AD8436BRQZ-RL [ADI]

Low Cost, Low Power, True RMS-to-DC Converter;
AD8436BRQZ-RL
型号: AD8436BRQZ-RL
厂家: ADI    ADI
描述:

Low Cost, Low Power, True RMS-to-DC Converter

文件: 总21页 (文件大小:762K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Cost, Low Power,  
True RMS-to-DC Converter  
AD8436  
Data Sheet  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
CAVG CCF  
Delivers true rms or average rectified value of ac waveform  
Fast settling at all input levels  
Accuracy: 10 μV 0.25% of reading (B grade)  
Wide dynamic input range  
100 μV rms to 3 V rms (8.5 V p-p) full-scale input range  
Larger inputs with external scaling  
Wide bandwidth:  
VCC  
AD8436  
100k  
SUM  
IGND  
100kΩ  
8kΩ  
RMS CORE  
10pF  
RMS  
VEE  
OGND  
OUT  
16kΩ  
1 MHz for −3 dB (300 mV)  
65 kHz for additional 1% error  
10kΩ  
10kΩ  
Zero converter dc output offset  
No residual switching products  
Specified at 300 mV rms input  
IBUFGN  
IBUFIN–  
IBUFIN+  
IBUFOUT  
FET OP AMP  
Accurate conversion with crest factors up to 10  
Low power: 300 µA typical at 2.4 V  
High-Z FET separately powered input buffer  
+
OBUFIN+  
OBUFIN–  
+
DC BUFFER  
OBUFOUT  
R
IN ≥ 1012 Ω, CIN ≤ 2 pF  
16kΩ  
Precision dc output buffer  
Wide power supply voltage range  
Dual: 2.4 V to 18 V; single: 4.8 V to 36 V  
4 mm × 4 mm LFCSP and 8 mm × 6 mm QSOP packages  
ESD protected  
Figure 1.  
GENERAL DESCRIPTION  
The AD8436 is a new generation, translinear precision, low  
power, true rms-to-dc converter loaded with options. It computes a  
precise dc equivalent of the rms value of ac waveforms, including  
complex patterns such as those generated by switch mode power  
supplies and triacs. Its accuracy spans a wide range of input levels  
(see Figure 2) and temperatures. The ensured accuracy of ≤ 0.5%  
and ≤10 μV output offset result from the latest Analog Devices,  
Inc., technology. The crest factor error is <0.5% for CF values  
between 1 and 10.  
The precision dc output buffer minimizes errors when driving  
low impedance loads with extremely low offset voltages, thanks  
to internal bias current cancellation. Unlike digital solutions, the  
AD8436 has no switching circuitry limiting performance at high or  
low amplitudes (see Figure 2). A usable response of <100 μV  
and >3 V extends the dynamic range with no external scaling,  
accommodating demanding low level signal conditions and  
allowing ample overrange without clipping.  
GREATER INPUT DYNAMIC RANGE  
The AD8436 delivers true rms results at less cost than misleading  
peak, averaging, or digital solutions. There is no programming  
expense or processor overhead to consider, and the 4 mm 4 mm  
package easily fits into tight applications. On-board buffer  
amplifiers enable the widest range of options for any rms-to-dc  
converter available, regardless of cost. For minimal applications,  
only a single external averaging capacitor is required. The built-in  
high impedance FET buffer provides an interface for external  
attenuators, frequency compensation, or driving low impedance  
loads. A matched pair of internal resistors enables an easily  
configurable gain-of-two or more, extending the usable input  
range even lower. The low power, precision input buffer makes  
the AD8436 attractive for use in portable multi-meters and  
other battery-powered applications.  
AD8436  
∆Σ SOLUTION  
100µV  
1mV  
10mV  
100mV  
1V  
3V  
Figure 2. Usable Dynamic Range of the AD8436 vs. ΔΣ  
The AD8436 operates from single or dual supplies of 2.4 V  
(4.8 V) to 18 V (36 V). A and J grades are available in a compact  
4 mm × 4 mm, 20-lead chip-scale package; A and B grades are  
available in a 20-lead QSOP package. The operating temperature  
ranges are −40°C to 125°C for A and B grades and 0°C to 70°C  
for J grade.  
Rev. E  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2011–2017 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
AD8436  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation ...................................................................... 10  
Overview ..................................................................................... 10  
Applications Information.............................................................. 12  
Using the AD8436...................................................................... 12  
Additional Information ............................................................. 15  
AD8436 Evaluation Board ............................................................ 17  
Outline Dimensions....................................................................... 20  
Ordering Guide .......................................................................... 21  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
ESD Caution.................................................................................. 4  
Pin Configurations and Function Descriptions ........................... 5  
Typical Performance Characteristics ............................................. 6  
Test Circuits....................................................................................... 9  
REVISION HISTORY  
3/2017—Rev. D to Rev. E  
7/2012—Rev. 0 to Rev. A  
Changed CP-20-10 to CP-20-8 .................................... Throughout  
Changes to Outline Dimensions................................................... 21  
Changes to Ordering Guide .......................................................... 22  
Added 20-Lead QSOP .......................................................Universal  
Changes to Features Section and General Description Section..1  
Changes to Table 1.............................................................................3  
Changes to Table 2.............................................................................4  
Changes to Table 3 and added Figure 4 and added Table 4;  
Renumbered Sequentially ................................................................5  
Changes to Equation 1 and change to Column One Heading  
in Table 5.......................................................................................... 10  
Changes to Averaging Capacitor Considerations—RMS  
Accuracy and to Post Conversion Ripple Reduction Filter  
and changes to Figure 27 Caption................................................ 12  
Changes to Figure 30 to Figure 32................................................ 13  
Changes to Using the FET Input Buffer Section and Using the  
Output Buffer Section.................................................................... 14  
Changes to Figure 38 and Figure 41 and added Converting  
to Rectified Average Value Section .............................................. 15  
Changes to Figure 41...................................................................... 16  
Changes to Figure 42 to Figure 46................................................ 17  
Changes to Figure 47 and Figure 48............................................. 18  
Updated Outline Dimensions....................................................... 19  
Changes to Ordering Guide.......................................................... 20  
10/2015—Rev. C to Rev. D  
Changes to Figure 5 to Figure 8...................................................... 6  
7/2015—Rev. B to Rev. C  
Changes to Table 2............................................................................ 4  
Changes to Figure 5 to Figure 7...................................................... 6  
Changes to Figure 21........................................................................ 9  
Changes to Using the FET Input Buffer Section ........................ 14  
Changes to Single-Supply Section and Figure 39....................... 15  
Added Additional Information Section....................................... 15  
Changes to AD8436 Evaluation Board Section and A Word  
About Using the AD8436 Evaluation Board Section................... 17  
Added Single-Supply Operation Section..................................... 17  
Changes to Ordering Guide .......................................................... 21  
1/2013—Rev. A to Rev. B  
Added B Grade Throughout .............................................Universal  
Changes to Figure 1 and changes to General Description.......... 1  
Changes to Table 1............................................................................ 3  
Changes to Figure 3 ......................................................................... 5  
Changes to Figure 9 and Figure 10................................................. 6  
Changes to FET Input Buffer Section.......................................... 11  
Changes to Averaging Capacitor Considerations—RMS  
Accuracy Section and changes to Figure 28................................ 12  
Deleted Capacitor Construction Section; added CAVG  
7/2011—Revision 0: Initial Version  
Capacitor Styles Section................................................................. 13  
Added Converting to Average Rectified Value Section............. 15  
Changes to Figure 41...................................................................... 16  
Changes to Evaluation Board Section.......................................... 17  
Changes to Figure 48...................................................................... 19  
Changes to Outline Dimensions................................................... 20  
Changes to Ordering Guide .......................................................... 21  
Rev. E | Page 2 of 21  
 
Data Sheet  
AD8436  
SPECIFICATIONS  
eIN = 300 mV (rms), frequency = 1 kHz sinusoidal, ac-coupled, VS = 5 V, TA = 25°C, CAVG = 10 μF, unless otherwise specified.  
Table 1.  
AD8436A, AD8436J  
Typ  
AD8436B  
Typ  
Parameter  
Test Conditions/Comments  
Min  
Max  
Min  
Max  
Unit  
RMS CORE  
Conversion Error  
Vs. Temperature  
Vs. Rail Voltage  
Input VOS  
Default conditions  
−4ꢀ°C < T < 125 C  
2.4 V to 18 V  
1ꢀ − ꢀ.5  
−5ꢀꢀ  
1ꢀ + ꢀ.5  
+5ꢀꢀ  
1ꢀ − ꢀ.25  
1ꢀ + ꢀ.25 μV/% rdg  
ꢀ.ꢀꢀ6  
ꢀ.ꢀ13  
ꢀ.ꢀꢀ6  
ꢀ.ꢀ13  
%/°C  
%/V  
DC-coupled  
−25ꢀ  
+25ꢀ  
μV  
V
Output VOS  
AC-coupled input  
−4ꢀ C < T < 125°C  
DC-coupled, VIN = 3ꢀꢀ mV  
eIN = 2 mV to 5ꢀꢀ mV ac  
(Additional)  
Vs. Temperature  
DC Reversal Error  
Nonlinearity  
Crest Factor Error  
1 < CF < 1ꢀ  
ꢀ.3  
ꢀ.3  
μV/°C  
%
−1.5  
+1.5  
−1.ꢀ  
+1.ꢀ  
ꢀ.2  
ꢀ.2  
%
CCF = ꢀ.1 μF  
−ꢀ.5  
+ꢀ.5  
−ꢀ.5  
+ꢀ.5  
%
V
Peak Input Voltage  
Input Resistance  
Response  
−VS − ꢀ.7  
7.92  
+VS + ꢀ.7  
8.ꢀ8  
−VS − ꢀ.7  
7.92  
+VS + ꢀ.7  
8.ꢀ8  
8
8
kΩ  
VIN = 3ꢀꢀ mV rms  
(Additional)  
1% Error  
65  
1
65  
1
kHz  
3 dB Bandwidth  
Settling Time  
ꢀ.1%  
MHz  
Rising/falling  
Rising/falling  
148/341  
158/35ꢀ  
16  
148/341  
158/35ꢀ  
16  
ms  
ms  
kΩ  
μA  
ꢀ.ꢀ1%  
Output Resistance  
Supply Current  
INPUT BUFFER  
Voltage Swing  
Input  
15.68  
16.32  
365  
15.68  
16.32  
365  
No input  
325  
325  
G = 1  
AC- or dc-coupled  
AC-coupled to Pin RMS  
−VS  
+VS  
−VS  
+VS  
V
Output  
−VS + ꢀ.2  
−1  
+VS − ꢀ.2  
+1  
−VS + ꢀ.2  
−ꢀ.5  
+VS − ꢀ.2  
+ꢀ.5  
5ꢀ  
mV  
mV  
pA  
Ω
Offset Voltage  
Input Bias Current  
Input Resistance  
Response  
5ꢀ  
1ꢀ12  
1ꢀ12  
(Frequency)  
ꢀ.1 dB  
95ꢀ  
2.1  
95ꢀ  
2.1  
kHz  
MHz  
μA  
3 dB Bandwidth  
Supply Current  
Optional Gain Resistor  
Gain Error  
1ꢀꢀ  
16ꢀ  
+1ꢀ  
2ꢀꢀ  
1ꢀꢀ  
16ꢀ  
+1ꢀ  
2ꢀꢀ  
−9.9  
+1ꢀ.1  
ꢀ.ꢀ5  
−9.9  
+1ꢀ.1  
ꢀ.ꢀ5  
kΩ  
G = ×1  
%
OUTPUT BUFFER  
Offset Voltage  
Input Current (IB)  
Output Swing  
Output Drive Current  
Gain Error  
RL =  
Connected to Pin OUT  
−2ꢀꢀ  
2
+2ꢀꢀ  
51  
−15ꢀ  
2
+15ꢀ  
51  
μV  
nA  
V
(Voltage)  
−VS + 5ꢀe−6  
−ꢀ.5 (sink)  
ꢀ.ꢀꢀ3  
+VS − 1  
−VS + 5ꢀe−6  
+VS − 1  
+15 (source) −ꢀ.5 (sink)  
+15 (source) mA  
%
ꢀ.ꢀ1  
4ꢀ  
ꢀ.ꢀꢀ3  
ꢀ.ꢀ1  
4ꢀ  
Supply Current  
SUPPLY VOLTAGE  
Dual  
7ꢀ  
7ꢀ  
μA  
2.4  
4.8  
18  
36  
2.4  
4.8  
18  
36  
V
V
Single  
1 IB max measured at power up. Settles to typical value in <15 seconds.  
Rev. E | Page 3 of 21  
 
 
AD8436  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Parameter  
Voltage  
Supply Voltage  
Rating  
18 V  
Input Voltage Range1  
Differential Input  
Current  
VEE − ꢀ.3 V to VCC + ꢀ.3 V  
VCC and VEE  
Input Current1  
1ꢀ mA  
Indefinite  
ESD CAUTION  
Output Short-Circuit Duration  
Power Dissipation  
CP-2ꢀ-8 LFCSP Without Thermal Pad  
CP-2ꢀ-8 LFCSP With Thermal Pad  
RQ Package  
1.2 W  
2.1 W  
1.1 W  
Temperature  
Operating Range  
Storage Range  
−4ꢀ°C to +125°C  
−65°C to +125°C  
3ꢀꢀ°C  
Lead Soldering (6ꢀ sec)  
2
θJA  
CP-2ꢀ-8 LFCSP Without Thermal Pad  
CP-2ꢀ-8 LFCSP With Thermal Pad  
RQ-2ꢀ Package  
86°C/W  
48°C/W  
95°C/W  
2 kV  
ESD Rating  
1 Input pins have clamp diodes to the power supply pins. Limit input current  
to 1ꢀ mA or less whenever input signals exceed the power supply rail by ꢀ.3 V.  
2 θJA is specified for the worst-case conditions, that is, a device soldered in a circuit  
board for surface-mount packages.  
Rev. E | Page 4 of 21  
 
 
Data Sheet  
AD8436  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
SUM  
20  
CAVG  
CCF  
VCC  
IBUFV+  
16  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
SUM  
DNC  
CAVG  
CCF  
1
15  
3
RMS  
VCC  
DNC  
RMS  
OBUFV+  
OBUFOUT  
OBUFIN–  
OBUFIN+  
IGND  
AD8436  
TOP VIEW  
(Not to Scale)  
4
IBUFOUT  
IBUFIN–  
IBUFIN+  
IBUFGN  
DNC  
IBUFV+  
OBUFV+  
OBUFOUT  
OBUFIN–  
OBUFIN+  
IGND  
PIN 1  
INDICATOR  
5
6
AD8436  
7
TOP VIEW  
IBUFOUT  
IBUFIN–  
IBUFIN+  
(Not to Scale)  
8
9
OGND  
OUT  
10  
VEE  
NOTES  
1. DNC = DO NOT CONNECT.  
DO NOT CONNECT TO THIS PIN.  
5
11  
6
10  
IBUFGN DNC  
OGND  
OUT  
VEE  
NOTES  
1. DNC = DO NOT CONNECT. DO NOT CONNECT TO THIS PIN.  
2. THE EXPOSED PAD CONNECTION IS OPTIONAL.  
Figure 3. Pin Configuration, Top View, CP-20-8  
Figure 4. Pin Configuration, RQ-20  
Table 3. Pin Function Descriptions, CP-20-8  
Pin No. Mnemonic Description  
Table 4. Pin Function Descriptions, RQ-20  
Pin No. Mnemonic Description  
1
2
3
4
5
6
7
8
DNC  
RMS  
Do Not Connect. Used for factory test.  
AC Input to the RMS Core.  
FET Input Buffer Output Pin.  
FET Input Buffer Inverting Input Pin.  
FET Input Buffer Noninverting Input Pin.  
Optional 1ꢀ kΩ Precision Gain Resistor.  
Do Not Connect. Used for factory test.  
Internal 16 kΩ I-to-V Resistor.  
1
2
3
4
5
6
7
8
SUM  
DNC  
RMS  
Summing Amplifier Input Pin.  
Do Not Connect. Used for factory test.  
AC Input to the RMS Core.  
IBUFOUT  
IBUFIN−  
IBUFIN+  
IBUFGN  
DNC  
OGND  
OUT  
VEE  
IBUFOUT  
IBUFIN−  
IBUFIN+  
IBUFGN  
DNC  
OGND  
OUT  
VEE  
FET Input Buffer Output Pin.  
FET Input Buffer Inverting Input Pin.  
FET Input Buffer Noninverting Input Pin.  
Optional 1ꢀ kΩ Precision Gain Resistor.  
Do Not Connect. Used for factory test.  
Internal 16 kΩ I-to-V Resistor.  
RMS Core Voltage or Current Output.  
Negative Supply Rail.  
Half Supply Node.  
Output Buffer Noninverting Input Pin.  
Output Buffer Inverting Input Pin.  
Output Buffer Output Pin.  
Power Pin for the Output Buffer.  
Power Pin for the Input Buffer.  
Positive Supply Rail for the RMS Core.  
Connection for Crest Factor Capacitor.  
Connection for Averaging Capacitor.  
9
RMS Core Voltage or Current Output.  
Negative Supply Rail.  
Half Supply Node.  
9
1ꢀ  
11  
12  
13  
14  
15  
16  
17  
18  
19  
2ꢀ  
EP  
1ꢀ  
11  
12  
13  
14  
15  
16  
17  
18  
19  
2ꢀ  
IGND  
OBUFIN+  
OBUFIN−  
OBUFOUT  
OBUFV+  
IBUFV+  
VCC  
CCF  
CAVG  
SUM  
DNC  
Output Buffer Noninverting Input Pin.  
Output Buffer Inverting Input Pin.  
Output Buffer Output Pin.  
Power Pin for the Output Buffer.  
Power Pin for the Input Buffer.  
Positive Supply Rail for the RMS Core.  
Connection for Crest Factor Capacitor.  
Connection for Averaging Capacitor.  
Summing Amplifier Input Pin.  
IGND  
OBUFIN+  
OBUFIN−  
OBUFOUT  
OBUFV+  
IBUFV+  
VCC  
CCF  
CAVG  
Exposed Pad Connection to Ground  
Pad Optional.  
Rev. E | Page 5 of 21  
 
AD8436  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, VS = 5 V, CAVG = 10 μF, 1 kHz sine wave, unless otherwise indicated.  
5V  
5V  
1V  
V
= ±5V  
S
1V  
100mV  
10mV  
1mV  
100mV  
10mV  
1mV  
3dB ERROR  
±1% ERROR  
±10% ERROR  
–3dB ERROR  
V
S
= 4.8V  
1M  
100µV  
50µV  
100µV  
50µV  
50 100  
1k  
10k  
100k  
1M  
5M  
50 100  
1k  
10k  
100k  
5M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 5. RMS Core Frequency Response (See Figure 21)  
Figure 8. RMS Core Frequency Response with VS = +4.8 V (See Figure 22)  
5V  
15  
eIN = 3.5mV rms  
12  
1V  
100mV  
10mV  
1mV  
9
GAIN = 6dB  
6
3
GAIN = 0dB  
0
–3  
–6  
±1% ERROR  
±10% ERROR  
–3dB ERROR  
–9  
–12  
–15  
V
= ±2.4V  
1M  
100µV  
50µV  
S
100  
1k  
10k  
100k  
1M  
5M  
50 100  
1k  
10k  
100k  
5M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 6. RMS Core Frequency Response with VS = 2.4 V (See Figure 21)  
Figure 9. Input Buffer, Small Signal Bandwidth at 0 dB and 6 dB Gain  
5V  
1V  
15  
eIN = 300mV rms  
12  
9
GAIN = 6dB  
6
100mV  
10mV  
3
GAIN = 0dB  
0
–3  
–6  
±1% ERROR  
±10% ERROR  
–3dB ERROR  
1mV  
–9  
–12  
–15  
V
= ±15V  
1M  
100µV  
50µV  
S
100  
1k  
10k  
100k  
1M  
5M  
50 100  
1k  
10k  
100k  
5M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 7. RMS Core Frequency Response with VS = 15 V (See Figure 21)  
Figure 10. Input Buffer, Large Signal Bandwidth at 0 dB and 6 dB Gain  
Rev. E | Page 6 of 21  
 
 
 
Data Sheet  
AD8436  
10  
5
15  
eIN = 3.5mV rms  
P
= 100µs  
W
12  
9
6
CAVG = 10µF  
CCF = 0.1µF  
3
0
0
–3  
–6  
–9  
–12  
–15  
CAVG = 10µF  
5  
10  
100  
1k  
10k  
100k  
1M  
5M  
0
2
4
6
8
10  
CREST FACTOR RATIO  
FREQUENCY (Hz)  
Figure 14. Crest Factor Error vs. Crest Factor for CAVG and CAVG and CCF  
Capacitor Combinations  
Figure 11. Output Buffer, Small Signal Bandwidth  
1.00  
0.75  
0.50  
0.25  
0
0.5  
0.4  
CAVG = 10µF  
8 SAMPLES  
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0.25  
0.50  
0.75  
1.00  
–50  
–25  
0
25  
50  
75  
100  
125  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (±V)  
Figure 15. Additional Conversion Error vs. Temperature  
Figure 12. Additional Error vs. Supply Voltage  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.6  
1.2  
0.8  
0.4  
0
V
= ±15V  
S
V
= ±5V  
S
V
= ±2.4V  
S
0
0.5  
1.0  
INPUT VOLTAGE (V rms)  
1.5  
2.0  
0
16  
2
4
6
8
10  
12  
14  
18  
SUPPLY VOLTAGE (±V)  
Figure 16. RMS Core Supply Current vs. Input for VS = 2.4 V, 5 V, and 15 V  
Figure 13. Core Input Voltage for 1% Error vs. Supply Voltage  
Rev. E | Page 7 of 21  
 
AD8436  
Data Sheet  
250  
200  
150  
100  
50  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
50  
100  
150  
200  
250  
10  
50  
50  
25  
0
25  
50  
75  
100  
125  
25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 17. FET Input Buffer Bias Current vs. Temperature  
Figure 19. Output Buffer VOS vs. Temperature  
1000  
CAVG = 10µF  
1kHz 300mV rms BURST INPUT  
750  
500  
0V  
250  
0
300mV DC OUT  
250  
500  
750  
1000  
0V  
0V  
1kHz 1mV rms BURST INPUT  
1mV DC OUT  
50  
25  
0
25  
50  
75  
100  
125  
0V  
TEMPERATURE (°C)  
TIME (50ms/DIV)  
Figure 18. Input Offset Voltage of FET Buffer vs. Temperature  
Figure 20. Transition Times with 1 kHz Burst at Two Input Levels  
(See Theory of Operation Section)  
Rev. E | Page 8 of 21  
 
Data Sheet  
AD8436  
TEST CIRCUITS  
CALIBRATOR  
(50Hz<f<500kHz)  
ATTENUATOR  
eIN = 100µV, 300µV  
10µF +5V  
VCC  
CAV  
100k  
22µF  
RMS  
PRECISION DMM  
IGND  
RMS CORE  
FUNCTION GENERATOR  
(f>500kHz)  
100kΩ  
16kΩ  
OGND  
OUT  
10µF  
VEE  
–5V  
PRECISION DMM  
Figure 21. Core Response Test Circuit Using Dual Supplies  
SIGNAL SOURCE  
10µF 4.80V  
CAV  
VCC  
4.7µF  
RMS  
100k  
100kΩ  
RMS CORE  
IGND  
AC-IN MONITOR  
4.7µF  
16kΩ  
PRECISION DMM  
PRECISION DMM  
OUT  
OGND  
VEE  
Figure 22. Core Response Test Circuit Using a Single Supply  
10µF +5V  
FUNCTION GENERATOR  
CAV  
VCC  
4.7µF  
RMS  
100kΩ  
100kΩ  
RMS CORE  
IGND  
AC-IN MONITOR  
PRECISION DMM  
16kΩ  
OGND  
VEE  
OUT  
–5V  
PRECISION DMM  
Figure 23. Crest Factor Test Circuit  
Rev. E | Page 9 of 21  
 
 
 
AD8436  
Data Sheet  
THEORY OF OPERATION  
RMS Core  
OVERVIEW  
The core consists of a voltage-to-current converter (precision  
resistor), absolute value, and translinear sections. The translinear  
section exploits the properties of the bipolar transistor junctions  
for squaring and root extraction (see Figure 24). The external  
capacitor (CAVG) provides for averaging the product. Figure 20  
shows that there is no effect of signal input on the transition times,  
as seen in the dc output. Although the rms core responds to input  
voltages, the conversion process is current sensitive. If the rms  
input is ac-coupled, as recommended, there is no output offset  
voltage, as reflected in Table 1. If the rms input is dc-coupled, the  
input offset voltage is reflected in the output and can be calibrated  
as with any fixed error.  
The AD8436 is an implicit function rms-to-dc converter that  
renders a dc voltage dependent on the rms (heating value) of an  
ac voltage. In addition to the basic converter, this highly integrated  
functional circuit block includes two fully independent, optional  
amplifiers, a standalone FET input buffer amplifier, and a precision  
dc output buffer amplifier (see Figure 1). The rms core includes  
a precision current responding full-wave rectifier and a log-  
antilog transistor array for current squaring and square rooting  
to implement the classic expression for rms (see Equation 1).  
For basic applications, the converter requires only an external  
capacitor, for averaging (see Figure 31). The optional on-board  
amplifiers offer utility and flexibility in a variety of applications  
without incurring additional circuit board footprint. For lowest  
power, the amplifier supply pins are left unconnected.  
V+  
Why RMS?  
The rms value of an ac voltage waveform is equal to the dc  
voltage providing the same heating power to a load. A common  
measurement technique for ac waveforms is to rectify the signal  
in a straightforward way using a diode array of some sort, resulting  
in the average value. The average value of various waveforms (sine,  
square, and triangular, for example) varies widely; true rms is the  
only metric that achieves equivalency for all ac waveforms. See  
Table 5 for non-rms-responding circuit errors.  
+
OUT  
5kCAVG  
AC IN  
V-TO-I  
ABSOLUTE  
VALUE  
CIRCUIT  
V+  
16kꢀ  
V–  
The acronym rms means “root-mean-square” and reads as follows:  
“the square root of the average of the sum of the squaresof the  
peak values of any waveform. RMS is shown in the following  
equation:  
Figure 24. RMS Core Block Diagram  
2
1 T  
erms  
V
t
dt  
(1)  
T   
0
For additional information, select Section I of the second edition of  
the Analog Devices RMS-to-DC Applications Guide.  
Table 5. General AC Parameters  
Reading of an Average Value Circuit  
Calibrated to an RMS Sine Wave  
Waveform Type (1 V Peak)  
Crest Factor  
RMS Value  
ꢀ.7ꢀ7  
1.ꢀꢀ  
ꢀ.577  
ꢀ.333  
ꢀ.5  
Error (%)  
Sine  
1.414  
1.ꢀꢀ  
1.73  
3
2
1ꢀ  
ꢀ.7ꢀ7  
1.11  
ꢀ.555  
ꢀ.295  
ꢀ.278  
ꢀ.ꢀ11  
11.ꢀ  
−3.8  
Square  
Triangle  
Noise  
Rectangular  
Pulse  
SCR  
DC = 5ꢀ%  
DC = 25%  
−11.4  
−44  
−89  
−28  
−3ꢀ  
ꢀ.1  
2
4.7  
ꢀ.495  
ꢀ.212  
ꢀ.354  
ꢀ.15ꢀ  
Rev. E | Page 1ꢀ of 21  
 
 
 
 
Data Sheet  
AD8436  
The 16 kΩ resistor in the output converts the output current to  
a dc voltage that can connect to the output buffer or to the  
circuit that follows. The output appears as a voltage source in  
series with 16 kΩ. If a current output is desired, the resistor  
connection to ground is left open and the output current is  
applied to a subsequent circuit, such as the summing node of  
a current summing amplifier. Thus, the core has both current  
and voltage outputs, depending on the configuration. For a  
voltage output with 0 Ω source impedance, use the output  
buffer. The offset voltage of the buffer is 25 ꢀV or 50 ꢀV,  
depending on the grade.  
The output buffer can be configured as a single or two-pole low-  
pass filter using circuits shown in the Applications Information  
section. Residual output ripple is reduced, without affecting the  
converted dc output. As the response approaches the low frequency  
end of the bandwidth, the ripple rises, dependent on the value  
of the averaging capacitor. Figure 27 shows the effects of four  
combinations of averaging and filter capacitors. Although the  
filter capacitor reduces the ripple for any given frequency, the dc  
error is unaffected. Of course, a larger value averaging capacitor can  
be selected, at a larger cost. The advantage of using a low-pass filter  
is that a small value of filter capacitor, in conjunction with the  
16 kꢁ output resistor, reduces ripple and permits a smaller  
averaging capacitor, effecting a cost savings. The recommended  
capacitor values for operation to 40 Hz are 10 μF for averaging  
and 3.3 μF for filter.  
FET Input Buffer  
Because the V-to-I input resistor value of the AD8436 rms core  
is 8 kꢁ, a high input impedance buffer is often used between  
rms-to-dc converters and finite impedance sources. The optional  
JFET input op amp minimizes attenuation and uncouples common  
input amenities, such as resistive voltage dividers or resistors used  
to terminate current transformers. The wide bandwidth of the  
FET buffer is well matched to the rms core bandwidth so that  
no information is lost due to serial bandwidth effects. Although  
the input buffer consumes little current, the buffer supply is  
independently accessible and can disconnect to reduce power.  
Dynamic Range  
The AD8436 is a translinear rms-to-dc converter with exceptional  
dynamic range. Although accuracy varies slightly more at the  
extreme input values, the device still converts with no spurious  
noise or dropout. Figure 25 is a plot of the rms/dc transfer function  
near zero voltage. Unlike processor or other solutions, residual  
errors at very low input levels can be disregarded for most  
applications.  
Optional matched 10 kꢁ input and feedback resistors are provided  
on chip. Consult the Applications Information section to learn  
how to use these resistors. The 3 dB bandwidth of the input  
buffer is 2.7 MHz at 10 mV rms input and approximately 1.5 MHz  
at 1 V rms. The amplifier gain and bandwidth are sufficient for  
applications requiring modest gain or response enhancement to  
a few hundred kilohertz (kHz), if desired. Configurations of the  
input buffer are discussed in the Applications Information section.  
30  
∆Σ OR OTHER DIGITAL  
SOLUTIONS CANNOT  
WORK AT ZERO  
VOLTS  
20  
10  
0
AD8436  
SOLUTION  
Precision Output Buffer  
The precision output buffer is a bipolar input amplifier, laser  
trimmed to cancel input offset voltage errors. As with the input  
buffer, the supply current is very low (<50 ꢀA, typically), and  
the power can be disconnected for power savings if the buffer is  
not needed. Be sure that the noninverting input is also  
–30  
–20  
–10  
0
10  
20  
30  
INPUT VOLTAGE (mV DC)  
Figure 25. DC Transfer Function near Zero  
disconnected from the core output (OUT) if the buffer supply  
pin is disconnected. Although the input current of the buffer is  
very low, a laser-trimmed 16 kΩ resistor, connected in series  
with the inverting input, offsets any self-bias offset voltage.  
Rev. E | Page 11 of 21  
 
AD8436  
Data Sheet  
APPLICATIONS INFORMATION  
Ripple is reduced by increasing the value of the averaging  
USING THE AD8436  
capacitor, or by postconversion filtering. Ripple reduction  
following conversion is far more efficient because the ripple  
average value has converted to its rms value. Capacitor values for  
post-conversion filtering are significantly less than the equivalent  
averaging capacitor value for the same level of ripple reduction.  
This approach requires only a single capacitor connected to the  
OUT pin (see Figure 26). The capacitor value correlates to the  
simple frequency relation of ½ π R-C, where R is fixed at 16 kꢁ.  
This section describes the power supply and feature options,  
as well as the function and selection of averaging and filter  
capacitor values. Averaging and filtering options are shown  
graphically and apply to all circuit configurations.  
Averaging Capacitor Considerations—RMS Accuracy  
Typical AD8436 applications require only a single external  
capacitor (CAVG) connected to the CAVG pin (see Figure 31).  
The function of the averaging capacitor is to compute the mean  
(that is, average value) of the sum of the squares. Averaging  
(that is, integration) follows the rms core, where the input  
current is squared. The mean value is the average value of the  
squared input voltage over several input waveform periods. The  
rms error is directly affected by the number of periods averaged, as  
is the resultant peak-to-peak ripple.  
OUT  
CORE  
DC OUTPUT  
CLPF  
9
16k  
OGND  
8
Figure 26. Simple One-Pole Post Conversion Filter  
The result of the conversion process is a dc component and a  
ripple component whose frequency is twice that of the input. The  
rms conversion accuracy depends on the value of CAVG, so the  
value selected need only be large enough to average enough periods  
at the lowest frequency of interest to yield the required rms  
accuracy.  
As seen in Figure 27, CAVG alone determines the rms error, and  
CLPF serves purely to reduce ripple. Figure 27 shows a constant  
rms error for CLPF values of 0.33 μF and 3.3 μF; only the ripple  
is affected.  
1
CAVG = 10µF  
CLPF = 0.33µF OR 3.3µF  
0
Figure 28 is a plot of rms error vs. frequency for various averaging  
capacitor values. To use Figure 28, simply locate the frequency  
of interest and acceptable rms error on the horizontal and vertical  
scales, respectively. Then choose or estimate the next highest  
capacitor value adjacent to where the frequency and error lines  
intersect (for an example, see the orange circle in Figure 28).  
–1  
–2  
–3  
–4  
–5  
Post Conversion Ripple Reduction Filter  
–6  
CAVG = 1µF  
Input rectification included in the AD8436 introduces a residual  
ripple component that is dependent on the value of CAVG and  
twice the input signal frequency for symmetrical input waveforms.  
For sampling applications such as a high resolution ADC, the ripple  
component may cause one or more LSBs to cycle, and low value  
display numerals to flash.  
–7  
–8  
CLPF = 0.33µF OR 3.3µF  
–9  
–10  
10  
100  
1k  
FREQUENCY (Hz)  
Figure 27. RMS Error vs. Frequency for Two Values of CAVG and CLPF  
(Note that only CAVG value affects rms error; CLPF has no effect.)  
0
–0.5  
–1.0  
–1.5  
–2.0  
SEE  
TEXT  
CAVG = 0.22µF  
2
10  
100  
1k  
FREQUENCY (Hz)  
Figure 28. Conversion Error vs. Frequency for Various Values of CAVG  
Rev. E | Page 12 of 21  
 
 
 
 
 
Data Sheet  
AD8436  
For simplicity, Figure 29 shows ripple vs. frequency for four  
combinations of CAVG and CLPF.  
X8L grade MLCs are rated for high temperatures (125°C or 150°C),  
but are available only up to 10 ꢀF. Never use electrolytic capacitors,  
or X7R or lower grade ceramics.  
1
AC INPUT = 300mV rms  
Basic Core Connections  
CAVG = 1µF, CLPF = 0.33µF  
CAVG = 1µF, CLPF = 3.3µF  
CAVG = 10µF, CLPF = 0.33µF  
Many applications require only a single external capacitor for  
averaging. A 10 μF capacitor is more than adequate for acceptable  
rms errors at line frequencies and below.  
CAVG = 10µF, CLPF = 3.3µF  
0.1  
0.01  
The signal source sees the input 8 kΩ voltage-to-current conversion  
resistor at Pin RMS; thus, the ideal source impedance is a voltage  
source (0 Ω source impedance). If a non-zero signal source  
impedance cannot be avoided, be sure to account for any series  
connected voltage drop.  
0.001  
0.0001  
An input coupling capacitor must be used to realize the near-zero  
output offset voltage feature of the AD8436. Select a coupling  
capacitor value that is appropriate for the lowest expected operating  
frequency of interest. As a rule of thumb, the input coupling  
capacitor can be the same as or half the value of the averaging  
capacitor because the time constants are similar. For a 10 ꢀF  
averaging capacitor, a 4.7 ꢀF or 10 ꢀF tantalum capacitor is a  
good choice (see Figure 31).  
10  
100  
INPUT FREQUENCY (Hz)  
1k  
Figure 29. Residual Ripple Voltage for Various Filter Configurations  
Figure 30 shows the effects of averaging and post-rms filter  
capacitors on transition and settling times using a 10-cycle,  
50 Hz, 1 second period burst signal input to demonstrate time-  
domain behavior. In this instance, the averaging capacitor value  
was 10 μF, yielding a ripple value of 6 mV rms. A postconversion  
capacitor (CLPF) of 0.68 ꢀF reduced the ripple to 1 mV rms. An  
averaging capacitor value of 82 ꢀF reduced the ripple to 1 mV  
but extended the transition time (and cost) significantly.  
+5V  
CAVG  
+*  
10µF  
19  
17  
CAVG  
VCC  
4.7µF  
OR 10µF  
+*  
2
RMS AD8436 OUT  
IGND VEE OGND  
9
INPUT  
50Hz 10 CYCLE BURST  
400mv/DIV  
11  
10  
8
CAVG = 10µF FOR BOTH PLOTS,  
BUT RED PLOT HAS NO LOW-PASS FILTER,  
GREEN PLOT HAS CLPF = 0.68µF  
10mV/DIV  
–5V  
*FOR POLARIZED CAPACITOR STYLES.  
Figure 31. Basic Applications Circuit  
Using a Capacitor for High Crest Factor Applications  
CAVG = 82µF  
The AD8436 contains a unique feature to reduce large crest  
factor errors. Crest factor is often overlooked when considering  
the requirements of rms-to-dc converters, but it is very important  
when working with signals with spikes or high peaks. The crest  
factor is defined as the ratio of peak voltage to rms. See Table 5  
for crest factors for some common waveforms.  
TIME (100ms/DIV)  
Figure 30. Effects of Various Filter Options on Transition Times  
CAVG Capacitor Styles  
+5V  
CAVG  
When selecting a capacitor style for CAVG there are certain  
tradeoffs.  
+*  
CCF  
10µF  
0.1µF  
For general usage, such as most DMM or power measurement  
applications where input amplitudes are typically greater than  
1 mV, surface mount tantalums are the best overall choice for  
space, performance, and economy.  
19  
18  
17  
CAVG CCF  
VCC  
4.7µF  
OR 10µF  
+*  
2
9
RMS AD8436 OUT  
IGND VEE OGND  
For input amplitudes less than around a millivolt, low dc leakage  
capacitors, such as film or X8L MLCs, maintain rms conversion  
accuracy. Metalized polyester or similar film styles are best, as  
long as the temperature range is appropriate.  
11  
10  
8
–5V  
*FOR POLARIZED CAPACITOR STYLES.  
Figure 32. Connection for Additional Crest Factor Performance  
Rev. E | Page 13 of 21  
 
 
 
AD8436  
Data Sheet  
Crest factor performance is mostly applicable for unexpected  
waveforms such as switching transients in switchmode power  
supplies. In such applications, most of the energy is in these peaks  
and can be destructive to the circuitry involved, although the  
average ac value can be quite low.  
Because the 10 kΩ resistors are closely matched and trimmed to  
a high tolerance, the input buffer gain can increase to several  
hundred with an external resistor connected to Pin IBUFIN−.  
The bandwidth diminishes at the typical rate of a decade per 20 dB  
of gain, and the output voltage range is constrained. The small-  
signal response, shown in Figure 9, serves as a guide. For example,  
if detecting small input signals at power line frequencies, an  
external 100 ꢁ resistor connected from IBUFIN− to ground sets  
the gain to 101 and the 3 dB bandwidth to ~15 kHz, which is  
adequate for amplifying power line frequencies.  
Figure 14 shows the effects of an additional crest factor capacitor of  
0.1 ꢀF and an averaging capacitor of 10 ꢀF. The larger capacitor  
serves to average the energy over long spaces between pulses,  
while the CCF capacitor charges and holds the energy within  
the relatively narrow pulse.  
Using the FET Input Buffer  
Using the Output Buffer  
The on-chip FET input buffer is an uncommitted FET input  
op amp used for driving the 8 kꢁ I-to-V input resistor of the  
rms core. Pin IBUFOUT, Pin IBUFIN−, and Pin IBUFIN+ are  
the input/output; Pin IBUFINGN is an optional connection for  
gain in the input buffer; and Pin IBUFV+ connects power to the  
buffer. Connecting Pin IBUFV+ to the positive rail is the only  
power connection required because the negative rail is internally  
connected. Because the input stage is a FET and the input  
impedance must be very high to prevent loading of the source, a  
large value (10 Mꢁ) resistor connects from midsupply at Pin IGND  
to Pin IBUFIN+ to prevent the input gate from floating high.  
The AD8436 output buffer is a precision op amp optimized for  
high dc accuracy. Figure 34 shows a block diagram of the basic  
amplifier and input/output pins. The amplifier often configures  
as a unity gain follower but easily configures for gain, as a  
Sallen-Key, low-pass filter (in conjunction with the built-in 16 kΩ  
I-to-V resistor). Note that an additional 16 kꢁ on-chip precision  
resistor in series with the inverting input of the amplifier balances  
output offset voltages resulting from the bias current from the  
noninverting amplifier. The output buffer disconnects from  
Pin OUT for precision core measurements.  
As with the input FET buffer, the amplifier positive supply  
disconnects when not needed. In normal circumstances, the  
buffers connect to the same supply as the core. Figure 35 shows  
the signal connections to the output buffer. Note that the input  
offset voltage contribution by the bias currents are balanced by  
equal value series resistors, resulting in near zero offset voltage.  
OUTPUT BUFFER  
For unity gain, connect the IBUFOUT pin to the IBUFIN− pin.  
For a gain of 2×, connect the IBUFGN pin to ground. See Figure 9  
and Figure 10 for large and small signal responses at the two  
built-in gain options.  
The offset voltage of the input buffer is ≤500 μV, depending on  
grade. A capacitor connected between the buffer output pin  
(IBUFOUT) and the RMS pin is recommended so that the  
input buffer offset voltage does not contribute to the overall  
error. Select the capacitor value for least minimum error at the  
lowest operating frequency. Figure 33 is a schematic showing  
internal components and pin connections.  
OBUFIN+  
OBUFIN–  
+
OBUFOUT  
16k  
Figure 34. Output Buffer Block Diagram  
IBIAS  
OUT  
OBUFIN+  
CORE  
OBUFOUT  
9
12  
13  
+
16  
14  
16k  
RMS  
IBUFV+  
2
16kꢀ  
10µF  
OBUFIN–  
IBUFOUT  
IBUFIN–  
IBUFIN+  
3
4
5
OGND  
8
0.47µF  
Figure 35. Basic Output Buffer Connections  
+
10k  
For applications requiring ripple suppression in addition to the  
single-pole output filter described previously, the output buffer  
is configurable as a two-pole Sallen-Key filter using two external  
resistors and two capacitors. At just over 100 kHz, the amplifier  
has enough bandwidth to function as an active filter for low  
frequencies such as power line ripple. For a modest savings in  
cost and complexity, the external 16 kΩ feedback resistor can be  
omitted, resulting in slightly higher VOS (80 ꢀV).  
10Mꢀ  
10pF  
11 IGND  
10kꢀ  
6
IBUFGN  
Figure 33. Connecting the FET Input Buffer  
Capacitor coupling at the input and output of the FET buffer is  
recommended to avoid transferring the buffer offset voltage to  
the output. Although the FET input impedance is extremely high,  
the 10 MΩ centering resistor connected to IGND must be taken  
into account when selecting an input capacitor value. This is simply  
an impedance calculation using the lowest desired frequency, and  
finding a capacitor value based on the least attenuation desired.  
Rev. E | Page 14 of 21  
 
 
 
 
Data Sheet  
AD8436  
10µF  
2C  
19  
17  
16k  
OBUFIN+  
OUT  
9
12  
13  
CORE  
+
CAV  
VCC  
14  
C
16kꢀ  
16kꢀ  
2
3
4
5
RMS  
AD8436  
OBUFOUT  
OUT  
9
4.7µF  
OBUFIN–  
OGND  
8
IBUFOUT  
IBUFIN–  
IBUFIN+  
16kꢀ  
OPTIONAL  
AMBIENT  
NOISE  
0.47µF  
IGND 11  
Figure 36. Output Buffer Amplifier Configured as a Two-Pole, Sallen-Key  
Low-Pass Filter  
OGND  
VEE  
10  
FILTER  
CAPACITOR  
10M  
8
Configure the output buffer (see Figure 37) to invert dc output.  
OUT  
16k  
CORE  
9
13  
12  
+
Figure 39. Connections for Single-Supply Operation  
OBUFIN–  
14  
16kꢀ  
OBUFOUT  
OBUFIN+  
Recommended Application  
OGND  
32.4kꢀ  
8
Figure 40 shows a circuit for a typical application for frequencies  
as low as power line, and above. The recommended averaging,  
crest factor and LPF capacitor values are 10 ꢀF, 0.1 ꢀF and 3.3 ꢀF.  
Refer to the Using the Output Buffer section if additional low-  
pass filtering is required.  
Figure 37. Inverting Output Configuration  
Current Output Option  
If a current output is required, connect the current output,  
OUT, to the destination load. To maximize precision, provide a  
means for external calibration to replace the internal trimmed  
resistor, which is bypassed. This configuration is useful for  
convenient summing of the AD8436 result with another  
voltage, or for polarity inversion.  
VCC  
10µF  
0.1µF  
+
20 19  
18  
17  
16  
SUM CAVG CCF VCC IBUFV+  
15  
14  
13  
12  
11  
1
2
DNC  
OBUFV+  
CAVG  
CCF  
AD8436  
19  
18  
DC  
OUT  
RMS  
OBUFOUT  
OBUFIN–  
OBUFIN+  
10µF  
DIRECTION OF  
DC OUTPUT  
CURRENT  
3
4
5
2k  
IBUFOUT  
IBUFIN–  
IBUFIN+  
(OPTIONAL)  
8kꢀ  
OUT  
RMS  
2
9
CORE  
15kꢀ  
0.47µF  
+
IGND  
VEE  
AC IN  
16kꢀ  
INVERTED DC  
VOLTAGE  
OUTPUT  
10M  
8
IBUFGN DNC OGND OUT  
32.4kꢀ  
OGND  
6
7
8
9
10  
DO NOT CONNECT FOR  
CURRENT OUTPUT  
VEE  
Figure 38. Connections for Current Output Showing Voltage Inversion  
3.3µF  
Single-Supply  
Figure 40. Typical Application Circuit  
Connections for single-supply operation are shown in Figure 39  
and are similar to those for dual power supply when the device  
is ac-coupled. The analog core and buffer inputs are biased at  
half the supply voltage, but the output of the OBUFOUT pin  
(Pin 14) remains referred to ground because the output of the  
AD8436 is a current source. An additional bypass capacitor can  
be helpful at Pin 11 (IGND) to suppress potential common-mode  
noise. The capacitor value is most likely determined empirically,  
but ranges between 0.1 μF and 4.7 μF. The source resistance for the  
capacitor is 50 kΩ, the equivalent parallel resistance of the two  
internal 100 kΩ resistors (see Figure 1).  
Converting to Average Rectified Value  
To configure the AD8436 for rectified average instead of rms  
conversion, simply reduce the value of CAVG to 470 pF (see  
Figure 41). To enable both modes of operation, insert a switch  
between capacitor CAVG and Pin CAVG.  
ADDITIONAL INFORMATION  
The following reference materials provide additional rms-to-dc  
converter information relative to the AD8436:  
RMS to DC Conversion Application Guide  
AN-268 Application Note, RMS-to-DC Converters Ease  
Measurement Tasks  
AN-1341 Application Note, Using the AD8436 True RMS to  
DC Converter  
Rev. E | Page 15 of 21  
 
 
 
 
AD8436  
Data Sheet  
DISCONNECTING CAVG DEFAULTS THE  
COMPUTED RESULT TO AVERAGE-VALUE.  
A MINIMUM OF 470pF CAPACITANCE IS  
REQUIRED TO MAINTAIN STABILITY  
VCC  
CAPACITOR CAVG COMPUTES THE  
MEAN IN THE IMPLICIT RMS  
EXPRESSION. FOR SMALL VALUES  
OF CAVG, THE AC INPUT WAVEFORM  
WILL STILL BE FULLY RECTIFIED AND  
APPEAR AT THE OUTPUT.  
470pF 0.1µF  
+
CAVG  
10µF  
20 19  
18  
17  
16  
SUM CAVG CCF VCC IBUFV+  
15  
14  
13  
1
2
DNC  
OBUFV+  
AD8436  
DC  
OUT  
RMS  
OBUFOUT  
OBUFIN–  
OBUFIN+  
10µF  
3
IBUFOUT  
IBUFIN–  
IBUFIN+  
4
12  
11  
0.47µF  
5
IGND  
VEE  
AC IN  
IBUFGN DNC OGND OUT  
10M  
6
7
8
9
10  
VEE  
CLPF  
3.3µF  
CAPACITOR CLPF, IN CONJUNCTION WITH  
THE INTERNAL 16kOUTPUT RESISTOR  
FILTERS THE RECTIFIED OUTPUT, YIELDING  
THE AVERAGE-RECTIFIED VALUE.  
Figure 41. Configuration for Average Rectified Value  
Rev. E | Page 16 of 21  
 
Data Sheet  
AD8436  
AD8436 EVALUATION BOARD  
The AD8436-EVALZ provides a platform to evaluate AD8436  
performance. The board is fully assembled, tested, and ready to  
use after connecting the power and signal sources. Figure 47  
is a photograph of the board and Figure 48 is the schematic.  
Signal connections are located on the primary and secondary  
sides, with power and ground on the inner layers. Figure 42 to  
Figure 46 illustrate the various design details of the board,  
including basic layout and copper patterns. These figures are  
useful references for application designs.  
Table 6.  
Switch  
Function  
CORE_BUFFER  
Selects core or input buffer for the input  
signal  
Selects ac or dc coupling to the core  
Selects the output buffer or the core  
output at the DCOUT BNC  
Enables or disables the input buffer  
Enables or disables the output buffer  
INCOUP  
SDCOUT  
IBUF_VCC  
OBUF_VCC  
A Word About Using the AD8436 Evaluation Board  
Ample test points provide easy monitoring of inputs and  
outputs using standard test equipment. Unity is the input buffer  
default gain; for 2× gain, simply install a 0 Ω 0603 resistor (jumper)  
at Position R5. For higher IBUF gains, remove the 0 Ω resistor  
at Position RFBH (there is an internal 10 kΩ resistor from the  
OBUF_OUT to IBUFIN−) and install a smaller value resistor in  
Position RFBL. A 100 Ω resistor establishes a gain of 100×.  
The AD8436-EVALZ offers many options, without sacrificing  
simplicity. The board is tested and shipped with a 10 ꢀF averaging  
capacitor (CAVG), a 3.3 ꢀF low-pass filter capacitor (CLPF), and a  
0.1 ꢀF capacitor to optimize crest factor (CCF) performance. To  
evaluate minimum cost applications, remove both capacitors. The  
functions of the five switches are listed in Table 6.  
Single-Supply Operation  
Referring to Figure 48, single-supply operation requires the  
removal of Resistor R6. If needed, an optional capacitor in the  
range 0.1 ꢀF to 4.7 ꢀF may be installed in the R6 position for  
ambient noise decoupling (this is rarely required, however).  
Connect the negative supply pin (VEE) to ground (GND);  
otherwise, the negative supply rails remain open.  
Rev. E | Page 17 of 21  
 
 
AD8436  
Data Sheet  
Figure 45. AD8436-EVALZ Power Plane  
Figure 42. Assembly of the AD8436-EVALZ  
Figure 43. AD8436-EVALZ Primary Side Copper  
Figure 44. AD8436-EVALZ Secondary Side Copper  
Figure 46. AD8436-EVALZ Ground Plane  
Rev. E | Page 18 of 21  
 
 
Data Sheet  
AD8436  
Figure 47. Photograph of the AD8436-EVALZ  
3
–V  
(GRN)  
+V  
(RED)  
3
C1  
GND1 GND2 GND3 GND4 GND5 GND6  
CAVG  
C2  
10µF  
CCF  
0.1µF  
X8R  
10µF  
+
10µF  
50V  
C4  
0.1µF  
TIBUFV+  
EN  
+
50V  
–40°C TO  
+125°C  
DIS  
+
TCAVG  
TCCF  
18  
–40°C TO +125°C  
TSUM  
VEE  
IBUF_VCC  
IBUFV+  
20  
SUM  
19  
17  
VCC  
16  
INCOUP  
CAVG  
CCF  
VCC  
TOBUFV+  
15  
EN  
DIS  
AC  
DC  
DNC  
OBUFV+  
1
2
CORE_BUF  
CORE  
OBUF_VCC  
CIN  
10µF  
AC_IN  
TOBFOUT  
14  
TRMSIN  
RMS  
OBUFOUT  
OBUFIN–  
OBUFIN+  
IGND  
+
R8  
0  
BUF  
1
C6  
2.2µF  
TOBUFIN−  
13  
TIBUFOUT  
3
TACIN  
IBUFOUT  
IBUFIN–  
IBUFIN+  
AD8436  
TDCOUT  
BUF  
4
RFBH  
0ꢀ  
DC  
OUT  
TOBUFIN+  
12  
TIBFIN–  
4
C5  
0.47µF  
CORE  
5
RFBL  
SDCOUT  
DNI  
TIGND  
1
C7  
1.5µF  
TIBFIN+  
5
11  
1
BUF  
R3  
R1  
10Mꢀ  
GAIN  
DNC  
7
OGND  
8
OUT  
9
VEE  
10  
8.06kꢀ  
2
R7  
6
0ꢀ  
3
TBUFGN  
TOGND  
3
R6  
0ꢀ  
C3  
0.1µF  
1
R4  
TOUT  
4
R5  
0ꢀ  
R2  
0ꢀ  
0ꢀ  
VEE  
CLPF  
3.3µF  
1
2
3
OPTIONAL COMPONENTS TO CONFIGURE IBUFOUT AS A FILTER.  
REMOVE R7 FOR CORE-ONLY TESTS.  
FOR SINGLE SUPPLY OPERATION, REMOVE R6, SHORT OR REPLACE C3 WITH A 0RESISTOR AND CONNECT THE SUPPLY GROUND OR RETURN TO  
THE GREEN TEST LOOP –V.  
4
5
TO CONFIGURE THE FET INPUT BUFFER FOR GAIN OF 2, INSTALL 0RESISTOR AT R5 AND REMOVE RFBH.  
RFBL IS USED TO CONFIGURE THE INPUT BUFFER FOR GAIN VALUES >2×.  
Figure 48. Evaluation Board Schematic  
Rev. E | Page 19 of 21  
 
 
AD8436  
Data Sheet  
OUTLINE DIMENSIONS  
DETAIL A  
(JEDEC 95)  
4.10  
4.00 SQ  
3.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDIC ATOR AREA OPTIONS  
(SEE DETAIL A)  
16  
20  
0.50  
BSC  
1
15  
2.75  
2.60 SQ  
2.35  
EXPOSED  
PAD  
5
11  
10  
6
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WGGD-11.  
Figure 49. 20-Lead Lead Frame Chip Scale Package [LFCSP]  
4 mm × 4 mm Body and 0.75 mm Package Height  
(CP-20-8)  
Dimensions shown in millimeters  
0.345 (8.76)  
0.341 (8.66)  
0.337 (8.55)  
20  
1
11  
0.158 (4.01)  
0.154 (3.91)  
0.244 (6.20)  
0.150 (3.81)  
0.236 (5.99)  
0.228 (5.79)  
10  
0.010 (0.25)  
0.006 (0.15)  
0.020 (0.51)  
0.010 (0.25)  
0.069 (1.75)  
0.053 (1.35)  
0.065 (1.65)  
0.049 (1.25)  
0.010 (0.25)  
0.004 (0.10)  
0.041 (1.04)  
REF  
SEATING  
PLANE  
8°  
0°  
0.025 (0.64)  
BSC  
0.050 (1.27)  
0.016 (0.41)  
COPLANARITY  
0.004 (0.10)  
0.012 (0.30)  
0.008 (0.20)  
COMPLIANT TO JEDEC STANDARDS MO-137-AD  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 50. 20-Lead Shrink Small Outline Package [QSOP]  
(RQ-20)  
Dimensions shown in inches and (millimeters)  
Rev. E | Page 2ꢀ of 21  
 
Data Sheet  
AD8436  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
0°C to +70°C  
Package Description  
Package Option  
CP-20-8  
CP-20-8  
CP-20-8  
CP-20-8  
CP-20-8  
CP-20-8  
RQ-20  
RQ-20  
RQ-20  
RQ-20  
RQ-20  
AD8436ACPZ-R7  
AD8436ACPZ-RL  
AD8436ACPZ-WP  
AD8436JCPZ-R7  
AD8436JCPZ-RL  
AD8436JCPZ-WP  
AD8436ARQZ-R7  
AD8436ARQZ-RL  
AD8436ARQZ  
20-Lead Lead Frame Chip Scale [LFCSP]  
20-Lead Lead Frame Chip Scale [LFCSP]  
20-Lead Lead Frame Chip Scale [LFCSP]  
20-Lead Lead Frame Chip Scale [LFCSP]  
20-Lead Lead Frame Chip Scale [LFCSP]  
20-Lead Lead Frame Chip Scale [LFCSP]  
20-Lead Shrink Small Outline Package [QSOP]  
20-Lead Shrink Small Outline Package [QSOP]  
20-Lead Shrink Small Outline Package [QSOP]  
20-Lead Shrink Small Outline Package [QSOP]  
20-Lead Shrink Small Outline Package [QSOP]  
20-Lead Shrink Small Outline Package [QSOP]  
Evaluation Board  
0°C to +70°C  
0°C to +70°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
AD8436BRQZ-R7  
AD8436BRQZ-RL  
AD8436BRQZ  
RQ-20  
AD8436-EVALZ  
1 Z = RoHS Compliant Part.  
©2011–2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D10033-0-3/17(E)  
Rev. E | Page 21 of 21  
 

相关型号:

AD8436JCPZ-R7

Low Cost, Low Power
ADI

AD8436JCPZ-RL

Low Cost, Low Power
ADI

AD8436JCPZ-WP

Low Cost, Low Power
ADI

AD8436_13

Low Cost, Low Power, True RMS-to-DC Converter
ADI

AD8436_17

Low Cost, Low Power, True RMS-to-DC Converter
ADI

AD843A

34 MHz, CBFET Fast Settling Op Amp
ADI

AD843AQ

34 MHz, CBFET Fast Settling Op Amp
ADI

AD843AQ

OP-AMP, 4000uV OFFSET-MAX, 34MHz BAND WIDTH, CDIP8, HERMETIC SEALED, CERAMIC, DIP-8
ROCHESTER

AD843B

34 MHz, CBFET Fast Settling Op Amp
ADI

AD843BH

34 MHz, CBFET Fast Settling Op Amp
ADI

AD843BH

OP-AMP, 2000 uV OFFSET-MAX, 34 MHz BAND WIDTH, MBCY12, HERMETIC SEALED, METAL CAN, TO-8, 12 PIN
ROCHESTER

AD843BHZ

IC OP-AMP, 2000 uV OFFSET-MAX, 34 MHz BAND WIDTH, MBCY12, HERMETIC SEALED, METAL CAN, TO-8, 12 PIN, Operational Amplifier
ADI