AD8327ARU-REEL [ADI]

5 V CATV Line Driver Coarse Step Output Power Control; 5 V有线电视线路驱动器粗步进输出功率控制
AD8327ARU-REEL
型号: AD8327ARU-REEL
厂家: ADI    ADI
描述:

5 V CATV Line Driver Coarse Step Output Power Control
5 V有线电视线路驱动器粗步进输出功率控制

线路驱动器或接收器 驱动程序和接口 接口集成电路 电视 有线电视 功率控制 光电二极管
文件: 总20页 (文件大小:306K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
5 V CATV Line Driver Coarse Step  
Output Power Control  
a
AD8327  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Supports DOCSIS Standard for Reverse Path  
Transmission  
V
CC  
(5 PINS)  
BYP  
Gain Programmable in 6.02 dB Steps over a 48.16 dB  
Range  
R1  
AD8327  
Low Distortion at 60 dBmV Output  
–63 dBc SFDR at 21 MHz  
–57 dBc SFDR at 42 MHz  
V
IN+  
DIFF OR  
SINGLE  
INPUT  
AMP  
POWER  
AMP  
ATTENUATION  
CORE  
V
VERNIER  
OUT  
V
IN–  
Output Noise Level  
Z
OUT  
= 75  
8
–47 dBmV in 160 kHz  
DECODE  
R2  
Maintains 75 Output Impedance  
Transmit Enable and Transmit Disable Modes  
Upper Bandwidth: 160 MHz (Full Gain Range)  
5 V Supply Operation  
Z
Z
IN  
(SINGLE) = 800⍀  
(DIFF) = 1.6k⍀  
IN  
8
POWER-DOWN  
LOGIC  
CXR  
DATA LATCH  
8
SHIFT  
REGISTER  
Supports SPI Interfaces  
APPLICATIONS  
Gain-Programmable Line Driver  
DOCSIS High-Speed Data Modems  
Interactive Cable Set-Top Boxes  
PC Plug-in Cable Modems  
TXEN  
DATEN DATA CLK GND (5 PINS)  
SLEEP  
General-Purpose Digitally Controlled Variable Gain Block  
50  
55  
60  
65  
GENERAL DESCRIPTION  
V
= 60dBmV @ MAX GAIN  
OUT  
The AD8327 is a low-cost, digitally controlled, variable gain  
amplifier optimized for coaxial line driving applications such as  
cable modems that are designed to the MCNS-DOCSIS  
upstream standard. An 8-bit serial word determines the desired  
output gain over a 48.16 dB range resulting in gain changes of  
6.02 dB/major carry.  
HD3  
HD2  
The AD8327 comprises a digitally controlled variable attenuator  
of 0 dB to –48.16 dB, which is preceded by a low noise, fixed  
gain buffer and followed by a low distortion, high power amplifier.  
The AD8327 accepts a differential or single-ended input  
signal. The output is specified for driving a 75 load, such  
as coaxial cable.  
70  
75  
5
15  
25  
35  
45  
55  
65  
Distortion performance of –63 dBc is achieved with an output  
level up to 60 dBmV at 21 MHz bandwidth. A key performance  
and cost advantage of the AD8327 results from the ability to  
maintain a constant 75 output impedance during Transmit  
Enable and Transmit Disable conditions. In addition, this  
device has a sleep mode function that reduces the quiescent  
current to 5 mA.  
FUNDAMENTAL FREQUENCY MHz  
Figure 1. Harmonic Distortion vs. Frequency  
The AD8327 is packaged in a low-cost 20-lead TSSOP, operates  
from a single 5 V supply, and has an operational temperature  
range of –40°C to +85°C.  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2001  
AD8327–SPECIFICATIONS  
(TA = 25؇C, VS = 5 V, RL = 75 , VIN(DIFFERENTIAL) = 30 dBmV)  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Specified AC Voltage  
Noise Figure  
POUT = 60 dBmV, Max Gain  
Max Gain, f = 10 MHz  
Single-Ended Input  
30  
dBmV  
dB  
13.2  
800  
1600  
2
Input Resistance  
Differential Input  
Input Capacitance  
pF  
GAIN CONTROL INTERFACE  
Gain Range  
47.16  
29  
48.16  
30  
49.16  
31  
dB  
dB  
Maximum Gain  
Gain Code = 10000000 (128 Decimal)  
Gain Code = 00000000 (0 Decimal)  
Minimum Gain  
Gain Scaling Factor  
–19.16 –18.16 –17.16 dB  
6.02  
dB/Major  
Carry  
OUTPUT CHARACTERISTICS  
Bandwidth (–3 dB)  
All Gain Codes  
f = 65 MHz  
All Gain Codes  
Max Gain, f = 10 MHz  
160  
0.4  
0
MHz  
Bandwidth Roll-Off  
dB  
Bandwidth Peaking  
Output Noise Spectral Density  
dB  
–32  
dBmV in  
160 kHz  
dBmV in  
160 kHz  
dBmV in  
160 kHz  
dBm  
Min Gain, f = 10 MHz  
–47  
Transmit Disable Mode (TXEN = 0),  
f = 10 MHz  
Max Gain, f = 10 MHz  
–66  
1 dB Compression Point  
14.8  
Differential Output Impedance  
Transmit Enable (TXEN = 1) and  
Transmit Disable Mode (TXEN = 0)  
75 20%  
OVERALL PERFORMANCE  
Second Order Harmonic Distortion  
f = 21 MHz, VOUT = 60 dBmV @ Max Gain  
f = 42 MHz, VOUT = 60 dBmV @ Max Gain  
f = 65 MHz, VOUT = 60 dBmV @ Max Gain  
f = 21 MHz, VOUT = 60 dBmV @ Max Gain  
f = 42 MHz, VOUT = 60 dBmV @ Max Gain  
f = 65 MHz, VOUT = 60 dBmV @ Max Gain  
Adjacent Channel Width = Transmit Channel  
Width = 160 KSYM/SEC  
–63  
–61  
–54  
–63  
–57  
–57  
–62  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
Third Order Harmonic Distortion  
Adjacent Channel Power  
Gain Linearity Error  
Output Settling  
Due to Gain Change (TGS  
Due to Input Change  
f = 10 MHz, Code to Code  
0.25  
dB  
)
Min to Max Gain  
60  
30  
–52  
ns  
ns  
dBc  
Max Gain, VIN = 30 dBmV  
Max Gain, TXEN = 0 V, f = 42 MHz,  
VIN = 30 dBmV  
Isolation in Transmit Disable Mode  
POWER CONTROL  
1
Transmit Enable Settling Time (TON  
)
Max Gain, VIN = 0 V  
Max Gain, VIN = 0 V  
Max Gain, VIN = 0 V  
Max Gain, VIN = 0 V  
Equivalent Output = 31 dBmV  
Equivalent Output = 60 dBmV  
300  
40  
2
1.7  
3
25  
2
ns  
ns  
µs  
µs  
mV p-p  
mV p-p  
µs  
1
Transmit Disable Settling Time (TOFF  
)
2
Transmit Enable Settling Time (TON  
Transmit Disable Settling Time (TOFF  
Between Burst Transients2  
)
2
)
Ramp Setting2  
POWER SUPPLY  
Operating Range  
Quiescent Current  
4.75  
Transmit Enable Mode (TXEN = 1) @ Dec 128 75  
5
5.25  
135  
80  
V
105  
60  
15  
5
mA  
mA  
mA  
mA  
Transmit Enable Mode (TXEN = 1) @ Dec 0  
Transmit Disable Mode @ All Gain Codes  
Sleep Mode @ All Gain Codes  
40  
10  
3
20  
7
OPERATING TEMPERATURE  
RANGE  
–40  
+85  
°C  
NOTES  
1For Transmit Enable or Transmit Disable transitions using a 0 pF capacitor (at CXR pin) to ground.  
2For Transmit Enable or Transmit Disable transitions using a 100 pF capacitor (at CXR pin) to ground.  
Specifications subject to change without notice.  
–2–  
REV. 0  
AD8327  
LOGIC INPUTS (TTL/CMOS-Compatible Logic) (DATEN, CLK, SDATA, TXEN, SLEEP, V = 5 V: Full Temperature Range)  
CC  
Parameter  
Min  
Typ  
Max  
Unit  
Logic “1” Voltage  
Logic “0” Voltage  
2.1  
0
5.0  
0.8  
V
V
Logic “1” Current (VINH = 5 V) CLK, SDATA, DATEN  
Logic “0” Current (VINL = 0 V) CLK, SDATA, DATEN  
Logic “1” Current (VINH = 5 V) TXEN  
Logic “0” Current (VINL = 0 V) TXEN  
Logic “1” Current (VINH = 5 V) SLEEP  
Logic “0” Current (VINL = 0 V) SLEEP  
0
–600  
50  
–250  
50  
–250  
20  
nA  
nA  
µA  
µA  
µA  
µA  
–100  
190  
–30  
190  
–30  
TIMING REQUIREMENTS  
(Full Temperature Range, VCC = 5 V, tR = tF = 4 ns, fCLK = 8 MHz unless otherwise noted.)  
Parameter  
Min  
Typ  
Max  
Unit  
Clock Pulsewidth (tWH  
Clock Period (tC)  
Setup Time SDATA vs. Clock (tDS  
Setup Time DATEN vs. Clock (tES  
Hold Time SDATA vs. Clock (tDH  
Hold Time DATEN vs. Clock (tEH  
Input Rise and Fall Times, SDATA, DATEN, Clock (tR, tF)  
)
16.0  
32.0  
5.0  
15.0  
5.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
)
)
)
)
3.0  
10  
tDS  
VALID DATA WORD G1  
VALID DATA WORD G2  
SDATA  
MSB. . . .LSB  
tC  
tWH  
CLK  
tES  
tEH  
8 CLOCK  
CYCLES  
DATEN  
GAIN TRANSFER (G1)  
tOFF  
GAIN TRANSFER (G2)  
TXEN  
tGS  
tON  
ANALOG  
OUTPUT  
SIGNAL AMPLITUDE (p-p)  
Figure 2. Serial Interface Timing  
VALID DATA BIT  
MSB-1  
SDATA  
MSB  
MSB-2  
tDS  
tDH  
CLK  
Figure 3. SDATA Timing  
–3–  
REV. 0  
AD8327  
ABSOLUTE MAXIMUM RATINGS*  
Supply Voltage +VS  
Pins 4, 6, 11, 12, 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V  
Input Voltages  
Pins 17, 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Pins 1, 2, 3, 19, 20 . . . . . . . . . . . . . . . . . . . –0.8 V to +5.5 V  
Internal Power Dissipation  
TSSOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 810 mW  
Operating Temperature Range . . . . . . . . . . . –40°C to +85°C  
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C  
Lead Temperature, Soldering 60 seconds . . . . . . . . . . . 300°C  
PIN CONFIGURATION  
SDATA  
CLK  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
DATEN  
SLEEP  
V
3
TXEN  
IN–  
0.5 V  
V
V
4
CC  
IN+  
AD8327  
V
5
GND  
CC  
TOP VIEW  
(Not to Scale)  
V
6
GND  
BYP  
GND  
CC  
7
CXR  
GND  
GND  
8
9
V
CC  
V
10  
V
OUT  
CC  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
PIN FUNCTION DESCRIPTIONS  
Description  
Pin No.  
Mnemonic  
1
SDATA  
Serial Data Input. This digital input allows for an 8-bit serial (gain) word to be loaded into the  
internal register with the MSB (Most Significant Bit) first.  
2
CLK  
Clock Input. The clock port controls the serial attenuator data transfer rate to the 8-bit master-  
slave register. A Logic 0-to-1 transition latches the data bit and a 1-to-0 transfers the data bit to  
the slave. This requires the input serial data word to be valid at or before this clock transition.  
3
TXEN  
Logic “0” disables transmission. Logic “1” enables transmission.  
Common Positive External Supply Voltage. A 0.1 µF capacitor must decouple each pin.  
Common External Ground Reference  
4, 6, 11, 12, 16 VCC  
5, 8, 9, 13, 15  
GND  
7
CXR  
VOUT  
BYP  
VIN+  
Transmit Enable/Disable Timing Capacitor. This pin is decoupled with a 100 pF capacitor to GND.  
Output Signal  
10  
14  
17  
Internal Bypass. This pin must be externally ac-coupled (0.1 µF capacitor).  
Noninverting Input. DC-biased to approximately VCC/2. Should be ac-coupled with a 0.1 µF  
capacitor.  
18  
19  
VIN–  
Inverting Input. DC-biased to approximately VCC/2. Should be ac-coupled with a 0.1 µF capacitor.  
Low Power Sleep Mode. Logic 0 enables Sleep mode, where ZOUT goes to 200 and supply  
current is reduced to 5 mA. Logic 1 enables normal operation.  
SLEEP  
20  
DATEN  
Data Enable Low Input. This port controls the 8-bit parallel data latch and shift register. A Logic  
0-to-1 transition transfers the latched data to the attenuator core (updates the gain) and simulta-  
neously inhibits serial data transfer into the register. A 1-to-0 transition inhibits the data latch  
(holds the previous gain state) and simultaneously enables the register for serial data load.  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
JA  
Package Option  
AD8327ARU  
AD8327ARU-REEL  
AD8327-EVAL  
–40°C to +85°C  
–40°C to +85°C  
20-Lead TSSOP  
20-Lead TSSOP  
Evaluation Board  
85°C/W*  
85°C/W*  
RU-20  
RU-20  
*Thermal Resistance measured on SEMI standard 4-layer board.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the AD8327 features proprietary ESD protection circuitry, permanent damage may occur on  
devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–4–  
REV. 0  
Typical Performance CharacteristicsAD8327  
0
TXEN = 0  
+V  
S
10  
20  
30  
40  
50  
60  
70  
80  
90  
V
= 30dBmV  
IN  
10F  
0.1F  
0.1F  
V
CC  
V
IN–  
V
165⍀  
AD8327  
IN  
0.1F  
V
IN+  
BYP CXR  
75⍀  
MAX GAIN  
MIN GAIN  
GND  
0.1F  
0.1F  
100pF  
100  
10  
FREQUENCY MHz  
1000  
1
TPC 4. Isolation in Transmit Disable Mode  
vs. Frequency  
TPC 1. Basic Test Circuit  
40  
0.6  
0.5  
0.4  
f = 65MHz  
128D  
30  
64D  
32D  
16D  
08D  
04D  
20  
10  
0.3  
0.2  
0.1  
0
f = 42MHz  
0
02D  
01D  
f = 10MHz  
f = 5MHz  
10  
20  
0.1  
0.2  
0.3  
00D  
30  
1
10  
0
16  
32  
48  
64  
80  
96  
112  
128  
100  
1000  
FREQUENCY MHz  
GAIN CONTROL Decimal Code  
TPC 2. Gain Error vs. Gain Control  
TPC 5. AC Response  
90  
85  
80  
75  
70  
65  
60  
55  
160  
155  
TXEN = 0  
TXEN = 1  
150  
145  
TXEN = 0  
TXEN = 1  
140  
135  
+V  
S
0.1F  
165⍀  
0.1F  
130  
125  
V
IN–  
V
IN  
OUT  
AD8327  
GND  
0.1F  
V
IN+  
75⍀  
120  
115  
100  
100  
1
10  
FREQUENCY MHz  
1
10  
FREQUENCY MHz  
TPC 3. Input Impedance vs. Frequency  
TPC 6. Output Impedance vs. Frequency  
REV. 0  
–5–  
AD8327  
50  
55  
60  
50  
V
= 60dBmV @ MAX GAIN  
OUT  
V
= 61dBmV @ MAX GAIN  
OUT  
V
= 61dBmV  
OUT  
@ MAX GAIN  
55  
60  
65  
V
= 60dBmV  
OUT  
@ MAX GAIN  
65  
70  
75  
80  
V
= 59dBmV @ MAX GAIN  
OUT  
V
= 59dBmV  
OUT  
@ MAX GAIN  
V
= 58dBmV @ MAX GAIN  
OUT  
V
= 58dBmV  
OUT  
@ MAX GAIN  
70  
5
15  
25  
35  
45  
55  
65  
5
15  
25  
35  
45  
55  
65  
FUNDAMENTAL FREQUENCY MHz  
FUNDAMENTAL FREQUENCY MHz  
TPC 7. Second Order Harmonic Distortion vs. Frequency  
for Various Output Levels  
TPC 10. Third Order Harmonic Distortion vs. Frequency  
for Various Output Levels  
50  
50  
F
= 5MHz  
F = 21MHz  
O
O
V
= 60dBmV @ MAX GAIN  
V
= 60dBmV @ MAX GAIN  
55  
60  
65  
70  
75  
80  
85  
90  
OUT  
OUT  
55  
60  
65  
HD2  
HD3  
HD2  
HD3  
70  
75  
80  
85  
90  
0
16  
32  
48  
64  
80  
96  
112  
128  
0
16  
32  
48  
64  
80  
96  
112  
128  
GAIN CONTROL Decimal Code  
GAIN CONTROL Decimal Code  
TPC 8. Harmonic Distortion vs. Gain Control  
TPC 11. Harmonic Distortion vs. Gain Control  
50  
50  
F
V
= 65MHz  
O
F
V
= 42MHz  
O
= 60dBmV @ MAX GAIN  
55  
OUT  
= 60dBmV @ MAX GAIN  
55  
60  
65  
OUT  
HD2  
HD3  
60  
65  
70  
HD2  
70  
75  
75  
80  
85  
90  
HD3  
80  
85  
90  
0
16  
32  
48  
64  
80  
96  
112  
128  
0
16  
32  
48  
64  
80  
96  
112  
128  
GAIN CONTROL Decimal Code  
GAIN CONTROL Decimal Code  
TPC 9. Harmonic Distortion vs. Gain Control  
TPC 12. Harmonic Distortion vs. Gain Control  
–6–  
REV. 0  
AD8327  
10  
20  
60  
50  
CH PWR  
ACP UP  
9.0dBm  
V
= 60dBmV  
OUT  
@ MAX GAIN  
62dBc  
ACP LOW 62.5dBc  
40  
30  
40  
30  
20  
50  
60  
70  
10  
0
10  
20  
30  
40  
80  
90  
Cu1  
Cu1  
C0  
100  
C0  
C11  
C11  
110  
CENTER 21MHz  
75kHz/DIV  
SPAN 750kHz  
41.0 41.2 41.4 41.6 41.8 42.0 42.2 42.4 42.6 42.8 43.0  
FREQUENCY MHz  
TPC 13. Adjacent Channel Power  
TPC 16. Two-Tone Intermodulation Distortion  
30  
34  
38  
42  
46  
50  
25  
f = 10MHz  
TXEN = 1  
@ MAX GAIN,TXEN = 1  
30  
35  
40  
45  
50  
55  
60  
65  
70  
@ MIN GAIN, TXEN = 1  
ALL GAIN CODES, TXEN = 0  
75  
0
16  
32  
48  
64  
80  
96  
112  
128  
5
15  
25  
35  
45  
55  
65  
GAIN CONTROL Decimal Code  
FREQUENCY MHz  
TPC 14. Output Referred Noise vs. Gain Control  
TPC 17. Output Referred Noise vs. Frequency for Various  
Gain Codes  
35  
120  
V
= 60dBmV  
OUT  
C
= 0pF  
C
TXEN = 1  
110  
L
@ MAX GAIN  
30  
25  
20  
15  
10  
= 10pF  
L
100  
90  
80  
70  
60  
50  
+V  
S
C
= 20pF  
L
10F  
0.1F  
V
CC  
0.1F  
V
IN–  
0.1F  
V
IN  
165⍀  
AD8327  
C
L
V
IN+  
75⍀  
BYP CXR GND  
0.1F  
0.1F  
100pF  
C
= 50pF  
L
100  
FREQUENCY MHz  
10  
1000  
1
0
16  
32  
48  
64  
80  
96  
112  
128  
GAIN CONTROL Decimal Code  
TPC 15. AC Response for Various Capacitor Loads  
TPC 18. Supply Current vs. Gain Code  
REV. 0  
–7–  
AD8327  
APPLICATIONS  
General Application  
which amplifies these currents to the appropriate levels necessary to  
drive a 75 load. The output stage maintains 75 output  
impedance, eliminating the need for external matching resistors.  
The AD8327 is primarily intended for use as the upstream power  
amplifier (PA), also known as a line driver, in DOCSIS (Data  
Over Cable Service Interface Specification) certified cable  
modems and CATV set-top boxes. The upstream signal is either  
a QPSK or QAM signal generated by a DSP, a dedicated QPSK/  
QAM modulator, or a DAC.  
SPI Programming and Gain Adjustment  
The AD8327 is controlled through a serial peripheral interface  
(SPI) of three digital data lines: CLK, DATEN, and SDATA.  
Changing the gain requires eight bits of data to be streamed into  
the SDATA port. The sequence of loading the SDATA register  
begins on the falling edge of the DATEN pin, which activates  
the CLK line. With the CLK line activated, data on the SDATA  
line is clocked into the serial shift register, Most Significant Bit  
(MSB) first, on the rising edge of the CLK pulses. The 8-bit  
data word is latched into the attenuator core on the rising edge  
of the DATEN line. This provides control over the changes in  
the output signal level. The serial interface timing for the AD8327  
is shown in Figures 2 and 3. The programmable gain range of  
the AD8327 is –18.16 dB to +30 dB with steps of 6.02 dB per  
major carry. This provides a total gain range of 48.16 dB.  
The AD8327 was characterized with a TOKO transformer  
(TOKO#617DB-A0070) on the input, and the stated gain  
values account for the losses due to the transformer. Table I  
shows the possible gain states.  
In all cases the signal must be low-pass filtered before being  
applied to the PA in order to filter out-of-band noise and higher  
order harmonics from the amplified signal. Due to the varying  
distances between the cable modem and the headend, the  
upstream PA must be capable of varying the output power by  
applying gain or attenuation. The varying output power of the  
AD8327 ensures that the signal from the cable modem will have  
the proper level once it arrives at the headend. The upstream  
signal path commonly includes a diplexer and cable splitters.  
The AD8327 has been designed to overcome losses associated  
with these passive components in the upstream cable path.  
Circuit Description  
The AD8327 is composed of three analog functions in the power-  
up or forward mode. The input amplifier (preamp) can be used  
single-ended or differentially. If the input is used in the differen-  
tial configuration, it is imperative that the input signals be 180  
degrees out of phase and of equal amplitude. The preamp stage  
drives a DAC, which provides the AD8327’s attenuation (eight  
bits or 48.16 dB). The signals in the preamp and DAC gain  
blocks are differential to improve the PSRR and linearity.  
A differential current is fed from the DAC into the output stage,  
Input Bias, Impedance, and Termination  
The VIN+ and VIN– inputs have a dc bias level of VCC/2, therefore  
the input signal should be ac-coupled using 0.1 µF capacitors as  
seen in the typical application circuit (see Figure 4). The differ-  
ential input impedance of the AD8327 is approximately 1.6 k,  
while the single-ended input impedance is 800 .  
Table I. Gain States  
Decimal Code Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Gain  
0
1
2
4
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
–18.16  
–12.14  
–6.12  
–0.10  
5.92  
11.94  
17.96  
23.98  
30  
8
16  
32  
64  
128  
–8–  
REV. 0  
AD8327  
V
CC  
10F  
SLEEP  
ENB  
0.1F  
0.1F  
AD8327  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
1
V
IN–  
SDATA  
CLK  
SDATA  
ENB  
2
3
4
5
6
7
8
9
CLK  
SLEEP  
Z
= 150⍀  
IN  
V
TXEN  
TXEN  
IN–  
165⍀  
0.1F  
V
V
CC  
IN+  
0.1F  
V
GND  
CC  
V
0.1F  
0.1F  
GND  
BYP  
GND  
CC  
V
IN+  
100pF  
CXR  
GND  
GND  
V
0.1F  
0.1F  
CC  
10  
V
V
OUT  
CC  
0.1F  
TO DIPLEXER Z = 75⍀  
IN  
Figure 4. Typical Application Circuit  
Z
؋
 1600⍀  
IN  
Single-Ended Inverting Input  
R13 =  
1600Z  
IN  
When operating the AD8327 in a single-ended input mode VIN+  
and VIN– should be terminated as illustrated in Figure 5. On the  
AD8327 evaluation boards, this termination method requires  
the removal of R13–R16 and R20, as well as the addition of a 0  
jumper at R17. Table II shows the correct values for R11 and R12  
for some common input configurations. Other input imped-  
ance configurations may be accommodated using the equations  
in Figure 5. The inverting and noninverting inputs of the AD8327  
must be balanced for all input configurations  
V
+
IN  
R13  
AD8327  
Z
IN  
Figure 6. Single to Differential Input  
Differential Signal Source  
The AD8327 evaluation board is also capable of accepting a  
differential input signal. Remove R11–R12, R14–R15, and R20,  
and place 0 jumpers for R16–R17. See Table II for common  
values of R13, or calculate other input configurations using the  
equation in Figure 7.  
Z
؋
 800⍀  
Z
؋
 R12  
IN  
IN  
R12 =  
R11 =  
800Z  
R12 + Z  
IN  
IN  
AD8327  
R12  
+
Z
؋
 1600⍀  
IN  
Z
IN  
R13 =  
1600Z  
R11  
IN  
V
+
IN  
Figure 5. Single-Ended Inverting Input  
R13  
Z
AD8327  
IN  
Differential Input from Single-Ended Source  
V
IN  
The default configuration of the evaluation board implements a  
differential signal drive from a single-ended signal source. A  
TOKO 1:1 transformer is included on the board for this purpose  
(T3). Enabling the evaluation board for single to differential input  
conversion requires R11–R12 and R16–R17 to be removed, and  
0 jumpers must be installed on the placeholders for R14, R15,  
and R20. Table II provides typical R13 values for common  
input configurations. Other input impedances may be calculated  
using the equation in Figure 6. Refer to Figure 10 for evaluation  
board schematic. To utilize the transformer for converting a single-  
ended source into a differential signal, the input signal must  
Figure 7. Differential Input  
Output Bias, Impedance, and Termination  
The output of the AD8327 has a dc bias level of approximately  
CC/2; therefore, it should be ac-coupled before being applied to  
the load. The output impedance of the AD8327 is internally  
maintained at 75 , regardless of whether the amplifier is in  
transmit enable or transmit disable mode. This eliminates the  
need for external back termination resistors. If the output signal  
is being evaluated using standard 50 test equipment, a mini-  
mum loss 75 to 50 pad must be used to provide the test  
circuit with the proper impedance match.  
V
be applied to VIN+  
.
REV. 0  
–9–  
AD8327  
Asynchronous Power-Down  
Table II. Common Input Terminations  
The asynchronous TXEN pin is used to place the AD8327 into  
between-burst mode, while maintaining a differential output  
impedance of 75 . Applying Logic 0 to the TXEN pin activates  
the on-chip reverse amplifier, providing an 86% reduction in  
consumed power. For 5 V operation, the supply current is typically  
reduced from 105 mA to 15 mA. In this mode of operation,  
between-burst noise is minimized and the amplifier can no longer  
transmit in the upstream direction. In addition to the TXEN  
pin, the AD8327 also incorporates an asynchronous SLEEP pin,  
which may be used to further reduce the supply current to  
approximately 5 mA. Applying Logic 0 to the SLEEP pin places  
the amplifier into SLEEP mode. Transitioning into or out of  
SLEEP mode may result in a transient voltage at the output of  
the amplifier.  
Differential Input Termination  
ZIN ()  
R11  
R12  
R13 ()  
50  
75  
100  
150  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
52.1  
78.7  
107  
165  
Single-Ended Input Termination  
ZIN ()  
R11 ()  
R12 ()  
R13  
50  
75  
25.5  
39.2  
53.6  
82.5  
Open  
Open  
Power Supply  
Distortion, Adjacent Channel Power, and DOCSIS  
The 5 V supply should be delivered to each of the VCC pins via a  
low impedance power bus to ensure that each pin is at the same  
potential. The power bus should be decoupled to ground using  
a 10 µF tantalum capacitor located close to the AD8327ARU.  
In addition to the 10 µF capacitor, each VCC pin should be  
individually decoupled to ground with 0.1 µF ceramic chip capaci-  
tors located close to the pins. The bypass pin, labeled BYP (Pin 14),  
should also be decoupled with a 0.1 µF capacitor. The PCB  
should have a low impedance ground plane covering all unused  
portions of the board, except in areas of the board where input  
and output traces are in close proximity to the AD8327. All  
AD8327 ground pins must be connected to the ground plane to  
ensure proper grounding of all internal nodes.  
In order to deliver the DOCSIS required +58 dBmV of QPSK  
signal and +55 dBmV of 16 QAM signal, the PA is required to  
deliver up to +60 dBmV and +57 dBmV respectively. This level is  
required to compensate for losses associated with the diplex filter  
or other passive components that may be included in the upstream  
path of cable modems or set-top boxes. It should be noted that  
the AD8327 was characterized with the TOKO 617DB-A0070  
transformer on the input to generate a differential input signal.  
TPC 7 and TPC 10 show the AD8327 second and third order  
harmonic distortion performance versus fundamental frequency  
for various output power levels. These figures are useful for  
determining the in-band harmonic levels from 5 MHz to 65 MHz.  
Harmonics higher in frequency (above 42 MHz for DOCSIS  
and above 65 MHz for EuroDOCSIS) will be sharply attenuated  
by the low-pass filter function of the diplexer.  
CXR Pin  
The AD8327 features internal circuitry that controls burst  
transients. This feature uses a 100 pF capacitor connected to  
Pin 7 of the AD8327, to slow down the turn-on transient and  
minimize between-burst transients.  
Another measure of signal integrity is adjacent channel power,  
commonly referred to as ACP. DOCSIS section 4.2.10.1.1 states,  
“Spurious emissions from a transmitted carrier may occur in an  
adjacent channel that could be occupied by a carrier of the same or  
different symbol rates.” TPC 13 shows the measured ACP for a  
+57 dBmV 16 QAM signal taken at the output of the AD8327  
evaluation board, through a 75 to 50 matching pad (5.7 dB of  
loss). The transmit channel width and adjacent channel width in  
TPC 13 correspond to symbol rates of 160 KSYM/S. Table III shows  
the ACP results for the AD8327 driving a 16 QAM, +57 dBmV  
signal for all conditions in DOCSIS Table 4-7 “Adjacent Channel  
Spurious Emissions.”  
Signal Integrity Layout Considerations  
Careful attention to printed circuit board layout details will  
prevent problems due to board parasitics. Proper RF design  
techniques are mandatory. The differential input and output  
traces should be kept as short as possible. It is also critical that  
all differential signal paths be symmetrical in length and width.  
In addition, the input and output traces should be kept far apart,  
to minimize coupling (crosstalk) through the board. Following  
these guidelines will optimize the overall performance of the  
AD8327 in all applications.  
Table III. Adjacent Channel Power  
Initial Power-Up  
ADJACENT CHANNEL SYMBOL RATE  
When the supply voltage is first applied to the AD8327, the gain  
of the amplifier is initially set to gain code 0. As power is first  
applied to the amplifier, the TXEN pin should be held low  
(Logic 0) to prevent forward signal transmission. After power  
has been applied to the amplifier, the gain can be set to the  
desired level by following the procedure provided in the SPI  
Programming and Gain Adjustment section. The TXEN pin  
can then be brought from Logic 0 to Logic 1, enabling forward  
signal transmission at the desired gain level.  
160 K  
320 K  
SYM/SEC  
640 K  
SYM/SEC  
1280 K  
SYM/SEC  
2560 K  
SYM/SEC  
SYM/SEC  
TRANSMIT  
SYMBOL  
RATE  
ACP  
(dBc)  
ACP  
(dBc)  
ACP  
(dBc)  
ACP  
(dBc)  
ACP  
(dBc)  
160 K  
62  
63  
65  
66  
66  
SYM/SEC  
320 K  
62  
63  
63  
62  
64  
63  
66  
65  
66  
66  
SYM/SEC  
SYM/SEC  
640 K  
1280 K  
64  
66  
63  
63  
63  
63  
63  
62  
64  
63  
SYM/SEC  
SYM/SEC  
2560 K  
–10–  
REV. 0  
AD8327  
Noise and DOCSIS  
Running AD8327 Software  
At minimum gain, the AD8327 output noise spectral density is  
11 nV/Hz measured at 10 MHz. DOCSIS Table 4-8,“Spurious  
Emissions in 5 MHz to 42 MHz,” specifies the output noise for  
various symbol rates. The calculated noise in dBmV for  
160KSYM/SECOND is:  
To load the control software, go to START, PROGRAMS,  
CABDRIVE_27, or select the AD8327.exe from the installed  
directory. Once loaded, select the proper parallel port to com-  
municate with the AD8327 (Figure 8).  
2  
11nV  
20 log  
×160 kHz + 60 = 47 dBmV  
Hz  
Comparing the computed noise power of 47 dBmV to the  
+8 dBmV signal yields 55 dBc, which meets the required level  
set forth in DOCSIS Table 4-8. As the AD8327 gain is increased  
above this minimum value, the output signal increases at a faster  
rate than the noise, resulting in a signal to noise ratio that improves  
with gain. In transmit disable mode, the output noise spectral  
density is 1.3 nV/Hz, which results in 66 dBmV when computed  
over 160 KSYM/S. The noise power was measured directly at the  
output of the AD8327AR-EVAL board.  
Evaluation Board Features and Operation  
The AD8327 evaluation board (Part #AD8327AR-EVAL) and  
control software can be used to control the AD8327 upstream  
cable driver via the parallel port of a PC. A standard printer  
cable connected between the parallel port of the personal com-  
puter is used to feed all the necessary data to the AD8327 using  
the Windows-based control software. This package provides a  
means of evaluating the amplifier with a convenient way to  
program the gain/attenuation, as well as offering easy control of  
the asynchronous TXEN and SLEEP pins. With this evaluation  
kit, the AD8327 can be evaluated in either a single-ended or  
differential input configuration. A schematic of the evaluation  
board is provided in Figure 10.  
Figure 8. Parallel Port Selection  
Controlling Gain/Attenuation of the AD8327  
The slide bar controls the gain/attenuation of the AD8327,  
which is displayed in dB and in V/V. The gain scales 6 dB per  
major carry. The gain code from the position of the slide bar is  
displayed in decimal, binary, and hexadecimal (Figure 9).  
Overshoot on PC Printer Ports  
The data lines on some PC parallel printer ports have excessive  
overshoot that may cause communications problems when pre-  
sented to the CLK pin of the AD8327. The evaluation board  
was designed to accommodate a series resistor and shunt capaci-  
tor (R2 and C5 in Figure 10) to filter the CLK signal if required.  
Installing Visual Basic Control Software  
Install the CabDrive_27software by running setup.exeon  
disk one of the AD8327 Evaluation Software. Follow on-screen  
directions and insert disk two when prompted. Choose installa-  
tion directory, and then select the icon in the upper left  
to complete installation.  
Figure 9. Control Software Interface  
REV. 0  
–11–  
AD8327  
Transmit Enable and Sleep Mode  
Memory Functions  
The Transmit Enable and Transmit Disable buttons select the  
mode of operation of the AD8327 by asserting logic levels on  
the asynchronous TXEN pin. The Transmit Disable button  
applies Logic 0 to the TXEN pin, disabling forward transmis-  
sion while maintaining a 75 back termination. The Transmit  
Enable button applies Logic 1 to the TXEN pin, enabling the  
AD8327 for forward transmission. Checking the Enable  
SLEEP Modecheckbox applies logic 0to the asynchronous  
SLEEP pin, setting the AD8327 for SLEEP mode.  
The MEMORY section of the software provides a way to  
alternate between two gain settings. The X->M1button  
stores the current value of the gain slide bar into memory  
while the RM1button recalls the stored value, returning  
the gain slide bar to the stored level. The same applies to the  
X->M2and RM2buttons.  
DATEN  
V
TP9  
CC  
TP10  
TP11  
TP12  
SDATA  
C12  
10F  
TP23  
C16  
0.1F  
R17  
DNI  
R19  
DNI  
AGND  
CLK  
AGND  
Z1  
C11  
0.1F  
V
IN–  
R12  
DNI  
R21  
DNI  
1
2
3
4
5
20  
19  
18  
17  
16  
R15  
0⍀  
SDATA DATEN  
TXEN  
AGND  
CLK  
SLEEP  
TXEN  
V
SLEEP  
4
5
3
2
4
3
6
IN–  
T4  
T3  
AGND  
AGND  
V
V
CC  
IN+  
2
1
GND  
V
CC  
1
6
7
8
9
GND 15  
V
CC  
R13  
78.7⍀  
BYP  
GND  
14  
13  
12  
11  
CXR  
GND  
GND  
TP1  
PRI SEC  
DNI  
PRI SEC  
TOKO1  
C1  
0.1F  
C10  
0.1F  
R20  
0⍀  
TP24  
C15  
0.1F  
V
CC  
R14  
0⍀  
V
10  
V
CC  
OUT  
C2  
V
TP2  
TP4  
IN+  
0.1F  
C8  
R16  
DNI  
R11  
DNI  
TSSOP20  
0.1F  
C7  
TP22  
0.1F  
AGND  
AGND  
C3  
100pF  
0⍀  
HPF  
TP3  
9
AGND  
R1  
0⍀  
TB1  
HPP  
TP6  
V
AGND  
CC  
1
5
LPP  
CBL  
TP21  
DEVICE = 2LUGPWR  
P1 19  
P1 20  
P1 21  
P1 22  
P1 23  
P1 24  
P1 25  
P1 26  
P1 27  
P1 28  
P1 29  
P1 30  
P1 31  
P1 32  
P1 33  
P1 34  
P1 35  
P1 36  
COM  
3
P1  
1
CX6002  
1018  
P1  
P1  
P1  
P1  
P1  
P1  
P1  
P1  
2
3
4
5
6
7
8
9
C4  
DNI  
DNI  
AGND  
TP5  
R6  
DNI  
TP14  
TP16  
R8  
DNI  
R7  
0⍀  
TP20  
R2  
0⍀  
C5  
DNI  
CABLE  
C14  
0.1F  
P1 10  
P1 11  
P1 12  
P1 13  
P1 14  
P1 15  
P1 16  
P1 17  
P1 18  
R9  
0⍀  
R10  
DNI  
TP7  
TP8  
R3  
0⍀  
C6  
DNI  
TP15  
AGND  
R5  
DNI  
AGND  
AGND  
Figure 10. Evaluation Board Schematic  
–12–  
REV. 0  
AD8327  
Figure 11. Evaluation Board Layout—Top Silkscreen  
REV. 0  
–13–  
AD8327  
Figure 12. Evaluation Board Layout—Component Side  
–14–  
REV. 0  
AD8327  
Figure 13. Evaluation Board Layout—Internal Ground Plane  
REV. 0  
–15–  
AD8327  
Figure 14. Evaluation Board Layout—Internal Power and Ground Plane  
–16–  
REV. 0  
AD8327  
Figure 15. Evaluation Board Layout—Circuit Side  
REV. 0  
–17–  
AD8327  
Figure 16. Evaluation Board Layout—Bottom Silkscreen  
–18–  
REV. 0  
AD8327  
EVALUATION BOARD BILL OF MATERIALS  
AD8327 Evaluation Board Rev. B, Single-Ended-to-Differential InputRevisedFebruary 21, 2001  
Qty.  
Description  
Ref Description  
1
1
2
7
11  
1
2
1
1
1
1
4
1
1
1
1
4
4
2
2
2
2
10 µF 25 V. Dsize tantalum chip capacitor  
100 pF 0603 ceramic chip capacitor  
0.1 µF 50 V. 1206 size ceramic chip capacitor  
0.1 µF 25 V. 0603 size ceramic chip capacitor  
0 5% 1/8 W. 1206 size chip resistor  
78.7 1% 1/8 W. 1206 size chip resistor  
Yellow Test Point  
C12  
C3  
C15, C16  
C1, C2, C7C11  
R1R3, R7, R9, R14, R15, R20  
R13  
TP23, TP24  
TP9  
TP10TP12 (GND)  
P1  
Red Test Point  
Black Test Point  
Centronics-type 36-pin Right-Angle Connector  
Terminal Block 2-Pos Green ED1973-ND  
SMA End launch Jack (E F JOHNSON # 142-0701-801)  
1:1 Transformer TOKO # 617DB A0070  
PULSE Diplexer*  
AD8327 (TSSOP) UPSTREAM Cable Driver  
AD8327 REV. C Evaluation PC board  
#440 × 1/4 inch STAINLESS panhead machine screw  
#440 × 3/4 inch long aluminum round stand-off  
# 256 × 3/8 inch STAINLESS panhead machine screw  
# 2 steel flat washer  
TB1  
VIN, VIN+, CABLE_0, HPF  
T3  
Z2  
Z1  
Evaluation PC board  
(P1 Hardware)  
(P1 Hardware)  
(P1 Hardware)  
(P1 Hardware)  
# 2 steel internal tooth lockwasher  
# 2 STAINLESS STEEL hex. machine nut  
NOTES  
*PULSE Diplexer part numbers B5008 (42 MHz), CX6002 (42 MHz), B5009 (65 MHz).  
DO NOT INSTALL C4, C5, C6, R6, R7, R8, R10R12, R16, R17, R21, T9, TP1TP8, TP14TP16, TP20TP22.  
SMAs TXEN, CLK, SLEEP, DATEN, SDATA, HPF_0, Z2.  
REV. 0  
–19–  
AD8327  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
20-Lead TSSOP  
(RU-20)  
0.260 (6.60)  
0.252 (6.40)  
20  
11  
0.177 (4.50)  
0.169 (4.30)  
0.256 (6.50)  
0.246 (6.25)  
1
10  
PIN 1  
0.006 (0.15)  
0.002 (0.05)  
0.0433 (1.10)  
MAX  
8؇  
0؇  
0.0256 (0.65) 0.0118 (0.30)  
0.028 (0.70)  
0.020 (0.50)  
0.0079 (0.20)  
0.0035 (0.090)  
SEATING  
PLANE  
BSC  
0.0075 (0.19)  
–20–  
REV. 0  

相关型号:

AD8327ARUZ

IC LINE DRIVER, PDSO20, TSSOP-20, Line Driver or Receiver
ADI

AD8327ARUZ-REEL

IC LINE DRIVER, PDSO20, TSSOP-20, Line Driver or Receiver
ADI

AD8328

5 V Upstream Cable Line Driver
ADI

AD8328ACP

5 V Upstream Cable Line Driver
ADI

AD8328ACP-EVAL

5 V Upstream Cable Line Driver
ADI

AD8328ACP-R2

IC LINE DRIVER, QCC20, LFCSP-20, Line Driver or Receiver
ADI

AD8328ACP-REEL

5 V Upstream Cable Line Driver
ADI

AD8328ACP-REEL7

5 V Upstream Cable Line Driver
ADI

AD8328ACPZ

5 V Upstream Cable Line Driver
ADI

AD8328ACPZ-REEL

5 V Upstream Cable Line Driver
ADI

AD8328ACPZ-REEL7

5 V Upstream Cable Line Driver
ADI

AD8328ARQ

5 V Upstream Cable Line Driver
ADI