AD8338 [ADI]

Low Power, 18 MHz Variable Gain Amplifier; 低功耗, 18 MHz可变增益放大器
AD8338
型号: AD8338
厂家: ADI    ADI
描述:

Low Power, 18 MHz Variable Gain Amplifier
低功耗, 18 MHz可变增益放大器

放大器
文件: 总16页 (文件大小:406K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Power, 18 MHz Variable Gain Amplifier  
AD8338  
Data Sheet  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
VBAT OFSN VREF  
Voltage controlled gain range of 0 dB to 80 dB  
3 mA supply current at gain of 40 dB  
Low frequency (LF) to 18 MHz operation  
Supply range: 3.0 V to 5.0 V  
Adjustable gain range  
Low noise: 4.5 nV/Hz  
Fully differential signal path  
Offset correction (offset null) feature  
Adjustable bandwidth  
Internal 1.5 V reference  
16-lead LFCSP  
OFFSET NULL  
FBKP  
AD8338  
VGA CORE  
+
INPR  
+
OUTP  
OUTM  
OUTPUT  
STAGE  
0dB  
INMR  
INPD  
INMD  
0dB TO 80dB  
VREF  
FBKM  
AUTOMATIC  
GAIN  
CONTROL  
GAIN INTERFACE  
Automatic gain control feature  
Wide gain range for high dynamic range signals  
COMM  
MODE GAIN  
DETO  
VAGC  
APPLICATIONS  
Figure 1.  
Front end for inductive telemetry systems  
Ultrasonic signal receivers  
RF baseband signal conditioning  
100  
80  
V
= 1.1V  
GAIN  
V
V
V
V
V
V
V
V
= 1.0V  
= 0.9V  
= 0.8V  
= 0.7V  
= 0.6V  
= 0.5V  
= 0.4V  
= 0.3V  
GAIN  
GAIN  
GAIN  
GAIN  
GAIN  
GAIN  
GAIN  
GAIN  
60  
GENERAL DESCRIPTION  
40  
The AD8338 is a variable gain amplifier (VGA) for applications  
that require a fully differential signal path, low power, low noise,  
and a well-defined gain over frequencies from LF to 18 MHz. The  
device can also operate using single-ended sources if required.  
20  
V
V
= 0.2V  
= 0.1V  
GAIN  
GAIN  
0
The basic gain function is linear-in-dB with a nominal gain range  
of 0 dB to 80 dB; the nominal gain range corresponds to a control  
voltage on the GAIN pin of 0.1 V to 1.1 V. The gain range can be  
adjusted up or down via direct access to the internal summing  
nodes at the INPD and INMD pins. For example, if a 47 Ω resistor  
is applied to the INPD and INMD pins, a gain range of 20 dB to  
100 dB is set with an input referred noise level of 1.5 nV√Hz.  
–20  
–40  
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
100M  
Figure 2. Gain vs. Frequency  
The AD8338 offers additional versatility by allowing user access  
to the internal summing nodes. With a few discrete components,  
users can customize the gain, bandwidth, input impedance, and  
noise profile of the part to fit their application.  
The AD8338 includes additional circuits to enable offset correction  
and automatic gain control (AGC). DC offset voltages are removed  
by the offset correction circuit, which behaves like a high-pass filter.  
The high-pass filter corner frequency is set using an external  
capacitor. The AGC function varies the gain of the AD8338 to  
maintain a constant rms output voltage. A user supplied voltage  
controls the target output rms voltage. A user supplied capacitor  
to ground at the DETO pin controls the response time of the  
AGC circuit.  
The AD8338 uses a single supply voltage of 3.0 V to 5.0 V and is  
very power efficient, consuming as little as 3 mA quiescent current.  
The AD8338 is available in a 3 mm × 3 mm, RoHS compliant,  
16-lead LFCSP. It is specified over the industrial temperature range  
of −40°C to +85°C.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2013 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
AD8338  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation ...................................................................... 12  
Getting Started with the AD8338............................................. 12  
Offset Correction Circuit.......................................................... 12  
Explanation of the Gain Function............................................ 12  
AGC Circuit ................................................................................ 13  
Adjusting the Output Common-Mode Voltage ..................... 14  
Applications Information.............................................................. 15  
Simple On-Off Keyed (OOK) Receiver................................... 15  
Interfacing the AD8338 to an ADC......................................... 15  
Outline Dimensions....................................................................... 16  
Ordering Guide .......................................................................... 16  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
AC Specifications.......................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
Thermal Resistance ...................................................................... 4  
ESD Caution.................................................................................. 4  
Pin Configuration and Function Descriptions............................. 5  
Typical Performance Characteristics ............................................. 6  
REVISION HISTORY  
4/13—Revision 0: Initial Version  
Rev. 0 | Page 2 of 16  
 
Data Sheet  
AD8338  
SPECIFICATIONS  
AC SPECIFICATIONS  
VBAT = 3.0 V, TA = 25°C, CL = 2 pF on OUTP and OUTM, RL = ∞, MODE pin high, RIN = 2 × 500 Ω, VGAIN = 0.6 V, differential operation,  
unless otherwise noted.  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
INPUT INTERFACE  
Gain Range  
Standard configuration using the INPR  
and INMR inputs  
0
80  
dB  
Gain Span  
Input Voltage Range  
Input 1 dB Compression  
80  
3
dB  
V p-p  
Differential input, VCM = 1.5 V,  
gain = 0.1 V/0 dB  
f = 400 kHz  
f = 1 MHz  
f = 4 MHz  
f = 10 MHz  
2.2  
2
1.6  
0.75  
18  
V p-p  
V p-p  
V p-p  
V p-p  
MHz  
dB  
−3 dB Bandwidth  
Gain Accuracy  
Standard configuration using the INPR  
and INMR inputs; 0.1 V < VGAIN < 1.1 V  
−2  
+0.5  
+2  
Input Resistance  
Standard configuration using the INPR  
and INMR inputs  
0.8  
1
2
1.2  
kΩ  
pF  
Input Capacitance  
OUTPUT INTERFACE  
Small Signal Bandwidth  
Peak Slew Rate  
OUTP and OUTM pins  
VGAIN = 0.6 V  
VGAIN = 0.6 V  
18  
50  
2.8  
1.5  
4.5  
MHz  
V/μs  
V p-p  
V
Peak-to-Peak Output Swing  
Common-Mode Voltage  
Input-Referred Noise Voltage  
Differential output  
Standard configuration using the INPR  
and INMR inputs  
nV/√Hz  
Driving external 47 Ω input resistors  
connected to INPD and INMD  
1.5  
nV/√Hz  
Offset Voltage  
RTO, VGAIN = 0.1 V, offset null on  
RTO, VGAIN = 0.6 V, offset null on  
RTO, VGAIN = 0.1 V, offset null off  
RTO, VGAIN = 0.6 V, offset null off  
−10  
−10  
−50  
−200  
+10  
+10  
+50  
+200  
mV  
mV  
mV  
mV  
POWER SUPPLY  
VBAT  
IVBAT  
3.0  
5.0  
8.0  
3.8  
6.0  
V
Min gain, VGAIN = 0.1 V  
Mid gain, VGAIN = 0.6 V  
Max gain, VGAIN = 1.1 V  
6.0  
3.0  
4.5  
mA  
mA  
mA  
GAIN CONTROL  
Gain Voltage  
Gain Slope  
0.1  
77  
1.1  
83  
V
80  
12.5  
2
dB/V  
mV/dB  
%
VREF ACCURACY  
VREF = 1.5 V  
MODE = 0 V  
DETO OUTPUT CURRENT  
AGC CONTROL  
10  
μA  
Maximum Target Amplitude  
Expected rms output value for target =  
VAGC − VREF = 1.0 V  
1.0  
V rms  
Rev. 0 | Page 3 of 16  
 
 
AD8338  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 2.  
Parameter  
Rating  
Table 3. Thermal Resistance  
VBAT to COMM  
−0.3 V to +5.5 V  
Package Type  
θJA  
Unit  
INPR, INPD, INMD, INMR, MODE, GAIN, COMM to VBAT  
FBKM, FBKP, OUTM, OUTP, VAGC,  
VREF, OFSN  
16-Lead LFCSP  
48.75  
°C/W  
Operating Temperature Range  
Storage Temperature Range  
Maximum Junction Temperature  
Lead Temperature (Soldering, 10 sec)  
−40°C to +85°C  
−65°C to +150°C  
150°C  
ESD CAUTION  
300°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 4 of 16  
 
 
 
Data Sheet  
AD8338  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
12 FBKP  
11 OUTP  
10 OUTM  
INPR  
INPD  
INMD  
INMR  
1
2
3
4
AD8338  
TOP VIEW  
(Not to Scale)  
9
FBKM  
NOTES  
1. THE EXPOSED PAD SHOULD BE TIED  
TO A QUIET ANALOG GROUND.  
Figure 3. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
0
1
2
3
4
5
6
EPAD  
INPR  
INPD  
INMD  
INMR  
COMM  
MODE  
Exposed Pad. The exposed pad should be tied to a quiet analog ground.  
Positive 500 Ω Resistor Input for Voltage Input Applications.  
Positive Input for Current Input Applications.  
Negative Input for Current Input Applications.  
Negative 500 Ω Resistor Input for Voltage Input Applications.  
Ground.  
Gain Mode. This pin selects positive or negative gain slope for gain control. When this pin is tied to VBAT, the  
gain of the AD8338 increases proportionally with an increase of the voltage on the GAIN pin. When this pin is  
tied to COMM, the gain decreases with an increase of the voltage on the GAIN pin.  
7
8
9
10  
11  
12  
13  
GAIN  
DETO  
FBKM  
OUTM  
OUTP  
FBKP  
Gain Control Input, 12.5 mV/dB or 80 dB/V.  
Detector Output Terminal, 10 µA. If the AGC feature is not used, tie this pin to COMM.  
Negative Feedback Node. For more information, see the Adjusting the Output Common-Mode Voltage section.  
Negative Output.  
Positive Output.  
Positive Feedback Node. For more information, see the Adjusting the Output Common-Mode Voltage section.  
Voltage for Automatic Gain Control Circuit. This pin controls the target rms output voltage for the AGC circuit.  
For more information, see the AGC Circuit section.  
VAGC  
14  
15  
16  
OFSN  
VBAT  
VREF  
Offset Null Terminal. For more information, see the Offset Correction Circuit section.  
Positive Supply Voltage.  
Internal 1.5 V Voltage Reference.  
Rev. 0 | Page 5 of 16  
 
AD8338  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
80  
80  
60  
V
V
V
= 600mV  
= 350mV  
= 100mV  
GAIN  
GAIN  
GAIN  
70  
MODE PIN LOW  
MODE PIN HIGH  
60  
50  
40  
30  
20  
10  
0
40  
20  
0
–20  
–40  
–60  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
V
(V)  
GAIN  
Figure 4. Gain vs. VGAIN  
Figure 7. Gain vs. Frequency, RIN = 50 Ω  
80  
80  
V
V
V
V
V
= 1100mV  
= 850mV  
= 600mV  
= 350mV  
= 100mV  
GAIN  
GAIN  
GAIN  
GAIN  
GAIN  
60  
40  
70  
60  
50  
40  
30  
20  
10  
0
20  
0
–20  
–40  
–60  
–80  
78.0 78.3 78.6 78.9 79.2 79.5 79.8 80.1 80.4  
GAIN SLOPE (dB/V)  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
Figure 8. Gain vs. Frequency, RIN = 5 kΩ  
Figure 5. Gain Slope Histogram  
5
4
100  
V
= 3V  
S
f = 1MHz  
V
= 1.1V  
GAIN  
80  
60  
V
V
V
V
V
V
V
V
= 1.0V  
= 0.9V  
= 0.8V  
= 0.7V  
= 0.6V  
= 0.5V  
= 0.4V  
= 0.3V  
GAIN  
GAIN  
GAIN  
GAIN  
GAIN  
GAIN  
GAIN  
GAIN  
3
2
1
40  
–40°C  
+25°C  
0
20  
–1  
–2  
–3  
–4  
–5  
V
V
= 0.2V  
= 0.1V  
GAIN  
GAIN  
0
+85°C  
–20  
+105°C  
–40  
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
100M  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
V
(V)  
GAIN  
Figure 6. Gain vs. Frequency  
Figure 9. Gain Error vs. VGAIN over Temperature  
Rev. 0 | Page 6 of 16  
 
Data Sheet  
AD8338  
1.0  
5
4
V
= 3V  
S
0.5  
3
0
2
–0.5  
–1.0  
–1.5  
1
0
–1  
–2  
–3  
–4  
–5  
10kHz  
100kHz  
1MHz  
–2.0  
–2.5  
–3.0  
–3.5  
2MHz  
4MHz  
–40°C  
8MHz  
+25°C  
+85°C  
+105°C  
10MHz  
12MHz  
14MHz  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
V
(V)  
V
(V)  
GAIN  
GAIN  
Figure 13. Differential Offset Voltage vs. VGAIN, Offset Null On  
Figure 10. Gain Error vs. VGAIN over Frequency  
350  
30  
25  
20  
15  
10  
5
300  
250  
200  
150  
100  
50  
DIFFERENTIAL  
SINGLE-ENDED  
100M  
0
100k  
0
100k  
1M  
10M  
FREQUENCY (Hz)  
1M  
10M  
FREQUENCY (Hz)  
100M  
Figure 11. Group Delay vs. Frequency  
Figure 14. Output Impedance vs. Frequency  
20  
0
OFFSET NULL ON  
RELATIVE TO OUTPUT  
= 0.6V  
V
60  
50  
40  
30  
20  
10  
0
GAIN  
GAIN = 1000  
GAIN = 100  
GAIN = 10  
–20  
–40  
–60  
–80  
–100  
–120  
GAIN = 1  
–3  
–2  
–1  
0
1
2
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
DIFFERENTIAL OFFSET VOLTAGE (mV)  
Figure 12. Differential Offset Voltage Histogram  
Figure 15. Output Balance Error vs. Frequency  
Rev. 0 | Page 7 of 16  
AD8338  
Data Sheet  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
1000  
100  
10  
0dB  
1
GAIN = 1, OFFSET NULL OFF  
GAIN = 10, OFFSET NULL OFF  
GAIN = 100, OFFSET NULL OFF  
GAIN = 1000, OFFSET NULL ON  
GAIN = 10000, OFFSET NULL ON  
20dB  
40dB  
60dB  
80dB  
–100  
10k  
0.1  
10k  
100k  
1M  
10M  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 16. CMRR vs. Frequency over Gain, Offset Null On,  
Referred to Input  
Figure 19. Input Referred Noise vs. Frequency, VBAT = 3 V  
100k  
0
+85°C  
+25°C  
–40°C  
HD2, 1kΩ  
HD3, 1kΩ  
HD2, 10kΩ  
HD3, 10kΩ  
V
= 0.5V p-p  
OUT  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
10k  
1k  
100  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2  
50k  
500k  
5M  
V
(V)  
FREQUENCY (Hz)  
GAIN  
Figure 17. Output Referred Noise vs. VGAIN  
Figure 20. Harmonic Distortion vs. Frequency  
1k  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
+85°C  
+25°C  
–40°C  
100  
10  
HD2  
HD3  
1
0.5  
1.0  
1.5  
V
2.0  
(V p-p)  
2.5  
3.0  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2  
(V)  
V
OUT  
GAIN  
Figure 18. Input Referred Noise vs. VGAIN  
Figure 21. Harmonic Distortion vs. Output Amplitude  
Rev. 0 | Page 8 of 16  
Data Sheet  
AD8338  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
HD2, MODE PIN HIGH  
HD3, MODE PIN HIGH  
HD2, MODE PIN LOW  
HD3, MODE PIN LOW  
V
= 0.5V p-p  
OUT  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.1  
1.1  
20k  
200k  
FREQUENCY (Hz)  
2M  
20M  
V
(V)  
GAIN  
Figure 22. Harmonic Distortion vs. VGAIN  
Figure 25. IMD3 Distortion vs. Frequency  
20  
10  
2.0  
1.5  
V
= 2V p-p  
OUTPUT  
OUT  
f = 1MHz  
GAIN = 0dB  
0
1.0  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
INPUT  
0.1  
0.3  
0.5  
0.7  
0.9  
0
100  
200  
300  
400  
500  
600  
700  
800  
V
(V)  
TIME (ns)  
GAIN  
Figure 23. Input and Output 1 dB Compression vs. VGAIN  
Figure 26. Large Signal Pulse Response vs. Time, VGAIN = 0 V  
25  
20  
15  
10  
5
2.0  
1.5  
V
= 2V p-p  
OUT  
f = 1MHz  
GAIN = 80dB  
1.0  
100kHz  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
1MHz  
0
0.1  
0
0.2  
0.4  
0.6  
0.8  
0.3  
0.5  
0.7  
0.9  
TIME (µs)  
V
(V)  
GAIN  
Figure 24. OIP3 vs. VGAIN  
Figure 27. Large Signal Pulse Response vs. Time, VGAIN = 1.0 V  
Rev. 0 | Page 9 of 16  
AD8338  
Data Sheet  
2.0  
V
1.5  
1.0  
f = 100kHz  
= 2V p-p  
OUT  
V
V
LOW = 2mV  
HIGH = 20mV  
IN  
IN  
f = 1MHz  
1.5  
GAIN = 40dB  
GAIN = 40dB  
1.0  
0.5  
0.5  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
0
0.2  
0.4  
0.6  
0.8  
0
20  
40  
60  
80  
100 120 140 160 180 200  
TIME (µs)  
TIME (µs)  
Figure 28. Large Signal Pulse Response vs. Time, VGAIN = 0.6 V  
Figure 31. Overdrive Recovery vs. Time  
100  
12  
10  
8
C
C
C
C
= 0pF  
L
L
L
L
–40°C, MODE PIN HIGH  
+25°C, MODE PIN HIGH  
+85°C, MODE PIN HIGH  
–40°C, MODE PIN LOW  
+25°C, MODE PIN LOW  
+85°C, MODE PIN LOW  
= 10pF  
= 20pF  
= 47pF  
80  
60  
40  
20  
6
0
–20  
–40  
–60  
–80  
–100  
4
2
V
= 100mV p-p  
OUT  
f = 1.5MHz  
GAIN = 1  
0
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2  
(V)  
0
0.2  
0.4  
0.6  
0.8  
V
TIME (µs)  
GAIN  
Figure 29. Small Signal Pulse Response vs. Time (Varying Capacitive Loads)  
Figure 32. Supply Current vs. VGAIN  
50  
40  
OFFSET NULL OFF  
V
GAIN  
0.6  
0.1  
30  
10µF  
1µF  
20  
0.1µF  
10  
0.01µF  
V
OUT  
0
1.0  
0
–10  
–20  
–30  
–40  
–1.0  
GAIN = 100  
10M 100M  
0
1
2
3
4
5
TIME (µs)  
6
7
8
9
10  
20  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 30. Gain Step Response vs. Time  
Figure 33. Offset Null Bandwidth vs. Offset Null Capacitor  
Rev. 0 | Page 10 of 16  
Data Sheet  
AD8338  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 3V  
S
V
= 5V  
S
–100  
100  
1k  
10k  
100k  
1M  
10M  
20k  
100k  
FREQUENCY (Hz)  
RESISTANCE (Ω)  
Figure 34. PSRR vs. Frequency  
Figure 37. Output Common-Mode Voltage vs. RCM to VBAT  
3.0  
AGC VOLTAGE  
0.6  
0.1  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 3V  
S
OUTPUT VOLTAGE  
1.0  
0
–1.0  
0
5
10  
15  
20  
25  
30  
35  
40  
10k  
100k  
TIME (µs)  
RESISTANCE (Ω)  
Figure 35. AGC Response vs. Time, No Load  
Figure 38. Output Common-Mode Voltage vs. RCM to COMM  
AGC VOLTAGE  
0.6  
0.1  
OUTPUT VOLTAGE  
1.0  
0
–1.0  
0
1
2
3
4
5
6
7
8
9
10  
TIME (ms)  
Figure 36. AGC Response vs. Time, CL = 0.01 µF  
Rev. 0 | Page 11 of 16  
AD8338  
Data Sheet  
THEORY OF OPERATION  
GETTING STARTED WITH THE AD8338  
OFFSET CORRECTION CIRCUIT  
The AD8338 is a variable gain amplifier (VGA) that provides a  
variable gain range of 80 dB. With a constant −3 dB bandwidth  
of 18 MHz across all gains, a gain bandwidth product of 180 GHz  
is achieved at the highest gain using only 4.5 mA of supply current.  
The differential output allows the AD8338 to directly drive an  
ADC input, simplifying board design and saving space and power.  
The AD8338 provides an offset correction circuit to cancel out  
any dc offsets that may be present. Connecting a 0.2 µF capacitor  
from the OFSN pin to VREF allows frequencies above 400 Hz to  
pass through, but eliminates dc offsets. For dc-coupled operation,  
disable the offset correction circuit by connecting the OFSN pin  
directly to the COMM pin. When the part is operated without  
offset correction, exercise caution with large gains because any  
offsets present large errors on the outputs.  
In addition to its gain, bandwidth, and power performance, the  
AD8338 includes a range of features that increase its versatility.  
Unlike a high-pass filter, the offset correction circuit allows signals  
below the corner frequency to pass through with high levels of  
crossover distortion. If a frequency below the band of interest may  
present itself to the inputs, apply a filter in front of the VGA for  
best performance.  
Single-supply operation ranging from 3.0 V to 5.0 V  
Built-in offset correction circuit to cancel out dc offsets  
Automatic gain control (AGC) circuit to control the gain  
and keep the output at a steady rms level  
Access to internal nodes at both the input and output allows the  
user to adjust the gain range, adjust the output common-mode  
voltage, and tune the bandwidth.  
For lower frequency operation, a larger value of COFSN gives  
unpredictable results. If the part is operated at frequencies below  
400 Hz, disable the offset correction circuit and compensate the  
offset externally.  
INPR and INMR Pins in the Standard Configuration  
The gain is controlled by a user supplied voltage input applied to  
the GAIN pin. The gain can be varied from 0 dB to 80 dB when  
the default internal resistors are used; the voltage at the GAIN pin  
can be varied from 0.1 V to 1.1 V. The default internal resistors  
are used by applying the input voltage to the INPR and INMR  
pins (Pin 1 and Pin 4; see Figure 39).  
The corner frequency can be approximately calculated as follows:  
1
fC =  
(1)  
2π × 600 × COFSN  
EXPLANATION OF THE GAIN FUNCTION  
From a designers standpoint, the gain of the AD8338 can be  
modeled as three cascaded gain stages. The first stage can be  
thought of as a differential input transconductance stage, where  
the input current is proportional to the differential input voltage  
that is applied to the input resistors, as follows:  
500Ω  
OUTP  
INPR  
INPD  
+V  
/2 + VREF  
OUT  
I
V
IN  
IN  
INPx INMx  
INMD  
INMR  
IIN  
=
(2)  
RP + RN  
500Ω  
–V  
/2 + VREF  
OUT  
OUTM  
This current is then fed into the conceptual second stage, a  
current input-current output VGA, which has a gain range  
of −26 dB to +54 dB. The conceptual output current is given  
by Equation 3.  
0dB TO 80dB  
Figure 39. Input Voltage Applied to the INPR and INMR Pins  
In the standard configuration, a differential input voltage applied  
across INPR and INMR is amplified, with the output voltage  
appearing differentially across OUTP and OUTM. The outputs  
have a default common-mode voltage of VREF, which is equal  
to 1.5 V.  
− 0.1)/20)  
OUT_VGA = IIN × 10−26 + 80 × ((V  
(3)  
GAIN  
I
When VGAIN = 0.1 V, the output current is −26 dB less than the  
input current; when VGAIN = 1.1 V, t h e output current is +54 dB  
greater than the input current.  
The third and final stage can be modeled as a transimpedance  
stage, expressed as follows:  
GAIN and MODE Pins  
The gain of the AD8338 is controlled by the GAIN and MODE  
pins. Adjusting the voltage at the GAIN pin from 0.1 V to 1.1 V  
adjusts the gain from its lowest to highest value.  
V
V
V
OP = IOUT_VGA × RFEEDBACK  
(4a)  
(4b)  
(4c)  
ON = −IOUT_VGA × RFEEDBACK  
The MODE pin controls the polarity of the gain adjustment. When  
MODE is tied to VBAT, the gain of the AD8338 increases propor-  
tionally with an increase of the voltage on the GAIN pin. When  
MODE is tied to COMM, the gain decreases with an increase of  
the voltage on the GAIN pin.  
OUT = VOP VON = 2 × IOUT_VGA × RFEEDBACK  
Rev. 0 | Page 12 of 16  
 
 
 
 
 
Data Sheet  
AD8338  
For example, if the 500 Ω input resistors and 9.5 kΩ feedback  
resistors are used and a 1 V p-p signal is applied with VGAIN set  
to 0.1 V, the output value is as follows:  
Similarly, if the user requires a minimum gain of −10 dB,  
applying a 1.5 kΩ resistor to both the INPD and INMD pins  
sets a gain range of −10 dB to +70 dB.  
I
IN = 1/(500 + 500) = 1 mA  
(5a)  
(5b)  
(5c)  
Effects of Using External Resistors  
OUT_VGA = 1 mA × 10−26/20 = 50 µA  
When the gain is modified through the use of external resistors,  
several trade-offs must be considered. For example, with the appli-  
cation of 47 Ω resistors at the inputs, the input noise decreases  
to approximately 1.5 nV/√Hz, less than the 4.5 nV/√Hz obtained  
when using the internal 500 Ω resistors. However, the −3 dB  
bandwidth is reduced from 18 MHz to approximately 3 MHz.  
I
V
OUT = 2 × 50 µA × 9.5 kΩ = 0.95 V p-p  
The calculation in Equation 5 results in a total gain of approx-  
imately −0.4 dB under the specified conditions. Compressing  
Equation 2 through Equation 4 produces the following simplified  
gain equation:  
AGC CIRCUIT  
Gain (dB) = (VGAIN − 0.1) × 80 + 20log(RFEEDBACK/RIN) − 26  
(6)  
The automatic gain control (AGC) circuit compares the rms  
output of the part with the desired rms output at the VAGC pin.  
Based on this comparison, the DETO pin either sources or sinks  
current. By connecting the DETO and GAIN pins together and  
by connecting the MODE pin to ground, the AGC circuit can  
be used to keep the output rms voltage constant.  
where RFEEDBACK and RIN are the resistor values from a single  
input to a single output.  
VBAT OFSN VREF  
AD8338  
OFFSET NULL  
FBKP  
9.5kΩ  
500Ω  
INPR  
To ensure that the AGC circuit reacts fast enough to adjust the  
gain, but slow enough to allow signals through, place a capacitor  
from DETO to ground. For example, in an on-off keying (OOK)  
application with a carrier frequency of 6.795 MHz and a bit rate  
of 10 kb/sec, a capacitor value of 0.01 µF is recommended. This  
value ensures that the gain reacts to the bit energy but does not  
react to the carrier signal.  
VGA CORE  
OUTP  
INPD  
I
I
OUT  
IN  
VREF  
INMD  
INMR  
OUTM  
FBKM  
–26dB TO +54dB  
GAIN INTERFACE  
9.5kΩ  
500Ω  
To set the target rms output voltage, apply a voltage to VAGC.  
The target output voltage is lowest when VAGC is set to 1.5 V  
and increases when the applied voltage diverges from the 1.5 V  
reference voltage. To enable an increasing voltage at the VAGC  
pin to increase the rms output voltage, use Equation 7.  
AUTOMATIC  
GAIN  
CONTROL  
COMM  
MODE GAIN  
DETO  
VAGC  
Figure 40. Functional Block Diagram  
V
ORMS = 1.7 × VAGC − 2.264  
(7)  
For example, if a design requires a minimum gain of 20 dB using  
a few additional components, Equation 6 shows that applying a  
47 Ω resistor to both the INPD and INMD pins (overriding the  
value of RIN) sets a gain range of 20 dB to 100 dB (see Figure 41).  
To enable a decreasing voltage at the VAGC pin to increase  
the rms output voltage, use Equation 8.  
V
ORMS = −1.7 × VAGC + 2.864  
(8)  
If the AGC feature is not used, tie the DETO pin to COMM.  
500Ω  
OUTP  
+V  
/2 + VREF  
OUT  
INPR  
INPD  
47Ω  
I
V
IN  
IN  
INMD  
47Ω  
500Ω  
INMR  
–V  
/2 + VREF  
OUT  
OUTM  
20dB TO 100dB  
Figure 41. Using External Resistors at the INPD and INMD Pins  
Rev. 0 | Page 13 of 16  
 
 
AD8338  
Data Sheet  
Table 6. Resistor Values for Increasing the Output  
Common-Mode Voltage (Resistor Tied to COMM)  
ADJUSTING THE OUTPUT COMMON-MODE  
VOLTAGE  
VBAT (V)  
Target VOCM (V)  
Resistor Value (Ω) Tied to  
As with any differential output, the output of the AD8338 is  
a differential voltage that is centered about a common-mode  
voltage. The output common-mode voltage (VOCM) of the  
AD8338 is nominally set to 1.5 V using an internal reference  
(see Figure 42).  
Any  
Any  
Any  
1.8  
2.0  
2.5  
47,500  
28,500  
14,250  
COMM  
COMM  
COMM  
FBKP  
VBAT  
FBKP  
R1  
9.5kΩ  
9.5kΩ  
(VBAT – 1.5V) × 9.5kΩ  
OUTP = 1.5V –  
+ V  
+ V  
/2  
OUT  
R1  
OUTP = 1.5V + V  
/2  
OUT  
I
OUT  
VREF = 1.5V  
I
OUT  
VREF = 1.5V  
(VBAT – 1.5V) × 9.5kΩ  
OUTM = 1.5V –  
/2  
OUT  
R2  
OUTM = 1.5V – V  
/2  
OUT  
9.5kΩ  
FBKM  
VBAT  
9.5kΩ  
R2  
FBKM  
Figure 43. Decreasing the Output Common-Mode Voltage (Resistors  
Connected Between the FBKP and FBKM Pins to the VBAT Pin)  
Figure 42. Output Common-Mode Voltage Set to 1.5 V (Default Setting)  
The output common-mode voltage of the AD8338 can be  
adjusted to directly drive ADCs with various input common-  
mode requirements. To adjust the output common-mode voltage,  
add a resistor from each feedback node (FBKP and FBKM) to  
either COMM or VBAT. Adding a resistor from each feedback  
node to VBAT decreases the output common-mode voltage; add-  
ing a resistor from each feedback node to COMM increases the  
output common-mode voltage (see Figure 43 and Figure 44).  
FBKP  
COMM  
R1  
9.5kΩ  
(0 – 1.5V) × 9.5kΩ  
OUTP = 1.5V –  
+ V  
+ V  
/2  
OUT  
R1  
I
OUT  
VREF = 1.5V  
(0 – 1.5V) × 9.5kΩ  
OUTM = 1.5V –  
/2  
OUT  
R2  
Table 5 and Table 6 provide examples of resistor values for  
decreasing or increasing the output common-mode voltage.  
9.5kΩ  
FBKM  
COMM  
R2  
Figure 44. Increasing the Output Common-Mode Voltage (Resistors  
Connected Between the FBKP and FBKM Pins to the COMM Pin)  
Table 5. Resistor Values for Decreasing the Output  
Common-Mode Voltage (Resistor Tied to VBAT)  
The AD8338 uses its internal reference for all signal processing.  
Therefore, although the output common-mode voltage can be  
changed through the application of external resistors, the VREF  
signal cannot be changed. For applications that require dc coupling  
to an ADC, a differential amplifier must be used.  
VBAT (V)  
Target VOCM (V)  
Resistor Value (Ω) Tied to  
5.0  
3.3  
3.0  
0.9  
0.9  
0.9  
55,417  
28,500  
23,750  
VBAT  
VBAT  
VBAT  
Rev. 0 | Page 14 of 16  
 
 
 
 
 
 
Data Sheet  
AD8338  
APPLICATIONS INFORMATION  
The excellent performance of the AD8338 results in a flat response  
over various gains with rail-to-rail output signal swing, high drive  
capability, and a very high dynamic range at a low 12 mW. These  
features make the AD8338 an exceptional choice for use in battery-  
operated equipment, low frequency and baseband applications,  
and many other applications.  
Table 7 provides typical values for these components at two data  
rates. Note that Capacitors C1 through C4 are all of equal value,  
and Inductor L2 has the same value as L1.  
Table 7. Typical Values for Components in Reactive Filter  
Carrier Attenuation,  
L1 and L2 f = 6.78 MHz  
Data Rate  
C1 to C4  
SIMPLE ON-OFF KEYED (OOK) RECEIVER  
19,200 bps 12 nF  
57,600 bps 3.9 nF  
240 µH  
82 µH  
−101 dB  
−73 dB  
For low complexity, low power data communications, a simple  
link built using a modulating carrier tone in an on/off state  
provides a fast and cost-effective solution to the designer. Such  
designs are used in a variety of applications, including near-field  
communications among noninterference mechanical systems,  
low data rate sensors, RFID tags, and so on.  
INTERFACING THE AD8338 TO AN ADC  
The AD8338 is well suited to drive a high speed analog-to-digital  
converter (ADC) and is compatible with many ADCs from Analog  
Devices, Inc. This example illustrates the interfacing of the AD8338  
to the AD7451. The AD7451 is a low power, 3.0 V ADC, which  
is also competitively priced for a low cost total solution.  
The schematic shown in Figure 45 demonstrates a complete  
inductive telemetry on-off keyed (OOK) front end. The crystal  
is cut for the target receive frequency of interest, creating a very  
narrow-band filter, typically around the 6.78 MHz ISM band.  
Figure 46 shows the basic connections between the AD8338  
and the AD7451. The common-mode voltage provided by the  
AD8338 is within the specifications of the AD7451.  
The AD8338 amplifies the signal (the gain is set by an external  
controller) and drives a full-wave rectifier bridge. The output of  
this bridge is then low-pass filtered into 100 Ω terminations. This  
design provides excellent rejection of RF and excellent baseband  
information recovery for the decision stage that follows.  
The AD8338 can be coupled directly to the AD7451 for full  
dc-to-18 MHz operation at the highest level of performance with  
low operating power (160 mW typical). The glueless interface  
enables a physically small, high performance data acquisition  
system that is ideal for many field instruments. A filter before  
the VGA provides the antialiasing function and noise limiting.  
The reactive filter components—Capacitors C1 through C4 and  
Inductors L1 and L2—set the baseband recovery performance. A  
design trade-off exchanges baseband response for RF attenuation.  
In applications where the modulated information is not encoded  
in the signal amplitude, use the AGC feature of the AD8338 to  
reduce any bit errors in the sampled signal.  
3.0V  
VREF  
L1  
CRYSTAL  
MODE  
OOK_P  
R1  
C1  
C2  
D1  
OUTP  
D2  
D3  
INPR  
INMR  
100Ω  
U1  
AD8338  
OUTM  
D4  
R2  
100Ω  
L2  
C6  
0.01µF  
OOK_M  
C3  
C4  
GAIN  
C5  
0.1µF  
VREF  
Figure 45. Complete, Low Power OOK Receiver  
3.0V  
R1  
49.9Ω  
3.0V  
VREF  
C1  
C2  
0.1µF  
0.1µF  
MODE  
V
V
REF  
INPR  
INMR  
DD  
V
V
SCLK  
SDATA  
CS  
IN+  
IN–  
U1  
AD8338  
OUTP  
OUTM  
TO  
FILTER  
OUTPUT  
AD7451  
GND  
MICRO-  
CONTROLLER  
C3  
0.1µF  
VREF  
Figure 46. Basic Connections to the AD7451 ADC  
Rev. 0 | Page 15 of 16  
 
 
 
 
 
 
AD8338  
Data Sheet  
OUTLINE DIMENSIONS  
3.10  
3.00 SQ  
2.90  
0.30  
0.23  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
13  
16  
0.50  
BSC  
1
4
12  
EXPOSED  
PAD  
1.75  
1.60 SQ  
1.45  
9
8
5
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WEED-6.  
Figure 47. 16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
3 mm × 3 mm Body, Very Very Thin Quad  
(CP-16-22)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
AD8338ACPZ-R7  
AD8338ACPZ-RL  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
Branding  
Y4K  
Y4K  
16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
CP-16-22  
CP-16-22  
1 Z = RoHS Compliant Part.  
©2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D11279-0-4/13(0)  
Rev. 0 | Page 16 of 16  
 
 
 

相关型号:

AD8338-EVALZ

Low Power, 18 MHz Variable Gain Amplifier
ADI

AD8338ACPZ-R7

Low Power, 18 MHz Variable Gain Amplifier
ADI

AD8338ACPZ-RL

Low Power, 18 MHz Variable Gain Amplifier
ADI

AD8338_16

Low Power, 18 MHz Variable Gain Amplifier
ADI

AD8339

Quad I/Q Demodulator And Phase Shifter
ADI

AD8339ACPZ

DC to 50 MHz, Quad I/Q Demodulator and Phase Shifter
ADI

AD8339ACPZ-R7

DC to 50 MHz, Quad I/Q Demodulator and Phase Shifter
ADI

AD834

500 MHz Four-Quadrant Multiplier
ADI

AD8340

700 MHz to 1000 MHz RF Vector Modulator
ADI

AD8340-EVAL

700 MHz to 1000 MHz RF Vector Modulator
ADI

AD8340ACP

IC TELECOM, CELLULAR, RF AND BASEBAND CIRCUIT, QCC24, LFCSP-24, Cellular Telephone Circuit
ADI

AD8340ACPZ-REEL7

700 MHz to 1000 MHz RF Vector Modulator
ADI