AD8497CRMZ [ADI]

Precision Thermocouple Amplifiers with Cold Junction Compensation; 精密热电偶放大器,冷端补偿
AD8497CRMZ
型号: AD8497CRMZ
厂家: ADI    ADI
描述:

Precision Thermocouple Amplifiers with Cold Junction Compensation
精密热电偶放大器,冷端补偿

放大器
文件: 总16页 (文件大小:481K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision Thermocouple Amplifiers  
with Cold Junction Compensation  
AD8494/AD8495/AD8496/AD8497  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
SENSE  
Low cost and easy to use  
AD8494/AD8495/  
Pretrimmed for J or K type thermocouples  
Internal cold junction compensation  
High impedance differential input  
Standalone 5 mV/°C thermometer  
Reference pin allows offset adjustment  
Thermocouple break detection  
Laser wafer trimmed to 1°C initial accuracy  
and 0.025°C/°C ambient temperature rejection  
Low power: <1 mW at VS = 5 V  
AD8496/AD8497  
–IN  
ESD AND  
OVP  
A2  
1M  
COLD JUNCTION  
COMPENSATION  
THERMO-  
COUPLE  
A3  
OUT  
A1  
+IN  
ESD AND  
OVP  
Wide power supply range  
Single supply: 2.7 V to 36 V  
Dual supply: 2.7 V to 18 V  
REF  
Figure 1.  
Small, 8-lead MSOP  
APPLICATIONS  
Table 1. Device Temperature Ranges  
Optimized Temperature Range  
J or K type thermocouple temperature measurement  
Setpoint controller  
Celsius thermometer  
Universal cold junction compensator  
White goods (oven, stove top) temperature measurements  
Exhaust gas temperature sensing  
Thermo-  
couple  
Part No. Type  
Ambient Temperature Measurement  
(Reference Junction) Junction  
AD8494  
AD8495  
AD8496  
AD8497  
J
K
J
0°C to 50°C  
0°C to 50°C  
25°C to 100°C  
25°C to 100°C  
Full J type range  
Full K type range  
Full J type range  
Full K type range  
K
Catalytic converter temperature sensing  
GENERAL DESCRIPTION  
The AD8494/AD8495/AD8496/AD8497 are precision instrumen-  
tation amplifiers with thermocouple cold junction compensators  
on an integrated circuit. They produce a high level (5 mV/°C)  
output directly from a thermocouple signal by combining an  
ice point reference with a precalibrated amplifier. They can be  
used as standalone thermometers or as switched output setpoint  
controllers using either a fixed or remote setpoint control.  
The AD8494/AD8495/AD8496/AD8497 allow a wide variety of  
supply voltages. With a 5 V single supply, the 5 mV/°C output  
allows the devices to cover nearly 1000 degrees of a thermo-  
couple’s temperature range.  
The AD8494/AD8495/AD8496/AD8497 work with 3 V supplies,  
allowing them to interface directly to lower supply ADCs. They  
can also work with supplies as large as 36 V in industrial systems  
that require a wide common-mode input range.  
The AD8494/AD8495/AD8496/AD8497 can be powered from a  
single-ended supply (less than 3 V) and can measure temperatures  
below 0°C by offsetting the reference input. To minimize self-  
heating, an unloaded AD849x typically operates with a total  
supply current of 180 μA, but it is also capable of delivering in  
excess of 5 mA to a load.  
PRODUCT HIGHLIGHTS  
1. Complete, precision laser wafer trimmed thermocouple  
signal conditioning system in a single IC package.  
2. Flexible pinout provides for operation as a setpoint  
controller or as a standalone Celsius thermometer.  
3. Rugged inputs withstand 4 kV ESD and provide over-  
voltage protection (OVP) up to VS 25 V.  
4. Differential inputs reject common-mode noise on the  
thermocouple leads.  
5. Reference pin voltage can be offset to measure 0°C on  
single supplies.  
The AD8494 and AD8496 are precalibrated by laser wafer  
trimming to match the characteristics of J type (iron-constantan)  
thermocouples; the AD8495 and AD8497 are laser trimmed to  
match the characteristics of K type (chromel-alumel) thermo-  
couples. See Table 1 for the optimized ambient temperature  
range of each part.  
6. Available in a small, 8-lead MSOP that is fully RoHS compliant.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2010 Analog Devices, Inc. All rights reserved.  
 
 
AD8494/AD8495/AD8496/AD8497  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Thermocouples........................................................................... 11  
Thermocouple Signal Conditioner.......................................... 11  
AD8494/AD8495/AD8496/AD8497 Architecture.................. 11  
Maximum Error Calculation.................................................... 12  
Recommendations for Best Circuit Performance.................. 13  
Applications Information.............................................................. 14  
Basic Connection ....................................................................... 14  
Ambient Temperature Sensor................................................... 14  
Setpoint Controller .................................................................... 15  
Measuring Negative Temperatures .......................................... 15  
Reference Pin Allows Offset Adjustment................................ 15  
Outline Dimensions....................................................................... 16  
Ordering Guide .......................................................................... 16  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 7  
Theory of Operation ...................................................................... 11  
REVISION HISTORY  
7/10—Revision 0: Initial Version  
Rev. 0 | Page 2 of 16  
 
AD8494/AD8495/AD8496/AD8497  
SPECIFICATIONS  
+VS = 5 V, VS = 0 V, V+IN = V−IN = 0 V, VREF = 0 V, TA = TRJ = 25°C, RL = 100 kΩ, unless otherwise noted. Specifications do not include  
gain and offset errors of the thermocouple itself. TA is the ambient temperature at the AD849x; TRJ is the thermocouple reference junction  
temperature; TMJ is the thermocouple measurement junction temperature.  
Table 2.  
A Grade  
Typ  
C Grade  
Typ  
Parameter  
Test Conditions/Comments  
Min  
Max  
Min  
Max  
Unit  
TEMPERATURE ACCURACY  
Initial Accuracy  
AD8494/AD8495  
AD8496/AD8497  
TA = TRJ = TMJ = 25°C  
TA = TRJ = 60°C, TMJ = 175°C  
3
3
1
1.5  
°C  
°C  
Ambient Temperature  
Rejection1  
AD8494/AD8495  
AD8496/AD8497  
Gain Error2, 3  
TA = TRJ = 0°C to 50°C  
TA = TRJ = 25°C to 100°C  
VOUT = 0.125 V to 4.125 V  
0.05  
0.05  
0.025  
0.025  
°C/°C  
°C/°C  
AD8494/AD8495  
AD8496/AD8497  
Transfer Function  
INPUTS  
0.3  
0.3  
0.1  
0.1  
%
%
mV/°C  
5
5
Input Voltage Range  
Overvoltage Range  
Input Bias Current4  
Input Offset Current  
Common-Mode Rejection  
Power Supply Rejection  
NOISE  
−VS – 0.2  
+VS – 25  
+VS – 1.6 −VS – 0.2  
−VS + 25 +VS – 25  
50  
1.5  
1
+VS – 1.6  
−VS + 25  
50  
0.5  
0.3  
V
V
nA  
nA  
°C/V  
°C/V  
25  
25  
VCM = 0 V to 3 V  
+VS = 2.7 V to 5 V  
0.5  
0.5  
Voltage Noise  
f = 0.1 Hz to 10 Hz, TA = 25°C  
f = 1 kHz, TA = 25°C  
f = 1 kHz, TA = 25°C  
0.8  
32  
100  
0.8  
32  
100  
μV p-p  
nV/√Hz  
fA/√Hz  
Voltage Noise Density  
Current Noise Density  
REFERENCE INPUT  
Input Resistance  
Input Current  
60  
25  
60  
25  
kΩ  
μA  
V
Voltage Range  
−VS  
+VS  
−VS  
+VS  
Gain to Output  
OUTPUT  
1
7
1
7
V/V  
Output Voltage Range  
Short-Circuit Current5  
DYNAMIC RESPONSE  
−3 dB Bandwidth  
AD8494  
−VS + 0.025  
+VS – 0.1 −VS + 0.025  
+VS – 0.1  
V
mA  
30  
25  
31  
30  
25  
31  
kHz  
kHz  
kHz  
AD8495/AD8497  
AD8496  
Settling Time to 0.1%  
AD8494  
AD8495/AD8497  
AD8496  
4 V output step  
36  
40  
32  
36  
40  
32  
μs  
μs  
μs  
POWER SUPPLY  
Operating Voltage Range6  
Single Supply  
Dual Supply  
Quiescent Current  
2.7  
2.7  
36  
18  
250  
2.7  
2.7  
36  
18  
250  
V
V
μA  
180  
180  
Rev. 0 | Page 3 of 16  
 
 
AD8494/AD8495/AD8496/AD8497  
A Grade  
Typ  
C Grade  
Typ  
Parameter  
Test Conditions/Comments  
Min  
Max  
Min  
Max  
Unit  
TEMPERATURE RANGE (TA)  
Specified Performance  
AD8494/AD8495  
AD8496/AD8497  
Operational  
0
25  
−40  
50  
100  
+125  
0
25  
−40  
50  
100  
+125  
°C  
°C  
°C  
1 Ambient temperature rejection specifies the change in the output measurement (in °C) for a given change in temperature of the cold junction. For the AD8494 and  
AD8495, ambient temperature rejection is defined as the slope of the line connecting errors calculated at 0°C and 50°C ambient temperature. For the AD8496 and  
AD8497, ambient temperature rejection is defined as the slope of the line connecting errors calculated at 25°C and 100°C ambient temperature.  
2 Error does not include thermocouple gain error or thermocouple nonlinearity.  
3 With a 100 kΩ load, measurement junction temperatures beyond approximately 880°C for the AD8494 and AD8496 and beyond approximately 960°C for the AD8495  
and AD8497 require supply voltages larger than 5 V or a negative voltage applied to the reference pin. Measurement junction temperatures below 5°C require either a  
positive offset voltage applied to the reference pin or a negative supply.  
4 Input stage uses PNP transistors, so bias current always flows out of the part.  
5 Large output currents can increase the internal temperature rise of the part and contribute to cold junction compensation (CJC) error.  
6 Unbalanced supplies can also be used. Care should be taken that the common-mode voltage of the thermocouple stays within the input voltage range of the part.  
Rev. 0 | Page 4 of 16  
 
 
 
AD8494/AD8495/AD8496/AD8497  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 3.  
θJA is specified for a device on a 4-layer JEDEC PCB in free air.  
Parameter  
Rating  
Supply Voltage  
18 V  
Table 4.  
Package  
Maximum Voltage at −IN or +IN  
Minimum Voltage at −IN or +IN  
REF Voltage  
+VS – 25 V  
–VS + 25 V  
VS  
θJA  
Unit  
8-Lead MSOP (RM-8)  
135  
°C/W  
Output Short-Circuit Current Duration  
Storage Temperature Range  
Operating Temperature Range  
Maximum IC Junction Temperature  
ESD  
Indefinite  
−65°C to +150°C  
−40°C to +125°C  
140°C  
ESD CAUTION  
Human Body Model  
4.5 kV  
Field-Induced Charged Device Model 1.5 kV  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 5 of 16  
 
AD8494/AD8495/AD8496/AD8497  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
AD849x  
–IN  
1
2
3
4
8
7
6
5
+IN  
+V  
+
REF  
S
–V  
OUT  
S
NC  
SENSE  
TOP VIEW  
(Not to Scale)  
NC = NO CONNECT  
Figure 2. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
3
4
5
6
7
8
−IN  
REF  
−VS  
NC  
SENSE  
OUT  
+VS  
Negative Input.  
Reference. This pin must be driven by low impedance.  
Negative Supply.  
No Connect.  
Sense Pin. In measurement mode, connect to output; in setpoint mode, connect to setpoint voltage.  
Output.  
Positive Supply.  
Positive Input.  
+IN  
Rev. 0 | Page 6 of 16  
 
AD8494/AD8495/AD8496/AD8497  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, +VS = 5 V, RL = ∞, unless otherwise noted.  
100  
1200  
AD8495/AD8497  
AD8494  
AD8496  
1000  
800  
CONNECTED  
10  
1
THERMOCOUPLE  
600  
400  
200  
0.1  
0.01  
OPEN THERMOCOUPLE  
0
THERMOCOUPLE CONNECTION  
AD849x OUTPUT  
–200  
0.1  
1
10  
100  
1k  
10k  
100k  
TIME (50µs/DIV)  
FREQUENCY (Hz)  
Figure 6. Output Response to Open Thermocouple,  
−IN Connected to Ground Through a 1 MΩ Resistor  
Figure 3. CMRR vs. Frequency  
1000  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
AD8495/AD8497  
AD8494  
AD8496  
+0.05, +3.45  
+4.91, +2.95  
+0.05, +3.21  
100  
10  
1
+4.91, +2.71  
+0.05, –0.36  
+0.05, –0.39  
+4.91, –0.37  
+4.91, –0.39  
–0.5  
–1.0  
V
V
= 0V  
= 2.5V  
REF  
REF  
0
1
10  
100  
1k  
10k  
100k  
–0.5  
0.5  
1.5  
2.5  
3.5  
4.5  
5.5  
FREQUENCY (Hz)  
OUTPUT VOLTAGE (V)  
Figure 4. PSRR vs. Frequency  
Figure 7. Input Common-Mode Voltage Range vs. Output Voltage,  
+VS = 5 V, VREF = 0 V, and VREF = 2.5 V  
50  
40  
35  
2.00  
1.75  
40  
30  
30  
25  
20  
15  
10  
5
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
I
BIAS  
20  
10  
AD8494  
AD8496  
AD8495/AD8497  
0
–10  
–20  
I
OS  
0
–40  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
1M  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
Figure 5. Frequency Response  
Figure 8. Input Bias Current and Input Offset Current vs. Temperature  
Rev. 0 | Page 7 of 16  
 
 
AD8494/AD8495/AD8496/AD8497  
3.00  
2.75  
2.50  
2.00  
16  
3.0  
2.5  
2.0  
1.5  
12  
8
1.50  
1.00  
0.50  
0
V
OUT  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
V
OUT  
4
0
1.0  
0.5  
0
I
IN  
–4  
–8  
I
IN  
–0.50  
–1.00  
–0.5  
–1.0  
–12  
–16  
–30 –25 –20 –15 –10 –5  
0
5
10 15 20 25 30  
–30 –25 –20 –15 –10 –5  
0
5
10 15 20 25 30  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 9. AD8494 Input Overvoltage Performance, +VS = 2.7 V (Gain = 96.7)  
Figure 12. AD8494 Input Overvoltage Performance, VS = 15 V (Gain = 96.7)  
3.00  
2.00  
16  
3.0  
2.5  
2.0  
1.5  
2.75  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
12  
8
1.50  
1.00  
0.50  
0
V
OUT  
V
OUT  
4
0
I
IN  
1.0  
0.5  
0
–4  
–8  
I
IN  
–0.50  
–1.00  
–0.5  
–1.0  
–12  
–16  
–30 –25 –20 –15 –10 –5  
0
5
10 15 20 25 30  
–30 –25 –20 –15 –10 –5  
0
5
10 15 20 25 30  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 10. AD8495/AD8497 Input Overvoltage Performance,  
+VS = 2.7 V (Gain = 122.4)  
Figure 13. AD8495/AD8497 Input Overvoltage Performance,  
VS = 15 V (Gain = 122.4)  
3.00  
2.00  
16  
3.0  
2.5  
2.75  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
12  
8
1.50  
1.00  
0.50  
0
V
V
2.0  
1.5  
OUT  
OUT  
4
0
I
IN  
1.0  
0.5  
0
–4  
–8  
I
IN  
–0.50  
–1.00  
–0.5  
–1.0  
–12  
–16  
–30 –25 –20 –15 –10 –5  
0
5
10 15 20 25 30  
–30 –25 –20 –15 –10 –5  
0
5
10 15 20 25 30  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 11. AD8496 Input Overvoltage Performance, +VS = 2.7 V  
Gain = 90.35)  
Figure 14. AD8496 Input Overvoltage Performance, VS = 15 V (Gain = 90.35)  
Rev. 0 | Page 8 of 16  
AD8494/AD8495/AD8496/AD8497  
C
C
= 0pF  
= 1000pF  
C
C
= 0pF  
= 1000pF  
L
L
L
L
C
C
= 4700pF  
= 10000pF  
C
C
= 4700pF  
= 10000pF  
L
L
L
L
120µs/DIV  
120µs/DIV  
Figure 15. AD8494/AD8496 Small-Signal Response  
with Various Capacitive Loads  
Figure 18. AD8495/AD8497 Small-Signal Response  
with Various Capacitive Loads  
AD8494/AD8496  
AD8495/AD8497  
2V/DIV  
SETTLING TO 0.1% IN 36µs  
0.02%/DIV  
100µs/DIV  
120µs/DIV  
Figure 16. Small-Signal Response, RL = 100 kΩ, CL = 1 nF  
Figure 19. AD8494 Large-Signal Step Response and Settling Time  
2V/DIV  
2V/DIV  
SETTLING TO 0.1% IN 40µs  
0.02%/DIV  
SETTLING TO 0.1% IN 32µs  
0.02%/DIV  
100µs/DIV  
100µs/DIV  
Figure 17. AD8495/AD8497 Large-Signal Step Response and Settling Time  
Figure 20. AD8496 Large-Signal Step Response and Settling Time  
Rev. 0 | Page 9 of 16  
AD8494/AD8495/AD8496/AD8497  
OUTPUT VOLTAGE  
5V POWER-UP  
1s/DIV  
TIME (1.5ms/DIV)  
Figure 21. 0.1 Hz to 10 Hz RTI Voltage Noise  
Figure 24. Output Voltage Start-Up  
+V  
5
4
S
–0.4  
–0.8  
–1.2  
(+) –40°C  
(+) +25°C  
(+) +85°C  
(+) +125°C  
(+) –40°C  
(+) +25°C  
(+) +85°C  
(+) +125°C  
3
2
1
0
–1  
(–) –40°C  
(–) +25°C  
(–) +85°C  
(–) +125°C  
(–) –40°C  
(–) +25°C  
(–) +85°C  
(–) +125°C  
–2  
–3  
–4  
+1.2  
+0.8  
+0.4  
–V  
S
10µ  
–5  
1k  
100µ  
1m  
5m  
10k  
100k  
OUTPUT CURRENT (A)  
LOAD RESISTANCE ()  
Figure 22. Output Voltage Swing vs. Load Resistance, VS = 5 V  
Figure 25. Output Voltage Swing vs. Output Current, VS = 5 V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 23. Voltage Noise Spectral Density vs. Frequency  
Rev. 0 | Page 10 of 16  
AD8494/AD8495/AD8496/AD8497  
THEORY OF OPERATION  
THERMOCOUPLES  
Table 6. J Type Thermocouple Voltages and AD8494 Readings  
A thermocouple is a rugged, low cost temperature transducer  
whose output is proportional to the temperature difference  
between a measurement junction and a reference junction. It  
has a very wide temperature range. Its low level output (typically  
tens of microvolts per °C) requires amplification. Variation in  
the reference junction temperature results in measurement  
error unless the thermocouple signal is properly compensated.  
Measurement Reference  
Junction  
Temperature  
Junction  
Temperature Thermocouple AD8494  
(TMJ  
)
(TRJ)  
Voltage  
+2.585 mV  
0 mV  
0 mV  
−2.585 mV  
Reading  
250 mV  
250 mV  
0 mV  
50°C  
50°C  
0°C  
0°C  
50°C  
0°C  
0°C  
50°C  
0 mV  
A thermocouple consists of two dissimilar metals. These metals  
are connected at one end to form the measurement junction,  
also called the hot junction. The other end of the thermocouple  
is connected to the metal lines that lead to the measurement  
electronics. This connection forms a second junction: the  
reference junction, also called the cold junction.  
AD8494/AD8495/AD8496/AD8497 ARCHITECTURE  
Figure 27 shows a block diagram of the AD849x circuitry. The  
AD849x consists of a low offset, fixed-gain instrumentation  
amplifier and a temperature sensor.  
SENSE  
MEASUREMENT  
JUNCTION  
REFERENCE  
JUNCTION  
AD8494/AD8495/  
AD8496/AD8497  
–IN  
ESD AND  
OVP  
PCB  
TRACES  
AD849x  
A2  
A1  
1M  
THERMOCOUPLE WIRES  
COLD JUNCTION  
COMPENSATION  
THERMO-  
COUPLE  
A3  
OUT  
Figure 26. Thermocouple Junctions  
To derive the temperature at the measurement junction (TMJ),  
the user must know the differential voltage created by the thermo-  
couple. The user must also know the error voltage generated by  
the temperature at the reference junction (TRJ). Compensating  
for the reference junction error voltage is typically called cold  
junction compensation. The electronics must compensate for  
any changes in temperature at the reference (cold) junction so  
that the output voltage is an accurate representation of the hot  
junction measurement.  
+IN  
ESD AND  
OVP  
REF  
Figure 27. Block Diagram  
The AD849x output is a voltage that is proportional to the tem-  
perature at the measurement junction of the thermocouple (TMJ).  
To derive the measured temperature from the AD849x output  
voltage, use the following transfer function:  
THERMOCOUPLE SIGNAL CONDITIONER  
T
MJ = (VOUT VREF)/(5 mV/°C)  
The AD8494/AD8495/AD8496/AD8497 thermocouple amplifiers  
provide a simple, low cost solution for measuring thermocouple  
temperatures. These amplifiers simplify many of the difficulties  
of measuring thermocouples. An integrated temperature sensor  
performs cold junction compensation. A fixed-gain instrumen-  
tation amplifier amplifies the small thermocouple voltage to  
provide a 5 mV/°C output. The high common-mode rejection  
of the amplifier blocks common-mode noise that the long  
thermocouple leads can pick up. For additional protection, the  
high impedance inputs of the amplifier make it easy to add  
extra filtering.  
An ideal AD849x achieves this output with an error of less than  
2°C, within the specified operating ranges listed in Table 7.  
Instrumentation Amplifier  
A thermocouple signal is so small that considerable gain is  
required before it can be sampled properly by most ADCs. The  
AD849x has an instrumentation amplifier with a fixed gain that  
generates an output voltage of 5 mV/°C for J type and K type  
thermocouples.  
V
OUT = (TMJ × 5 mV/°C) + VREF  
To accommodate the nonlinear behavior of the thermocouple,  
each amplifier has a different gain so that the 5 mV/°C is accu-  
rately maintained for a given temperature measurement range.  
Table 6 shows an example of a J type thermocouple voltage for  
various combinations of 0°C and 50°C on the reference and  
measurement junctions. Table 6 also shows the performance  
of the AD8494 amplifying the thermocouple voltage and  
compensating for the reference junction temperature changes,  
thus eliminating the error.  
The AD8494 and AD8496 (J type) have an instrumentation  
amplifier with a gain of 96.7 and 90.35, respectively.  
The AD8495 and AD8497 (K type) have an instrumentation  
amplifier with a gain of 122.4.  
Rev. 0 | Page 11 of 16  
 
 
 
AD8494/AD8495/AD8496/AD8497  
The small thermocouple voltages mean that signals are quite  
vulnerable to interference, especially when measured with  
single-ended amplifiers. The AD849x addresses this issue in  
several ways. Low input bias currents and high input impedance  
allow for easy filtering at the inputs. The excellent common-mode  
rejection of the AD849x prevents variations in ground potential  
and other common-mode noise from affecting the measurement.  
MAXIMUM ERROR CALCULATION  
As is normally the case, the AD849x outputs are subject to  
calibration, gain, and temperature sensitivity errors. The user  
can calculate the maximum error from the AD849x using the  
following information.  
The five primary sources of AD849x error are described in this  
section.  
Temperature Sensor (Cold Junction Compensation)  
AD849x Initial Calibration Accuracy  
The AD849x also includes a temperature sensor for cold junc-  
tion compensation. This temperature sensor is used to measure  
the reference junction temperature of the thermocouple and to  
cancel its effect.  
Error at the initial calibration point can be easily calibrated out  
with a one-point temperature calibration. See Table 2 for the  
specifications.  
AD849x Ambient Temperature Rejection  
The AD8494/AD8495 cold junction compensation is  
optimized for operation in a lab environment, where the  
ambient temperature is around 25°C. The AD8494/AD8495  
are specified for an ambient range of 0°C to 50°C.  
The AD8496/AD8497 cold junction compensation is  
optimized for operation in a less controlled environment,  
where the temperature is around 60°C. The AD8496/AD8497  
are specified for an ambient range of 25°C to 100°C.  
Application examples for the AD8496/AD8497 include  
automotive applications, autoclave, and ovens.  
The specified ambient temperature rejection represents the  
ability of the AD849x to reject errors caused by changes in the  
ambient temperature/reference junction. For example, with  
0.025°C/°C ambient temperature rejection, a 20°C change in the  
reference junction temperature adds less than 0.5°C error to the  
measurement. See Table 2 for the specifications.  
AD849x Gain Error  
Gain error is the amount of additional error when measuring away  
from the measurement junction calibration point. For example,  
if the part is calibrated at 25°C and the measurement junction is  
100°C with a gain error of 0.1%, the gain error contribution is  
(100°C − 25°C) × (0.1%) = 0.075°C. This error can be calibrated  
out with a two-point calibration if needed, but it is usually small  
enough to ignore. See Table 2 for the specifications.  
Thermocouple Break Detection  
The AD849x offers open thermocouple detection. The inputs  
of the AD849x are PNP type transistors, which means that the  
bias current always flows out of the inputs. Therefore, the input  
bias current drives any unconnected input high, which rails the  
output. Connecting the negative input to ground through a  
1 Mꢀ resistor causes the AD849x output to rail high in an open  
thermocouple condition (see Figure 6, Figure 28, and the  
Ground Connection section).  
Manufacturing Tolerances of the Thermocouple  
Consult the data sheet for your thermocouple to find the  
specified tolerance of the thermocouple.  
Linearity Error of the Thermocouple  
Each part in the AD849x family is precision trimmed to optimize  
a linear operating range for a specific thermocouple type and  
for the widest possible measurement and ambient temperature  
ranges. The AD849x achieves a linearity error of less than 2°C,  
within the specified operating ranges listed in Table 7. This error  
is due only to the nonlinearity of the thermocouple.  
1M  
Figure 28. Ground the Negative Input Through a 1 MΩ Resistor  
for Open Thermocouple Detection  
Input Voltage Protection  
Table 7. AD849x 2°C Accuracy Temperature Ranges  
The AD849x has very robust inputs. Input voltages can be up  
to 25 V from the opposite supply rail. For example, with a +5 V  
positive supply and a −3 V negative supply, the part can safely  
withstand voltages at the inputs from −20 V to +22 V. Voltages  
at the reference and sense pins should not go beyond 0.3 V of  
the supply rails.  
Thermo-  
couple  
Type  
Ambient  
Temperature Temperature  
Measurement  
Max  
Error Range  
Part  
Range  
AD8494  
AD8495  
AD8496  
AD8497  
J
K
J
2°C  
2°C  
2°C  
2°C  
0°C to 50°C  
0°C to 50°C  
25°C to 100°C +55°C to +565°C  
25°C to 100°C −25°C to +295°C  
−35°C to +95°C  
−25°C to +400°C  
K
For temperature ranges outside those listed in Table 7 or for  
instructions on how to correct for thermocouple nonlinearity  
error with software, see the product page for the AD8494,  
AD8495, AD8496, or AD8497, or contact an Analog Devices  
representative.  
Rev. 0 | Page 12 of 16  
 
 
 
AD8494/AD8495/AD8496/AD8497  
Keeping the AD849x at the Same Temperature  
as the Reference Junction  
RECOMMENDATIONS FOR BEST CIRCUIT  
PERFORMANCE  
The AD849x compensates for thermocouple reference junction  
temperature by using an internal temperature sensor. It is  
critical to keep the reference junction (thermocouple-to-PCB  
connection) as close to the AD849x as possible. Any difference  
in temperature between the AD849x and the reference junction  
appears directly as temperature error. Temperature difference  
between the device and the reference junction may occur if the  
AD849x is not physically close to the reference junction or if the  
AD849x is required to supply large amounts of output power.  
KEEP JUNCTION AND  
Input Filter  
A low-pass filter before the input of the AD849x is strongly  
recommended (see Figure 29), especially when operating in an  
electrically noisy environment. Long thermocouple leads can  
function as an excellent antenna and pick up many unwanted  
signals.  
The filter should be set to a low corner frequency that still  
allows the input signal to pass through undiminished. The  
primary purpose of the filter is to remove RF signals, which,  
if allowed to reach the AD849x, can be rectified and appear  
as temperature fluctuations.  
AD849x AT SAME  
TEMPERATURE  
MEASUREMENT  
JUNCTION  
REFERENCE  
JUNCTION  
PCB  
AD849x  
C
C
TRACES  
R
R
C
C
D
KEEP  
TRACES  
SHORT  
THERMOCOUPLE WIRES  
AD849x  
C
CONNECT WHEN  
THERMOCOUPLE TIP  
TYPE IS UNKNOWN  
1MΩ  
Figure 31. Compensating for Thermocouple Reference Junction Temperature  
Driving the Reference Pin  
1
FILTER FREQUENCY  
FILTER FREQUENCY  
=
DIFF  
2πR(2C + C )  
D
C
The AD849x comes with a reference pin, which can be used  
to offset the output voltage. This is particularly useful when  
reading a negative temperature in a single-supply system.  
1
=
CM  
2πRC  
C
WHERE C 10C  
C
D
Figure 29. Filter for Any Thermocouple Style  
INCORRECT  
CORRECT  
To prevent input offset currents from affecting the measurement  
accuracy, the filter resistor values should be less than 50 kΩ.  
Ground Connection  
AD849x  
REF  
AD849x  
REF  
V
It is always recommended that the thermocouple be connected  
to ground through a 100 kΩ to 1 MΩ resistor placed at the  
negative (inverting) input of the amplifier on the PCB (see  
Figure 30). This solution works well regardless of the thermo-  
couple tip style.  
V
+
AD8613  
Figure 32. Driving the Reference Pin  
For best performance, the reference pin should be driven with a  
low output impedance source, not a resistor divider. The AD8613  
and the OP777 are good choices for the buffer amplifier.  
1MΩ  
Figure 30. Ground the Thermocouple with a 1 MΩ Resistor  
Debugging Tip  
If there is no electrical connection at the measurement junction  
(insulated tip), the resistor value is small enough that no mean-  
ingful common-mode voltage is generated. If there is an electrical  
connection through a grounded or exposed tip, the resistor value  
is large enough that any current from the measurement tip to  
ground is very small, preventing measurement errors.  
If the AD849x is not providing the expected performance, a  
useful debugging step is to implement the ambient temperature  
configuration in Figure 34. If the ambient temperature sensor  
does not work as expected, the problem is likely with the AD849x  
or with the downstream circuitry. If the ambient temperature  
sensor configuration is working correctly, the problem typically  
lies with how the thermocouple is connected to the AD849x.  
Common errors include an incorrect grounding configuration  
or lack of filtering.  
The AD849x inputs require only one ground connection or source  
of common-mode voltage. Any additional ground connection is  
detrimental to performance because ground loops can form  
through the thermocouple, easily swamping the small  
thermocouple signal. Grounding the thermocouple through a  
resistor as recommended prevents such problems.  
Rev. 0 | Page 13 of 16  
 
 
 
 
AD8494/AD8495/AD8496/AD8497  
APPLICATIONS INFORMATION  
BASIC CONNECTION  
AMBIENT TEMPERATURE SENSOR  
Figure 33 shows an example of a basic connection for the  
AD849x, with a J type or K type thermocouple input.  
The AD849x can be configured as a standalone Celsius thermo-  
meter with a 5 mV/°C output, as shown in Figure 34. The  
thermocouple sensing functionality is disabled by shorting both  
AD849x inputs to ground; the AD849x simply outputs the value  
from the on-board temperature sensor.  
5V  
0.1µF  
10µF  
+V  
S
7
As a temperature sensor, the AD8494 has a measurement temp-  
erature range of −40°C to +125°C with a precision output of  
COLD JUNCTION  
COMPENSATION  
V
OUT = TA × 5 mV/°C  
+IN  
–IN  
8
1
5V  
+V  
OUT  
THERMO-  
COUPLE  
6
5
IN-AMP  
S
7
SENSE  
1M  
AD849x  
COLD JUNCTION  
COMPENSATION  
2
3
–V  
S
REF  
+IN  
–IN  
0.1µF  
10µF  
8
1
OUT  
6
5
IN-AMP  
Figure 33. Basic Connection for the AD849x  
SENSE  
AD849x  
To measure negative temperatures, apply a voltage at the refer-  
ence pin to offset the output voltage at 0°C. The output voltage  
of the AD849x is  
2
3
–V  
S
REF  
Figure 34. Ambient Temperature Sensor  
V
OUT = (TMJ × 5 mV/°C) + VREF  
The AD8494 is the best choice for use as an ambient temper-  
ature sensor. The AD8495, AD8496, and AD8497 can also be  
configured as ambient temperature sensors, but their output  
transfer functions are not precisely 5 mV/°C. For information  
about the exact transfer functions of the AD8494/AD8495/  
AD8496/AD8497, see the product page for the AD8494,  
AD8495, AD8496, or AD8497, or contact an Analog Devices  
representative.  
A filter at the input is recommended to remove high frequency  
noise. The 1 MΩ resistor to ground enables open thermocouple  
detection and proper grounding of the thermocouple. The sense  
pin should be connected to the output pin of the AD849x.  
Decoupling capacitors should be used to ensure clean power  
supply voltages on +VS and, if using dual supplies, on −VS, also.  
A 0.1 ꢁF capacitor should be placed as close as possible to each  
AD849x supply pin. A 10 ꢁF tantalum capacitor can be used  
farther away from the part and can be shared.  
The thermometer mode can be particularly useful for debugging  
a misbehaving circuit. If the basic connection is not working,  
disconnect the thermocouple and short both inputs to ground.  
If the system reads the ambient temperature correctly, the  
problem is related to the thermocouple. If the system does not  
read the ambient temperature correctly, the problem is with  
the AD849x or with the downstream circuitry.  
Rev. 0 | Page 14 of 16  
 
 
 
AD8494/AD8495/AD8496/AD8497  
SETPOINT CONTROLLER  
MEASURING NEGATIVE TEMPERATURES  
The AD849x can be used as a temperature setpoint controller,  
with a thermocouple input from a remote location or with the  
AD849x itself being used as a temperature sensor. When the  
measured temperature is below the setpoint temperature, the  
output voltage goes to −VS. When the measured temperature is  
above the setpoint temperature, the output voltage goes to +VS.  
For best accuracy and CMRR performance, the setpoint voltage  
should be created with a low impedance source. If the setpoint  
voltage is generated with a voltage divider, a buffer is  
recommended.  
The AD849x can measure negative temperatures on dual  
supplies and on a single supply. When operating on dual  
supplies with the reference pin grounded, a negative output  
voltage indicates a negative temperature at the thermocouple  
measurement junction.  
VOUT = (TMJ × 5 mV/°C) + VREF  
When operating the AD849x on a single supply, level-shift  
the output by applying a positive voltage (less than +VS) on  
the reference pin. An output voltage less than VREF indicates  
a negative temperature at the thermocouple measurement  
junction.  
5V  
+V  
S
7
REFERENCE PIN ALLOWS OFFSET ADJUSTMENT  
COLD JUNCTION  
COMPENSATION  
The reference pin can be used to level-shift the AD849x output  
voltage. This is useful for measuring negative temperatures on a  
single supply and to match the AD849x output voltage range to  
the input voltage range of the subsequent electronics in the  
signal chain.  
+IN  
–IN  
8
1
OUT  
THERMO-  
COUPLE  
6
5
IN-AMP  
SENSE  
SETPOINT  
VOLTAGE  
AD849x  
1M  
2
3
The reference pin can also be used to offset any initial calibra-  
tion errors. Apply a small reference voltage proportional to the  
error to nullify the effect of the calibration error on the output.  
–V  
S
REF  
Figure 35. Setpoint Controller  
Hysteresis can be added to the setpoint controller by using a  
resistor divider from the output to the reference pin, as shown  
in Figure 36. The hysteresis in °C is  
VS R1/(R1R2)  
THYST  
5mV/C  
5V  
+V  
S
7
COLD JUNCTION  
COMPENSATION  
+IN  
–IN  
8
1
OUT  
THERMO-  
COUPLE  
6
5
IN-AMP  
R1  
1k  
SENSE  
AD849x  
1MΩ  
SETPOINT  
VOLTAGE  
2
3
–V  
S
REF  
R1  
1kΩ  
R2  
100kΩ  
Figure 36. Adding 10 Degrees of Hysteresis  
A resistor equivalent to the output resistance of the divider should  
be connected to the sense pin to ensure good CMRR.  
Rev. 0 | Page 15 of 16  
 
 
AD8494/AD8495/AD8496/AD8497  
OUTLINE DIMENSIONS  
3.20  
3.00  
2.80  
8
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
1
PIN 1  
IDENTIFIER  
0.65 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.70  
0.55  
0.40  
0.15  
0.05  
0.23  
0.13  
6°  
0°  
0.40  
0.25  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 37. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1, 2  
AD8494ARMZ  
Temperature Range  
Package Description  
8-Lead MSOP  
Package Option  
RM-8  
Branding  
Y36  
0°C to 50°C  
AD8494ARMZ-R7  
AD8494CRMZ  
0°C to 50°C  
0°C to 50°C  
8-Lead MSOP, 7Tape and Reel  
8-Lead MSOP  
RM-8  
RM-8  
Y36  
Y37  
AD8494CRMZ-R7  
AD8495ARMZ  
0°C to 50°C  
8-Lead MSOP, 7Tape and Reel  
8-Lead MSOP  
RM-8  
Y37  
0°C to 50°C  
RM-8  
Y33  
AD8495ARMZ-R7  
AD8495CRMZ  
0°C to 50°C  
0°C to 50°C  
8-Lead MSOP, 7Tape and Reel  
8-Lead MSOP  
RM-8  
RM-8  
Y33  
Y34  
AD8495CRMZ-R7  
AD8496ARMZ  
AD8496ARMZ-R7  
AD8496CRMZ  
AD8496CRMZ-R7  
AD8497ARMZ  
AD8497ARMZ-R7  
AD8497CRMZ  
0°C to 50°C  
8-Lead MSOP, 7Tape and Reel  
8-Lead MSOP  
8-Lead MSOP, 7Tape and Reel  
8-Lead MSOP  
8-Lead MSOP, 7Tape and Reel  
8-Lead MSOP  
8-Lead MSOP, 7Tape and Reel  
8-Lead MSOP  
RM-8  
Y34  
25°C to 100°C  
25°C to 100°C  
25°C to 100°C  
25°C to 100°C  
25°C to 100°C  
25°C to 100°C  
25°C to 100°C  
25°C to 100°C  
RM-8  
RM-8  
RM-8  
RM-8  
Y3C  
Y3C  
Y3D  
Y3D  
Y39  
Y39  
Y3A  
Y3A  
RM-8  
RM-8  
RM-8  
RM-8  
AD8497CRMZ-R7  
8-Lead MSOP, 7Tape and Reel  
1 Z = RoHS Compliant Part.  
2 The AD8494 and AD8496 models are prereleased.  
©2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08529-0-7/10(0)  
Rev. 0 | Page 16 of 16  
 
 
 
 
 
 
 
 
 
 

相关型号:

AD8497CRMZ-R7

Precision Thermocouple Amplifiers with Cold Junction Compensation
ADI

AD849AQ

High Speed, Low Power Monolithic Op Amp
ADI

AD849AQ

OP-AMP, 1000uV OFFSET-MAX, 725MHz BAND WIDTH, CDIP8, HERMETIC SEALED, CERDIP-8
ROCHESTER

AD849JCHIPS

Voltage-Feedback Operational Amplifier
ETC

AD849JN

High Speed, Low Power Monolithic Op Amp
ADI

AD849JN

OP-AMP, 1300 uV OFFSET-MAX, 725 MHz BAND WIDTH, PDIP8, PLASTIC, DIP-8
ROCHESTER

AD849JR

High Speed, Low Power Monolithic Op Amp
ADI

AD849JR

OP-AMP, 1300 uV OFFSET-MAX, 725 MHz BAND WIDTH, PDSO8, SOIC-8
ROCHESTER

AD849JR-REEL

IC OP-AMP, 1300 uV OFFSET-MAX, 725 MHz BAND WIDTH, PDSO8, PLASTIC, SOIC-8, Operational Amplifier
ADI

AD849JR-REEL

OP-AMP, 1300 uV OFFSET-MAX, 725 MHz BAND WIDTH, PDSO8, PLASTIC, SOIC-8
ROCHESTER

AD849JR-REEL7

IC OP-AMP, 1300 uV OFFSET-MAX, 725 MHz BAND WIDTH, PDSO8, PLASTIC, SOIC-8, Operational Amplifier
ADI

AD849JR-REEL7

OP-AMP, 1300 uV OFFSET-MAX, 725 MHz BAND WIDTH, PDSO8, PLASTIC, SOIC-8
ROCHESTER