5 V  
±5 V  
±3.0 ±3.6  
±2.5 ±3.0  
±±.4  
±3.0 ±3.6  
±2.5 ±3.0  
±±.4  
±±2 ±±3.3  
±±0 ±±2.2  
32  
±3.0 ±3.6  
±2.5 ±3.0  
±±.4  
±±2 ±±3.3  
±±0 ±±2.2  
32  
V
V
V
V
V
mA  
±±5 V ±±2 ±±3.3  
±±5 V ±±0 ±±2.2  
±5 V,  
Short-Circuit Current  
32  
±±5 V  
INPUT CHARACTERISTICS  
Input Resistance  
(Differential)  
Input Capacitance  
(Differential)4  
±3  
5
±3  
5
±3  
5
kΩ  
pF  
Input Capacitance  
(Common Mode)  
±.5  
2
±.5  
2
±.5  
2
pF  
CLOSED-LOOP OUTPUT  
RESISTANCE  
AV = +±,  
f = ± kHz  
mΩ  
POWER SUPPLY  
Operating Range  
Quiescent Current  
±4.5  
±±8  
6.5  
8.0  
6.8  
8.3  
±4.5  
5
±±8  
6.5  
8.0  
6.8  
9.0  
±4.5  
5
±±8  
6.5  
8.7  
6.8  
9.0  
V
±5 V  
5
mA  
mA  
mA  
mA  
tMIN to tMAX  
tMIN to tMAX  
±±5 V  
5.3  
46  
5.3  
46  
5.3  
46  
TRANSISTOR COUNT  
Number of  
transistors  
± Full power bandwidth = slew rate/2 π VPEAK  
.
2 Tested at gain = 20, CCOMP = 0 pF.  
3 3.58 MHz (NTSC) and 4.43 MHz (PAL and SECAM).  
4 Differential input capacitance consists of ±.5 pF package capacitance plus 3.5 pF from the input differential pair.  
Rev. I | Page 4 of 20  
Data Sheet  
AD829  
ABSOLUTE MAXIMUM RATINGS  
METALLIZATION PHOTO  
Table 2.  
OFFSET NULL  
1
OFFSET NULL  
8
Parameter  
Rating  
+V  
7
S
Supply Voltage  
Internal Power Dissipation±  
±±8 V  
8-Lead PDIP (N)  
8-Lead SOIC (R)  
8-Lead CERDIP (Q)  
20-Terminal LCC (E)  
Differential Input Voltage2  
Output Short-Circuit Duration  
Storage Temperature Range  
8-Lead CERDIP (Q) and 20-Terminal LCC (E)  
8-Lead PDIP (N) and 8-Lead SOIC (R)  
Operating Temperature Range  
AD829J  
±.3 W  
0.9 W  
±.3 W  
0.8 W  
±6 V  
–IN  
2
OUTPUT  
6
0.054  
(1.37)  
COMP  
C
Indefinite  
5
+IN  
3
−65°C to +±50°C  
−65°C to +±25°C  
–V  
4
S
0.067 (1.70)  
0°C to 70°C  
SUBSTRATE CONNECTED TO +V  
S
AD829A  
AD829S  
−40°C to +±25°C  
−55°C to +±25°C  
300°C  
Figure 3. Metallization Photo; Contact Factory for Latest Dimensions,  
Dimensions Shown in Inches and (Millimeters)  
Lead Temperature (Soldering, 60 sec)  
2.5  
± Maximum internal power dissipation is specified so that TJ does not exceed  
±50°C at an ambient temperature of 25°C.  
2 If the differential voltage exceeds 6 V, external series protection resistors  
should be added to limit the input current.  
PDIP  
2.0  
1.5  
1.0  
0.5  
0
LCC  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
CERDIP  
SOIC  
THERMAL CHARACTERISTICS  
–55 –45 –35 –25 –15 –5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
AMBIENT TEMPERATURE (°C)  
Table 3.  
Package Type  
8-Lead PDIP (N)  
8-Lead CERDIP (Q)  
20-Lead LCC (E)  
8-Lead SOIC (R)  
θJA  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
Figure 4. Maximum Power Dissipation vs. Temperature  
±00 (derates at 8.7 mW/°C)  
±±0 (derates at 8.7 mW/°C)  
77  
ESD CAUTION  
±25 (derates at 6 mW/°C)  
Rev. I | Page 5 of 20  
 
 
 
 
 
AD829  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
20  
6.0  
5.5  
5.0  
4.5  
4.0  
15  
+V  
OUT  
10  
5
–V  
OUT  
0
0
5
10  
SUPPLY VOLTAGE (±V)  
15  
20  
0
5
10  
15  
20  
SUPPLY VOLTAGE (±V)  
Figure 5. Input Common-Mode Range vs. Supply Voltage  
Figure 8. Quiescent Current vs. Supply Voltage  
20  
–5  
–4  
–3  
–2  
15  
10  
5
+V  
OUT  
V
= ±5V, ±15V  
S
–V  
OUT  
R
= 1kΩ  
L
0
0
5
10  
SUPPLY VOLTAGE (±V)  
15  
20  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
TEMPERATURE (°C)  
Figure 6. Output Voltage Swing vs. Supply Voltage  
Figure 9. Input Bias Current vs. Temperature  
30  
25  
20  
15  
10  
5
100  
10  
±15V  
SUPPLIES  
A
C
= 20  
V
= 0pF  
COMP  
1
0.1  
A
C
= 1  
V
= 68pF  
COMP  
0.01  
±5V  
SUPPLIES  
0
10  
0.001  
100  
1k  
10k  
1k  
10k  
100k  
1M  
10M  
100M  
LOAD RESISTANCE ()  
FREQUENCY (Hz)  
Figure 7. Output Voltage Swing vs. Resistive Load  
Figure 10. Closed-Loop Output Impedance vs. Frequency  
Rev. I | Page 6 of 20  
 
Data Sheet  
AD829  
7
120  
100  
80  
60  
40  
20  
0
100  
PHASE  
80  
60  
40  
20  
0
GAIN  
6
5
4
3
±15V  
SUPPLIES  
1kLOAD  
V
= ±15V  
S
GAIN  
±5V  
V
= ±5V  
SUPPLIES  
500LOAD  
S
C
= 0pF  
COMP  
–20  
100M  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
100  
1k  
10k  
100k  
1M  
10M  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 14. Open-Loop Gain and Phase vs. Frequency  
Figure 11. Quiescent Current vs. Temperature  
105  
100  
95  
40  
35  
30  
25  
20  
15  
NEGATIVE  
CURRENT LIMIT  
V
= ±15V  
S
POSITIVE  
CURRENT LIMIT  
V
= ±5V  
S
90  
85  
80  
V
= ±5V  
S
75  
10  
100  
1k  
10k  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
LOAD RESISTANCE ()  
AMBIENT TEMPERATURE (°C)  
Figure 15. Open-Loop Gain vs. Resistive Load  
Figure 12. Short-Circuit Current Limit vs. Ambient Temperature  
120  
100  
80  
65  
V
A
C
= ±15V  
= +20  
S
+SUPPLY  
V
= 0pF  
COMP  
60  
55  
50  
45  
–SUPPLY  
60  
40  
C
= 0pF  
COMP  
20  
1k  
10k  
100k  
1M  
10M  
100M  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 16. Power Supply Rejection Ratio (PSRR) vs. Frequency  
Figure 13. –3 dB Bandwidth vs. Temperature  
Rev. I | Page 7 of 20  
AD829  
Data Sheet  
–70  
–75  
120  
100  
80  
V
= 3V RMS  
= –1  
IN  
A
C
C
V
= 30pF  
COMP  
= 100pF  
L
–80  
–85  
R
= 500Ω  
L
–90  
60  
–95  
–100  
–105  
–110  
40  
R
= 2kΩ  
L
C
= 0pF  
COMP  
20  
1k  
100  
300  
1k  
3k  
10k  
30k  
100k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 17. Common-Mode Rejection Ratio (CMRR) vs. Frequency  
Figure 20. Total Harmonic Distortion (THD) vs. Frequency  
30  
–20  
–30  
–40  
–50  
–60  
–70  
V
= 2.25V RMS  
= –1  
= 250Ω  
= 0pF  
IN  
V
= ±15V  
= 1kΩ  
= +20  
S
A
R
C
C
THIRD HARMONIC  
V
R
A
C
L
V
25  
20  
15  
10  
5
L
L
= 0pF  
COMP  
= 30pF  
COMP  
V
= ±5V  
= 500Ω  
= +20  
S
R
A
C
L
V
SECOND HARMONIC  
= 0pF  
COMP  
0
1
10  
INPUT FREQUENCY (MHz)  
100  
0
500k  
1.0M  
1.5M  
2.0M  
FREQUENCY (Hz)  
Figure 21. Second and Third THD vs. Frequency  
Figure 18. Large Signal Frequency Response  
5
4
3
2
1
0
10  
8
6
4
2
1%  
1%  
0.1%  
0.1%  
ERROR  
A
C
= –19  
0
V
= 0pF  
COMP  
–2  
–4  
–6  
–8  
–10  
10  
100  
1k  
10k  
100k  
1M  
10M  
0
20  
40  
60  
80  
100  
120  
140  
160  
SETTLING TIME (ns)  
FREQUENCY (Hz)  
Figure 22. Input Voltage Noise Spectral Density  
Figure 19. Output Swing and Error vs. Settling Time  
Rev. I | Page 8 of 20  
Data Sheet  
AD829  
400  
A
= +20  
V
20mV  
20ns  
SLEW RATE 10% TO 90%  
350  
300  
250  
200  
150  
100  
100%  
90  
RISE  
FALL  
V
= ±15V  
S
RISE  
FALL  
10  
0%  
V
= ±5V  
40  
S
–60 –40 –20  
0
20  
60  
80  
100 120 140  
TEMPERATURE (°C)  
Figure 23. Slew Rate vs. Temperature  
Figure 26. Gain-of-2 Follower Small Signal Pulse Response (See Figure 32)  
0.03  
0.02  
2V  
50ns  
100%  
90  
0.01  
DIFFERENTIAL GAIN  
0.043°  
DIFFERENTIAL PHASE  
0.05  
10  
0%  
0.04  
0.03  
±5  
±10  
SUPPLY VOLTAGE (V)  
±15  
Figure 24. Differential Phase and Gain vs. Supply Voltage  
Figure 27. Gain-of-20 Follower Large Signal Pulse Response (See Figure 33)  
200mV  
50ns  
50mV  
20ns  
100%  
90  
90  
10  
10  
0%  
0%  
Figure 25. Gain-to-2 Follower Large Signal Pulse Response (See Figure 32)  
Figure 28. Gain-of-20 Follower Small Signal Pulse Response (See Figure 33)  
Rev. I | Page 9 of 20  
AD829  
Data Sheet  
200mV  
50ns  
20mV  
20ns  
100%  
90  
100%  
90  
10  
10  
0%  
0%  
Figure 29. Unity-Gain Inverter Large Signal Pulse Response (See Figure 34)  
Figure 30. Unity-Gain Inverter Small Signal Pulse Response (See Figure 34)  
Rev. I | Page ±0 of 20  
Data Sheet  
AD829  
TEST CIRCUITS  
C
COMP  
(EXTERNAL)  
+V  
7
S
0.1µF  
5
2
6
AD829  
4
3
+
8
1
0.1µF  
OFFSET  
NULL  
ADJUST  
–V  
S
Figure 31. Offset Null and External Shunt Compensation Connections  
+15V  
C
COMP  
15pF  
0.1µF  
50Ω  
CABLE  
7
50Ω  
CABLE  
HP8130A  
5ns RISE TIME  
3
2
+
5
TEKTRONIX  
TYPE 7A24  
PREAMP  
50Ω  
6
AD829  
50Ω  
50Ω  
4
5pF  
300kΩ  
300kΩ  
0.1µF  
–15V  
Figure 32. Follower Connection, Gain = 2  
+15V  
0.1µF  
50Ω  
CABLE  
45Ω  
100Ω  
FET  
PROBE  
HP8130A  
5ns RISE TIME  
7
2
3
6
AD829  
TEKTRONIX  
TYPE 7A24  
PREAMP  
5Ω  
+
4
1pF  
2kΩ  
0.1µF  
–15V  
C
= 0pF  
105kΩ  
COMP  
Figure 33. Follower Connection, Gain = 20  
5pF  
300Ω  
+15V  
50Ω  
CABLE  
0.1µF  
300Ω  
50Ω  
CABLE  
HP8130A  
5ns RISE TIME  
7
2
3
TEKTRONIX  
TYPE 7A24  
PREAMP  
50Ω  
6
AD829  
50Ω  
5
C
+
COMP  
15pF  
50Ω  
4
0.1µF  
–15V  
Figure 34. Unity-Gain Inverter Connection  
Rev. I | Page ±± of 20  
 
 
 
 
AD829  
Data Sheet  
THEORY OF OPERATION  
The AD829 is fabricated on the Analog Devices, Inc., proprietary  
complementary bipolar (CB) process, which provides PNP and  
NPN transistors with similar fTs of 600 MHz. As shown in  
Figure 35, the AD829 input stage consists of an NPN differential  
pair in which each transistor operates at a 600 µA collector current.  
This gives the input devices a high transconductance, which in  
turn gives the AD829 a low noise figure of 2 nV/√Hz at 1 kHz.  
An RC network in the output stage (see Figure 35) completely  
removes the effect of capacitive loading when the amplifier  
compensates for closed-loop gains of 10 or higher. At low  
frequencies, and with low capacitive loads, the gain from the  
compensation node to the output is very close to unity. In this case,  
C is bootstrapped and does not contribute to the compensation  
capacitance of the device. As the capacitive load increases, a pole  
forms with the output impedance of the output stage, which  
reduces the gain, and subsequently, C is incompletely  
+V  
S
bootstrapped. Therefore, some fraction of C contributes to the  
compensation capacitance, and the unity-gain bandwidth falls.  
As the load capacitance is further increased, the bandwidth  
continues to fall, and the amplifier remains stable.  
15  
15Ω  
OUTPUT  
R
500Ω  
C
12.5pF  
+IN  
–IN  
EXTERNALLY COMPENSATING THE AD829  
The AD829 is stable with no external compensation for noise  
gains greater than 20. For lower gains, two different methods of  
frequency compensating the amplifier can be used to achieve  
closed-loop stability: shunt and current feedback compensation.  
1.2mA  
–V  
S
C
OFFSET NULL  
COMP  
SHUNT COMPENSATION  
Figure 36 and Figure 37 show that shunt compensation has an  
external compensation capacitor, CCOMP, connected between the  
compensation pin and ground. This external capacitor is tied in  
parallel with approximately 3 pF of internal capacitance at the  
compensation node. In addition, a small capacitance, CLEAD, in  
parallel with resistor R2, compensates for the capacitance at the  
inverting input of the amplifier.  
Figure 35. Simplified Schematic  
The input stage drives a folded cascode that consists of a fast pair of  
PNP transistors. These PNPs drive a current mirror that provides a  
differential-input-to-single-ended-output conversion. The high  
speed PNPs are also used in the current-amplifying output stage,  
which provides a high current gain of 40,000. Even under heavy  
loading conditions, the high fTs of the NPN and PNPs, produced  
using the CB process, permit cascading two stages of emitter  
followers while maintaining 60 phase margin at closed-loop  
bandwidths greater than 50 MHz.  
C
LEAD  
R2  
+V  
7
S
50  
COAX  
CABLE  
0.1µF  
R1  
Two stages of complementary emitter followers also effectively  
buffer the high impedance compensation node (at the CCOMP pin)  
from the output so that the AD829 can maintain a high dc open-  
loop gain, even into low load impedances (92 dB into a 150 Ω  
load and 100 dB into a 1 kΩ load). Laser trimming and PTAT  
biasing ensure low offset voltage and low offset voltage drift,  
enabling the user to eliminate ac coupling in many applications.  
V
2
3
IN  
V
6
OUT  
AD829  
50Ω  
5
+
1kΩ  
C
COMP  
4
0.1µF  
–V  
S
Figure 36. Inverting Amplifier Connection Using External Shunt  
Compensation  
For added flexibility, the AD829 provides access to the internal  
frequency compensation node. This allows users to customize the  
frequency response characteristics for a particular application.  
+V  
S
50  
CABLE  
0.1µF  
7
V
3
2
+
IN  
V
6
OUT  
AD829  
50Ω  
5
1kΩ  
Unity-gain stability requires a compensation capacitance of 68 pF  
(Pin 5 to ground), which yields a small signal bandwidth of  
66 MHz and slew rate of 16 V/µs. The slew rate and gain  
bandwidth product varies inversely with compensation  
capacitance. Table 4 and Figure 37 show the optimum  
compensation capacitance and the resulting slew rate for  
a desired noise gain.  
R2  
C
4
COMP  
C
LEAD  
0.1µF  
–V  
S
R1  
Figure 37. Noninverting Amplifier Connection Using External Shunt  
Compensation  
For gains between 1 and 20, choose CCOMP to keep the small signal  
bandwidth relatively constant. The minimum gain that will still  
provide stability depends on the value of the external  
compensation capacitance.  
Table 4 gives the recommended CCOMP and CLEAD values, as well  
as the corresponding slew rates and bandwidth. The capacitor  
values were selected to provide a small signal frequency response  
with <1 dB of peaking and <10% overshoot. For Table 4, 15 V  
Rev. I | Page ±2 of 20  
 
 
 
 
 
 
Data Sheet  
AD829  
supply voltages should be used. Figure 38 is a graphical extension  
of Table 4, which shows the slew rate/gain trade-off for lower  
closed-loop gains, when using the shunt compensation scheme.  
CCOMP is the compensation capacitance.  
re is the inverse of the transconductance of the input transistors.  
kT/q approximately equals 26 mV at 27°C.  
100  
10  
1
1k  
Because both fT and slew rate are functions of the same variables,  
the dynamic behavior of an amplifier is limited. Because  
2I  
CCOMP  
Slew Rate =  
C
SLEW RATE  
COMP  
then  
100  
Slew Rate  
fT  
kT  
q
= 4 π  
This shows that the slew rate is only 0.314 V/µs for every mega-  
hertz of bandwidth. The only way to increase the slew rate is to  
increase the fT, and that is difficult because of process limitations.  
Unfortunately, an amplifier with a bandwidth of 10 MHz can  
only slew at 3.1 V/µs, which is barely enough to provide a full  
power bandwidth of 50 kHz.  
V
= ±15V  
S
10  
100  
1
10  
NOISE GAIN  
Figure 38. Value of CCOMP and Slew Rate vs. Noise Gain  
CURRENT FEEDBACK COMPENSATION  
The AD829 is especially suited to a form of current feedback  
compensation that allows for the enhancement of both the full  
power bandwidth and the slew rate of the amplifier. The voltage  
gain from the inverting input pin to the compensation pin is  
large; therefore, if a capacitance is inserted between these pins,  
the bandwidth of the amplifier becomes a function of its feed-  
back resistor and the capacitance. The slew rate of the amplifier  
is now a function of its internal bias (2I) and the compensation  
capacitance.  
Bipolar, nondegenerated, single-pole, and internally  
compensated amplifiers have their bandwidths defined as  
1
I
kT  
fT  
=
=
2 π re CCOMP  
2 π  
CCOMP  
q
where:  
fT is the unity-gain bandwidth of the amplifier.  
I is the collector current of the input transistor.  
Table 4. Component Selection for Shunt Compensation  
Follower Gain Inverter Gain R1 (Ω) R2 (Ω) CLEAD (pF) CCOMP (pF) Slew Rate (V/µs) 3 dB Small Signal Bandwidth (MHz)  
±
2
5
±0  
20  
25  
±00  
Open  
± k  
±00  
± k  
2.0 k  
2.05 k  
2 k  
0
5
±
0
0
0
0
68  
25  
7
3
0
±6  
38  
90  
±30  
230  
230  
230  
66  
7±  
76  
65  
55  
39  
7.5  
−±  
−4  
−9  
−±9  
−24  
−99  
5±±  
226  
±05  
±05  
20  
2.49  
2 k  
0
0
Rev. I | Page ±3 of 20  
 
 
 
AD829  
Data Sheet  
Because the closed-loop bandwidth is a function of RF and  
Figure 42 is an oscilloscope photo of the pulse response of a unity-  
gain inverter that has been configured to provide a small signal  
bandwidth of 53 MHz and a subsequent slew rate of 180 V/µs;  
RF = 3 kΩ and CCOMP = 1 pF. Figure 43 shows the excellent pulse  
response as a unity-gain inverter, this using component values  
of RF = 1 kΩ and CCOMP = 4 pF.  
CCOMP (see Figure 39), it is independent of the amplifier closed-  
loop gain, as shown in Figure 41. To preserve stability, the time  
constant of RF and CCOMP needs to provide a bandwidth of  
<65 MHz. For example, with CCOMP = 15 pF and RF = 1 kΩ, the  
small signal bandwidth of the AD829 is 10 MHz. Figure 40  
shows that the slew rate is in excess of 60 V/µs. As shown in  
Figure 41, the closed-loop bandwidth is constant for gains of  
−1 to −4; this is a property of the current feedback amplifiers.  
5V  
200ns  
100%  
90  
R
C
F
COMP  
0.1µF  
+V  
S
50Ω  
COAX  
CABLE  
7
R1  
V
2
IN  
5
V
6
OUT  
AD829  
C1*  
10  
R
50Ω  
IN4148  
L
3
+
4
1kΩ  
0%  
0.1µF  
–V  
S
*RECOMMENDED VALUE  
C
SHOULD NEVER EXCEED  
COMP  
15pF FOR THIS CONNECTION  
Figure 42. Large Signal Pulse Response of the Inverting Amplifier Using  
Current Feedback Compensation, CCOMP = 1 pF, RF = 3 kΩ, R1 = 3 kΩ  
OF C  
FOR C1  
COMP  
<7pF  
7pF  
0pF  
15pF  
Figure 39. Inverting Amplifier Connection Using Current Feedback  
Compensation  
10ns  
100%  
90  
5V  
200ns  
100%  
90  
10  
0%  
10  
20mV  
0%  
Figure 43. Small Signal Pulse Response of Inverting Amplified Using Current  
Feedback Compensation, CCOMP = 4 pF, RF = 1 kΩ, R1 = 1 kΩ  
Figure 40. Large Signal Pulse Response of Inverting Amplifier Using Current  
Feedback Compensation, CCOMP = 15 pF, C1 = 15 pF RF = 1 kΩ, R1 = 1 kΩ  
15  
GAIN = –4  
12  
–3dB @ 8.2MHz  
9
GAIN = –2  
6
–3dB @ 9.6MHz  
3
GAIN = –1  
0
–3dB @ 10.2MHz  
–3  
–6  
V
V
R
R
C
= –30dBm  
= ±15V  
= 1kΩ  
IN  
S
–9  
–12  
–15  
L
= 1kΩ  
F
= 15pF  
COMP  
C1 = 15pF  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
Figure 41. Closed-Loop Gain vs. Frequency for the Circuit of Figure 38  
Rev. I | Page ±4 of 20  
 
 
 
 
 
Data Sheet  
AD829  
+15V  
Figure 44 and Figure 45 show the closed-loop frequency  
response of the AD829 for different closed-loop gains and  
different supply voltages.  
0.1µF  
50Ω  
COAX  
CABLE  
50Ω  
7
COAX  
CABLE  
V
3
2
+
IN  
15  
50Ω  
2kΩ  
2kΩ  
6
V
AD829  
OUT  
GAIN = –4  
12  
50Ω  
C
= 2pF  
5
COMP  
50kΩ  
9
6
4
3pF  
COMP  
GAIN = –2  
= 3pF  
C
–15V  
C
COMP  
0.1µF  
3
GAIN = –1  
= 4pF  
0
C
COMP  
–3  
–6  
–9  
–12  
–15  
Figure 46. Noninverting Amplifier Connection Using Current Feedback  
Compensation  
V
R
R
= ±15V  
= 1kΩ  
= 1kΩ  
S
L
+15V  
F
V
= –30dBm  
IN  
0.1µF  
1
10  
100  
50Ω  
COAX  
CABLE  
7
FREQUENCY (MHz)  
V
3
2
+
IN  
75Ω  
Figure 44. Closed-Loop Frequency Response for the Inverting Amplifier Using  
Current Feedback Compensation  
6
V
AD829  
OUT  
75Ω  
75Ω  
4
5
–17  
–20  
–23  
0.1µF  
300Ω  
300Ω  
30pF  
COMP  
OPTIONAL  
–15V  
C
2pF TO 7pF  
FLATNESS  
TRIM  
±5V  
–26  
±15V  
Figure 47. Video Line Driver with a Flatness over Frequency Adjustment  
–29  
–32  
–35  
–38  
LOW ERROR VIDEO LINE DRIVER  
The buffer circuit shown in Figure 47 drives a back-terminated  
75 Ω video line to standard video levels (1 V p-p), with 0.1 dB  
gain flatness to 30 MHz and with only 0.04° and 0.02% differential  
phase and gain at the 4.43 MHz PAL color subcarrier frequency.  
This level of performance, which meets the requirements for  
high definition video displays and test equipment, is achieved  
using only 5 mA quiescent current.  
V
R
R
= –20dBm  
= 1kΩ  
= 1kΩ  
IN  
–41  
–44  
–47  
L
F
GAIN = –1  
C
= 4pF  
COMP  
1
10  
100  
FREQUENCY (MHz)  
Figure 45. Closed-Loop Frequency Response vs. Supply for the Inverting  
Amplifier Using Current Feedback Compensation  
When a noninverting amplifier configuration using a current  
feedback compensation is needed, the circuit shown in Figure 46 is  
recommended. This circuit provides a slew rate twice that of the  
shunt compensated noninverting amplifier of Figure 47 at the  
expense of gain flatness. Nonetheless, this circuit delivers 95 MHz  
bandwidth with 1 dB flatness into a back-terminated cable,  
with a differential gain error of only 0.01% and a differential  
phase error of only 0.015 at 4.43 MHz.  
Rev. I | Page ±5 of 20  
 
 
 
 
 
AD829  
Data Sheet  
The input amplifiers operate at a gain of 20, while the output  
op amp runs at a gain of 5. In this circuit, the main bandwidth  
limitation is the gain/bandwidth product of the output amplifier.  
Extra care should be taken while breadboarding this circuit  
because even a couple of extra picofarads of stray capacitance at the  
compensation pins of A1 and A2 will degrade circuit bandwidth.  
HIGH GAIN VIDEO BANDWIDTH, 3-OP-AMP  
INSTRUMENTATION AMPLIFIER  
Figure 48 shows a 3-op-amp instrumentation amplifier circuit  
that provides a gain of 100 at video bandwidths. At a circuit gain of  
100, the small signal bandwidth equals 18 MHz into a FET probe.  
Small signal bandwidth equals 6.6 MHz with a 50 Ω load. The  
0.1% settling time is 300 ns.  
3pF  
5
(G = 20)  
2pF TO 8pF  
SETTLING TIME  
AC CMR ADJUST  
+V  
3
2
IN  
A1  
AD829  
6
1kΩ  
2kΩ  
1pF  
200Ω  
200Ω  
2
A3  
AD848  
R
210Ω  
G
6
1pF  
2kΩ  
3
INPUT  
FREQUENCY CMRR  
(G = 5)  
5
2kΩ  
3pF  
100Hz  
1MHz  
10MHz  
64.6dB  
44.7dB  
23.9dB  
970Ω  
2
3
DC CMR  
ADJUST  
A2  
AD829  
6
+V  
+15V  
COMM  
–15V  
PIN 7  
S
50Ω  
10µF  
10µF  
0.1µF  
0.1µF  
1µF  
1µF  
0.1µF  
0.1µF  
+V  
IN  
(G = 20)  
5
EACH  
AMPLIFIER  
3pF  
4000Ω  
CIRCUIT GAIN =  
+ 1 5  
R
G
–V  
PIN 4  
S
Figure 48. High Gain Video Bandwidth, 3-Op-Amp In-Amp Circuit  
Rev. I | Page ±6 of 20  
 
 
Data Sheet  
AD829  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 49. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body (R-8)  
Dimensions shown in millimeters and (inches)  
0.400 (10.16)  
0.365 (9.27)  
0.355 (9.02)  
8
1
5
4
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54)  
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210 (5.33)  
MAX  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.115 (2.92)  
0.015 (0.38)  
GAUGE  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
SEATING  
PLANE  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
0.070 (1.78)  
0.060 (1.52)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MS-001  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
Figure 50. 8-Lead Plastic Dual In-Line Package [PDIP]  
Narrow Body  
(N-8)  
Dimensions shown in inches and (millimeters)  
Rev. I | Page ±7 of 20  
 
AD829  
Data Sheet  
0.005 (0.13)  
MIN  
0.055 (1.40)  
MAX  
8
5
0.310 (7.87)  
0.220 (5.59)  
1
4
0.100 (2.54) BSC  
0.405 (10.29) MAX  
0.320 (8.13)  
0.290 (7.37)  
0.060 (1.52)  
0.015 (0.38)  
0.200 (5.08)  
MAX  
0.150 (3.81)  
MIN  
0.200 (5.08)  
0.125 (3.18)  
0.015 (0.38)  
0.008 (0.20)  
SEATING  
PLANE  
0.023 (0.58)  
0.014 (0.36)  
15°  
0°  
0.070 (1.78)  
0.030 (0.76)  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 51. 8-Lead Ceramic Dual In-Line [CERDIP]  
(Q-8)  
Dimensions shown in inches and (millimeters)  
0.200 (5.08)  
0.075 (1.91)  
REF  
REF  
0.100 (2.54)  
0.064 (1.63)  
0.100 (2.54) REF  
0.095 (2.41)  
0.015 (0.38)  
MIN  
0.075 (1.90)  
3
19  
18  
20  
4
8
0.028 (0.71)  
0.022 (0.56)  
1
0.358 (9.09)  
0.342 (8.69)  
SQ  
0.358  
0.011 (0.28)  
0.007 (0.18)  
R TYP  
(9.09)  
MAX  
SQ  
BOTTOM  
VIEW  
0.050 (1.27)  
BSC  
14  
0.075 (1.91)  
13  
9
REF  
45° TYP  
0.088 (2.24)  
0.054 (1.37)  
0.055 (1.40)  
0.045 (1.14)  
0.150 (3.81)  
BSC  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 52. 20-Terminal Ceramic Leadless Chip Carrier [LCC]  
(E-20-1)  
Dimensions shown in inches and (millimeters)  
Rev. I | Page ±8 of 20  
Data Sheet  
AD829  
ORDERING GUIDE  
Model±  
AD829AR  
AD829AR-REEL  
AD829AR-REEL7  
AD829ARZ  
AD829ARZ-REEL  
AD829ARZ-REEL7  
AD829JN  
Temperature Range  
−40°C to +±25°C  
−40°C to +±25°C  
−40°C to +±25°C  
−40°C to +±25°C  
−40°C to +±25°C  
−40°C to +±25°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
−40°C to +±25°C  
−55°C to +±25°C  
−55°C to +±25°C  
−55°C to +±25°C  
−55°C to +±25°C  
−55°C to +±25°C  
Package Description  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead PDIP  
Package Option  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
N-8  
N-8  
R-8  
R-8  
R-8  
R-8  
R-8  
AD829JNZ  
AD829JR  
8-Lead PDIP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead CERDIP  
8-Lead CERDIP  
8-Lead CERDIP  
8-Lead CERDIP  
20-Lead LCC  
AD829JR-REEL  
AD829JR-REEL7  
AD829JRZ  
AD829JRZ-REEL  
AD829JRZ-REEL7  
AD829AQ  
R-8  
Q-8  
Q-8  
Q-8  
Q-8  
E-20-±  
E-20-±  
AD829SQ  
AD829SQ/883B  
5962-93±290±MPA  
AD829SE/883B  
5962-93±290±M2A  
AD829JCHIPS  
AD829SCHIPS  
AD829AR-EBZ  
20-Lead LCC  
Die  
Die  
Evaluation Board  
± Z = RoHS Compliant Part.  
Rev. I | Page ±9 of 20  
 
 
AD829  
NOTES  
Data Sheet  
©2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00880-0-10/11(I)  
Rev. I | Page 20 of 20  

相关型号:

AD829AR-REEL

High-Speed, Low-Noise Video Op Amp
ADI

AD829AR-REEL7

High-Speed, Low-Noise Video Op Amp
ADI

AD829ARZ

High Speed, Low Noise Video Op Amp
ADI

AD829ARZ-REEL

High Speed, Low Noise Video Op Amp
ADI

AD829ARZ-REEL7

High Speed, Low Noise Video Op Amp
ADI

AD829JCHIPS

High-Speed, Low-Noise Video Op Amp
ADI

AD829JN

High-Speed, Low-Noise Video Op Amp
ADI

AD829JNAD829JR

High Speed Low Noise Video Op Amp(336.85 k)
ETC

AD829JNZ

High Speed, Low Noise Video Op Amp
ADI

AD829JQ

IC VIDEO AMPLIFIER, CDIP8, CERDIP-8, Audio/Video Amplifier
ADI

AD829JR

High-Speed, Low-Noise Video Op Amp
ADI

AD829JR-REEL

High-Speed, Low-Noise Video Op Amp
ADI