AD845JCHIPS [ADI]

Precision, 16 MHz CBFET Op Amp; 精密, 16 MHz的CBFET运算放大器
AD845JCHIPS
型号: AD845JCHIPS
厂家: ADI    ADI
描述:

Precision, 16 MHz CBFET Op Amp
精密, 16 MHz的CBFET运算放大器

运算放大器 放大器电路
文件: 总8页 (文件大小:237K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision, 16 MHz  
CBFET Op Amp  
a
AD845  
FEATURES  
CO NNECTIO N D IAGRAMS  
Replaces Hybrid Am plifiers in Many Applications  
16-P in SO IC  
(R-16) P ackage  
P lastic Mini-D IP (N) P ackage  
and Cerdip (Q) P ackage  
AC PERFORMANCE:  
Settles to 0.01% in 350 ns  
100 V/ s Slew Rate  
12.8 MHz m in Unity-Gain Bandw idth  
1.75 MHz Full-Pow er Bandw idth at 20 V p-p  
DC PERFORMANCE:  
0.25 m V m ax Input Offset Voltage  
5 V/ ؇C m ax Offset Voltage Drift  
0.5 nA Input Bias Current  
250 V/ m V m in Open-Loop Gain  
4 V p-p m ax Voltage Noise, 0.1 Hz to 10 Hz  
94 dB m in CMRR  
Available in Plastic Mini-DIP, Herm etic Cerdip and  
SOIC Packages. Also Available in Tape and Reel in  
Accordance w ith EIA-481A Standard  
T he AD845 conforms to the standard op amp pinout except  
that offset nulling is to V+. T he AD845J and AD845K grade  
devices are available specified to operate over the commercial  
0°C to +70°C temperature range. AD845A and AD845B  
devices are specified for operation over the –40°C to +85°C  
industrial temperature range. T he AD845S is specified to oper-  
ate over the full military temperature range of –55°C to  
+125°C. Both the industrial and military versions are available  
in 8-pin cerdip packages. T he commercial version is available in  
an 8-pin plastic mini-DIP and 16-pin SOIC; “J” and “S” grade  
chips are also available.  
P RO D UCT D ESCRIP TIO N  
T he AD845 is a fast, precise, N channel JFET input, monolithic  
operational amplifier. It is fabricated using Analog Devices’  
complementary bipolar (CB) process. Advanced laser-wafer  
trimming technology enables the very low input offset voltage  
and offset voltage drift performance to be realized. T his preci-  
sion, when coupled with a slew rate of 100 V/µs, a stable  
unity-gain bandwidth of 16 MHz, and a settling time of 350 ns  
0.01%—while driving a parallel load of 100 pF and 500 —  
represents a combination of features unmatched by any FET  
input IC amplifier. T he AD845 can easily be used to upgrade  
many existing designs which use BiFET or FET input hybrid  
amplifiers and, in some cases, those which use bipolar input op  
amps.  
P RO D UCT H IGH LIGH TS  
1. T he high slew rate, fast settling time, and dc precision of the  
AD845 make it ideal for high speed applications requiring  
12-bit accuracy.  
2. T he performance of circuits using the LF400, HA2520/2/5,  
HA2620/2/5, 3550, OPA605, and LH0062 can be upgraded  
in most cases.  
T he AD845 is ideal for use in applications such as active filters,  
high speed integrators, photo diode preamps, sample-and-hold  
amplifiers, log amplifiers, and in buffering A/D and D/A con-  
verters. T he 250 µV max input offset voltage makes offset null-  
ing unnecessary in many applications. T he common-mode  
rejection ratio of 110 dB over a ±10 V input voltage range  
represents exceptional performance for a JFET input high  
speed op amp. T his, together with a minimum open-loop  
gain of 250 V/mV ensures that 12-bit performance is achieved,  
even in unity-gain buffer circuits.  
3. T he AD845 is unity-gain stable and internally compensated.  
4. T he AD845 is specified while driving 100 pF/500 loads.  
REV. D  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 617/ 329-4700  
Fax: 617/ 326-8703  
(@ +25؇C and ؎15 V dc, unless otherwise noted)  
AD845–SPECIFICATIONS  
Model  
AD 845J/A  
Typ  
AD 845K/B  
Typ  
AD 845S  
Typ  
Conditions  
Min  
Max Min  
Max  
Min  
Max  
Units  
INPUT OFFSET VOLT AGE1  
Initial Offset  
0.7  
1.5  
2.5  
20  
0.1  
1.5  
0.25  
0.4  
5.0  
0.25  
1.0  
2.0  
10  
mV  
mV  
µV/°C  
T MIN –T MAX  
Offset Drift  
INPUT BIAS CURRENT 2  
Initial  
VCM = 0 V  
T MIN –T MAX  
0.75  
25  
2
0.5  
15  
1
0.75  
25  
2
500  
nA  
nA  
45/75  
18/38  
INPUT OFFSET CURRENT  
Initial  
VCM = 0 V  
T MIN –T MAX  
300  
3/6.5  
100  
1.2/2.6  
300  
20  
pA  
nA  
INPUT CHARACT ERIST ICS  
Input Resistance  
Input Capacitance  
1011  
4.0  
1011  
4.0  
1011  
4.0  
kΩ  
pF  
INPUT VOLT AGE RANGE  
Differential  
±20  
±20  
±20  
V
Common Mode  
Common-Mode Rejection  
؎10  
86  
+10.5/–13  
110  
؎10  
94  
+10.5/–13  
113  
؎10  
86  
+10.5/–13  
110  
V
dB  
VCM = ±10 V  
INPUT VOLT AGE NOISE  
0.1 Hz to 10 Hz  
f = 10 Hz  
f = 100 Hz  
f = 1 kHz  
f = 10 kHz  
f = 100 kHz  
4
4
4
µV p-p  
80  
60  
25  
18  
12  
80  
60  
25  
18  
12  
80  
60  
25  
18  
12  
nV/Hz  
nV/Hz  
nV/Hz  
nV/Hz  
nV/Hz  
INPUT CURRENT NOISE  
OPEN-LOOP GAIN  
f = 1 kHz  
0.1  
0.1  
0.1  
pA/Hz  
VO = ±10 V  
RLOAD 2 kΩ  
RLOAD 500 Ω  
T MIN –T MAX  
200  
100  
70  
500  
250  
250  
125  
75  
500  
250  
200  
100  
50  
500  
250  
V/mV  
V/mV  
V/mV  
OUT PUT CHARACT ERIST ICS  
Voltage  
Current  
RLOAD 500 Ω  
Short Circuit  
Open Loop  
؎12.5  
؎12.5  
؎12.5  
V
mA  
50  
5
50  
5
50  
5
Output Resistance  
FREQUENCY RESPONSE  
Small Signal  
Unity Gain  
VO = ±10 V  
RLOAD = 500 Ω  
12.8  
16  
13.6  
16  
13.6  
16  
MHz  
Full Power Bandwidth3  
1.75  
20  
20  
1.75  
20  
20  
1.75  
20  
20  
MHz  
ns  
%
Rise T ime  
Overshoot  
Slew Rate  
80  
100  
94  
100  
94  
100  
V/µs  
Settling T ime  
10 V Step  
CLOAD = 100 pF  
RLOAD = 500 Ω  
to 0.01%  
350  
250  
350  
250  
500  
350  
250  
500  
ns  
ns  
to 0.1%  
DIFFERENT IAL GAIN  
DIFFERENT IAL PHASE  
f = 4.4 MHz  
f = 4.4 MHz  
0.04  
0.02  
0.04  
0.02  
0.04  
0.02  
%
Degree  
POWER SUPPLY  
Rated Performance  
Operating Range  
Rejection Ratio  
±15  
±15  
±15  
V
V
dB  
mA  
؎4.75  
VS = ±5 to ±15 V 88  
؎18 ؎4.75  
؎18  
؎4.75  
88  
؎18  
110  
10  
95  
113  
10  
110  
10  
Quiescent Current  
T MIN to T MAX  
12  
12  
12  
NOT ES  
1Input offset voltage specifications are guaranteed after 5 minutes of operation at T A = +25°C.  
2Bias current specifications are guaranteed maximum at either input after 5 minutes of operation at T = +25°C.  
A
3FPBW = slew rate/2 π V peak.  
4“S” grade T MIN–T MAX are tested with automatic test equipment at T A = –55°C and T A = +125°C.  
All min and max specifications are guaranteed. Specifications shown in boldface are tested on all production units at final electrical test. Results from these tests are  
used to calculate outgoing quality levels.  
Specifications subject to change without notice.  
–2–  
REV. D  
AD845  
ABSO LUTE MAXIMUM RATINGS 1  
METALIZATIO N P H O TO GRAP H  
D imensions shown in inches and (mm).  
Contact factory for latest dimensions.  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±18 V  
Internal Power Dissipation2  
Plastic Mini-DIP . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6 Watts  
Cerdip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4 Watts  
16-Pin SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 Watts  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + VS  
Output Short-Circuit Duration . . . . . . . . . . . . . . . . Indefinite  
Differential Input Voltage . . . . . . . . . . . . . . . . . . +VS and –VS  
Storage T emperature Range  
Q
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65°C to +150°C  
N, R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65°C to +125°C  
Lead T emperature Range (Soldering 60 sec) . . . . . . . . +300°C  
NOT ES  
1Stresses above those listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. T his is a stress rating only, and functional  
operation of the device at these or any other conditions above those indicated in  
the operational sections of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability .  
2Mini-DIP package: θJA = 100°C/watt; cerdip package: θJA = 110°C/watt. SOIC  
package: θJA = 100°C/W.  
SUBSTRATE CONNECTED TO +VS  
O RD ERING GUID E  
Tem perature  
Range  
P ackage  
D escription  
P ackage  
O ption*  
Model  
AD845JN  
AD845KN  
AD845JR-16  
AD845AQ  
AD845BQ  
AD845SQ  
AD845SQ/883B  
5962-8964501PA  
AD845JCHIPS  
AD845SCHIPS  
AD845JR-16-REEL  
AD845JR-16-REEL7  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
8-Pin Plastic Mini-DIP  
8-Pin Plastic Mini-DIP  
16-Pin SOIC  
8-Pin Cerdip  
8-Pin Cerdip  
8-Pin Cerdip  
8-Pin Cerdip  
8-Pin Cerdip  
Die  
N-8  
N-8  
R-16  
Q-8  
Q-8  
Q-8  
Q-8  
Q-8  
–40°C to +85°C  
–40°C to +85°C  
–55°C to +125°C  
–55°C to +125°C  
–55°C to +125°C  
0°C to +70°C  
–55°C to +125°C  
0°C to +70°C  
0°C to +70°C  
Die  
T ape & Reel  
T ape & Reel  
REV. D  
–3–  
AD845–Typical Characteristics  
*N = Plastic DIP: Q = Cerdip; R = Small Outline  
IC (SOIC).  
Com m on-Mode Voltage  
Lim it vs. Tem perature  
Figure 3. Output Voltage Swing  
vs. Resistive Load  
Figure 2. Output Voltage Swing  
vs. Supply Voltage  
Figure 1. Input Voltage Swing  
vs. Supply Voltage  
Figure 6. Magnitude of Output  
Im pedance vs. Frequency  
Figure 5. Input Bias Current vs.  
Tem perature  
Figure 4. Quiescent Current vs.  
Supply Voltage  
Figure 8. Short-Circuit Current  
Figure 9. Unity-Gain Bandwidth  
Figure 7. Input Bias Current vs.  
–4–  
REV. D  
AD845  
vs. Frequency  
vs. Tem perature  
Spectral Density  
Figure 10. Open-Loop Gain and  
Phase Margin vs. Frequency  
Figure 11. Open-Loop Gain vs.  
Supply Voltage  
Figure 12. Power Supply  
Rejection vs. Frequency  
Figure 14. Large Signal Frequency  
Response  
Figure 15. Output Swing and  
Error vs. Settling Tim e  
Figure 13. Com m on-Mode  
Rejection vs. Frequency  
Figure 16. Harm onic Distortion  
Figure 17. Input Noise Voltage  
Figure 18. Slew Rate vs. Tem perature  
REV. D  
–5–  
AD845  
Figure 19. Recom m ended Power  
Supply Bypassing  
Figure 20. AD845 Sim plified  
Schem atic  
Figure 21. Offset Null Configuration  
Figure 22a. Unity-Gain Follower  
Figure 22c. Unity-Gain Follower  
Sm all Signal Pulse Response  
Figure 22b. Unity-Gain Follower  
Large Signal Pulse Response  
Figure 23c. Unity-Gain Inverter  
Sm all Signal Pulse Response  
Figure 23b. Unity-Gain Inverter  
Large Signal Pulse Response  
Figure 23a. Unity-Gain Inverter  
–6–  
REV. D  
AD845  
MEASURING AD 845 SETTLING TIME  
and stable, accurately defined gain. Low input bias currents and  
fast settling are achieved with the FET input AD845.  
T he Figure 24 shows the AD845 settling time performance.  
T his measurement was accomplished by driving the amplifier  
in the unity-gain inverting mode with a fast pulse generator.  
T he input summing junction was measured using false nulling  
techniques.  
Most monolithic instrumentation amplifiers do not have the  
high frequency performance of the circuit in Figure 26. T he cir-  
cuit bandwidth is 10.9 MHz at a gain of 1 and 8.8 MHz at a  
gain of 10; settling time for the entire circuit is 900 ns to 0.01%  
for a 10 V step (Gain = 10).  
Settling time is defined as:  
T he interval of time from the application of an ideal  
step function input until the closed-loop amplifier output  
has entered and remains within a specified error band.  
T he capacitors employed in this circuit greatly improve the  
amplifier’s settling time and phase margin.  
Components of settling time include:  
1. Propagation time through the amplifier  
2. Slewing time to approach the final output value  
3. Recovery time from overload associated with the slewing  
4. Linear settling to within a specified error band.  
T hese individual components can easily be seen in Figure 24.  
Settling time is extremely important in high speed applications  
where the current output of a DAC must be converted to a  
voltage. When driving a 500 load in parallel with a 100 pF  
capacitor, the AD845 settles to 0.1% in 250 ns and to 0.01% in  
310 ns.  
Figure 26. High Perform ance, High Speed Instrum enta-  
tion Am plifier  
Table I. P erform ance Sum m ary for the Three O p Am p  
Instrum entation Am plifier Circuit  
3 O p-Am p In-Am p  
Sm all Signal  
Bandwidth  
Settling Tim e  
to 0.01%  
Gain  
RG  
Figure 24. Settling Characteristics 0 V to 10 V Step  
Upper Trace: Output of AD845 Under Test (5 V/Div)  
Lower Trace: Error Voltage (1 m V/Div)  
1
2
10  
100  
Open  
2k  
226 Ω  
20 Ω  
10.9 MHz  
8.8 MHz  
2.6 MHz  
290 kHz  
500 ns  
500 ns  
900 ns  
7.5 µs  
Note: Resistors around the amplifiers’ input pins need to be small enough in  
value so that the RC time constant they form, with stray circuit capacitance,  
does not reduce circuit bandwidth.  
Figure 25. Settling Tim e Test Circuit  
A H IGH SP EED INSTRUMENTATIO N AMP  
Figure 27. The Pulse Response of the Three Op Am p  
Instrum entation Am plifier. Gain = 1, Horizontal Scale:  
0.5 m s/Div; Vertical Scale: 5 V/Div  
T he three op amp instrumentation amplifier circuit shown in  
Figure 26 can provide a range of gains from unity up to 1000  
and higher. T he instrumentation amplifier configuration fea-  
tures high common-mode rejection, balanced differential inputs  
REV. D  
–7–  
AD845  
Figure 28b. Settling Tim e of the Three Op Am p Instru-  
m entation Am plifier. Horizontal Scale: 200 ns/Div; Vertical  
Scale, Negative Pulse Input: 5 V/ Div; Output Settling:  
1 m V/Div  
Figure 28a. Settling Tim e of the Three Op Am p Instru-  
m entation Am plifier. Horizontal Scale: 200 ns/Div; Vertical  
Scale, Positive Pulse Input: 5 V/Div; Output Settling:  
1 m V/Div  
AD845 is ideally suited to drive high resolution A/D converters  
with 5 µs on longer conversion times since it offers both wide  
bandwidth and high open-loop gain.  
D RIVING TH E ANALO G INP UT O F AN A/D CO NVERTER  
An op amp driving the analog input of an A/D converter, such  
as that shown in Figure 29, must be capable of maintaining a  
constant output voltage under dynamically changing load condi-  
tions. In successive approximation converters, the input current  
is compared to a series of switched trial currents. T he compari-  
son point is diode clamped but may deviate several hundred  
millivolts resulting in high frequency modulation of A/D input  
current. T he output impedance of a feedback amplifier is made  
artificially low by the loop gain. At high frequencies, where the  
loop gain is low, the amplifier output impedance can approach  
its open-loop value. Most IC amplifiers exhibit a minimum  
open-loop output impedance of 25 due to current limiting re-  
sistors. A few hundred microamps reflected from the change in  
converter loading can introduce errors in instantaneous input  
voltage. If the A/D conversion speed is not excessive and the  
bandwidth of the amplifier is sufficient, the amplifier’s output  
will return to the nominal value before the converter makes its  
comparison. However, many amplifiers have relatively narrow  
bandwidth yielding slow recovery from output transients. T he  
Figure 29. AD845 As ADC Unity Gain Buffer  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm).  
Mini-D IP (N) P ackage  
Cerdip (Q) P ackage  
–8–  
REV. D  

相关型号:

AD845JN

Precision, 16 MHz CBFET Op Amp
ADI

AD845JN

OP-AMP, 2500uV OFFSET-MAX, 16MHz BAND WIDTH, PDIP8, MINI, PLASTIC, DIP-8
ROCHESTER

AD845JNZ

Precision, 16 MHz CBFET Op Amp
ADI

AD845JNZ

OP-AMP, 2500uV OFFSET-MAX, 16MHz BAND WIDTH, PDIP8, MINI, PLASTIC, DIP-8
ROCHESTER

AD845JR

Voltage-Feedback Operational Amplifier
ETC

AD845JR-16

Precision, 16 MHz CBFET Op Amp
ADI

AD845JR-16

OP-AMP, 2500 uV OFFSET-MAX, 16 MHz BAND WIDTH, PDSO16, SOIC-16
ROCHESTER

AD845JR-16-REEL

Precision, 16 MHz CBFET Op Amp
ADI

AD845JR-16-REEL

OP-AMP, 2500 uV OFFSET-MAX, 16 MHz BAND WIDTH, PDSO16, SOIC-16
ROCHESTER

AD845JR-16-REEL7

Precision, 16 MHz CBFET Op Amp
ADI

AD845JR-16-REEL7

OP-AMP, 2500 uV OFFSET-MAX, 16 MHz BAND WIDTH, PDSO16, MS-013AA, SOIC-16
ROCHESTER

AD845JR-REEL

IC OP-AMP, 2500 uV OFFSET-MAX, 16 MHz BAND WIDTH, PDSO16, SOIC-16, Operational Amplifier
ADI