AD8331_10 [ADI]

Ultralow Noise VGAs with Preamplifier and Programmable RIN; 超低噪声可变增益放大器与前置放大器和可编程RIN
AD8331_10
型号: AD8331_10
厂家: ADI    ADI
描述:

Ultralow Noise VGAs with Preamplifier and Programmable RIN
超低噪声可变增益放大器与前置放大器和可编程RIN

放大器
文件: 总56页 (文件大小:1825K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultralow Noise VGAs with  
Preamplifier and Programmable RIN  
AD8331/AD8332/AD8334  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
LON LOP VIP VIN  
VCM  
HILO  
Ultralow noise preamplifier (preamp)  
Voltage noise = 0.74 nV/√Hz  
Current noise = 2.5 pA/√Hz  
3 dB bandwidth  
AD8331: 120 MHz  
3.5dB OR 15.5dB  
V
MID  
LNA  
19dB  
ATTENUATOR  
VOH  
VOL  
48dB  
21dB  
PA  
INH  
+
AD8332, AD8334: 100 MHz  
Low power  
AD8331: 125 mW/channel  
CLAMP  
LMD  
GAIN  
VCM  
BIAS  
VGA BIAS AND  
INTERPOLATOR  
RCLMP  
CONTROL  
INTERFACE  
AD8332, AD8334: 145 mW/channel  
Wide gain range with programmable postamp  
−4.5 dB to +43.5 dB in LO gain mode  
7.5 dB to 55.5 dB in HI gain mode  
Low output-referred noise: 48 nV/√Hz typical  
Active input impedance matching  
Optimized for 10-bit/12-bit ADCs  
Selectable output clamping level  
Single 5 V supply operation  
AD8331/AD8332/AD8334  
ENB  
GAIN  
Figure 1. Signal Path Block Diagram  
60  
50  
40  
30  
20  
10  
0
V
= 1V  
GAIN  
HI GAIN  
MODE  
V
= 0.8V  
= 0.6V  
= 0.4V  
GAIN  
GAIN  
GAIN  
GAIN  
V
V
V
AD8332 and AD8334 available in lead frame chip scale package  
APPLICATIONS  
= 0.2V  
= 0V  
Ultrasound and sonar time-gain controls  
High performance automatic gain control (AGC) systems  
I/Q signal processing  
V
GAIN  
High speed, dual ADC drivers  
–10  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
GENERAL DESCRIPTION  
The AD8331/AD8332/AD8334 are single-, dual-, and quad-  
channel, ultralow noise linear-in-dB, variable gain amplifiers  
(VGAs). Optimized for ultrasound systems, they are usable as a  
low noise variable gain element at frequencies up to 120 MHz.  
Figure 2. Frequency Response vs. Gain  
Differential signal paths result in superb second- and third-  
order distortion performance and low crosstalk.  
The low output-referred noise of the VGA is advantageous in  
driving high speed differential ADCs. The gain of the postamp  
can be pin selected to 3.5 dB or 15.5 dB to optimize gain range  
and output noise for 12-bit or 10-bit converter applications. The  
output can be limited to a user-selected clamping level, preventing  
input overload to a subsequent ADC. An external resistor adjusts  
the clamping level.  
Included in each channel are an ultralow noise preamp (LNA),  
an X-AMP® VGA with 48 dB of gain range, and a selectable gain  
postamp with adjustable output limiting. The LNA gain is 19 dB  
with a single-ended input and differential outputs. Using a single  
resistor, the LNA input impedance can be adjusted to match a  
signal source without compromising noise performance.  
The 48 dB gain range of the VGA makes these devices suitable  
for a variety of applications. Excellent bandwidth uniformity is  
maintained across the entire range. The gain control interface  
provides precise linear-in-dB scaling of 50 dB/V for control  
voltages between 40 mV and 1 V. Factory trim ensures excellent  
part-to-part and channel-to-channel gain matching.  
The operating temperature range is −40°C to +85°C. The  
AD8331 is available in a 20-lead QSOP package, the AD8332 is  
available in 28-lead TSSOP and 32-lead LFCSP packages, and  
the AD8334 is available in a 64-lead LFCSP package.  
Rev. G  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2003–2010 Analog Devices, Inc. All rights reserved.  
 
AD8331/AD8332/AD8334  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Ultrasound TGC Application ................................................... 34  
High Density Quad Layout....................................................... 34  
AD8331 Evaluation Board ............................................................ 39  
General Description................................................................... 39  
User-Supplied Optional Components..................................... 39  
Measurement Setup.................................................................... 39  
Board Layout............................................................................... 39  
AD8331 Evaluation Board Schematics.................................... 40  
AD8331 Evaluation Board PCB Layers................................... 42  
AD8332 Evaluation Board ............................................................ 43  
General Description................................................................... 43  
User-Supplied Optional Components..................................... 43  
Measurement Setup.................................................................... 43  
Board Layout............................................................................... 43  
Evaluation Board Schematics ................................................... 44  
AD8332 Evaluation Board PCB Layers................................... 46  
AD8334 Evaluation Board ............................................................ 47  
General Description................................................................... 47  
Configuring the Input Impedance........................................... 48  
Measurement Setup.................................................................... 48  
Board Layout............................................................................... 48  
Evaluation Board Schematics ................................................... 49  
AD8334 Evaluation Board PCB Layers................................... 51  
Outline Dimensions....................................................................... 53  
Ordering Guide .......................................................................... 55  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 4  
Absolute Maximum Ratings............................................................ 7  
ESD Caution.................................................................................. 7  
Pin Configurations and Function Descriptions ........................... 8  
Typical Performance Characteristics ........................................... 12  
Test Circuits..................................................................................... 20  
Measurement Considerations................................................... 20  
Theory of Operation ...................................................................... 24  
Overview...................................................................................... 24  
Low Noise Amplifier (LNA) ..................................................... 25  
Variable Gain Amplifier ............................................................ 27  
Postamplifier ............................................................................... 28  
Applications Information .............................................................. 30  
LNA—External Components.................................................... 30  
Driving ADCs ............................................................................. 32  
Overload ...................................................................................... 32  
Optional Input Overload Protection ....................................... 32  
Layout, Grounding, and Bypassing.......................................... 33  
Multiple Input Matching ........................................................... 33  
Disabling the LNA...................................................................... 33  
REVISION HISTORY  
10/10—Rev. F to Rev. G  
Deleted AD8331 Bill of Materials Section and Table 11;  
Changes to Quiescent Current per Channel Parameter,  
Renumbered Sequentially ............................................................. 43  
Changes to Figure 104 ................................................................... 43  
Changes to Figure 106 ................................................................... 45  
Changes to Figure 107 ................................................................... 46  
Changes to Figure 113 ................................................................... 47  
Changes to Figure 114 and Board Layout Section..................... 48  
Deleted AD8332 Bill of Materials Section and Table 13;  
Renumbered Sequentially ............................................................. 48  
Changes to Figure 115 ................................................................... 49  
Changes to Figure 116 ................................................................... 50  
Changes to Figure 117 to Figure 120 ........................................... 51  
Changes to Figure 121 ................................................................... 52  
Deleted AD8334 Bill of Materials Section and Table 15;  
Table 1 ................................................................................................ 6  
Changes to Pin 1, Table 3................................................................. 8  
Changes to Pin 1 and Pin 28, Table 4 and Pin 4 and Pin 5,  
Table 5 ................................................................................................ 9  
Changes to Figure 6 and Table 6................................................... 10  
Changes to Figure 33...................................................................... 16  
Changes to Figure 64...................................................................... 22  
Changes to Figure 70...................................................................... 24  
Changes to Low Noise Amplifier (LNA) Section and  
Figure 74 .......................................................................................... 25  
Changes to Figure 94...................................................................... 38  
Changes to General Descriptions Section, Figure 95 Caption,  
Table 10, and Board Layout Section............................................. 39  
Changes to Figure 96...................................................................... 40  
Changes to Figure 97...................................................................... 41  
Changes to Figure 98 and Figure 103........................................... 42  
Renumbered Sequentially ............................................................. 54  
Rev. G | Page 2 of 56  
 
AD8331/AD8332/AD8334  
4/08—Rev. E to Rev. F  
Changes to Figure 23 and Figure 24 .............................................14  
Changes to Figure 25 through Figure 27......................................15  
Changes to Figure 31 and Figure 33 through Figure 36 ............16  
Changes to Figure 37 through Figure 42......................................17  
Changes to Figure 43, Figure 44, and Figure 48..........................18  
Changes to Figure 49, Figure 50, and Figure 54..........................19  
Inserted Figure 56 and Figure 57 ..................................................20  
Inserted Figure 58, Figure 59, and Figure 61...............................21  
Changes to Figure 60 ......................................................................21  
Inserted Figure 63 and Figure 65 ..................................................22  
Changes to Figure 64 ......................................................................22  
Moved Measurement Considerations Section ............................23  
Inserted Figure 67 and Figure 68 ..................................................23  
Inserted Figure 70 and Figure 71 ..................................................24  
Change to Figure 72........................................................................24  
Changes to Figure 73 and Low Noise Amplifier Section...........25  
Changes to Postamplifier Section .................................................28  
Changes to Figure 80 ......................................................................29  
Changes to LNA—External Components Section......................30  
Changes to Logic Inputs—ENB, MODE, and HILO Section ...31  
Changes to Output Decoupling and Overload Sections............32  
Changes to Layout, Grounding, and Bypassing Section............33  
Changes to Ultrasound TGC Application Section .....................34  
Added High Density Quad Layout Section.................................34  
Inserted Figure 94 ...........................................................................38  
Updated Outline Dimensions........................................................39  
Changes to Ordering Guide...........................................................40  
Changed RFB to RIZ Throughout .....................................................4  
Changes to Figure 1...........................................................................1  
Changes to Table 1, LNA and VGA Characteristics, Output  
Offset Voltage, Conditions...............................................................4  
Changes to Quiescent Current per Channel and Power Down  
Current Parameters...........................................................................6  
Changes to Table 2 ............................................................................7  
Changes to Table 3, Pin 1 Description ...........................................8  
Changes to Table 4, Pin 1 and Pin 28 Descriptions......................9  
Changes to Table 5, Pin 4 and Pin 5 Descriptions ........................9  
Changes to Table 6, Pin 2, Pin 15, and Pin 20 Descriptions......10  
Changes to Table 6, Pin 61 Description .......................................11  
Changes to Typical Performance Characteristics Section,  
Default Conditions..........................................................................12  
Changes to Figure 25 ......................................................................15  
Changes to Figure 39 ......................................................................17  
Changes to Figure 55 Through Figure 68 ...................................20  
Changes to Theory of Operation, Overview Section .................24  
Changes to Low Noise Amplifier Section and Figure 74...........25  
Changes to Active Impedance Matching Section, Figure 75,  
and Figure 77 ...................................................................................26  
Changes to Figure 78 ......................................................................27  
Changes to Equation 6, Table 7, Figure 81, and Figure 82.........30  
Changes to Figure 83 ......................................................................31  
Changes to Figure 88 ......................................................................32  
Switched Figure 89 and Figure 90.................................................33  
Changes to Figure 89 ......................................................................33  
Changes to Ultrasound TGC Application Section......................34  
Incorporated AD8331-EVAL Data Sheet, Rev. A .......................39  
Changes to User-Supplied Optional Components Section  
and Measurement Setup Section...................................................39  
Changes to Figure 95 ......................................................................39  
Changes to Figure 97 ......................................................................41  
Added Figure 98 ..............................................................................42  
Incorporated AD8332-EVALZ Data Sheet, Rev. D.....................44  
Incorporated AD8334-EVAL Data Sheet, Rev. 0 ........................49  
Updated Outline Dimensions........................................................55  
Changes to Ordering Guide...........................................................57  
3/06—Rev. C to Rev. D  
Updated Format ................................................................. Universal  
Changes to Features and General Description..............................1  
Changes to Table 1 ............................................................................3  
Changes to Table 2 ............................................................................6  
Changes to Ordering Guide...........................................................34  
11/03—Rev. B to Rev. C  
Addition of New Part......................................................... Universal  
Changes to Figures............................................................. Universal  
Updated Outline Dimensions........................................................32  
5/03—Rev. A to Rev. B  
Edits to Ordering Guide.................................................................32  
Edits to Ultrasound TGC Application Section ...........................25  
Added Figure 71, Figure 72, and Figure 73..................................26  
Updated Outline Dimensions........................................................31  
4/06—Rev. D to Rev. E  
Added AD8334................................................................... Universal  
Changes to Figure 1 and Figure 2....................................................1  
Changes to Table 1 ............................................................................4  
Changes to Table 2 ............................................................................7  
Changes to Figure 7 through Figure 9 and Figure 12.................12  
Changes to Figure 13, Figure 14, Figure 16, and Figure 18 .......13  
2/03—Rev. 0 to Rev. A  
Edits to Ordering Guide.................................................................32  
Rev. G | Page 3 of 56  
AD8331/AD8332/AD8334  
SPECIFICATIONS  
TA = 25°C, VS = 5 V, RL = 500 Ω, RS = RIN = 50 Ω, RIZ = 280 Ω, CSH = 22 pF, f = 10 MHz, RCLMP = ∞, CL = 1 pF, VCM pin floating,  
−4.5 dB to +43.5 dB gain (HILO = LO), and differential output voltage, unless otherwise specified.  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max Unit1  
LNA CHARACTERISTICS  
Gain  
Single-ended input to differential output  
Input to output (single-ended)  
AC-coupled  
19  
13  
2ꢀ5  
dB  
dB  
mV  
Ω
Input Voltage Range  
Input Resistance  
RIZ = 280 Ω  
50  
RIZ = 412 Ω  
ꢀ5  
Ω
RIZ = 562 Ω  
RIZ = 1.13 kΩ  
RIZ = ∞  
100  
200  
6
13  
5
130  
650  
0.ꢀ4  
2.5  
Ω
Ω
kΩ  
pF  
Ω
MHz  
V/μs  
Input Capacitance  
Output Impedance  
−3 dB Small Signal Bandwidth  
Slew Rate  
Input Voltage Noise  
Input Current Noise  
Noise Figure  
Single-ended, either output  
VOUT = 0.2 V p-p  
RS = 0 Ω, HI or LO gain, RIZ = ∞, f = 5 MHz  
RIZ = ∞, HI or LO gain, f = 5 MHz  
f = 10 MHz, LOP output  
nV/√Hz  
pA/√Hz  
Active Termination Match  
Unterminated  
RS = RIN = 50 Ω  
RS = 50 Ω, RIZ = ∞  
3.ꢀ  
2.5  
dB  
dB  
Harmonic Distortion at LOP1 or LOP2  
HD2  
HD3  
Output Short-Circuit Current  
LNA AND VGA CHARACTERISTICS  
−3 dB Small Signal Bandwidth  
AD8331  
AD8332, AD8334  
−3 dB Large Signal Bandwidth  
AD8331  
VOUT = 0.5 V p-p, single-ended, f = 10 MHz  
−56  
−ꢀ0  
165  
dBc  
dBc  
mA  
Pin LON, Pin LOP  
VOUT = 0.2 V p-p  
120  
100  
MHz  
MHz  
VOUT = 2 V p-p  
110  
90  
MHz  
MHz  
AD8332, AD8334  
Slew Rate  
AD8331  
LO gain  
300  
V/μs  
HI gain  
LO gain  
1200  
2ꢀ5  
V/μs  
V/μs  
AD8332, AD8334  
HI gain  
1100  
0.82  
V/μs  
nV/√Hz  
Input Voltage Noise  
Noise Figure  
RS = 0 Ω, HI or LO gain, RIZ = ∞, f = 5 MHz  
VGAIN = 1.0 V  
Active Termination Match  
RS = RIN = 50 Ω, f = 10 MHz, measured  
RS = RIN = 200 Ω, f = 5 MHz, simulated  
RS = 50 Ω, RIZ = ∞, f = 10 MHz, measured  
RS = 200 Ω, RIZ = ∞, f = 5 MHz, simulated  
4.15  
2.0  
2.5  
dB  
dB  
dB  
dB  
Unterminated  
1.0  
Output-Referred Noise  
AD8331  
VGAIN = 0.5 V, LO gain  
VGAIN = 0.5 V, HI gain  
VGAIN = 0.5 V, LO gain  
VGAIN = 0.5 V, HI gain  
DC to 1 MHz  
48  
1ꢀ8  
40  
150  
1
nV/√Hz  
nV/√Hz  
nV/√Hz  
nV/√Hz  
Ω
AD8332, AD8334  
Output Impedance, Postamplifier  
Rev. G | Page 4 of 56  
 
AD8331/AD8332/AD8334  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max Unit1  
Output Signal Range, Postamplifier  
Differential  
RL ≥ 500 Ω, unclamped, either pin  
VCM 1.125  
4.5  
V
V p-p  
Output Offset Voltage  
AD8331  
Differential, VGAIN = 0.5 V  
Common mode  
Differential, 0.05 V ≤ VGAIN ≤ 1.0 V  
Common mode  
−50  
−125 −25  
−20  
−125 –25  
45  
5
+50  
+100 mV  
+20 mV  
+100 mV  
mA  
mV  
AD8332, AD8334  
5
Output Short-Circuit Current  
Harmonic Distortion  
AD8331  
VGAIN = 0.5 V, VOUT = 1 V p-p, HI gain  
f = 1 MHz  
HD2  
−88  
−85  
−68  
−65  
dBc  
dBc  
dBc  
dBc  
HD3  
HD2  
HD3  
f = 10 MHz  
AD8332, AD8334  
HD2  
HD3  
HD2  
HD3  
f = 1 MHz  
−82  
−85  
−62  
−66  
1
dBc  
dBc  
dBc  
dBc  
dBm  
f = 10 MHz  
Input 1 dB Compression Point  
Two-Tone Intermodulation Distortion (IMD3)  
AD8331  
VGAIN = 0.25 V, VOUT = 1 V p-p, f = 1 MHz to 10 MHz  
VGAIN = 0.ꢀ2 V, VOUT = 1 V p-p, f = 1 MHz  
VGAIN = 0.5 V, VOUT = 1 V p-p, f = 10 MHz  
VGAIN = 0.ꢀ2 V, VOUT = 1 V p-p, f = 1 MHz  
VGAIN = 0.5 V, VOUT = 1 V p-p, f = 10 MHz  
−80  
−ꢀ2  
−ꢀ8  
−ꢀ4  
dBc  
dBc  
dBc  
dBc  
AD8332, AD8334  
Output Third-Order Intercept  
AD8331  
VGAIN = 0.5 V, VOUT = 1 V p-p, f = 1 MHz  
VGAIN = 0.5 V, VOUT = 1 V p-p, f = 10 MHz  
VGAIN = 0.5 V, VOUT = 1 V p-p, f = 1 MHz  
VGAIN = 0.5 V, VOUT = 1 V p-p, f = 10 MHz  
38  
33  
35  
32  
−98  
5
dBm  
dBm  
dBm  
dBm  
dB  
AD8332, AD8334  
Channel-to-Channel Crosstalk (AD8332, AD8334) VGAIN = 0.5 V, VOUT = 1 V p-p, f = 1 MHz  
Overload Recovery  
Group Delay Variation  
ACCURACY  
VGAIN = 1.0 V, VIN = 50 mV p-p/1 V p-p, f = 10 MHz  
5 MHz < f < 50 MHz, full gain range  
ns  
ns  
2
Absolute Gain Error2  
0.05 V < VGAIN < 0.10 V  
0.10 V < VGAIN < 0.95 V  
0.95 V < VGAIN < 1.0 V  
0.1 V < VGAIN < 0.95 V  
0.1 V < VGAIN < 0.95 V  
−1  
−1  
−2  
+0.5  
0.3  
−1  
0.2  
0.1  
+2  
+1  
+1  
dB  
dB  
dB  
dB  
dB  
Gain Law Conformance3  
Channel-to-Channel Gain Matching  
GAIN CONTROL INTERFACE (Pin GAIN)  
Gain Scaling Factor  
0.10 V < VGAIN < 0.95 V  
LO gain  
HI gain  
48.5  
50  
51.5  
dB/V  
dB  
dB  
V
MΩ  
ns  
Gain Range  
−4.5 to +43.5  
ꢀ.5 to 55.5  
0 to 1.0  
10  
Input Voltage (VGAIN) Range  
Input Impedance  
Response Time  
48 dB gain change to 90% full scale  
500  
COMMON-MODE INTERFACE (PIN VCMx)  
Input Resistance4  
Output CM Offset Voltage  
Voltage Range  
Current limited to 1 mA  
VCM = 2.5 V  
VOUT = 2.0 V p-p  
30  
Ω
−125 −25  
1.5 to 3.5  
+100 mV  
V
Rev. G | Page 5 of 56  
AD8331/AD8332/AD8334  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max Unit1  
ENABLE INTERFACE  
(PIN ENB, PIN ENBL, PIN ENBV)  
Logic Level to Enable Power  
Logic Level to Disable Power  
Input Resistance  
2.25  
0
5
1.0  
V
V
Pin ENB  
Pin ENBL  
Pin ENBV  
VINH = 30 mV p-p  
VINH = 150 mV p-p  
25  
40  
ꢀ0  
300  
4
kΩ  
kΩ  
kΩ  
μs  
ms  
Power-Up Response Time  
HILO GAIN RANGE INTERFACE (PIN HILO)  
Logic Level to Select HI Gain Range  
Logic Level to Select LO Gain Range  
Input Resistance  
2.25  
0
5
1.0  
V
V
kΩ  
50  
OUTPUT CLAMP INTERFACE (PIN RCLMP; HI OR  
LO GAIN)  
Accuracy  
HILO = LO  
HILO = HI  
RCLMP = 2.ꢀ4 kΩ, VOUT = 1 V p-p (clamped)  
RCLMP = 2.21 kΩ, VOUT = 1 V p-p (clamped)  
50  
ꢀ5  
mV  
mV  
MODE INTERFACE (PIN MODE)  
Logic Level for Positive Gain Slope  
Logic Level for Negative Gain Slope  
Input Resistance  
0
2.25  
1.0  
5
V
V
kΩ  
200  
5.0  
POWER SUPPLY (PIN VPS1, PIN VPS2,  
PIN VPSV, PIN VPSL, PIN VPOS)  
Supply Voltage  
Quiescent Current per Channel  
AD8331  
4.5  
5.5  
V
20  
22  
24  
25  
2ꢀ.5  
29.5  
mA  
mA  
AD8332  
AD8334  
32  
34  
Power Dissipation per Channel  
AD8331  
AD8332, AD8334  
Power-Down Current  
AD8331  
No signal  
125  
138  
mW  
mW  
VGA and LNA disabled  
50  
50  
50  
240  
300  
600  
400  
600  
μA  
μA  
1200 μA  
AD8332  
AD8334  
LNA Current  
AD8331 (ENBL)  
AD8332, AD8334 (ENBL)  
VGA Current  
Each channel  
Each channel  
ꢀ.5  
ꢀ.5  
11  
12  
15  
15  
mA  
mA  
AD8331 (ENBV)  
AD8332, AD8334 (ENBV)  
PSRR  
ꢀ.5  
ꢀ.5  
14  
1ꢀ  
−68  
20  
20  
mA  
mA  
dB  
VGAIN = 0 V, f = 100 kHz  
1 All dBm values are referred to 50 Ω.  
2 The absolute gain refers to the theoretical gain expression in Equation 1.  
3 Best-fit to linear-in-dB curve.  
4 The current is limited to 1 mA typical.  
Rev. G | Page 6 of 56  
 
AD8331/AD8332/AD8334  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
Voltage  
Supply Voltage (VPSn, VPSV, VPSL, VPOS)  
Input Voltage (INHx)  
ENB, ENBL, ENBV, HILO Voltage  
GAIN Voltage  
5.5 V  
VS + 200 mV  
VS + 200 mV  
2.5 V  
Power Dissipation  
ESD CAUTION  
RU Package1 (AD8332)  
CP-32 Package (AD8332)  
RQ Package1 (AD8331)  
CP-64 Package (AD8334)  
Temperature  
0.96 W  
1.9ꢀ W  
0.ꢀ8 W  
0.91 W  
Operating Temperature Range  
Storage Temperature Range  
Lead Temperature (Soldering 60 sec)  
θJA  
−40°C to +85°C  
−65°C to +150°C  
300°C  
RU Package1 (AD8332)  
CP-32 Package22 (AD8332)  
RQ Package1 (AD8331)  
CP-64 Package3 (AD8334)  
68°C/W  
33°C/W  
83°C/W  
24.2°C/W  
1 4-layer JEDEC board (2S2P).  
2 Exposed pad soldered to board, nine thermal vias in pad—JEDEC, 4-layer  
board J-STD-51-9.  
3 Exposed pad soldered to board, 25 thermal vias in pad—JEDEC, 4-layer  
board J-STD-51-9.  
Rev. G | Page ꢀ of 56  
 
 
 
 
 
AD8331/AD8332/AD8334  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
1
2
20 COMM  
LMD  
INH  
PIN 1  
INDICATOR  
19  
18  
ENBL  
ENBV  
3
VPSL  
LON  
LOP  
4
17 COMM  
AD8331  
TOP VIEW  
(Not to Scale)  
5
16  
15  
14  
VOL  
6
VOH  
VPOS  
COML  
VIP  
7
8
13 HILO  
VIN  
9
12  
11  
RCLMP  
VCM  
MODE  
GAIN  
10  
Figure 3. 20-Lead QSOP Pin Configuration (AD8331)  
Table 3. 20-Lead QSOP Pin Function Description (AD8331)  
Pin No.  
Mnemonic  
Description  
1
2
LMD  
INH  
LNA Midsupply Bypass Pin; Connect a Capacitor for Midsupply HF Bypass  
LNA Input  
3
4
5
6
8
9
10  
11  
12  
13  
14  
15  
16  
1ꢀ  
18  
19  
20  
VPSL  
LON  
LOP  
COML  
VIP  
VIN  
MODE  
GAIN  
VCM  
RCLMP  
HILO  
VPOS  
VOH  
VOL  
LNA 5 V Supply  
LNA Inverting Output  
LNA Noninverting Output  
LNA Ground  
VGA Noninverting Input  
VGA Inverting Input  
Gain Slope Logic Input  
Gain Control Voltage  
Common-Mode Voltage  
Output Clamping Level  
Gain Range Select (HI or LO)  
VGA 5 V Supply  
Noninverting VGA Output  
Inverting VGA Output  
VGA Ground  
VGA Enable  
LNA Enable  
COMM  
ENBV  
ENBL  
COMM  
VGA Ground  
Rev. G | Page 8 of 56  
 
 
AD8331/AD8332/AD8334  
1
2
28  
27  
26  
25  
24  
23  
LMD2  
INH2  
LMD1  
INH1  
PIN 1  
INDICATOR  
32  
31  
30  
29  
28  
27  
26  
25  
3
VPS2  
LON2  
LOP2  
COM2  
VIP2  
VPS1  
LON1  
LOP1  
COM1  
VIP1  
LON1  
VPS1  
INH1  
1
2
3
4
5
6
7
8
COMM  
VOH1  
VOL1  
VPSV  
NC  
24  
23  
22  
21  
20  
19  
18  
17  
4
PIN 1  
INDICATOR  
5
AD8332  
TOP VIEW  
6
7
(Not to Scale) 22  
LMD1  
LMD2  
INH2  
AD8332  
TOP VIEW  
(Not to Scale)  
8
21  
20  
19  
VIN2  
VIN1  
9
VCM2  
GAIN  
RCLMP  
VOH2  
VOL2  
COMM  
VCM1  
HILO  
VOL2  
VOH2  
COMM  
10  
11  
12  
13  
14  
18 ENB  
17 VOH1  
16  
VPS2  
LON2  
VOL1  
15 VPSV  
9
10  
11  
12  
13  
14  
15  
16  
NC = NO CONNECT  
Figure 4. 28-Lead TSSOP Pin Configuration (AD8332)  
Figure 5. 32-Lead LFCSP Pin Configuration (AD8332)  
Table 4. 28-Lead TSSOP Pin Function Description (AD8332)  
Table 5. 32-Lead LFCSP Pin Function Description (AD8332)  
Pin No.  
Pin No.  
Mnemonic Description  
Mnemonic Description  
1
LMD2  
CH 2 LNA Midsupply Pin; Connect a  
Capacitor for Midsupply HF Bypass  
CH2 LNA Input  
CH2 Supply LNA 5 V  
1
2
3
4
LON1  
VPS1  
INH1  
LMD1  
CH1 LNA Inverting Output  
CH1 LNA Supply 5 V  
CH1 LNA Input  
CH 1 LNA Midsupply Pin; Connect a  
Capacitor for Midsupply HF Bypass  
CH 2 LNA Midsupply Pin; Connect a  
Capacitor for Midsupply HF Bypass  
2
3
4
5
6
8
9
10  
11  
12  
13  
14  
15  
16  
1ꢀ  
18  
19  
20  
21  
22  
23  
24  
25  
26  
2ꢀ  
28  
INH2  
VPS2  
LON2  
LOP2  
COM2  
VIP2  
CH2 LNA Inverting Output  
CH2 LNA Noninverting Output  
CH2 LNA Ground  
CH2 VGA Noninverting Input  
CH2 VGA Inverting Input  
CH2 Common-Mode Voltage  
Gain Control Voltage  
Output Clamping Resistor  
CH2 Noninverting VGA Output  
CH2 Inverting VGA Output  
VGA Ground (Both Channels)  
VGA Supply 5 V (Both Channels)  
CH1 Inverting VGA Output  
CH1 Noninverting VGA Output  
Enable—VGA/LNA  
VGA Gain Range Select (HI or LO)  
CH1 Common-Mode Voltage  
CH1 VGA Inverting Input  
CH1 VGA Noninverting Input  
CH1 LNA Ground  
5
LMD2  
6
8
9
INH2  
VPS2  
LON2  
LOP2  
COM2  
VIP2  
CH2 LNA Input  
CH2 LNA Supply 5 V  
VIN2  
CH2 LNA Inverting Output  
CH2 LNA Noninverting Output  
CH2 LNA Ground  
CH2 VGA Noninverting Input  
CH2 VGA Inverting Input  
CH2 Common-Mode Voltage  
Gain Slope Logic Input  
Gain Control Voltage  
Output Clamping Level Input  
VGA Ground  
CH2 Noninverting VGA Output  
CH2 Inverting VGA Output  
No Connect  
VCM2  
GAIN  
RCLMP  
VOH2  
VOL2  
COMM  
VPSV  
VOL1  
VOH1  
ENB  
10  
11  
12  
13  
14  
15  
16  
1ꢀ  
18  
19  
20  
21  
22  
23  
24  
25  
26  
2ꢀ  
28  
29  
30  
31  
32  
VIN2  
VCM2  
MODE  
GAIN  
RCLMP  
COMM  
VOH2  
VOL2  
NC  
VPSV  
VOL1  
VOH1  
COMM  
ENBV  
ENBL  
HILO  
HILO  
VCM1  
VIN1  
VGA Supply 5 V  
VIP1  
CH1 Inverting VGA Output  
CH1 Noninverting VGA Output  
VGA Ground  
VGA Enable  
LNA Enable  
VGA Gain Range Select (HI or LO)  
CH1 Common-Mode Voltage  
CH1 VGA Inverting Input  
CH1 VGA Noninverting Input  
CH1 LNA Ground  
COM1  
LOP1  
LON1  
VPS1  
INH1  
LMD1  
CH1 LNA Noninverting Output  
CH1 LNA Inverting Output  
CH1 LNA Supply 5 V  
CH1 LNA Input  
CH 1 LNA Midsupply Pin; Connect a  
Capacitor for Midsupply HF Bypass  
VCM1  
VIN1  
VIP1  
COM1  
LOP1  
CH1 LNA Noninverting Output  
Rev. G | Page 9 of 56  
 
AD8331/AD8332/AD8334  
PIN 1  
INDICATOR  
INH2  
LMD2  
NC  
LON2  
LOP2  
VIP2  
VIN2  
VPS2  
VPS3  
VIN3 10  
VIP3 11  
LOP3 12  
LON3 13  
NC 14  
1
2
3
4
5
6
7
8
9
48 COM12  
47 VOH1  
46 VOL1  
45 VPS12  
44 VOL2  
43 VOH2  
42 COM12  
41 MODE  
40 NC  
39 COM34  
38 VOH3  
37 VOL3  
36 VPS34  
35 VOL4  
34 VOH4  
33 COM34  
AD8334  
TOP VIEW  
(Not to Scale)  
LMD3 15  
INH3 16  
NOTES  
1. THE EXPOSED PADDLE MUST BE  
SOLDERED TO THE PCB GROUND  
TO ENSURE PROPER HEAT  
DISSIPATION, NOISE, AND  
MECHANICAL STRENGTH BENEFITS.  
2. NC = NO CONNECT.  
Figure 6. 64-Lead LFCSP Pin Configuration (AD8334)  
Table 6. 64-Lead LFCSP Pin Function Description (AD8334)  
Pin No.  
Mnemonic  
INH2  
LMD2  
NC  
Description  
1
2
3
CH2 LNA Input.  
CH 2 LNA Midsupply Pin; Connect a Capacitor for Midsupply HF Bypass.  
Not Connected.  
4
5
6
LON2  
LOP2  
VIP2  
CH2 LNA Feedback Output (for RIZ).  
CH2 LNA Output.  
CH2 VGA Positive Input.  
8
9
VIN2  
VPS2  
VPS3  
VIN3  
VIP3  
LOP3  
LON3  
NC  
LMD3  
INH3  
COM3  
COM4  
INH4  
LMD4  
NC  
LON4  
LOP4  
VIP4  
CH2 VGA Negative Input.  
CH2 LNA Supply 5 V.  
CH3 LNA Supply 5 V.  
CH3 VGA Negative Input.  
CH3 VGA Positive Input.  
CH3 LNA Positive Output.  
CH3 LNA Feedback Output (for RIZ).  
Not Connected.  
CH 3 LNA Midsupply Pin; Connect a Capacitor for Midsupply HF Bypass.  
CH3 LNA Input.  
CH3 LNA Ground.  
CH4 LNA Ground.  
CH4 LNA Input.  
10  
11  
12  
13  
14  
15  
16  
1ꢀ  
18  
19  
20  
21  
22  
23  
24  
25  
26  
CH 4 LNA Midsupply Pin; Connect a Capacitor for Midsupply HF Bypass.  
Not Connected.  
CH4 LNA Feedback Output (for RIZ).  
CH4 LNA Positive Output.  
CH4 VGA Positive Input.  
VIN4  
VPS4  
CH4 VGA Negative Input.  
CH4 LNA Supply 5 V.  
Rev. G | Page 10 of 56  
 
AD8331/AD8332/AD8334  
Pin No.  
2ꢀ  
28  
29  
30  
31  
32  
33  
34  
35  
36  
3ꢀ  
38  
39  
40  
41  
42  
43  
44  
45  
46  
4ꢀ  
48  
49  
50  
51  
52  
53  
54  
55  
56  
5ꢀ  
58  
59  
60  
61  
62  
63  
64  
Mnemonic  
GAIN34  
CLMP34  
HILO  
VCM4  
VCM3  
NC  
COM34  
VOH4  
VOL4  
VPS34  
VOL3  
VOH3  
COM34  
NC  
MODE  
COM12  
VOH2  
VOL2  
Description  
Gain Control Voltage for CH3 and CH4.  
Output Clamping Level Input for CH3 and CH4.  
Gain Select for Postamp 0 dB or 12 dB.  
CH4 Common-Mode Voltage—AC Bypass.  
CH3 Common-Mode Voltage—AC Bypass.  
No Connect.  
VGA Ground CH3 and CH4.  
CH4 Positive VGA Output.  
CH4 Negative VGA Output.  
VGA Supply 5 V CH3 and CH4.  
CH3 Negative VGA Output.  
CH3 Positive VGA Output.  
VGA Ground CH3 and CH4.  
No Connect.  
Gain Control Slope, Logic Input, 0 = Positive.  
VGA Ground CH1 and CH2.  
CH2 Positive VGA Output.  
CH2 Negative VGA Output.  
CH2 VGA Supply 5 V CH1 and CH2.  
CH1 Negative VGA Output.  
CH1 Positive VGA Output.  
VPS12  
VOL1  
VOH1  
COM12  
VCM2  
VCM1  
EN34  
VGA Ground CH1 and CH2.  
CH2 Common-Mode Voltage—AC Bypass.  
CH1 Common-Mode Voltage—AC Bypass.  
Shared LNA/VGA Enable CH3 and CH4.  
Shared LNA/VGA Enable CH1 and CH2.  
Output Clamping Level Input CH1 and CH2.  
Gain Control Voltage CH1 and CH2.  
CH1 LNA Supply 5 V.  
CH1 VGA Negative Input.  
CH1 VGA Positive Input.  
CH1 LNA Positive Output.  
CH1 LNA Feedback Output (for RIZ).  
Not Connected.  
EN12  
CLMP12  
GAIN12  
VPS1  
VIN1  
VIP1  
LOP1  
LON1  
NC  
LMD1  
INH1  
COM1  
COM2  
EPAD  
CH 1 LNA Midsupply Pin; Connect a Capacitor for Midsupply HF Bypass.  
CH1 LNA Input.  
CH1 LNA Ground.  
CH2 LNA Ground.  
The exposed paddle must be soldered to the PCB ground to ensure proper heat dissipation,  
noise, and mechanical strength benefits.  
Rev. G | Page 11 of 56  
AD8331/AD8332/AD8334  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, VS = 5 V, RL = 500 Ω, RS = RIN = 50 Ω, RIZ = 280 Ω, CSH = 22 pF, f = 10 MHz, RCLMP = ∞, CL = 1 pF, VCM pin floating,  
−4.5 dB to +43.5 dB gain (HILO = LO), and differential output voltage, unless otherwise specified.  
60  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
SAMPLE SIZE = 80 UNITS  
= 0.5V  
V
GAIN  
HILO = HI  
HILO = LO  
ASCENDING GAIN MODE  
DESCENDING GAIN MODE  
(WHERE AVAILABLE)  
–10  
0
0.2  
0.4  
0.6  
(V)  
0.8  
1.0 1.1  
–0.5 –0.4 –0.3 –0.2 –0.1  
0
0.1  
0.2  
0.3  
0.4  
0.5  
V
GAIN ERROR (dB)  
GAIN  
Figure 10. Gain Error Histogram  
Figure 7. Gain vs. VGAIN and MODE (MODE Available on RU Package)  
25  
20  
15  
10  
5
2.0  
1.5  
1.0  
SAMPLE SIZE = 50 UNITS  
V = 0.2V  
GAIN  
–40°C  
+25°C  
0.5  
0
0
25  
V
= 0.7V  
GAIN  
20  
15  
10  
5
–0.5  
+85°C  
–1.0  
–1.5  
–2.0  
0
0
0.2  
0.4  
0.6  
(V)  
0.8  
1.0 1.1  
V
GAIN  
CHANNEL TO CHANNEL GAIN MATCH (dB)  
Figure 8. Absolute Gain Error vs. VGAIN at Three Temperatures  
Figure 11. Gain Match Histogram for VGAIN = 0.2 V and 0.7 V  
2.0  
50  
V
V
= 1V  
GAIN  
GAIN  
1.5  
1.0  
40  
30  
= 0.8V  
V
V
V
= 0.6V  
= 0.4V  
= 0.2V  
GAIN  
GAIN  
GAIN  
0.5  
20  
1MHz  
0
10  
10MHz  
30MHz  
–0.5  
0
–1.0  
50MHz  
V
= 0V  
GAIN  
–10  
–1.5  
70MHz  
–2.0  
–20  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
500M  
0
0.2  
0.4  
0.6  
(V)  
0.8  
1.0 1.1  
V
GAIN  
Figure 12. Frequency Response for Various Values of VGAIN  
Figure 9. Absolute Gain Error vs. VGAIN at Various Frequencies  
Rev. G | Page 12 of 56  
 
 
 
AD8331/AD8332/AD8334  
60  
50  
40  
30  
20  
10  
0
0
–20  
V
V
= 1V  
GAIN  
GAIN  
V
= 1V p-p  
OUT  
= 0.8V  
V
= 1.0V  
= 0.7V  
= 0.4V  
GAIN  
GAIN  
GAIN  
V
V
V
= 0.6V  
= 0.4V  
= 0.2V  
AD8332  
AD8334  
GAIN  
GAIN  
GAIN  
V
–40  
V
–60  
–80  
V
= 0V  
GAIN  
–100  
–10  
100k  
–120  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
500M  
1M  
10M  
FREQUENCY (Hz)  
100M  
Figure 13. Frequency Response for Various Values of VGAIN, HILO = HI  
Figure 16. Channel-to-Channel Crosstalk vs.  
Frequency for Various Values of VGAIN  
30  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
= 0.5V  
GAIN  
R
= R = 75  
S
IN  
R
= R = 50Ω  
S
IN  
20  
10  
0.1µF  
COUPLING  
R
= R = 100Ω  
S
IN  
R
= R = 200Ω  
S
IN  
1µF  
COUPLING  
0
R
= R = 500Ω  
S
IN  
–10  
–20  
–30  
R
= R = 1kΩ  
S
IN  
0
100k  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
500M  
1M  
10M  
FREQUENCY (Hz)  
100M  
Figure 14. Frequency Response for Various Matched Source Impedances  
Figure 17. Group Delay vs. Frequency for Two Values of AC Coupling  
20  
30  
T = +85°C  
T = +25°C  
T = –40°C  
HI GAIN  
V
R
= 0.5V  
= ∞  
GAIN  
IZ  
10  
0
20  
10  
–10  
–20  
20  
0
LO GAIN  
10  
0
–10  
–20  
–30  
T = +85°C  
T = +25°C  
T = –40°C  
–10  
–20  
100k  
1M  
10M  
100M  
500M  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1  
(V)  
FREQUENCY (Hz)  
V
GAIN  
Figure 18. Representative Differential Output Offset Voltage vs.  
VGAIN at Three Temperatures  
Figure 15. Frequency Response, Unterminated LNA, RS = 50 Ω  
Rev. G | Page 13 of 56  
 
AD8331/AD8332/AD8334  
50j  
100j  
25j  
35  
SAMPLE SIZE = 100  
R
R
= 50,  
= 270Ω  
IN  
IZ  
0.2V < V  
< 0.7V  
GAIN  
30  
25  
20  
15  
10  
5
R
R
= 6k,  
f
= 100kHz  
IN  
=
IZ  
0Ω  
17Ω  
R
R
= 75,  
= 412Ω  
IN  
IZ  
R
R
= 100,  
= 549Ω  
IN  
IZ  
R
R
= 200,  
= 1.1kΩ  
IN  
IZ  
0
49.6 49.7 49.8 49.9 50.0 50.1 50.2 50.3 50.4 50.5  
GAIN SCALING FACTOR  
–25j  
–100j  
–50j  
Figure 19. Gain Scaling Factor Histogram  
Figure 22. Smith Chart, S11 vs. Frequency,  
0.1 MHz to 200 MHz for Various Values of RIZ  
100  
10  
1
20  
15  
10  
5
SINGLE ENDED, PIN VOH OR PIN VOL  
V
= 10mV p-p  
R
= 50Ω  
IN  
IN  
R
= ∞  
L
R
= 100Ω  
IN  
R
= 200Ω  
IN  
R
= 500Ω  
IN  
0
R
= 1kΩ  
IN  
–5  
–10  
–15  
R
= 75Ω  
IN  
0.1  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
500M  
Figure 20. Output Impedance vs. Frequency  
Figure 23. LNA Frequency Response, Single-Ended, for Various Values of RIN  
20  
15  
10k  
R
= ∞  
IZ  
10  
5
1k  
100  
10  
0
–5  
–10  
–15  
RIZ = , CSH = 0pF  
RIZ = 6.65k, CSH = 0pF  
RIZ = 3.01k, CSH = 0pF  
RIZ = 1.1k, CSH = 1.2pF  
RIZ = 549, CSH = 8.2pF  
RIZ = 412, CSH = 12pF  
RIZ = 270, CSH = 22pF  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
500M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 24. Frequency Response for Unterminated LNA, Single-Ended  
Figure 21. LNA Input Impedance vs.  
Frequency for Various Values of RIZ and CSH  
Rev. G | Page 14 of 56  
 
 
AD8331/AD8332/AD8334  
500  
400  
300  
200  
100  
0
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
R
V
= 0, R = ,  
IZ  
S
= 1V, f = 10MHz  
f
= 10MHz  
GAIN  
AD8332  
AD8334  
HI GAIN  
LO GAIN  
AD8331  
0
0.2  
0.4  
0.6  
0.8  
1.0  
–50  
–30  
–10  
10  
30  
50  
70  
90  
V
(V)  
TEMPERATURE (°C)  
GAIN  
Figure 25. Output-Referred Noise vs. VGAIN  
Figure 28. Short-Circuit, Input-Referred Noise vs. Temperature  
2.5  
2.0  
1.5  
1.0  
0.5  
10  
f = 5MHz, R = ,  
IZ  
R
= 0, R = , V  
= 1V,  
S
IZ  
GAIN  
V
= 1V  
HILO = LO OR HI  
GAIN  
1
R
THERMAL NOISE  
ALONE  
S
0.1  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1
10  
100  
1k  
SOURCE RESISTANCE ()  
Figure 26. Short-Circuit, Input-Referred Noise vs. Frequency  
Figure 29. Input-Referred Noise vs. RS  
100  
7
R
= 0, R = ,  
IZ  
S
INCLUDES NOISE OF VGA  
HILO = LO OR HI, f = 10MHz  
6
5
4
3
2
1
0
R
= 50Ω  
10  
IN  
R
= 75Ω  
IN  
R
= 100Ω  
IN  
1
R
= 200Ω  
IN  
R
= ∞  
IZ  
SIMULATED RESULTS  
100  
0.1  
0
0.2  
0.4  
0.6  
0.8  
1.0  
50  
1k  
V
(V)  
SOURCE RESISTANCE ()  
GAIN  
Figure 30. Noise Figure vs. RS for Various Values of RIN  
Figure 27. Short-Circuit, Input-Referred Noise vs. VGAIN  
Rev. G | Page 15 of 56  
 
 
AD8331/AD8332/AD8334  
35  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
PREAMP LIMITED  
f = 10MHz, R = 50Ω  
S
f = 10MHz,  
= 1V p-p  
V
OUT  
30  
25  
20  
15  
10  
HILO = LO, HD2  
HILO = HI, HD2  
HILO = HI, HD3  
HILO = LO, HD3  
HILO = LO, R = 50Ω  
IN  
HILO = LO, R = ∞  
IZ  
5
0
HILO = HI, R = 50Ω  
IN  
HILO = HI, R = ∞  
Iz  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1  
(V)  
0
0
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
()  
V
R
LOAD  
GAIN  
Figure 31. Noise Figure vs. VGAIN  
Figure 34. Harmonic Distortion vs. RLOAD  
30  
25  
20  
15  
10  
5
–40  
–50  
–60  
–70  
–80  
–90  
f = 10MHz,  
= 1V p-p  
HILO = LO, R = 50Ω  
IN  
V
OUT  
HILO = LO, R  
FB  
= ∞  
HILO = HI, R = 50Ω  
IN  
HILO = HI, R  
FB  
= ∞  
HILO = LO, HD2  
HILO = LO, HD3  
HILO = HI, HD2  
HILO = HI, HD3  
f = 10MHz, R = 50Ω  
S
0
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
10  
20  
30  
(pF)  
40  
50  
GAIN (dB)  
C
LOAD  
Figure 35. Harmonic Distortion vs. CLOAD  
Figure 32. Noise Figure vs. Gain  
–20  
–40  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
G = 30dB  
= 1Vp-p  
HILO = HI, HD2  
HILO = HI, HD3  
HILO = LO, HD2  
HILO = LO, HD3  
f = 10MHz,  
GAIN = 30dB  
V
OUT  
HILO = LO, HD3  
HILO = LO, HD2  
–60  
HILO = HI, HD2  
HILO = HI, HD3  
–80  
–100  
1
2
3
4
1M  
10M  
100M  
V
(V p-p)  
FREQUENCY (Hz)  
OUT  
Figure 36. Harmonic Distortion vs. Differential Output Voltage  
Figure 33. Harmonic Distortion vs. Frequency  
Rev. G | Page 16 of 56  
 
 
AD8331/AD8332/AD8334  
0
–20  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
V
= 1V p-p COMPOSITE (f1  
+
f2)  
OUT  
G = 30dB  
V
= 1V p-p  
OUT  
INPUT RANGE  
LIMITED WHEN  
HILO = LO  
–40  
HILO = LO, HD3  
HILO = LO  
HILO = LO, HD2  
–60  
–80  
HILO = HI, HD3  
–100  
–120  
HILO = HI, HD2  
HILO = HI  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1M  
10M  
100M  
V
(V)  
FREQUENCY (Hz)  
GAIN  
Figure 40. IMD3 vs. Frequency  
Figure 37. Harmonic Distortion vs. VGAIN, f = 1 MHz  
0
–20  
40  
35  
30  
25  
20  
15  
10  
5
10MHz HILO = HI  
V
= 1V p-p  
OUT  
1MHz HILO = LO  
10MHz HILO = LO  
1MHz HILO = HI  
HILO = LO, HD2  
INPUT RANGE  
LIMITED WHEN  
HILO = LO  
–40  
HILO = LO, HD3  
–60  
–80  
HILO = HI, HD3  
HILO = HI, HD2  
–100  
–120  
V
= 1V p-p COMPOSITE (f1 + f2)  
OUT  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
V
(V)  
V
(V)  
GAIN  
GAIN  
Figure 41. Output Third-Order Intercept (IP3) vs. VGAIN  
Figure 38. Harmonic Distortion vs. VGAIN, f = 10 MHz  
10  
0
2mV  
100  
90  
f = 10MHz  
HILO = LO  
HILO = HI  
–10  
–20  
–30  
–40  
10  
0
50mV  
10ns  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
V
(V)  
GAIN  
Figure 39. IP1dB Compression vs. VGAIN  
Figure 42. Small Signal Pulse Response, G = 30 dB,  
Top: Input, Bottom: Output Voltage, HILO = HI or LO  
Rev. G | Page 1ꢀ of 56  
 
AD8331/AD8332/AD8334  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
20mV  
100  
90  
HILO = HI  
HILO = LO  
10  
0
500mV  
10ns  
0
5
10  
15  
20  
25  
30  
(k)  
35  
40  
45  
50  
R
CLMP  
Figure 43. Large Signal Pulse Response, G = 30 dB,  
HILO = HI or LO, Top: Input, Bottom: Output Voltage  
Figure 46. Clamp Level vs. RCLMP  
2
1
4
3
C
C
C
C
= 0pF  
L
L
L
L
G = 40dB  
G = 30dB  
= 10pF  
= 22pF  
= 47pF  
R
= 48.1kΩ  
CLMP  
R
= 16.5kΩ  
CLMP  
2
INPUT  
1
INPUT  
0
0
R
= 7.15kΩ  
CLMP  
R
= 2.67kΩ  
–1  
–2  
–3  
–4  
CLMP  
–1  
INPUT IS NOT TO SCALE  
–2  
–50 –40 –30 –20 –10  
0
10  
20  
30  
40  
50  
–30 –20 –10  
0
10  
20  
30  
40  
50  
60  
70  
80  
TIME (ns)  
TIME (ns)  
Figure 44. Large Signal Pulse Response for Various Capacitive Loads,  
CL = 0 pF, 10 pF, 20 pF, 50 pF  
Figure 47. Clamp Level Pulse Response for Four Values of RCLMP  
500mV  
200mV  
100  
90  
10  
0
200mV  
400ns  
100ns  
Figure 48. LNA Overdrive Recovery, VINH 0.05 V p-p to 1 V p-p Burst,  
VGAIN = 0.27 V VGA Output Shown  
Figure 45. Pin GAIN Transient Response,  
Top: VGAIN, Bottom: Output Voltage  
Rev. G | Page 18 of 56  
 
AD8331/AD8332/AD8334  
1V  
2V  
100  
90  
10  
0
100ns  
1V  
1ms  
Figure 52. Enable Response, Large Signal,  
Top: VENB, Bottom: VOUT, VINH = 150 mV p-p  
Figure 49. VGA Overdrive Recovery, VINH 4 mV p-p to 70 mV p-p Burst,  
VGAIN = 1 V VGA Output Shown Attenuated by 24 dB  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
VPS1, V  
GAIN  
= 0.5V  
1V  
100  
90  
VPSV, V  
GAIN  
= 0.5V  
VPS1, V  
GAIN  
= 0V  
10  
0
100ns  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
Figure 50. VGA Overdrive Recovery, VINH 4 mV p-p to 275 mV p-p Burst,  
VGAIN = 1 V VGA Output Shown Attenuated by 24 dB  
Figure 53. PSRR vs. Frequency (No Bypass Capacitor)  
140  
130  
120  
110  
100  
90  
V
= 0.5V  
GAIN  
2V  
AD8334  
80  
70  
AD8332  
60  
50  
40  
200mV  
1ms  
AD8331  
40  
30  
20  
–40  
–20  
0
20  
60  
80  
100  
TEMPERATURE (°C)  
Figure 51. Enable Response, Top: VENB, Bottom: VOUT, VINH = 30 mV p-p  
Figure 54. Quiescent Supply Current vs. Temperature  
Rev. G | Page 19 of 56  
 
AD8331/AD8332/AD8334  
TEST CIRCUITS  
dividing the output noise by the numerical gain between Point A  
and Point B and accounting for the noise floor of the spectrum  
analyzer. The gain should be measured at each frequency of  
interest and with low signal levels because a 50 Ω load is driven  
directly. The generator is removed when noise measurements  
are made.  
MEASUREMENT CONSIDERATIONS  
Figure 55 through Figure 68 show typical measurement  
configurations and proper interface values for measurements  
with 50 Ω conditions.  
Short-circuit input noise measurements are made as shown in  
Figure 62. The input-referred noise level is determined by  
NETWORK ANALYZER  
50Ω  
50Ω  
OUT  
IN  
18nF  
270Ω  
0.1µF  
237Ω  
FB*  
120nH  
0.1µF  
28Ω  
INH  
DUT  
0.1µF  
1:1  
22pF  
237Ω  
28Ω  
0.1µF  
LMD  
*FERRITE BEAD  
Figure 55. Test Circuit—Gain and Bandwidth Measurements  
NETWORK ANALYZER  
50Ω  
50Ω  
OUT  
IN  
18nF 10kΩ  
0.1µF  
237Ω  
FB*  
120nH  
0.1µF  
10kΩ  
28Ω  
INH  
DUT  
0.1µF  
1:1  
22pF  
237Ω  
28Ω  
LMD  
0.1µF  
VGN  
*FERRITE BEAD  
Figure 56. Test Circuit—Frequency Response for Various Matched Source Impedances  
NETWORK ANALYZER  
50  
50Ω  
OUT  
IN  
0.1µF  
237Ω  
FB*  
120nH  
0.1µF  
28Ω  
INH  
DUT  
0.1µF  
1:1  
22pF  
237Ω  
28Ω  
LMD  
0.1µF  
*FERRITE BEAD  
VGN  
Figure 57. Test Circuit—Frequency Response for Unterminated LNA, RS = 50 Ω  
Rev. G | Page 20 of 56  
 
 
AD8331/AD8332/AD8334  
NETWORK ANALYZER  
50Ω  
50Ω  
OUT  
IN  
10kΩ  
18nF  
0.1µF  
OR  
1µF  
0.1µF  
0.1µF  
OR  
237Ω  
28Ω  
FB*  
120nH  
1µF  
INH  
LNA  
LMD  
VGA  
1:1  
22pF  
237Ω  
0.1µF  
OR  
1µF  
0.1µF  
0.1µF  
28Ω  
*FERRITE BEAD  
Figure 58. Test Circuit—Group Delay vs. Frequency for Two Values of AC Coupling  
18nF  
270Ω  
NETWORK  
ANALYZER  
0.1µF  
237Ω  
FB*  
120nH  
0.1µF  
28Ω  
50Ω  
INH  
OUT  
DUT  
1:1  
50Ω  
22pF  
LMD 0.1µF  
0.1µF  
237Ω  
28Ω  
*FERRITE BEAD  
Figure 59. Test Circuit—LNA Input Impedance vs. Frequency in Standard and Smith Chart (S11) Formats  
NETWORK ANALYZER  
50Ω  
50Ω  
OUT  
IN  
0.1µF  
0.1µF  
0.1µF  
237Ω  
28Ω  
FB*  
120nH  
0.1µF  
INH  
1:1  
LNA  
LMD  
VGA  
22pF  
237Ω  
28Ω  
0.1µF  
0.1µF  
0.1µF  
*FERRITE BEAD  
Figure 60. Test Circuit—Frequency Response for Unterminated LNA, Single-Ended  
NETWORK  
ANALYZER  
18nF  
270Ω  
0.1µF  
237Ω  
28Ω  
50Ω  
IN  
1:1  
FB*  
120nH  
0.1µF  
INH  
DUT  
22pF  
237Ω  
0.1µF  
0.1µF  
28Ω  
LMD  
*FERRITE BEAD  
Figure 61. Test Circuit—Short-Circuit, Input-Referred Noise  
Rev. G | Page 21 of 56  
AD8331/AD8332/AD8334  
SPECTRUM  
ANALYZER  
A
B
GAIN  
INH  
0.1µF  
0.1µF  
50Ω  
IN  
FERRITE  
BEAD  
0.1µF  
120nH  
49.9Ω  
50Ω  
DUT  
1:1  
22pF  
1Ω  
0.1µF  
SIGNAL GENERATOR  
TO MEASURE GAIN  
DISCONNECT FOR  
LMD  
NOISE MEASUREMENT  
Figure 62. Test Circuit—Noise Figure  
SPECTRUM  
ANALYZER  
18nF  
270  
AD8332  
50Ω  
0.1µF  
0.1µF  
1kΩ  
1kΩ  
–6dB  
1:1  
IN  
0.1µF  
22pF  
28Ω  
28Ω  
INH  
–6dB  
DUT  
LPF  
LMD  
0.1µF  
50Ω  
SIGNAL  
GENERATOR  
Figure 63. Test Circuit—Harmonic Distortion vs. Load Resistance  
SPECTRUM  
ANALYZER  
18nF  
270Ω  
AD8332  
50Ω  
IN  
0.1µF  
237Ω  
237Ω  
–6dB  
1:1  
0.1µF  
28Ω  
28Ω  
INH  
–6dB  
DUT  
LPF  
22pF  
LMD  
0.1µF  
0.1µF  
50Ω  
SIGNAL  
GENERATOR  
Figure 64. Test Circuit—Harmonic Distortion vs. Load Capacitance  
SPECTRUM  
ANALYZER  
–6dB  
+22dB  
+22dB  
18nF  
274Ω  
INPUT  
0.1µF  
50Ω  
237Ω  
COMBINER  
–6dB  
–6dB  
FB*  
50Ω  
0.1µF  
28Ω  
120nH  
INH  
DUT  
1:1  
–6dB  
22pF  
237Ω  
0.1µF  
0.1µF  
28Ω  
LMD  
50Ω  
SIGNAL  
GENERATORS  
*FERRITE BEAD  
Figure 65.Test Circuit—IMD3 vs. Frequency  
Rev. G | Page 22 of 56  
 
AD8331/AD8332/AD8334  
OSCILLOSCOPE  
18nF  
270Ω  
0.1µF  
0.1µF  
237Ω  
28Ω  
50Ω  
FB*  
IN  
0.1µF  
120nH  
INH  
DUT  
1:1  
22pF  
237Ω  
28Ω  
50Ω  
LMD  
0.1µF  
*FERRITE BEAD  
Figure 66. Test Circuit—Pulse Response Measurements  
OSCILLOSCOPE  
18nF  
INH  
270Ω  
0.1µF  
CH1 CH2  
DIFF  
PROBE  
FB*  
0.1µF  
255Ω  
255Ω  
120nH  
DUT  
22pF  
50Ω  
RF  
LMD  
0.1µF  
0.1µF  
SIGNAL  
GENERATOR  
9.5dB  
50Ω  
TO PIN GAIN  
OR PIN ENxx  
*FERRITE BEAD  
PULSE  
GENERATOR  
Figure 67. Test Circuit—Gain and Enable Transient Response  
NETWORK  
ANALYZER  
50Ω  
50Ω  
OUT  
IN  
TO POWER  
PINS  
18nF  
270Ω  
0.1µF  
DIFF  
PROBE  
FB*  
PROBE POWER  
0.1µF  
255Ω  
255Ω  
120nH  
INH  
DUT  
22pF  
50Ω  
LMD  
RF  
0.1µF  
SIGNAL  
GENERATOR  
0.1µF  
*FERRITE BEAD  
Figure 68. Test Circuit—PSRR vs. Frequency  
Rev. G | Page 23 of 56  
 
AD8331/AD8332/AD8334  
THEORY OF OPERATION  
LON1 LOP1 VIP1 VIN1 EN12  
VCM1  
OVERVIEW  
CLMP12  
V
CLAMP  
PA1  
MID1  
The AD8331/AD8332/AD8334 operate in the same way.  
Figure 69, Figure 70, and Figure 71 are functional block  
diagrams of the three devices  
INH1  
LNA 1  
VOH1  
VOL1  
+
ATTENUATOR  
–48dB  
21dB  
LMD1  
LMD2  
VCM  
BIAS  
LON LOP VIP VIN  
VCM  
HILO  
VGA BIAS AND  
INTERPOLATOR  
GAIN  
INT  
GAIN12  
3.5dB/  
HILO  
VOL2  
LNA 2  
INH2  
V
15.5dB  
PA  
MID  
+
ATTENUATOR  
–48dB  
21dB  
PA2  
VOH  
VOL  
LON2  
LOP2  
VIP2  
+
VOH2  
ATTENUATOR  
–48dB  
LNA  
21dB  
INH  
+
V
VCM2  
VCM3  
MID2  
VIN2  
GAIN UP/  
DOWN  
LMD  
VCM  
BIAS  
VGA BIAS AND  
INTERPOLATOR  
MODE  
GAIN INT  
CLAMP  
RCLMP  
MODE  
V
MID3  
VIN3  
VIP3  
AD8331  
VOH3  
VOL3  
+
LOP3  
LON3  
ATTENUATOR  
–48dB  
21dB  
PA3  
ENBL  
ENBV  
GAIN  
Figure 69. AD8331 Functional Block Diagram  
VGA BIAS AND  
INTERPOLATOR  
GAIN  
INT  
GAIN34  
VOL4  
INH3  
LNA 3  
LON1 LOP1 VIP1 VIN1  
VCM1  
HILO  
+
ATTENUATOR  
–48dB  
LMD3  
LMD4  
21dB  
PA4  
VCM  
BIAS  
VOH4  
3.5dB/  
15.5dB  
V
MID  
+19dB  
AD8334  
INH4  
CLAMP  
LNA 4  
CLMP34  
VOH1  
VOL1  
INH1  
V
MID4  
LNA 1  
ATTENUATOR  
–48dB  
21dB  
PA1  
+
LMD1  
LMD2  
VGA BIAS AND  
LON4 LOP4 VIP4 VIN4  
EN34  
VCM4  
GAIN  
INT  
LNA  
V
MID  
GAIN  
VOH2  
INTERPOLATOR  
Figure 71. AD8334 Functional Block Diagram  
+
ATTENUATOR  
–48dB  
21dB  
PA2  
INH2  
LNA 2  
Each channel contains an LNA that provides user-adjustable input  
impedance termination, a differential X-AMP VGA, and a pro-  
grammable gain postamp with adjustable output voltage limiting.  
Figure 72 shows a simplified block diagram with external  
components.  
VOL2  
AD8332  
V
MID  
CLAMP  
RCLMP  
LON2 LOP2 VIP2 VIN2  
ENB  
VCM2  
Figure 70. AD8332 Functional Block Diagram  
HILO  
LON  
VIN  
SIGNAL PATH  
POSTAMP  
3.5dB/15.5dB  
PREAMPLIFIER  
19dB  
VOH  
VOL  
48dB  
ATTENUATOR  
21dB  
INH  
LNA  
V
MID  
LMD  
LOP  
VIP  
VCM  
CLAMP  
RCLMP  
BIAS AND  
INTERPOLATOR  
GAIN  
INTERFACE  
VCM  
BIAS  
GAIN  
Figure 72. Simplified Block Diagram  
Rev. G | Page 24 of 56  
 
 
 
 
 
 
AD8331/AD8332/AD8334  
The linear-in-dB, gain control interface is trimmed for slope and  
absolute accuracy. The gain range is +48 dB, extending from  
−4.5 dB to +43.5 dB in LO gain and +7.5 dB to +55.5 dB in HI  
gain mode. The slope of the gain control interface is 50 dB/V,  
and the gain control range is 40 mV to 1 V. Equation 1 and  
Equation 2 are the expressions for gain.  
LOW NOISE AMPLIFIER (LNA)  
Good noise performance in the AD8331/AD8332/AD8334  
relies on a proprietary ultralow noise preamplifier at the beginning  
of the signal chain, which minimizes the noise contribution in the  
following VGA. Active impedance control optimizes noise per-  
formance for applications that benefit from input matching.  
GAIN (dB) = 50 (dB/V) × VGAIN − 6.5 dB, (HILO = LO)  
(1)  
A simplified schematic of the LNA is shown in Figure 74. INH  
is capacitively coupled to the source. A bias generator establishes dc  
input bias voltages of 3.25 V and centers the output common-  
mode levels at 2.5 V. A capacitor CLMD (can be the same value as  
the input coupling capacitor CINH) is connected from the LMD  
pin to ground to decouple the LMD bus. The LMD pin is not  
useable for configuring the LNA as a differential input amplifier.  
or  
GAIN (dB) = 50 (dB/V) × VGAIN + 5.5 dB, (HILO = HI)  
(2)  
The ideal gain characteristics are shown in Figure 73.  
60  
50  
C
R
IZ  
IZ  
HILO = HI  
40  
30  
20  
10  
0
TO  
VGA  
VPOS  
LON  
LOP  
2.5V  
–a  
2.5V  
I
I
0
0
–a  
HILO = LO  
C
INH  
INH  
LMD  
3.25V  
3.25V  
ASCENDING GAIN MODE  
Q1  
Q2  
60Ω  
40Ω  
80Ω  
DESCENDING GAIN MODE  
(WHERE AVAILABLE)  
C
LMD  
C
SH  
–10  
R
S
0
0.2  
0.4  
0.6  
(V)  
0.8  
1.0 1.1  
VCM  
BIAS  
I
I
0
0
V
GAIN  
Figure 73. Ideal Gain Control Characteristics  
The gain slope is negative with MODE pulled high (where  
available), as follows:  
Figure 74. Simplified LNA Schematic  
The LNA supports differential output voltages as high as 5 V p-p,  
with positive and negative excursions of 1.25 V, about a  
common-mode voltage of 2.5 V. Because the differential gain  
magnitude is 9, the maximum input signal before saturation is  
275 mV or +550 mV p-p. Overload protection ensures quick  
recovery time from large input voltages. Because the inputs are  
capacitively coupled to a bias voltage near midsupply, very large  
inputs can be handled without interacting with the ESD protection.  
GAIN (dB) = −50 (dB/V) × VGAIN + 45.5 dB, (HILO = LO)  
(3)  
(4)  
or  
GAIN (dB) = −50 (dB/V) × VGAIN + 57.5 dB, (HILO = HI)  
The LNA converts a single-ended input to a differential output  
with a voltage gain of 19 dB. If only one output is used, the gain  
is 13 dB. The inverting output is used for active input impedance  
termination. Each of the LNA outputs is capacitively coupled to  
a VGA input. The VGA consists of an attenuator with a range of  
48 dB followed by an amplifier with 21 dB of gain for a net gain  
range of −27 dB to +21 dB. The X-AMP, gain interpolation  
technique results in low gain error and uniform bandwidth, and  
differential signal paths minimize distortion.  
Low value feedback resistors and the current-driving capability  
of the output stage allow the LNA to achieve a low input-referred  
voltage noise of 0.74 nV/√Hz. This is achieved with a current  
consumption of only 11 mA per channel (55 mW). On-chip  
resistor matching results in precise single-ended gains of 4.5×  
(9× differential), critical for accurate impedance control. The use  
of a fully differential topology and negative feedback minimizes  
distortion. Low HD2 is particularly important in second harmonic  
ultrasound imaging applications. Differential signaling enables  
smaller swings at each output, further reducing third-order  
distortion.  
The final stage is a logic programmable amplifier with gains of  
3.5 dB or 15.5 dB. The LO and HI gain modes are optimized for  
12-bit and 10-bit ADC applications, in terms of output-referred  
noise and absolute gain range. Output voltage limiting can be  
programmed by the user.  
Rev. G | Page 25 of 56  
 
 
 
AD8331/AD8332/AD8334  
UNTERMINATED  
Active Impedance Matching  
R
The LNA supports active impedance matching through an external  
shunt feedback resistor from Pin LON to Pin INH. The input  
resistance, RIN, is given in Equation 5, where A is the single-  
ended gain of 4.5, and 6 kΩ is the unterminated input impedance.  
IN  
R
S
V
OUT  
+
V
IN  
RESISTIVE TERMINATION  
6 kꢀ × RIZ  
33 kꢀ + RIZ  
RIZ  
1 + A  
RIN  
=
6 kꢀ =  
(5)  
R
IN  
R
S
V
OUT  
+
R
S
CIZ is needed in series with RIZ because the dc levels at Pin LON  
V
IN  
and Pin INH are unequal. Expressions for choosing RIZ in terms  
of RIN and for choosing CIZ are found in the Applications  
Information section. CSH and the ferrite bead enhance stability  
at higher frequencies, where the loop gain is diminished, and  
prevent peaking. Frequency response plots of the LNA are shown  
in Figure 23 and Figure 24. The bandwidth is approximately  
130 MHz for matched input impedances of 50 Ω to 200 Ω and  
declines at higher source impedances. The unterminated  
bandwidth (when RIZ = ∞) is approximately 80 MHz.  
ACTIVE IMPEDANCE MATCH - R = R  
S
IN  
R
IZ  
R
IN  
R
S
V
OUT  
+
V
IN  
R
IZ  
R
=
IN  
1 + 4.5  
Figure 75. Input Configurations  
Each output can drive external loads as low as 100 Ω in addition  
to the 100 Ω input impedance of the VGA (200 Ω differential).  
Capacitive loading up to 10 pF is permissible. All loads should  
be ac-coupled. Typically, Pin LOP output is used as a single-ended  
driver for auxiliary circuits, such as those used for Doppler  
ultrasound imaging. Pin LON drives RIZ. Alternatively, a  
differential external circuit can be driven from the two outputs  
in addition to the active feedback termination. In both cases,  
important stability considerations discussed in the Applications  
Information section should be carefully observed.  
7
6
5
4
3
2
1
0
INCLUDES NOISE OF VGA  
RESISTIVE TERMINATION  
(R = R  
)
S
IN  
ACTIVE IMPEDANCE MATCH  
UNTERMINATED  
The impedance at each LNA output is 5 Ω. A 0.4 dB reduction  
in open circuit gain results when driving the VGA, and a 0.8 dB  
reduction results with an additional 100 Ω load at the output.  
The differential gain of the LNA is 6 dB higher. If the load is less  
than 200 Ω on either side, a compensating load is recommended  
on the opposite output.  
SIMULATION  
50 100  
1k  
R
()  
S
Figure 76. Noise Figure vs. RS for Resistive,  
Active Match, and Unterminated Inputs  
7
6
5
4
3
2
1
0
LNA Noise  
INCLUDES NOISE OF VGA  
The input-referred voltage noise sets an important limit on  
system performance. The short-circuit input voltage noise of  
the LNA is 0.74 nV/√Hz or 0.82 nV/√Hz (at maximum gain),  
including the VGA noise. The open circuit, current noise is  
2.5 pA/√Hz. These measurements, taken without a feedback  
resistor, provide the basis for calculating the input noise and  
noise figure performance of the configurations in Figure 75.  
Figure 76 and Figure 77 show simulations extracted from these  
results and the 4.1 dB noise figure (NF) measurement with the  
input actively matched to a 50 Ω source. Unterminated (RIZ = ∞)  
operation exhibits the lowest equivalent input noise and noise  
figure. Figure 76 shows the noise figure vs. source resistance,  
rising at low RS, where the LNA voltage noise is large compared  
to the source noise, and again at high RS due to current noise.  
The VGA input-referred voltage noise of 2.7 nV/√Hz is  
included in all of the curves.  
R
= 50Ω  
IN  
R
= 75Ω  
IN  
R
= 100Ω  
IN  
R
= 200Ω  
IN  
R
= ∞  
IZ  
(SIMULATED RESULTS)  
100  
50  
1k  
R
()  
S
Figure 77. Noise Figure vs. RS for Various Fixed Values of RIN, Actively Matched  
Rev. G | Page 26 of 56  
 
 
 
AD8331/AD8332/AD8334  
The primary purpose of input impedance matching is to  
improve the system transient response. With resistive termination,  
the input noise increases due to the thermal noise of the matching  
resistor and the increased contribution of the LNA input voltage  
noise generator. With active impedance matching, however, the  
contributions of both are smaller than they would be for resistive  
termination by a factor of 1/(1 + LNA Gain). Figure 76 shows  
their relative NF performance. In this graph, the input impedance  
is swept with RS to preserve the match at each point. The noise  
figures for a source impedance of 50 ꢀ are 7.1 dB, 4.1 dB, and  
2.5 dB, respectively, for the resistive, active, and unterminated  
configurations. The noise figures for 200 ꢀ are 4.6 dB, 2.0 dB,  
and 1.0 dB, respectively.  
X-AMP VGA  
The input of the VGA is a differential R-2R ladder attenuator  
network with 6 dB steps per stage and a net input impedance of  
200 Ω differential. The ladder is driven by a fully differential  
input signal from the LNA and is not intended for single-ended  
operation. LNA outputs are ac-coupled to reduce offset and isolate  
their common-mode voltage. The VGA inputs are biased through  
the center tap connection of the ladder to VCM, which is typically  
set to 2.5 V and is bypassed externally to provide a clean ac ground.  
The signal level at successive stages in the input attenuator  
falls from 0 dB to −48 dB in +6 dB steps. The input stages of the  
X-AMP are distributed along the ladder, and a biasing interpolator,  
controlled by the gain interface, determines the input tap point.  
With overlapping bias currents, signals from successive taps  
merge to provide a smooth attenuation range from 0 dB to  
−48 dB. This circuit technique results in excellent linear-in-dB  
gain law conformance and low distortion levels and deviates  
0.2 dB or less from the ideal. The gain slope is monotonic with  
respect to the control voltage and is stable with variations in  
process, temperature, and supply.  
Figure 77 is a plot of NF vs. RS for various values of RIN, which is  
helpful for design purposes. The plateau in the NF for actively  
matched inputs mitigates source impedance variations. For  
comparison purposes, a preamp with a gain of 19 dB and noise  
spectral density of 1.0 nV/√Hz, combined with a VGA with  
3.75 nV/√Hz, yields a noise figure degradation of approximately  
1.5 dB (for most input impedances), significantly worse than  
the AD8331/AD8332/AD8334 performance.  
The X-AMP inputs are part of a gain-of-12 feedback amplifier  
that completes the VGA. Its bandwidth is 150 MHz. The input  
stage is designed to reduce feedthrough to the output and to  
ensure excellent frequency response uniformity across gain  
setting (see Figure 12 and Figure 13).  
The equivalent input noise of the LNA is the same for single-  
ended and differential output applications. The LNA noise figure  
improves to 3.5 dB at 50 Ω without VGA noise, but this is  
exclusive of noise contributions from other external circuits  
connected to LOP. A series output resistor is usually recom-  
mended for stability purposes when driving external circuits on  
a separate board (see the Applications Information section). In  
low noise applications, a ferrite bead is even more desirable.  
Gain Control  
Position along the VGA attenuator is controlled by a single-ended  
analog control voltage, VGAIN, with an input range of 40 mV to  
1.0 V. The gain control scaling is trimmed to a slope of 50 dB/V  
(20 mV/dB). Values of VGAIN beyond the control range saturate  
to minimum or maximum gain values. Both channels of the  
AD8332 are controlled from a single gain interface to preserve  
matching. Gain can be calculated using Equation 1 and Equation 2.  
VARIABLE GAIN AMPLIFIER  
The differential X-AMP VGA provides precise input attenuation  
and interpolation. It has a low input-referred noise of 2.7 nV/√Hz  
and excellent gain linearity. A simplified block diagram is shown  
in Figure 78.  
Gain accuracy is very good because both the scaling factor and  
absolute gain are factory trimmed. The overall accuracy relative  
to the theoretical gain expression is 1 dB for variations in  
temperature, process, supply voltage, interpolator gain ripple,  
trim errors, and tester limits. The gain error relative to a best-fit  
line for a given set of conditions is typically 0.2 dB. Gain matching  
between channels is better than 0.1 dB (Figure 11 shows gain errors  
in the center of the control range). When VGAIN < 0.1 or > 0.95,  
gain errors are slightly greater.  
GAIN  
GAIN INTERPOLATOR  
(BOTH CHANNELS)  
POSTAMP  
+
g
m
6dB  
R
VIP  
48dB  
2R  
200Ω  
VIN  
The gain slope can be inverted, as shown in Figure 73 (except for  
the AD8332 AR models). The gain drops with a slope of −50 dB/V  
across the gain control range from maximum to minimum gain.  
This slope is useful in applications such as automatic gain control,  
where the control voltage is proportional to the measured output  
signal amplitude. The inverse gain mode is selected by setting the  
MODE pin to HI gain mode.  
POSTAMP  
Figure 78. Simplified VGA Schematic  
Gain control response time is less than 750 ns to settle within 10%  
of the final value for a change from minimum to maximum gain.  
Rev. G | Page 2ꢀ of 56  
 
 
AD8331/AD8332/AD8334  
VGA Noise  
Common-Mode Biasing  
In a typical application, a VGA compresses a wide dynamic  
range input signal to within the input span of an ADC. While  
the input-referred noise of the LNA limits the minimum resolvable  
input signal, the output-referred noise, which depends primarily  
on the VGA, limits the maximum instantaneous dynamic range  
that can be processed at any one particular gain control voltage.  
This limit is set in accordance with the quantization noise floor  
of the ADC.  
An internal bias network connected to a midsupply voltage  
establishes common-mode voltages in the VGA and postamp.  
An externally bypassed buffer maintains the voltage. The bypass  
capacitors form an important ac ground connection because  
the VCM network makes a number of important connections  
internally, including the center tap of the VGA differential input  
attenuator, the feedback network of the VGA fixed gain amplifier,  
and the feedback network of the postamp in both gain settings.  
For best results, use a 1 nF capacitor and a 0.1 μF capacitor in  
parallel, with the 1 nF capacitor nearest to the VCM pin. Separate  
VCM pins are provided for each channel. For dc coupling to a 3 V  
ADC, the output common-mode voltage is adjusted to 1.5 V by  
biasing the VCM pin.  
Output- and input-referred noise as a function of VGAIN are plotted  
in Figure 25 and Figure 27 for the short circuited input conditions.  
The input noise voltage is simply equal to the output noise divided  
by the measured gain at each point in the control range.  
The output-referred noise is flat over most of the gain range  
because it is dominated by the fixed output-referred noise of the  
VGA. Values are 48 nV/√Hz in LO gain mode and 178 nV/√Hz  
in HI gain mode. At the high end of the gain control range, the  
noise of the LNA and the noise of the source prevail. The input-  
referred noise reaches its minimum value near the maximum  
gain control voltage, where the input-referred contribution of  
the VGA becomes very small.  
POSTAMPLIFIER  
The final stage has a selectable gain of 3.5 dB (×1.5) or 15.5 dB  
(×6), set by the HILO logic pin. Figure 79 is a simplified block  
diagram.  
Gm2  
+
VOH  
Gm1  
F2  
At lower gains, the input-referred noise, and thus noise figure,  
increases as the gain decreases. The instantaneous dynamic  
range of the system is not lost, however, because the input  
capacity increases with it. The contribution of the ADC noise  
floor has the same dependence as well. The important relationship  
is the magnitude of the VGA output noise floor relative to that  
of the ADC.  
VCM  
F1  
Gm2  
VOL  
Gm1  
With its low output-referred noise levels, these devices ideally  
drive low voltage ADCs. The converter noise floor drops 12 dB  
for every two bits of resolution and drops at lower input full-  
scale voltages and higher sampling rates. ADC quantization  
noise is discussed in the Applications Information section.  
Figure 79. Postamplifier Block Diagram  
Separate feedback attenuators implement the two gain settings.  
These are selected in conjunction with an appropriately scaled  
input stage to maintain a constant 3 dB bandwidth between the  
two gain modes (~150 MHz). The slew rate is 1200 V/μs in HI gain  
mode and 300 V/μs in LO gain mode. The feedback networks  
for HI and LO gain modes are factory trimmed to adjust the  
absolute gains of each channel.  
The preceding noise performance discussion applies to a  
differential VGA output signal. Although the LNA noise  
performance is the same in single-ended and differential  
applications, the VGA performance is not. The noise of the  
VGA is significantly higher in single-ended usage because the  
contribution of its bias noise is designed to cancel in the differential  
signal. A transformer can be used with single-ended applications  
when low noise is desired.  
Noise  
The topology of the postamp provides constant input-referred  
noise with the two gain settings and variable output-referred  
noise. The output-referred noise in HI gain mode increases  
(with gain) by four. This setting is recommended when driving  
converters with higher noise floors. The extra gain boosts the  
output signal levels and noise floor appropriately. When driving  
circuits with lower input noise floors, the LO gain mode optimizes  
the output dynamic range.  
Gain control noise is a concern in very low noise applications.  
Thermal noise in the gain control interface can modulate the  
channel gain. The resultant noise is proportional to the output  
signal level and usually only evident when a large signal is present.  
Its effect is observable only in LO gain mode where the noise  
floor is substantially lower. The gain interface includes an  
on-chip noise filter, which reduces this effect significantly at  
frequencies above 5 MHz. Care should be taken to minimize  
noise impinging at the GAIN input. An external RC filter can be  
used to remove VGAIN source noise. The filter bandwidth should be  
sufficient to accommodate the desired control bandwidth.  
Although the quantization noise floor of an ADC depends on a  
number of factors, the 48 nV/√Hz and 178 nV/√Hz levels are  
well suited to the average requirements of most 12-bit and 10-bit  
converters, respectively. An additional technique, described in  
the Applications Information section, can extend the noise floor  
even lower for possible use with 14-bit ADCs.  
Rev. G | Page 28 of 56  
 
 
AD8331/AD8332/AD8334  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
Output Clamping  
Outputs are internally limited to a level of 4.5 V p-p differential  
when operating at a 2.5 V common-mode voltage. The postamp  
implements an optional output clamp engaged through a resistor  
from RCLMP to ground. Table 8 shows a list of recommended  
resistor values.  
R
= ∞  
CLMP  
8.8k  
3.5kΩ  
R
= 1.86kΩ  
CLMP  
Output clamping can be used for ADC input overload protection, if  
needed, or postamp overload protection when operating from a  
lower common-mode level, such as 1.5 V. The user should be  
aware that distortion products increase as output levels approach  
the clamping levels, and the user should adjust the clamp resistor  
accordingly. For additional information, see the Applications  
Information section.  
3.5kΩ  
8.8kΩ  
R
= ∞  
CLMP  
–3  
–2  
–1  
0
1
2
3
V
(V)  
INH  
The accuracy of the clamping levels is approximately 5% in LO  
or HI mode. Figure 80 illustrates the output characteristics for a  
Figure 80. Output Clamping Characteristics  
few values of RCLMP  
.
Rev. G | Page 29 of 56  
 
 
AD8331/AD8332/AD8334  
APPLICATIONS INFORMATION  
LNA—EXTERNAL COMPONENTS  
C
LMD  
0.1µF  
LNA  
SOURCE  
FB  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
1
2
The LMD pin (connected to the bias circuitry) must be bypassed to  
ground and signal sourced to the INH pin, which is capacitively  
coupled using 2.2 nF to 0.1 μF capacitors (see Figure 81).  
0.1µF  
LMD2  
INH2  
LMD1  
INH1  
C
*
SH  
5V  
C
*
IZ  
+5V  
3
VPS2  
LON2  
LOP2  
VPS1  
LON1  
LOP1  
COM1  
VIP1  
The unterminated input impedance of the LNA is 6 kꢀ. The  
user can synthesize any LNA input resistance between 50 ꢀ and  
6 kꢀ. RIZ is calculated according to Equation 6 or selected from  
Table 7.  
R
*
IZ  
1nF  
LNA OUT  
0.1µF  
4
5
6
COM2  
VIP2  
33 kꢀ ×  
(
RIN  
)
7
RIZ  
=
(6)  
6 kꢀ –  
(
RIN  
)
0.1µF  
0.1µF  
1nF  
8
VIN2  
VIN1  
Table 7. LNA External Component Values for Common  
Source Impedances  
9
V
VCM2  
GAIN  
RCLMP  
VOH2  
VOL2  
COMM  
GAIN  
VCM1  
HILO  
ENB  
5V  
1nF  
5V  
0.1µF  
1nF  
10  
11  
12  
13  
14  
RIN (Ω)  
RIZ (Nearest STD 1% Value, Ω)  
CSH (pF)  
50  
280  
22  
0.1µF  
1nF  
ꢀ5  
412  
12  
*
*
VGA OUT  
VGA OUT  
VOH1  
100  
200  
500  
6 k  
562  
8
1.2  
None  
None  
VOL1  
VPSV  
1.13 k  
3.01 k  
5V  
1nF  
0.1µF  
*SEE TEXT  
When active input termination is used, a decoupling capacitor (CIS)  
is required to isolate the input and output bias voltages of the LNA.  
Figure 81. Basic Connections for a Typical Channel (AD8332 Shown)  
LNA  
DECOUPLING  
RESISTOR  
TO EXT  
CIRCUIT  
R
IZ  
The shunt input capacitor, CSH, reduces gain peaking at higher  
frequencies where the active termination match is lost due to  
the gain roll-off of the LNA at high frequencies. The value of CSH  
diminishes as RIN increases to 500 Ω, at which point no capacitor is  
required. Suggested values for CSH for 50 Ω ≤ RIN ≤ 200 Ω are  
shown in Table 7.  
VIP  
5  
50Ω  
50Ω  
LON  
100Ω  
100Ω  
3.25V  
VCM  
2.5V  
2.5V  
5Ω  
LNA  
C
SH  
LOP  
When a long trace to Pin INH is unavoidable, or if both LNA  
outputs drive external circuits, a small ferrite bead (FB) in series  
with Pin INH preserves circuit stability with negligible effect on  
noise. The bead shown is 75 Ω at 100 MHz (Murata BLM21 or  
equivalent). Other values can prove useful.  
3.25V  
VIN  
LNA  
DECOUPLING  
RESISTOR  
TO EXT  
CIRCUIT  
Figure 82. Interconnections of the LNA and VGA  
Figure 82 shows the interconnection details of the LNA output.  
Capacitive coupling between the LNA outputs and the VGA  
inputs is required because of the differences in their dc levels  
and the need to eliminate the offset of the LNA. Capacitor values  
of 0.1 μF are recommended. There is a 0.4 dB loss in gain  
between the LNA output and the VGA input due to the 5 Ω  
output resistance. Additional loading at the LOP and LON  
outputs affects LNA gain.  
Both LNA outputs are available for driving external circuits.  
Pin LOP should be used in those instances when a single-ended  
LNA output is required. The user should be aware of stray  
capacitance loading of the LNA outputs, in particular LON. The  
LNA can drive 100 Ω in parallel with 10 pF. If an LNA output is  
routed to a remote PC board, it tolerates a load capacitance up  
to 100 pF with the addition of a 49.9 Ω series resistor or ferrite  
75 Ω/100 MHz bead.  
Rev. G | Page 30 of 56  
 
 
 
 
 
AD8331/AD8332/AD8334  
Gain Input  
Optional Output Voltage Limiting  
The GAIN pin is common to both channels of the AD8332. The  
input impedance is nominally 10 MΩ, and a bypass capacitor  
from 100 pF to 1 nF is recommended.  
The RCLMP pin provides the user with a means to limit the  
output voltage swing when used with loads that have no  
provisions for prevention of input overdrive. The peak-to-peak  
limited voltage is adjusted by a resistor to ground (see Table 8  
for a list of several voltage levels and corresponding resistor  
values). Unconnected, the default limiting level is 4.5 V p-p.  
Parallel connected devices can be driven by a common voltage  
source or DAC. Decoupling should take into account any band-  
width considerations of the drive waveform, using the total  
distributed capacitance.  
Note that third harmonic distortion increases as waveform  
amplitudes approach clipping. For lowest distortion, the clamp level  
should be set higher than the converter input span. A clamp level  
of 1.5 V p-p is recommended for a 1 V p-p linear output range,  
2.7 V p-p for a 2 V p-p range, or 1 V p-p for a 0.5 V p-p operation.  
The best solution is determined experimentally. Figure 84 shows  
third harmonic distortion as a function of the limiting level for  
a 2 V p-p output signal. A wider limiting level is desirable in HI  
gain mode.  
If gain control noise in LO gain mode becomes a factor, main-  
taining ≤15 nV/√Hz noise at the GAIN pin ensures satisfactory  
noise performance. Internal noise prevails below 15 nV/√Hz at  
the GAIN pin. Gain control noise is negligible in HI gain mode.  
VCM Input  
The common-mode voltage of Pin VCM, Pin VOL, and Pin VOH  
defaults to 2.5 V dc. With output ac-coupled applications, the  
VCM pin is unterminated; however, it must still be bypassed in  
close proximity for ac grounding of internal circuitry. The VGA  
outputs can be dc connected to a differential load, such as an  
ADC. Common-mode output voltage levels between 1.5 V and  
3.5 V can be realized at Pin VOH and Pin VOL by applying the  
desired voltage at Pin VCM. DC-coupled operation is not  
recommended when driving loads on a separate PC board.  
–20  
V
= 0.75V  
GAIN  
–30  
–40  
–50  
–60  
–70  
–80  
The voltage on the VCM pin is sourced by an internal buffer  
with an output impedance of 30 Ω and a 2 mA default output  
current (see Figure 83). If the VCM pin is driven from an external  
source, its output impedance should be <<30 Ω, and its current  
drive capability should be >>2 mA. If the VCM pins of several  
devices are connected in parallel, the external buffer should be  
capable of overcoming their collective output currents. When a  
common-mode voltage other than 2.5 V is used, a voltage-  
limiting resistor, RCLMP, is needed to protect against overload.  
INTERNAL  
HILO = LO  
HILO = HI  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
CLAMP LIMIT LEVEL (V p-p)  
Figure 84. HD3 vs. Clamping Level for 2 V p-p Differential Input  
Table 8. Clamp Resistor Values  
Clamp Resistor Value (kΩ)  
CIRCUITRY  
Clamp Level (V p-p)  
HILO = LO  
1.21  
2.ꢀ4  
4.ꢀ5  
ꢀ.5  
HILO = HI  
2mA MAX  
R
<< 30Ω  
NEW V  
CM  
O
VCM  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.4  
30Ω  
2.21  
4.02  
6.49  
9.53  
14.ꢀ  
23.2  
39.2  
ꢀ3.2  
100pF  
0.1µF  
AC GROUNDING FOR  
INTERNAL CIRCUITRY  
11  
Figure 83. VCM Interface  
16.9  
26.ꢀ  
49.9  
100  
Logic Inputs—ENB, MODE, and HILO  
The input impedance of all enable pins is nominally 25 kΩ and  
can be pulled up to 5 V (a pull-up resistor is recommended) or  
driven by any 3 V or 5 V logic families. The enable pin, ENB,  
powers down the VGA; when pulled low, the VGA output voltages  
are near ground. Multiple devices can be driven from a common  
source. Consult Table 3, Table 4, Table 5, and Table 6 for infor-  
mation about circuit functions controlled by the enable pins.  
Output Decoupling  
When driving capacitive loads greater than about 10 pF, or long  
circuit connections on other boards, an output network of resistors  
and/or ferrite beads can be useful to ensure stability. These  
components can be incorporated into a Nyquist filter such as  
the one shown in Figure 81. In Figure 81, the resistor value is  
84.5 Ω. For example, all the evaluation boards for this series  
incorporate 100 ꢀ in parallel with a 120 nH bead. Lower value  
resistors are permissible for applications with nearby loads or  
Pin HILO is compatible with 3 V or 5 V CMOS logic families. It  
is either connected to ground or pulled up to 5 V, depending on  
the desired gain range and output noise.  
Rev. G | Page 31 of 56  
 
 
 
 
AD8331/AD8332/AD8334  
with gains less than 40 dB. The exact values of these components  
can be selected empirically.  
Signals larger than 275 mV at the LNA input are clipped to  
5 V p-p differential prior to the input of the VGA. Figure 48  
shows the response to a 1 V p-p input burst. The symmetric  
overload waveform is important for applications, such as CW  
Doppler ultrasound, where the spectrum of the LNA outputs  
during overload is critical. The input stage is also designed to  
accommodate signals as high as 2.5 V without triggering the  
slow-settling ESD input protection diodes.  
An antialiasing noise filter is typically used with an ADC. Filter  
requirements are application dependent.  
When the ADC resides on a separate board, the majority of  
filter components should be placed nearby to suppress noise  
picked up between boards and to mitigate charge kickback from  
the ADC inputs. Any series resistance beyond that required for  
output stability should be placed on the ADC board. Figure 85  
shows a second-order, low-pass filter with a bandwidth of 20 MHz.  
The capacitor is chosen in conjunction with the 10 pF input  
capacitance of the ADC.  
Both stages of the VGA are susceptible to overload. Post-  
amplifier limiting is more common and results in the clean-  
limited output characteristics found in Figure 49. Recovery is fast in  
all cases. The graph in Figure 87 summarizes the combinations of  
input signal and gain that lead to the different types of overload.  
OPTIONAL  
BACKPLANE  
POSTAMP  
OVERLOAD  
X-AMP  
OVERLOAD  
POSTAMP  
OVERLOAD  
X-AMP  
OVERLOAD  
0.1µF  
0.1µF  
1.5µH  
1.5µH  
15mV 25mV  
4mV  
25mV  
84.5Ω  
84.5Ω  
158Ω  
158Ω  
43.5  
56.5  
18pF  
ADC  
41dB  
29dB  
Figure 85. 20 MHz Second-Order, Low-Pass Filter  
24.5dB  
24.5dB  
LO GAIN  
MODE  
HI GAIN  
MODE  
DRIVING ADCs  
The output drive accommodates a wide range of ADCs. The  
noise floor requirements of the VGA depend on a number of  
application factors, including bit resolution, sampling rate, full-  
scale voltage, and the bandwidth of the noise/antialias filter. The  
output noise floor and gain range can be adjusted by selecting  
HI or LO gain mode.  
–4.5  
1m  
7.5  
1m  
10m  
0.1 0.275  
1
10m  
0.1 0.275  
1
INPUT AMPLITUDE (V)  
INPUT AMPLITUDE (V)  
Figure 87. Overload Gain and Signal Conditions  
The relative noise and distortion performance of the two gain  
modes can be compared in Figure 25 and Figure 31 through  
Figure 41. The 48 nV/√Hz noise floor of the LO gain mode is  
suited to converters with higher sampling rates or resolutions  
(such as 12 bits). Both gain modes can accommodate ADC full-  
scale voltages as high as 4 V p-p. Because distortion performance  
remains favorable for output voltages as high as 4 V p-p (see  
Figure 36), it is possible to lower the output-referred noise even  
further by using a resistive attenuator (or transformer) at the  
output. The circuit in Figure 86 has an output full-scale range of  
2 V p-p, a gain range of −10.5 dB to +37.5 dB, and an output  
noise floor of 24 nV/√Hz, making it suitable for some 14-bit  
ADC applications.  
The clamp interface mentioned in the Output Clamping section  
controls the maximum output swing of the postamp and its  
overload response. When the clamp feature is not used, the  
output level defaults to approximately 4.5 V p-p differential  
centered at 2.5 V common mode. When other common-mode  
levels are set through the VCM pin, the value of RCLMP should be  
selected for graceful overload. A value of 8.3 kΩ or less is  
recommended for 1.5 V or 3.5 V common-mode levels (7.2 kΩ  
for HI gain mode). This limits the output swing to just above  
2 V p-p differential.  
OPTIONAL INPUT OVERLOAD PROTECTION  
Applications in which high transients are applied to the LNA  
input can benefit from the use of clamp diodes. A pair of back-  
to-back Schottky diodes can reduce these transients to manageable  
levels. Figure 88 illustrates how such a diode protection scheme  
can be connected.  
4V p-p DIFF,  
48nV/ Hz  
2V p-p DIFF,  
24nV/ Hz  
187Ω  
VOH  
VOL  
ADC  
AD6644  
374Ω  
2:1  
LPF  
OPTIONAL  
SCHOTTKY  
187Ω  
COMM 20  
OVERLOAD  
Figure 86. Adjusting the Noise Floor for 14-Bit ADCs  
CLAMP  
0.1µF  
FB  
2
INH  
ENBL 19  
OVERLOAD  
C
R
3
IZ  
SH  
3
4
VPSL  
LON  
These devices respond gracefully to large signals that overload  
its input stage and to normal signals that overload the VGA  
when the gain is set unexpectedly high. Each stage is designed  
for clean-limited overload waveforms and fast recovery when  
gain setting or input amplitude is reduced.  
R
C
IZ  
SH  
2
1
BAS40-04  
Figure 88. Input Overload Clamping  
Rev. G | Page 32 of 56  
 
 
 
 
 
AD8331/AD8332/AD8334  
ADG736  
When selecting overload protection, the important parameters  
are forward and reverse voltages and trr (or τrr). The Infineon  
BAS40-04 series shown in Figure 88 has a τrr of 100 ps and a VF  
of 310 mV at 1 mA. Many variations of these specifications can  
be found in vendor catalogs.  
1.13kΩ  
SELECT R  
IZ  
280Ω  
5Ω  
LON  
LOP  
18nF  
LAYOUT, GROUNDING, AND BYPASSING  
200Ω  
50Ω  
INH  
Due to their excellent high frequency characteristics, these  
devices are sensitive to their PCB environments. Realizing  
expected performance requires attention to detail critical to  
good, high speed, board design.  
LNA  
LMD  
5Ω  
0.1µF  
AD8332  
Figure 89. Accommodating Multiple Sources  
A multilayer board with power and ground planes is recom-  
mended with blank areas in the signal layers filled with ground  
plane. Be certain that the power and ground pins provided for  
robust power distribution to the device are connected. Decouple  
the power supply pins with surface-mount capacitors as close as  
possible to each pin to minimize impedance paths to ground.  
Decouple the LNA power pins from the VGA supply using  
ferrite beads. Together with the capacitors, ferrite beads  
eliminate undesired high frequencies without reducing the  
headroom. Use a larger value capacitor for every 10 chips to  
20 chips to decouple residual low frequency noise. To minimize  
voltage drops, use a 5 V regulator for the VGA array.  
DISABLING THE LNA  
Where accessible, connection of the LNA enable pin to ground  
powers down the LNA, resulting in a current reduction of about  
half. In this mode, the LNA input and output pins can be left  
unconnected; however, the power must be connected to all the  
supply pins for the disabling circuit to function. Figure 90 illustrates  
the connections using AD8331 as an example.  
1
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
NC  
COMM  
LMD  
AD8331  
2
NC  
INH  
ENBL  
ENBV  
COMM  
VOL  
Several critical LNA areas require special care. The LON and  
LOP output traces must be as short as possible before connecting  
to the coupling capacitors connected to Pin VIN and Pin VIP.  
RIZ must be placed near the LON pin as well. Resistors must be  
placed as close as possible to the VGA output pins, VOL and  
VOH, to mitigate loading effects of connecting traces. Values  
are discussed in the Output Decoupling section.  
+5V  
3
VPSL  
LON  
LOP  
COML  
+5V  
4
NC  
NC  
Signal traces must be short and direct to avoid parasitic effects.  
Wherever there are complementary signals, symmetrical layout  
should be employed to maintain waveform balance. PCB traces  
should be kept adjacent when running differential signals over a  
long distance.  
5
VOUT  
6
VOH  
MULTIPLE INPUT MATCHING  
0.1µF  
Matching of multiple sources with dissimilar impedances can be  
accomplished as shown in Figure 89. A relay and low supply voltage  
analog switch can be used to select between multiple sources  
and their associated feedback resistors. An ADG736 dual SPDT  
switch is shown in this example; however, multiple switches are  
also available and users are referred to the Analog Devices  
Selection Guide for switches and multiplexers.  
7
VIP  
VPOS  
+5V  
VIN  
0.1µF  
8
HILO  
RCLMP  
VCM  
VIN  
HILO  
9
MODE  
MODE  
R
CLMP  
10  
GAIN  
GAIN  
VCM  
Figure 90. Disabling the LNA  
Rev. G | Page 33 of 56  
 
 
 
AD8331/AD8332/AD8334  
ULTRASOUND TGC APPLICATION  
HIGH DENSITY QUAD LAYOUT  
The AD8332 ideally meets the requirements of medical and  
industrial ultrasound applications. The TGC amplifier is a key  
subsystem in such applications because it provides the means  
for echo location of reflected ultrasound energy.  
The AD8334 is the ideal solution for applications with limited  
board space. Figure 94 represents four channels routed to and  
away from this very compact quad VGA. Note that none of the  
signal paths crosses and that all four channels are spaced apart  
to eliminate crosstalk.  
Figure 91 through Figure 93 are schematics of a dual, fully  
differential system using the AD8332 and the AD9238 12-bit  
high speed ADC with conversion speeds as high as 65 MSPS.  
In this example, all of the components shown are 0402 size;  
however, the same layout is executable at the expense of slightly  
more board area. The sketch also assumes that both sides of the  
printed circuit board are available for components and that the  
bypass and power supply decoupling circuitry is located on the  
wiring side of the board.  
Rev. G | Page 34 of 56  
 
AD8331/AD8332/AD8334  
S3  
E
IN2  
TP5  
AD8332ARU  
C50  
0.1µF  
1
28  
27  
26  
LMD1  
LMD2  
C49  
TP6  
C70  
0.1µF  
0.1µF  
L12  
120nH FB  
L13  
120nH FB  
C60  
0.1µF  
TP3  
2
3
S1  
IN1  
(RED)  
+5V  
INH1  
INH2  
E
C79  
TB1  
+5V  
C80  
22pF  
JP5  
IN2  
JP6  
IN1  
22pF  
CFB2  
18nF  
CFB1  
18nF  
+5VLNA  
+
C46  
1µF  
TP4  
(BLACK)  
VPS1  
LON1  
LOP1  
COM1  
VIP1  
VPS2  
LON2  
LOP2  
COM2  
VIP2  
RFB1  
274Ω  
C41  
C74  
1nF  
+5VLNA  
RFB2  
274Ω  
0.1µF  
TB2  
GND  
L7  
4
25  
24  
23  
22  
21  
20  
19  
120nH FB  
+5VGA  
5
L6  
120nH FB  
+5VLNA  
C42  
0.1µF  
C59  
0.1µF  
6
C51  
0.1µF  
C53  
0.1µF  
7
VCM1  
8
VIN2  
VIN1  
VCM1  
JP13  
C78  
1nF  
C48  
0.1µF  
9
VCM2  
GAIN  
RCLMP  
VOH2  
VOL2  
COMM  
VCM1  
HILO  
ENB  
C43  
0.1µF  
C77  
1nF  
+5VGA  
10  
HI GAIN  
JP10  
TP2 GAIN  
TP7 GND  
C83  
1nF  
+5VGA  
LO GAIN  
ENABLE  
18  
11  
12  
JP16  
R3  
C68  
1nF  
C69  
0.1µF  
DISABLE  
(R  
)
CLMP  
17  
16  
15  
VOH1  
VOL1  
VPSV  
JP8  
DC2H  
R27  
100Ω  
R24  
100Ω  
JP9  
OPTIONAL 4-POLE LOW-PASS  
FILTER  
OPTIONAL 4-POLE LOW-PASS  
FILTER  
13  
14  
C58  
0.1µF  
L19  
L17  
SAT  
SAT  
L11  
120nH FB  
L9  
120nH FB  
L1  
C54  
0.1µF  
L15  
SAT  
V
+B  
IN  
SAT  
V
+A  
IN  
C64  
SAT  
C65  
SAT  
JP17  
C67  
SAT  
C66  
SAT  
C55  
0.1µF  
JP12  
L20  
SAT  
L10  
120nH FB  
C56  
0.1µF  
L18  
SAT  
L14  
SAT  
L16  
SAT  
L8  
120nF FB  
V
–A  
IN  
V
–B  
IN  
JP7  
DC2L  
R26  
100Ω  
R25  
100Ω  
+5VGA  
C45  
0.1µF  
C85  
1nF  
JP10  
Figure 91. Schematic, TGC, VGA Section Using an AD8332 and AD9238  
Rev. G | Page 35 of 56  
 
AD8331/AD8332/AD8334  
VR1  
+3.3VAVDD  
ADP3339AKC-3.3  
L5  
120nH FB  
C44  
1µF  
+5V  
+
C22  
0.1µF  
C21  
1nF  
C31  
0.1µF  
3
2
1
ADCLK  
IN OUT GND  
L4  
R11  
C2  
10µF  
6.3V  
+
120nH FB  
100Ω  
JP2  
R10  
1
2
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
AGND  
VIN+_A  
AVDD  
0Ω  
SHARED  
REF  
Y
R5  
OUT  
TAB  
C30  
33Ω  
0.1µF  
V
V
+_A  
CLK_A  
IN  
C61  
18pF  
L3  
120nH FB  
N
3
VIN–_A SHARED_REF  
–_A  
IN  
R14  
4.7kΩ  
R6  
33Ω  
4
C29  
0.1µF  
R4  
AGND  
AVDD  
REFT_A  
REFB_A  
VREF  
MUX_SELECT  
PDWN_A  
OEB_A  
OTR_A  
D11_A (MSB)  
D10_A  
D9_A  
R12  
1.5kΩ  
+3.3VADDIG  
C17  
C18  
1nF  
1.5kΩ  
R15  
0Ω  
5
0.1µF  
C33  
10µF  
6.3V  
L2  
120nH FB  
C35  
0.1µF  
6
+
C40  
0.1µF  
C52  
C1  
0.1µF  
10nF  
7
OTR_A  
C36  
0.1µF  
TP9  
+
8
D11_A  
D10_A  
D9_A  
VREF  
C12  
10µF  
6.3V  
C32  
9
0.1µF  
C34  
10µF  
6.3V  
SENSE  
REFB_B  
REFT_B  
AVDD  
AGND  
VIN–_B  
VIN+_B  
AGND  
AVDD  
CLK_B  
DCS  
C38  
0.1µF  
10  
C57  
10nF  
C39  
10µF  
11  
12  
13  
14  
15  
16  
54  
53  
D8_A  
D8_A  
C37  
0.1µF  
+3.3VADDIG  
DRGND  
DRVDD  
D7_A  
C23  
0.1µF  
C25  
1nF  
C16  
0.1µF  
C15  
1nF  
1.5kΩ  
1.5kΩ  
52  
51  
50  
49  
R8  
33Ω  
V
V
–_B  
+_B  
D7_A  
D6_A  
D5_A  
D4_A  
D3_A  
D2_A  
D1_A  
D0_A  
DNC  
IN  
C62  
18pF  
D6_A  
IN  
R7  
33Ω  
+3.3VCLK  
D5_A  
R18  
499Ω  
17  
18  
19  
20  
48  
47  
46  
45  
44  
43  
S2  
D4_A  
C63  
C20  
0.1µF  
C19  
1nF  
EXT CLOCK  
0.1µF  
R16  
5kΩ  
D3_A  
R17  
49.9Ω  
D2_A  
R19  
499Ω  
JP3  
JP11  
DFS  
D1_A  
R20  
4.7kΩ  
R41  
4.7kΩ  
21  
22  
PDWN_B  
OEB_B  
DNC  
D0_A  
DNC  
+3.3VCLK  
ADCLK  
TP 12  
23  
24  
25  
26  
27  
28  
29  
42  
41  
40  
39  
38  
37  
36  
DNC  
DNC  
DNC  
DNC  
C47  
10µF  
6.3V  
+
C86  
0.1µF  
ADCLK  
DNC  
DRVDD  
DRGND  
OTR_B  
D11_B (MSB)  
D10_B  
D9_B  
C11  
10µF  
6.3V  
+
C13  
1nF  
C14  
0.1µF  
U5  
74VHC04  
U5  
74VHC04  
EXT  
3
D0_B  
D1_B  
D2_B  
D0_B  
R9  
0Ω  
4
1
V
OE  
3
5
4
1
9
2
DD  
20MHz  
OUT  
JP4  
D1_B  
OTR_B  
D11_B  
D10_B  
D9_B  
2
3
1
INT  
D2_B  
GND  
TP 13  
DATA  
CLK  
2
U5  
74VHC04  
U5  
74VHC04  
DRGND  
DRVDD  
D3_B  
3
U6  
SG-636PCE  
6
8
1
JP1  
2
D3_B  
D4_B  
D5_B  
30  
31  
32  
35  
34  
33  
D8_B  
D8_B  
U5  
D4_B  
D7_B  
D7_B  
74VHC04  
13  
12  
D5_B  
D6_B  
D6_B  
SPARES  
11  
10  
+3.3VADDIG  
U5  
74VHC04  
C24  
1nF  
C26  
0.1µF  
Figure 92. Converter Schematic, TGC Using an AD8332 and AD9238  
Rev. G | Page 36 of 56  
AD8331/AD8332/AD8334  
R40  
1
20  
10  
18  
17  
16  
15  
14  
13  
12  
22  
U10  
74VHC541  
GND  
DATACLKA  
G1  
G2  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
VCC  
+3.3VDVDD  
+
C3  
0.1µF  
C28  
10µF  
6.3V  
19  
2
4
1
3
22 × 4  
RP 1  
1
8
2
3
4
5
6
7
8
22 × 4  
8
1
2
Y1  
Y2  
Y3  
RP 9  
7
2
3
4
1
7
6
5
8
6
5
OTR_A  
D11_A  
D10_A  
D9_A  
3
4
1
6
5
8
7
10  
12  
14  
16  
9
Y4  
Y5  
Y6  
Y7  
Y8  
8
22 × 4  
RP2  
11  
13  
15  
22 × 4  
RP 10  
7
2
3
4
2
3
4
1
2
7
6
5
8
7
D8_A  
6
5
D7_A  
9
11  
18  
20  
22  
24  
26  
28  
30  
32  
34  
36  
38  
40  
17  
19  
21  
23  
25  
27  
29  
31  
33  
35  
37  
39  
D6_A  
22 × 4  
RP 3  
3
4
1
2
6
5
8
7
+3.3VDVDD  
1
20  
10  
18  
17  
U7  
74VHC541  
G1  
G2  
A1  
A2  
A3  
A4  
A5  
A6  
VCC  
+
22 × 4  
RP 4  
C76  
10µF  
6.3V  
C8  
0.1µF  
C10  
0.1µF  
19  
GND  
8
1
2
3
4
1
2
3
22 × 4  
D5_A  
D4_A  
D3_A  
D2_A  
D1_A  
D0_A  
Y1  
Y2  
Y3  
Y4  
Y5  
Y6  
3
4
6
5
RP 11  
7
6
5
4
5
6
7
8
9
16  
15  
14  
13  
12  
11  
8
22 × 4  
RP 12  
7
2
3
4
6
5
DNC  
DNC  
A7  
A8  
Y7  
Y8  
SAM080UPM  
+3.3VDVDD  
1
20  
10  
18  
17  
16  
15  
14  
13  
12  
11  
42  
44  
46  
48  
50  
52  
54  
56  
58  
60  
62  
64  
66  
68  
70  
72  
41  
43  
45  
47  
49  
51  
53  
55  
57  
59  
61  
63  
65  
67  
69  
71  
U2  
74VHC541  
G1  
G2  
A1  
A2  
A3  
A4  
A5  
VCC  
GND  
Y1  
+
+
C27  
C7  
C9  
0.1µF  
19  
1
22 × 4  
RP 13  
8
10µF  
6.3V  
0.1µF  
22 × 4  
RP 5  
2
3
4
7
6
5
2
3
4
5
6
7
8
9
1
2
3
4
8
7
6
5
8
OTR_B  
D11_B  
D10_B  
D9_B  
Y2  
Y3  
22 × 4  
RP 14  
1
2
8
7
Y4  
1
2
3
4
22 × 4  
RP 6  
D8_B  
Y5  
7
6
5
3
6
D7_B  
A6  
A7  
A8  
Y6  
Y7  
Y8  
4
1
5
8
D6_B  
D5_B  
22 × 4  
1
2
3
4
1
8
7
6
5
8
22 × 4  
RP 7  
+3.3VDVDD  
1
20  
10  
RP 15  
G1  
G2  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
U3 VCC  
74VHC541  
+
C75  
C4  
0.1µF  
C5  
0.1µF  
C6  
0.1µF  
19  
10µF  
6.3V  
GND  
Y1  
Y2  
Y3  
Y4  
Y5  
Y6  
Y7  
Y8  
22 × 4  
RP 8  
2
3
4
1
7
6
5
8
2
3
4
5
6
7
8
9
18  
17  
16  
15  
14  
13  
12  
11  
D4_B  
D3_B  
D2_B  
D1_B  
D0_B  
DNC  
2
3
4
7
6
5
74  
76  
78  
80  
73  
75  
77  
79  
22 × 4  
RP 16  
2
3
4
7
6
5
SAM080UPM  
DNC  
R39  
22Ω  
DATACLK  
Figure 93. Interface Schematic, TGC Using an AD8332 and AD9238  
Rev. G | Page 3ꢀ of 56  
 
AD8331/AD8332/AD8334  
COM2  
COM1  
INH1  
COM3  
COM4  
INH4  
LMD1  
NC  
LMD4  
NC  
LON1  
LOP1  
VIP1  
LON4  
LOP4  
VIP4  
VIN1  
VIN4  
VPS1  
GAIN12  
CLMP12  
EN12  
EN34  
VCM1  
VCM2  
VPS4  
GAIN34  
CLMP34  
HILO  
VCM4  
VCM3  
NC  
03199-094  
Figure 94. Compact Signal Path and Board Layout for the AD8334  
Rev. G | Page 38 of 56  
 
AD8331/AD8332/AD8334  
AD8331 EVALUATION BOARD  
GENERAL DESCRIPTION  
The AD8331 evaluation board is a platform for testing and  
evaluating the AD8331 variable gain amplifier (VGA). The  
board is provided completely assembled and tested; the user  
simply connects an input signal, VGAIN sources, and a 5 V  
power supply. The AD8331-EVALZ is lead free and RoHS  
compliant. Figure 95 is a photograph of the board.  
USER-SUPPLIED OPTIONAL COMPONENTS  
As shown in the schematic in Figure 96, the board provides for  
optional components. The components shown in black are for  
typical operation, and the components shown in gray are  
installed at the users discretion.  
As shipped, the LNA input impedance of the AD8331-EVALZ is  
configured for 50 ꢀ to accommodate most signal generators and  
network analyzers. Input impedances up to 6 kΩ are realized by  
changing the values of RFB and CSH. Refer to the Theory of  
Operation section for details on this circuit feature. See Table 9  
for typical values of input impedance and corresponding  
components.  
Figure 95. Photograph of AD8331-EVALZ  
MEASUREMENT SETUP  
The basic board connection for measuring bandwidth is shown  
in Figure 97. A 5 V, 100 mA minimum power supply and a low  
noise, voltage reference supply for GAIN are required. Table 10  
lists jumpers, and Figure 97 shows their functions and positions.  
Table 9. LNA External Component Values for Common  
Source Impedances  
The preferred signal detection method is a differential probe  
connected to VO, as shown in Figure 97. Single-ended loads can be  
connected using the board edge SMA connector, VOH. Be sure to  
take into account the 25.8 dB attenuation incurred when using the  
board in this manner. For connection to an ADC, the 270 ꢀ series  
resistors can be replaced with 0 ꢀ or other appropriate values.  
RIN (Ω)  
RFB (Ω, Nearest 1% Value)  
CSH (pF)  
50  
2ꢀ4  
22  
ꢀ5  
412  
12  
100  
200  
500  
6 k  
562  
8
1.2  
None  
None  
1.13 k  
3.01 k  
Table 10. Jumper Functions  
Switch  
LNA_EN  
VGA_EN  
W5, W6  
Function  
Enables the LNA when in the top position  
Enables the VGA when in the top position  
Connects the AD8331 outputs to the SMA connectors  
The board is designed for 0603 size, surface-mount components.  
Back-to-back diodes can be installed at Location D3 if desired.  
To evaluate the LNA as a standalone amplifier, install optional  
SMA connectors LON and LOP and capacitors C1 and C2;  
typical values are 0.1 μF or smaller. At R4 and R8, 0 ꢀ resistors  
are installed unless capacitive loads larger than 10 pF are connected  
to the SMA connectors LON and LOP (such as coaxial cables).  
In that event, small value resistors (68 ꢀ to 100 ꢀ) must be  
installed at R4 and R8 to preserve the stability of the amplifier.  
GN_SLOPE Left = gain increases with VGAIN  
Right = gain decreases with VGAIN  
GN_HI_LO Left = high gain  
Right = LO gain  
BOARD LAYOUT  
The evaluation board circuitry uses four conductor layers. The  
two inner layers are grounded, and all interconnecting circuitry  
is located on the outer layers. Figure 99 to Figure 102 illustrate  
the copper patterns.  
A resistor can be inserted at RCLMP if output clamping is  
desired. Refer to Table 8 for appropriate values.  
Rev. G | Page 39 of 56  
 
 
 
 
AD8331/AD8332/AD8334  
AD8331 EVALUATION BOARD SCHEMATICS  
GND1 GND2 GND +5V  
GND3 GND4  
+
C3  
10µF  
10V  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
LMD2  
INH  
COMM  
ENB  
CLMD  
0.1µF  
+5V  
C
INH  
0.1µF  
L1  
120nH FB  
LNA2  
ENABLE  
DISABLE  
LNA_EN  
PROBE  
D1  
CSH  
22pF  
CFB  
0.018µF  
RFB  
274µF  
3
INPUT  
CLAMP  
DIODES  
L2  
120nH FB  
BAT64-04  
ENABLE  
DISABLE  
3
VGA_EN  
VPS  
ENBV  
+5V  
C6  
0.1µF  
DUT  
AD8331ARQ  
LON  
C1  
R4  
R8  
4
LON  
COMM  
VOL  
LO  
L3  
120nH FB  
C2  
5
LOP  
C24  
R16  
R44  
LOP  
0.1µF  
W5  
W6  
237Ω  
100Ω  
T1  
1:1  
6
VO  
COML  
VIP  
VOH  
C26  
0.1µF  
R43  
100Ω  
R20  
237Ω  
C16  
C14  
0.1µF  
0.1µF  
VOH  
L4  
7
120nH FB  
VPOS  
HILO  
CLMP  
VCM  
+5V  
L5  
120nH FB  
C32  
0.1µF  
HI  
8
GN_HI_LO  
VIN  
LO  
+5V  
RCLMP  
DOWN  
UP  
9
MODE  
GAIN  
GN_SLOPE  
C17  
0.1µF  
RCLMP  
VCM  
10  
GAIN  
C34  
1nF  
C18  
0.1µF  
COMPONENTS IN GRAY ARE  
OPTIONAL AND USER SUPPLIED.  
Figure 96. Schematic of the AD8331 Evaluation Board  
Rev. G | Page 40 of 56  
 
 
AD8331/AD8332/AD8334  
4395A ANALYZER  
GN D  
1103 TEKPROBE  
POWER SUPPLY  
E3631A  
POWER SUPPLY  
+5V  
GND  
DIFFERENTIAL PROBE  
TO VO PINS  
DP8200 PRECISION VOLTAGE REFERENCE  
(FOR VGAIN)  
INSERT JUMPERS W5 AND W6  
TO USE OUTPUT  
TRANSFORMER AND VOH SMA  
Figure 97. AD8331 Typical Board Test Connections  
Rev. G | Page 41 of 56  
 
AD8331/AD8332/AD8334  
AD8331 EVALUATION BOARD PCB LAYERS  
Figure 98. AD8331-EVALZ Assembly  
Figure 101. Internal Layer Ground  
Figure 99. Primary Side Copper  
Figure 102. Power Plane  
Figure 103. Top Silkscreen  
Figure 100. Secondary Side Copper  
Rev. G | Page 42 of 56  
 
 
AD8331/AD8332/AD8334  
AD8332 EVALUATION BOARD  
GENERAL DESCRIPTION  
Table 11. LNA External Component Values for Common  
Source Impedances  
The AD8332-EVALZ is a platform for the testing and evaluation of  
the AD8332 variable gain amplifier (VGA). The board is shipped  
assembled and tested, and users need only connect the signal  
and VGAIN sources to a single 5 V power supply. Figure 104 is a  
photograph of the component side of the board, and Figure 105  
shows the schematic. The AD8332-EVALZ is lead free and  
RoHS compliant.  
RIN (Ω)  
RFB1, RFB2 (Ω Std 1% Value)  
CSH1, CSH2 (pF)  
50  
2ꢀ4  
22  
ꢀ5  
412  
12  
100  
200  
500  
6 k  
562  
8
1.2  
None  
None  
1.13 k  
3.01 k  
SMA connectors, S2, S3, S6, and S7, are provided for access to  
the LNA outputs or the VGA inputs. If the LNA is used alone,  
0.1 μF coupling capacitors can be installed at the C5, C9, C23,  
and C24 locations. Resistors of 68 Ω to 100 Ω may be required  
if the load capacitances, as seen by the LNA outputs, are larger  
than approximately 10 pF.  
A resistor can be inserted at RCLMP if output clamping is desired.  
The peak-to-peak clamping level is adjusted by installing one of  
the standard 1% resistor values listed in Table 8.  
A high frequency differential probe connected to the 2-pin headers,  
VOx, is the preferred method to observe a waveform at the VGA  
output. A typical setup is shown in Figure 106. Single-ended loads  
can be connected directly via the board edge SMA connectors.  
Note that the AD8332 output amplifier is buffered with 237 Ω  
resistors; therefore, be sure to compensate for attenuation if low  
impedances are connected to the output SMAs.  
MEASUREMENT SETUP  
Figure 104.Photograph of the AD8332-EVALZ  
The basic board connections for measuring bandwidth are  
shown in Figure 106. A 5 V, 100 mA (minimum) power supply  
is required, and a low noise voltage reference supply is required  
for VGAIN.  
USER-SUPPLIED OPTIONAL COMPONENTS  
The board is built and tested using the components shown in  
black in Figure 105. Provisions are made for optional components  
(shown in gray) that can be installed for testing at user discretion.  
The default LNA input impedance is 50 Ω to match various  
signal generators and network analyzers. Input impedances up to  
6 kΩ are realized by changing the values of RFBx and CSHx. For  
reference, Table 11 lists the common input impedance values  
and corresponding adjustments. The board is designed for 0603  
size, surface-mount components.  
BOARD LAYOUT  
The evaluation board circuitry uses four conductor layers.  
The two inner layers are power and ground planes, and all  
interconnecting circuitry is located on the outer layers. Figure 108  
to Figure 111 illustrate the copper patterns.  
Rev. G | Page 43 of 56  
 
 
 
AD8331/AD8332/AD8334  
EVALUATION BOARD SCHEMATICS  
+5V  
GND GND1 GND2 GND3 GND4  
+
C25  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
LMD2  
INH2  
LMD1  
INH1  
10µF  
C2  
C1  
0.1µF  
0.1µF  
C4  
C3  
0.1µF  
L1  
CSH1  
22pF  
CSH2  
22pF  
L2  
120nH FB  
0.1µF  
LNA2  
LNA1  
120nH FB  
CAL2  
CFB2  
18nF  
CFB1  
18nF  
CAL1  
L8  
120nH FB  
3
+5V  
VPS2  
VPS1  
+5VLNA  
C6  
0.1µF  
C7  
0.1µF  
+5VLNA  
RFB1  
274Ω  
RFB2  
274Ω  
AD8332ARUZ  
S2  
LON1  
S6  
LON2  
C9  
C5  
C23  
4
LON2  
LOP2  
COM2  
VIP2  
LON1  
LOP1  
COM1  
VIP1  
R9  
R10  
W8  
W9  
5
C24  
S7  
S3  
LOP1  
R12  
R11  
6
LOP2  
C16  
0.1µF  
C14  
0.1µF  
C13  
0.1µF  
C15  
0.1µF  
7
8
VIN2  
VIN1  
C10  
0.1µF  
9
VCM2  
VCM2  
GAIN  
RCLMP  
VOH2  
VOL2  
COMM  
VCM1  
HILO  
ENB  
VCM1  
+5V  
C17  
0.1µF  
10  
11  
12  
13  
14  
HI  
GAIN  
W5  
LO  
C8  
1nF  
+5V  
TP3  
CLAMP  
ENABLE  
DISABLE  
W4  
C20  
0.1µF  
RCLMP  
L3  
L6  
120nH FB  
120nH FB  
VOH1  
VOL1  
VPSV  
C11  
0.1µF  
C19  
0.1µF  
T2  
1:1  
R13  
237Ω  
R7  
100Ω  
R15  
237Ω  
R5  
100Ω  
W12  
W10  
T1  
1:1  
VOH2  
VOH1  
W6  
VO2  
W7  
VO1  
C18  
0.1µF  
R8  
100Ω  
R6  
100Ω  
R14  
237Ω  
R16  
237Ω  
W13  
W11  
L5  
120nH FB  
C12  
0.1µF  
L4  
120nH FB  
L7  
120nH FB  
COMPONENTS IN GRAY ARE  
OPTIONAL AND USER SUPPLIED.  
+5V  
C22  
0.1µF  
Figure 105. Schematic of the AD8332 Evaluation Board  
Rev. G | Page 44 of 56  
 
 
AD8331/AD8332/AD8334  
NETWORK ANALYZER  
1103 TEKPROBE  
POWER SUPPLY  
VGAIN SUPPLY  
DIFFERENTIAL PROBE  
Figure 106. AD8332 Typical Board Test Connections  
Rev. G | Page 45 of 56  
 
AD8331/AD8332/AD8334  
AD8332 EVALUATION BOARD PCB LAYERS  
Figure 107. AD8332-EVALZ Assembly  
Figure 110. Ground Plane  
Figure 108. Primary Side Copper  
Figure 111. Power Plane  
Figure 109. Secondary Side Copper  
Figure 112. Component Side Silkscreen  
Rev. G | Page 46 of 56  
 
 
 
AD8331/AD8332/AD8334  
AD8334 EVALUATION BOARD  
GENERAL DESCRIPTION  
The AD8334-EVALZ is a platform for the testing and evaluation of  
the AD8334 variable gain amplifier (VGA). The board is shipped  
assembled and tested, and users need only connect the signal  
and VGAIN sources and a single 5 V power supply. Figure 113  
is a photograph of the board. The AD8334-EVALZ is lead free  
and RoHS compliant.  
Figure 113. AD8334-EVALZ Top View  
Rev. G | Page 4ꢀ of 56  
 
 
AD8331/AD8332/AD8334  
Viewing Signals  
CONFIGURING THE INPUT IMPEDANCE  
The preferred signal detector is a high impedance differential  
probe, such as the Tektronix P6247, 1 GHz differential probe,  
connected to the 2-pin headers (VO1, VO2, VO3, or VO4), as  
shown in Figure 116. The low capacitance of this probe has the  
least effect on the performance of the device of any detection  
method tried. The probe can also be used for monitoring input  
signals at IN1, IN2, IN3, or IN4. It can be used for probing  
other circuit nodes; however, be aware that the 200 kΩ input  
impedance can affect certain circuits.  
The board is built and tested using the components shown in  
black in Figure 115. Provisions are made for optional components  
(shown in gray) that can be installed at user discretion. As  
shipped, the input impedances of the low noise amplifiers (LNAs)  
are configured for 50 Ω to match the output impedances of most  
signal generators and network analyzers. Input impedances up to  
6 kΩ can be realized by changing the values of the feedback  
resistors, RFB1, RFB2, RFB3, RFB4, and shunt capacitors, C6, C8, C10,  
and C12. For reference, Table 12 lists standard values of 1%  
resistors for some typical values of input impedance. Of course,  
if the user has determined that the source impedance falls  
between these values, the feedback resistor value can be  
calculated accordingly. Note that the board is designed to accept  
standard surface-mount, size 0603 components.  
Differential-to-single-ended transformers are provided for  
single-ended output connections. Note that series resistors are  
provided to protect against accidental output overload should a  
50 Ω load be connected to the connector. Of course, the effect  
of these resistors is to limit the bandwidth. If the load connected  
to the SMA is >500 Ω, the 237 Ω series resistors, RX1, RX2, RX3,  
RX4, RX5, RX6, RX7, and RX8, can be replaced with 0 Ω values.  
Table 12. LNA External Component Values for Common  
Source Impedances  
RIN (Ω) RFB1, RFB2, RFB3, RFB4 (Ω, 1%) C6, C8, C10, C12 (pF)  
50  
2ꢀ4  
22  
ꢀ5  
412  
12  
100  
200  
500  
6 k  
562  
8
1.2  
1.13 k  
3.01 k  
No resistor  
No capacitor  
No capacitor  
Driving the VGA from an External Source or Using the  
LNA to Drive an External Load  
Appropriate components can be installed if the user wants to  
drive the VGA directly from an external source or to evaluate  
the LNA output. If the LNA is used to drive off-board loads  
or cables, small value series resistors (47 Ω to 100 Ω) are  
recommended for LNA decoupling. These can be installed  
in the R10, R11, R14, R15, R18, R19, R22, and R23 spaces.  
Provisions are made for surface-mount SMA connectors that  
can be used for driving from either direction. If the LNA is not  
used, it is recommended that the capacitors, C16, C17, C21,  
C22, C26, C27, C31, and C32, be carefully removed to avoid  
driving the outputs of the LNAs.  
Figure 114. AD8334-EVALZ Assembly  
MEASUREMENT SETUP  
The basic board connections for measuring bandwidth are  
shown in Figure 116. A 5 V, 200 mA (minimum) power supply  
is required, and a low noise voltage reference supply is required  
for VGAIN.  
Using the Clamp Circuit  
The board is shipped with no resistors installed in the spaces  
provided for clamp-circuit operation. Note that each pair of  
channels shares a clamp resistor. If the output clamping is  
desired, the resistors are installed in R49 and R50. The peak-to-  
peak clamping level is application dependent.  
BOARD LAYOUT  
The evaluation board circuitry uses four conductor layers. The  
two inner layers are ground, and all interconnecting circuitry is  
located on the outer layers. Figure 117 to Figure 120 illustrate  
the copper patterns.  
Rev. G | Page 48 of 56  
 
 
AD8331/AD8332/AD8334  
EVALUATION BOARD SCHEMATICS  
INH1  
+5V  
L1  
+5V  
+5V GND1 GND2 GND3 GND4 GND5 GND6  
L9  
120 nH  
R49  
4.02k  
+
C14  
10 µF  
LO11  
L5  
RX1  
100ꢀ  
R111  
120 nH  
R101  
EN12  
120 nH  
EN34  
IN1  
ICR1  
C17  
0.1 µF  
E
E
CFB1  
18 nF  
RFB1  
274ꢀ  
RX2  
100ꢀ  
1
2
VO1  
C5  
0.1 µF  
C6  
C57  
D
D
0.1 µF  
C16  
0.1 µF  
CR1  
L10  
120 nH  
C1  
C59  
0.1 µF  
22 pF  
0.1 µF  
3
L12  
120 nH FB  
57  
64 63 62 61 60 59 58  
56 55 54 53 52 51 50 49  
+5V  
C7  
CFB2  
18 nF  
C8  
L7  
C75  
0.1 µF  
0.1 µF  
INH2  
120 nH  
22 pF  
1
2
48  
INH2  
COM12  
47  
46  
45  
44  
43  
42  
L1 1  
120 nH  
IN2  
ICR2  
2
LMD2  
NC  
VOH1  
VOL1  
RFB2  
274ꢀ  
3
C2  
0.1 µF  
1
RX3  
100ꢀ  
R141  
0ꢀ  
4
CR2  
LO N2  
LO P2  
VIP2  
VPSV2  
VOL2  
LO21  
5
3
VO2  
RX4  
100ꢀ  
R151  
0ꢀ  
C22  
0.1 µF  
C21  
0.1 µF  
6
VOH2  
L1 3  
120 nH  
7
+5V  
L2  
C69  
0.1 µF  
VIN2  
VPS2  
VPS3  
VIN3  
VIP3  
COM12  
120 nH  
+5V  
+5V  
8
D
MODE 41  
AD8334  
SLOPE  
L3  
9
120 nH  
L14  
120 nH  
U
NC3 40  
39  
C71  
0.1 µF  
10  
11  
12  
13  
14  
15  
16  
COMM34  
C26  
0.1 µF  
RX5  
100ꢀ  
38  
37  
36  
35  
C27  
0.1 µF  
R181  
VOH3  
VOL3  
VPS34  
VOL4  
LO31  
LO P3  
LO N3  
NC  
VO3  
RX6  
100ꢀ  
R191  
C9  
RFB3  
274ꢀ  
L15  
120 nH  
CFB3  
18 nF  
L6  
120 nH  
LMD3  
INH3  
34  
33  
0.1 µF  
INH3  
VOH4  
COM34  
L34  
120 nH  
C10  
22 pF  
ICR3  
C3  
0.1µF  
IN3  
+5V  
23  
29  
1
2
17 18 19 20 21 22  
24 25 26 27 28  
30 31  
32  
C77  
0.1 µF  
C62  
0.1 µF  
C4  
L16  
C12  
22 pF  
0.1 µF  
120 nH  
C31  
0.1 µF  
3
CR3  
RFB4  
RX7  
100ꢀ  
C11  
0.1 µF  
CFB4  
274ꢀ  
HI  
+5V  
18 nF  
C32  
0.1 µF  
IN4  
HILO  
LO  
VO4  
CLMP34  
L4  
120 nH  
ICR4  
RX8  
100ꢀ  
L8  
120 nH  
R221  
R231  
1
2
R50  
4.02kꢀ  
L17  
120 nH  
+5V  
LO41  
3
CR4  
NOTES  
1
COMPONENTS IN GRAY ARE OPTIONAL USER SUPPLIED.  
NC = NO CONNECT.  
2
Figure 115. AD8334-EVALZ Schematic  
Rev. G | Page 49 of 56  
 
 
AD8331/AD8332/AD8334  
PROBE  
POWER  
SUPPLY  
PRECISION VOLTAGE  
REFERENCE (FOR VGAIN)  
GAIN  
CONTROL  
VOLTAGE  
GND  
NETWORK ANALYZER  
+5V  
DIFFERENTIAL PROBE  
POWER SUPPLY  
SIGNAL INPUT  
GND  
Figure 116. AD8334 Typical Board Test Connections (One Channel Shown)  
Rev. G | Page 50 of 56  
 
AD8331/AD8332/AD8334  
AD8334 EVALUATION BOARD PCB LAYERS  
Figure 119. AD8334-EVALZ Inner Layer 1Copper  
Figure 117. AD8334-EVALZ Primary Side Copper  
Figure 118. AD8334-EVALZ Secondary Side Copper  
Figure 120. AD8334-EVALZ Inner Layer 2 Copper  
Rev. G | Page 51 of 56  
 
 
 
AD8331/AD8332/AD8334  
Figure 121. AD8334-EVALZ Component Side Silkscreen  
Rev. G | Page 52 of 56  
AD8331/AD8332/AD8334  
OUTLINE DIMENSIONS  
9.80  
9.70  
9.60  
28  
15  
4.50  
4.40  
4.30  
6.40 BSC  
1
14  
PIN 1  
0.65  
BSC  
1.20 MAX  
0.15  
0.05  
8°  
0°  
0.75  
0.60  
0.45  
0.30  
0.19  
0.20  
0.09  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AE  
Figure 122. 28-Lead Thin Shrink Small Outline Package (TSSOP)  
(RU-28)  
Dimensions shown in millimeters  
0.345 (8.76)  
0.341 (8.66)  
0.337 (8.55)  
20  
11  
10  
0.158 (4.01)  
0.154 (3.91)  
0.150 (3.81)  
0.244 (6.20)  
0.236 (5.99)  
0.228 (5.79)  
1
0.010 (0.25)  
0.006 (0.15)  
0.020 (0.51)  
0.010 (0.25)  
0.069 (1.75)  
0.053 (1.35)  
0.065 (1.65)  
0.049 (1.25)  
0.010 (0.25)  
0.004 (0.10)  
0.041 (1.04)  
REF  
SEATING  
PLANE  
8°  
0°  
0.025 (0.64)  
BSC  
0.050 (1.27)  
0.016 (0.41)  
COPLANARITY  
0.004 (0.10)  
0.012 (0.30)  
0.008 (0.20)  
COMPLIANT TO JEDEC STANDARDS MO-137-AD  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETERS DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 123. 20-Lead Shrink Small Outline Package (QSOP)  
(RQ-20)  
Dimensions shown in Inches and (millimeters  
Rev. G | Page 53 of 56  
 
AD8331/AD8332/AD8334  
5.00  
BSC SQ  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
25  
24  
32  
1
PIN 1  
INDICATOR  
0.50  
BSC  
TOP  
VIEW  
3.25  
3.10 SQ  
2.95  
EXPOSED  
PAD  
(BOTTOM VIEW)  
4.75  
BSC SQ  
0.50  
0.40  
0.30  
17  
16  
8
9
0.25 MIN  
0.80 MAX  
0.65 TYP  
3.50 REF  
12° MAX  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
1.00  
0.85  
0.80  
0.30  
0.23  
0.18  
COPLANARITY  
0.08  
0.20 REF  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VHHD-2  
Figure 124. 32-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
5 mm × 5 mm Body, Very Thin Quad  
(CP-32-2)  
Dimensions shown in millimeters  
0.30  
9.00  
BSC SQ  
0.25  
0.18  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
64  
49  
48  
1
PIN 1  
INDICATOR  
*
4.85  
4.70 SQ  
4.55  
8.75  
BSC SQ  
TOP  
VIEW  
EXPOSED PAD  
(BOTTOM VIEW)  
0.50  
0.40  
0.30  
33  
32  
16  
17  
7.50  
REF  
0.80 MAX  
0.65 TYP  
1.00  
0.85  
0.80  
12° MAX  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
SEATING  
PLANE  
SECTION OF THIS DATA SHEET.  
0.50 BSC  
0.20 REF  
*
COMPLIANT TO JEDEC STANDARDS MO-220-VMMD-4  
EXCEPT FOR EXPOSED PAD DIMENSION  
Figure 125. 64-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
9 mm × 9 mm Body, Very Thin Quad  
(CP-64-1)  
Dimensions shown in millimeters  
Rev. G | Page 54 of 56  
AD8331/AD8332/AD8334  
ORDERING GUIDE  
Model1  
AD8331ARQ  
AD8331ARQ-REEL  
AD8331ARQ-REELꢀ  
AD8331ARQZ  
Temperature Range  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
Package Description  
Package Option  
RQ-20  
RQ-20  
RQ-20  
RQ-20  
20-Lead Shrink Small Outline Package (QSOP)  
20-Lead Shrink Small Outline Package (QSOP)  
20-Lead Shrink Small Outline Package (QSOP)  
20-Lead Shrink Small Outline Package (QSOP)  
20-Lead Shrink Small Outline Package (QSOP)  
20-Lead Shrink Small Outline Package (QSOP)  
Evaluation Board with AD8331ARQ  
AD8331ARQZ-RL  
AD8331ARQZ-Rꢀ  
AD8331-EVALZ  
AD8332ACP-R2  
AD8332ACP-REEL  
AD8332ACP-REELꢀ  
AD8332ACPZ-R2  
AD8332ACPZ-Rꢀ  
AD8332ACPZ-RL  
AD8332ARU  
AD8332ARU-REEL  
AD8332ARU-REELꢀ  
AD8332ARUZ  
AD8332ARUZ-Rꢀ  
AD8332ARUZ-RL  
AD8332-EVALZ  
AD8334ACPZ  
RQ-20  
RQ-20  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
32-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
28-Lead Thin Shrink Small Outline Package (TSSOP)  
28-Lead Thin Shrink Small Outline Package (TSSOP)  
28-Lead Thin Shrink Small Outline Package (TSSOP)  
28-Lead Thin Shrink Small Outline Package (TSSOP)  
28-Lead Thin Shrink Small Outline Package (TSSOP)  
28-Lead Thin Shrink Small Outline Package (TSSOP)  
Evaluation Board with AD8332ARU  
CP-32-2  
CP-32-2  
CP-32-2  
CP-32-2  
CP-32-2  
CP-32-2  
RU-28  
RU-28  
RU-28  
RU-28  
RU-28  
RU-28  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
64-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
64-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
64-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
Evaluation Board with AD8334ACP  
CP-64-1  
CP-64-1  
CP-64-1  
AD8334ACPZ-REEL  
AD8334ACPZ-REELꢀ  
AD8334-EVALZ  
1 Z = RoHS Compliant Part.  
Rev. G | Page 55 of 56  
 
AD8331/AD8332/AD8334  
NOTES  
©2003–2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D03199-0-10/10(G)  
Rev. G | Page 56 of 56  

相关型号:

AD8331_15

Ultralow Noise VGAs with Preamplifier and Programmable R
ADI

AD8332

Ultralow Noise VGAs with Preamplifier and Programmable RIN
ADI

AD8332-EVAL

Ultralow Noise VGAs with Preamplifier and Programmable RIN
ADI

AD8332-EVALZ

Ultralow Noise VGAs with Preamplifier and Programmable RIN
ADI

AD8332ACP-R2

Ultralow Noise VGAs with Preamplifier and Programmable RIN
ADI

AD8332ACP-REEL

Ultralow Noise VGAs with Preamplifier and Programmable RIN
ADI

AD8332ACP-REEL7

Ultralow Noise VGAs with Preamplifier and Programmable RIN
ADI

AD8332ACPZ-R2

Ultralow Noise VGAs with Preamplifier and Programmable RIN
ADI

AD8332ACPZ-R7

Ultralow Noise VGAs with Preamplifier and Programmable RIN
ADI

AD8332ACPZ-REEL

SPECIALTY CONSUMER CIRCUIT, QCC32, 5 X 5 MM, MO-220VHHD-2, LFCSP-32
ADI

AD8332ACPZ-REEL7

SPECIALTY CONSUMER CIRCUIT, QCC32, 5 X 5 MM, MO-220VHHD-2, LFCSP-32
ADI

AD8332ACPZ-RL

Ultralow Noise VGAs with Preamplifier and Programmable RIN
ADI