AD8510ARMZ [ADI]

Precision, Very Low Noise, Low Input Bias Current; 精密,极低噪声,低输入偏置电流
AD8510ARMZ
型号: AD8510ARMZ
厂家: ADI    ADI
描述:

Precision, Very Low Noise, Low Input Bias Current
精密,极低噪声,低输入偏置电流

文件: 总20页 (文件大小:435K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision, Very Low Noise, Low Input Bias Current,  
Wide Bandwidth JFET Operational Amplifiers  
AD8510/AD8512/AD8513  
FEATURES  
PIN CONFIGURATIONS  
Fast settling time: 500 ns to 0.1%  
Low offset voltage: 400 μV maximum  
Low TCVOS: 1 μV/°C typical  
Low input bias current: 25 pA typical at VS = 15 V  
Dual-supply operation: 5 V to 15 V  
Low noise: 8 nV/√Hz typical at f = 1 kHz  
Low distortion: 0.0005%  
NULL  
–IN  
1
2
3
4
8
7
6
5
NC  
NULL  
–IN  
1
2
3
4
8
7
6
5
NC  
AD8510  
TOP VIEW  
AD8510  
TOP VIEW  
V+  
V+  
+IN  
OUT  
NULL  
+IN  
OUT  
NULL  
(Not to Scale)  
(Not to Scale)  
V–  
V–  
NC = NO CONNECT  
NC = NO CONNECT  
Figure 1. 8-Lead MSOP (RM Suffix)  
Figure 2. 8-Lead SOIC_N (R Suffix)  
No phase reversal  
Unity gain stable  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
AD8512  
TOP VIEW  
OUT B  
–IN B  
+IN B  
AD8512  
OUT B  
–IN B  
+IN B  
TOP VIEW  
(Not to Scale)  
(Not to Scale)  
APPLICATIONS  
Instrumentation  
Multipole filters  
Precision current measurement  
Photodiode amplifiers  
Sensors  
Figure 3. 8-Lead MSOP (RM Suffix)  
Figure 4. 8-Lead SOIC_N (R Suffix)  
OUT A  
–IN A  
+IN A  
V+  
1
2
3
4
5
6
7
14 OUT D  
13 –IN D  
12 +IN D  
11 V–  
OUT A  
–IN A  
+IN A  
V+  
1
2
3
4
5
6
7
14 OUT D  
13 –IN D  
12 +IN D  
11 V–  
AD8513  
TOP VIEW  
AD8513  
TOP VIEW  
Audio  
(Not to Scale)  
(Not to Scale)  
+IN B  
–IN B  
OUT B  
10 +IN C  
+IN B  
–IN B  
OUT B  
10 +IN C  
9
8
–IN C  
9
8
–IN C  
OUT C  
OUT C  
Figure 5. 14-Lead SOIC_N (R Suffix)  
Figure 6. 14-Lead TSSOP (RU Suffix)  
GENERAL DESCRIPTION  
The AD8510/AD8512/AD8513 are single-, dual-, and quad-  
precision JFET amplifiers that feature low offset voltage, input  
bias current, input voltage noise, and input current noise.  
Fast slew rate and great stability with capacitive loads make the  
AD8510/AD8512/AD8513 a perfect fit for high performance  
filters. Low input bias currents, low offset, and low noise result  
in a wide dynamic range of photodiode amplifier circuits. Low  
noise and distortion, high output current, and excellent speed  
make the AD8510/AD8512/AD8513 great choices for audio  
applications.  
The combination of low offsets, low noise, and very low input  
bias currents makes these amplifiers especially suitable for high  
impedance sensor amplification and precise current measurements  
using shunts. The combination of dc precision, low noise, and  
fast settling time results in superior accuracy in medical  
instruments, electronic measurement, and automated test  
equipment. Unlike many competitive amplifiers, the AD8510/  
AD8512/AD8513 maintain their fast settling performance even  
with substantial capacitive loads. Unlike many older JFET  
amplifiers, the AD8510/AD8512/AD8513 do not suffer from  
output phase reversal when input voltages exceed the maximum  
common-mode voltage range.  
The AD8510/AD8512 are both available in 8-lead narrow SOIC_N  
and 8-lead MSOP packages. MSOP-packaged parts are only  
available in tape and reel. The AD8513 is available in 14-lead  
SOIC_N and TSSOP packages.  
The AD8510/AD8512/AD8513 are specified over the −40°C to  
+125°C extended industrial temperature range.  
Rev. I  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2002–2009 Analog Devices, Inc. All rights reserved.  
 
AD8510/AD8512/AD8513  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Output Phase Reversal............................................................... 13  
Total Harmonic Distortion (THD) + Noise .............................. 13  
Total Noise Including Source Resistors................................... 13  
Settling Time............................................................................... 14  
Overload Recovery Time .......................................................... 14  
Capacitive Load Drive ............................................................... 14  
Open-Loop Gain and Phase Response.................................... 15  
Precision Rectifiers..................................................................... 16  
I-V Conversion Applications.................................................... 17  
Outline Dimensions....................................................................... 19  
Ordering Guide .......................................................................... 20  
Applications....................................................................................... 1  
Pin Configurations ........................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 4  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Typical Performance Characteristics ............................................. 7  
General Application Information................................................. 13  
Input Overvoltage Protection ................................................... 13  
REVISION HISTORY  
2/09—Rev. H to Rev. I  
9/03—Rev. B to Rev. C  
Changes to Ordering Guide ............................................................4  
Updated Figure 2 ............................................................................ 10  
Changes to Input Overvoltage Protection Section .................... 10  
Changes to Figure 10 and Figure 11............................................. 12  
Changes to Photodiode Circuits Section .................................... 13  
Changes to Figure 13 and Figure 14............................................. 13  
Deleted Precision Current Monitoring Section ......................... 14  
Updated Outline Dimensions....................................................... 15  
Changes to Figure 25...................................................................... 10  
Changes to Ordering Guide .......................................................... 20  
10/07—Rev. G to Rev. H  
Changes to Crosstalk Section........................................................ 18  
Added Figure 58.............................................................................. 18  
6/07—Rev. F to Rev. G  
Changes to Figure 1 and Figure 2................................................... 1  
Changes to Table 1 and Table 2....................................................... 3  
Updated Outline Dimensions....................................................... 19  
Changes to Ordering Guide .......................................................... 20  
3/03—Rev. A to Rev. B  
Updated Figure 5 ............................................................................ 11  
Updated Outline Dimensions....................................................... 15  
6/06—Rev. E to Rev. F  
8/02—Rev. 0 to Rev. A  
Changes to Figure 23........................................................................ 9  
Updated Outline Dimensions....................................................... 19  
Changes to Ordering Guide .......................................................... 20  
Added AD8510 Model.......................................................Universal  
Added Pin Configurations ...............................................................1  
Changes to Specifications.................................................................2  
Changes to Ordering Guide.............................................................4  
Changes to TPC 2 and TPC 3..........................................................5  
Added TPC 10 and TPC 12..............................................................6  
Replaced TPC 20 ...............................................................................8  
Replaced TPC 27 ...............................................................................9  
Changes to General Application Information Section.............. 10  
Changes to Figure 5........................................................................ 11  
Changes to I-V Conversion Applications Section ..................... 13  
Changes to Figure 13 and Figure 14............................................. 13  
Changes to Figure 17...................................................................... 14  
6/04—Rev. D to Rev. E  
Changes to Format .............................................................Universal  
Changes to Specifications................................................................ 3  
Updated Outline Dimensions....................................................... 19  
10/03—Rev. C to Rev. D  
Added AD8513 Model.......................................................Universal  
Changes to Specifications................................................................ 3  
Added Figure 36 through Figure 40............................................. 10  
Added Figure 55 and Figure 57..................................................... 17  
Changes to Ordering Guide .......................................................... 20  
Rev. I | Page 2 of 20  
 
AD8510/AD8512/AD8513  
SPECIFICATIONS  
@ VS = 5 V, VCM = 0 V, TA = 25°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
VOS  
Conditions  
Min  
Typ  
0.08  
0.1  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage (B Grade)1  
0.4  
0.8  
0.9  
1.8  
75  
0.7  
7.5  
50  
mV  
mV  
mV  
mV  
pA  
nA  
nA  
pA  
nA  
nA  
−40°C < TA < +125°C  
−40°C < TA < +125°C  
Offset Voltage (A Grade)  
Input Bias Current  
VOS  
IB  
21  
−40°C < TA < +85°C  
−40°C < TA < +125°C  
Input Offset Current  
IOS  
5
−40°C < TA < +85°C  
−40°C < TA < +125°C  
0.3  
0.5  
Input Capacitance  
Differential  
Common Mode  
12.5  
11.5  
pF  
pF  
Input Voltage Range  
Common-Mode Rejection Ratio  
Large-Signal Voltage Gain  
Offset Voltage Drift (B Grade)1  
Offset Voltage Drift (A Grade)  
OUTPUT CHARACTERISTICS  
Output Voltage High  
Output Voltage Low  
Output Voltage High  
Output Voltage Low  
Output Voltage High  
Output Voltage Low  
Output Current  
−2.0  
86  
65  
+2.5  
V
dB  
V/mV  
μV/°C  
μV/°C  
CMRR  
AVO  
ΔVOS/ΔT  
ΔVOS/ΔT  
VCM = −2.0 V to +2.5 V  
RL = 2 kΩ, VO = −3 V to +3 V  
100  
107  
0.9  
5
12  
1.7  
VOH  
VOL  
VOH  
VOL  
VOH  
VOL  
IOUT  
RL = 10 kΩ  
RL = 10 kΩ, −40°C < TA < +125°C  
RL = 2 kΩ  
RL = 2 kΩ, −40°C < TA < +125°C  
RL = 600 Ω  
RL = 600 Ω, −40°C < TA < +125°C  
4.1  
3.9  
3.7  
40  
4.3  
−4.9  
4.2  
−4.9  
4.1  
−4.8  
54  
V
V
V
V
V
V
mA  
−4.7  
−4.5  
−4.2  
POWER SUPPLY  
Power Supply Rejection Ratio  
Supply Current/Amplifier  
AD8510/AD8512/AD8513  
AD8510/AD8512  
PSRR  
ISY  
VS = 4.5 V to 18 V  
86  
130  
2.0  
dB  
VO = 0 V  
−40°C < TA < +125°C  
−40°C < TA < +125°C  
2.3  
2.5  
2.75  
mA  
mA  
mA  
AD8513  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
Settling Time  
Total Harmonic Distortion (THD) + Noise  
Phase Margin  
SR  
GBP  
tS  
THD + N  
φM  
RL = 2 kΩ  
20  
8
0.4  
0.0005  
44.5  
V/μs  
MHz  
μs  
To 0.1%, 0 V to 4 V step, G = +1  
1 kHz, G = +1, RL = 2 kΩ  
%
Degrees  
NOISE PERFORMANCE  
Voltage Noise Density  
en  
f = 10 Hz  
f = 100 Hz  
f = 1 kHz  
f = 10 kHz  
34  
12  
8.0  
7.6  
2.4  
nV/√Hz  
nV/√Hz  
nV/√Hz  
nV/√Hz  
μV p-p  
10  
Peak-to-Peak Voltage Noise  
en p-p  
0.1 Hz to 10 Hz bandwidth  
5.2  
1 AD8510/AD8512 only.  
Rev. I | Page 3 of 20  
 
 
AD8510/AD8512/AD8513  
ELECTRICAL CHARACTERISTICS  
@ VS = 15 V, VCM = 0 V, TA = 25°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage (B Grade)1  
VOS  
0.08  
0.4  
0.8  
mV  
mV  
−40°C < TA < +125°C  
−40°C < TA < +125°C  
Offset Voltage (A Grade)  
Input Bias Current  
VOS  
IB  
0.1  
25  
1.0  
1.8  
80  
0.7  
10  
75  
0.3  
0.5  
mV  
mV  
pA  
nA  
nA  
pA  
nA  
nA  
−40°C < TA < +85°C  
−40°C < TA < +125°C  
Input Offset Current  
IOS  
6
−40°C < TA < +85°C  
−40°C < TA < +125°C  
Input Capacitance  
Differential  
Common Mode  
12.5  
11.5  
pF  
pF  
Input Voltage Range  
Common-Mode Rejection Ratio  
Large-Signal Voltage Gain  
−13.5  
86  
115  
+13.0  
V
CMRR  
AVO  
VCM = −12.5 V to +12.5 V  
RL = 2 kΩ, VCM = 0 V,  
108  
196  
dB  
V/mV  
VO = −13.5 V to +13.5 V  
Offset Voltage Drift (B Grade)1  
Offset Voltage Drift (A Grade)  
OUTPUT CHARACTERISTICS  
Output Voltage High  
Output Voltage Low  
Output Voltage High  
ΔVOS/ΔT  
ΔVOS/ΔT  
1.0  
1.7  
5
12  
μV/°C  
μV/°C  
VOH  
VOL  
VOH  
VOL  
VOH  
RL = 10 kΩ  
RL = 10 kΩ, −40°C < TA < +125°C  
RL = 2 kΩ  
RL = 2 kΩ, −40°C < TA < +125°C  
RL = 600 Ω  
+14.0  
+13.8  
+14.2  
−14.9  
+14.1  
–14.8  
+13.9  
V
V
V
V
V
V
−14.6  
−14.5  
Output Voltage Low  
Output Voltage High  
+13.5  
+11.4  
RL = 600 Ω, −40°C < TA < +125°C  
RL = 600 Ω  
RL = 600 Ω, −40°C < TA < +125°C  
Output Voltage Low  
VOL  
IOUT  
−14.3  
70  
−13.8  
−12.1  
V
V
mA  
Output Current  
POWER SUPPLY  
Power Supply Rejection Ratio  
Supply Current/Amplifier  
AD8510/AD8512/AD8513  
AD8510/AD8512  
PSRR  
ISY  
VS = 4.5 V to 18 V  
86  
dB  
VO = 0 V  
−40°C < TA < +125°C  
−40°C < TA < +125°C  
2.2  
2.5  
2.6  
3.0  
mA  
mA  
mA  
AD8513  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
Settling Time  
SR  
GBP  
tS  
RL = 2 kΩ  
20  
8
0.5  
0.9  
0.0005  
52  
V/μs  
MHz  
μs  
μs  
%
To 0.1%, 0 V to 10 V step, G = +1  
To 0.01%, 0 V to 10 V step, G = +1  
1 kHz, G = +1, RL = 2 kΩ  
Total Harmonic Distortion (THD) + Noise THD + N  
Phase Margin φM  
Degrees  
Rev. I | Page 4 of 20  
 
AD8510/AD8512/AD8513  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
NOISE PERFORMANCE  
Voltage Noise Density  
en  
f = 10 Hz  
f = 100 Hz  
f = 1 kHz  
f = 10 kHz  
34  
12  
8.0  
7.6  
2.4  
nV/√Hz  
nV/√Hz  
nV/√Hz  
nV/√Hz  
μV p-p  
10  
Peak-to-Peak Voltage Noise  
en p-p  
0.1 Hz to 10 Hz bandwidth  
5.2  
1 AD8510/AD8512 only.  
Rev. I | Page 5 of 20  
 
AD8510/AD8512/AD8513  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
Table 4. Thermal Resistance  
Package Type  
1
θJA  
θJC  
45  
43  
36  
35  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
Parameter  
Rating  
8-Lead MSOP (RM)  
8-Lead SOIC_N (R)  
14-Lead SOIC_N (R)  
14-Lead TSSOP (RU)  
210  
158  
120  
180  
Supply Voltage  
18 V  
Input Voltage  
VS  
Output Short-Circuit Duration to GND  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range  
Lead Temperature (Soldering, 10 sec)  
Observe derating curves  
−65°C to +150°C  
−40°C to +125°C  
−65°C to +150°C  
300°C  
1 θJA is specified for worst-case conditions, that is, θJA is specified for device  
soldered in circuit board for surface-mount packages.  
Electrostatic Discharge  
(Human Body Model)  
2000 V  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. I | Page 6 of 20  
 
 
AD8510/AD8512/AD8513  
TYPICAL PERFORMANCE CHARACTERISTICS  
120  
100k  
10k  
1k  
V
= ±15V  
SY  
= 25°C  
V
= ±5V, ±15V  
SY  
T
A
100  
80  
60  
40  
20  
100  
10  
0
1
–0.5 –0.4 –0.3 –0.2 –0.1  
0
0.1 0.2 0.3 0.4 0.5  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
INPUT OFFSET VOLTAGE (mV)  
TEMPERATURE (°C)  
Figure 7. Input Offset Voltage Distribution  
Figure 10. Input Bias Current vs. Temperature  
30  
25  
20  
1000  
100  
V
= ±15V  
SY  
B GRADE  
±15V  
15  
10  
10  
1
±5V  
5
0
0.1  
0
1
2
3
4
5
6
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
T V  
C
(µV/°C)  
OS  
TEMPERATURE (°C)  
Figure 11. Input Offset Current vs. Temperature  
Figure 8. AD8510/AD8512 TCVOS Distribution  
40  
35  
30  
25  
20  
15  
10  
5
30  
25  
20  
V
= ±15V  
T
A
= 25°C  
SY  
A GRADE  
15  
10  
5
0
0
8
13  
18  
23  
28  
30  
0
1
2
3
4
5
6
SUPPLY VOLTAGE (V+ – V– )  
T
C
V
OS  
(µV/°C)  
Figure 9. AD8510/AD8512 TCVOS Distribution  
Figure 12. Input Bias Current vs. Supply Voltage  
Rev. I | Page 7 of 20  
 
AD8510/AD8512/AD8513  
2.0  
2.8  
T
A
= 25°C  
T
A
= 25°C  
1.9  
1.8  
1.7  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
1.6  
1.4  
1.2  
1.0  
8
13  
18  
23  
28  
30  
8
13  
18  
23  
28  
33  
SUPPLY VOLTAGE (V+ – V–)  
SUPPLY VOLTAGE (V+ – V–)  
Figure 13. AD8512 Supply Current per Amplifier vs. Supply Voltage  
Figure 16. AD8510 Supply Current vs. Supply Voltage  
16  
70  
60  
315  
V
V
= ±15V  
OL  
SY  
V
R
C
= ±15V  
= 2.5kΩ  
= 20pF  
SCOPE  
= 52°  
SY  
270  
225  
180  
14  
12  
10  
8
L
V
OH  
50  
40  
30  
20  
10  
Φ
M
135  
90  
45  
6
V
V
OL  
V
= ±5V  
SY  
0
0
–10  
–20  
–30  
4
–45  
OH  
2
0
–90  
–135  
50M  
0
10  
20  
30  
40  
50  
60  
70  
80  
10k  
100k  
1M  
10M  
LOAD CURRENT (mA)  
FREQUENCY (Hz)  
Figure 17. Open-Loop Gain and Phase vs. Frequency  
Figure 14. AD8510/AD8512 Output Voltage vs. Load Current  
2.50  
2.25  
2.00  
1.75  
1.50  
2.50  
2.25  
±15V  
±5V  
2.00  
±15V  
1.75  
±5V  
1.50  
1.25  
1.00  
1.25  
1.00  
–40 –25 –10  
5
20  
35 50  
65  
80  
95 110 125  
–40 –25 –10  
5
20  
35 50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 18. AD8510 Supply Current vs. Temperature  
Figure 15. AD8512 Supply Current per Amplifier vs. Temperature  
Rev. I | Page 8 of 20  
AD8510/AD8512/AD8513  
70  
60  
300  
270  
240  
210  
180  
150  
120  
90  
V
V
= ±15V  
= 50mV  
SY  
IN  
V
= ±15V, ±5V  
SY  
50  
40  
30  
20  
10  
A
= 100  
= 10  
= 1  
V
A
V
= 1  
A
V
A
= 100  
V
0
–10  
–20  
–30  
A
V
60  
A
V
= 10  
30  
0
100  
1k  
10k  
1M  
FREQUENCY (Hz)  
10M  
100M  
100k  
1k  
10k  
100k  
FREQUENCY (Hz)  
50M  
1M  
10M  
Figure 19. Closed-Loop Gain vs. Frequency  
Figure 22. Output Impedance vs. Frequency  
1k  
100  
10  
120  
100  
80  
60  
40  
20  
0
V
= ±5V TO ±15V  
SY  
V
= ±15V  
SY  
1
1
10  
100  
1k  
10k  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 23. Voltage Noise Density vs. Frequency  
Figure 20. CMRR vs. Frequency  
120  
100  
V = ±15V  
SY  
V
= ±5V, ±15V  
SY  
80  
60  
–PSRR  
+PSRR  
40  
20  
0
–20  
100  
1k  
10k  
100k  
1M  
10M  
100M  
TIME (1s/DIV)  
FREQUENCY (Hz)  
Figure 21. PSRR vs. Frequency  
Figure 24. 0.1 Hz to 10 Hz Input Voltage Noise  
Rev. I | Page 9 of 20  
AD8510/AD8512/AD8513  
280  
245  
210  
175  
140  
105  
90  
80  
70  
V
= ±5V TO ±15V  
SY  
V
R
= ±15V  
= 2kΩ  
SY  
L
60  
50  
40  
30  
20  
10  
0
+OS  
–OS  
70  
35  
0
0
1
2
3
4
6
7
9
10  
5
8
10k  
10  
1
100  
LOAD CAPACITANCE (pF)  
1k  
FREQUENCY (Hz)  
Figure 25. Voltage Noise Density vs. Frequency  
Figure 28. Small-Signal Overshoot vs. Load Capacitance  
70  
60  
50  
40  
30  
20  
10  
0
315  
270  
V
R
C
= ±5V  
= 2.5kΩ  
= 20pF  
SCOPE  
= 44.5°  
V
R
C
A
= ±15V  
SY  
SY  
= 2k  
= 100pF  
= 1  
L
L
L
V
Φ
225  
180  
135  
90  
M
45  
0
–10  
–45  
–20  
–30  
–90  
–135  
10k  
100k  
1M  
10M  
50M  
TIME (1µs/DIV)  
FREQUENCY (Hz)  
Figure 26. Large-Signal Transient Response  
Figure 29. Open-Loop Gain and Phase vs. Frequency  
120  
100  
80  
60  
40  
20  
0
V
= ±5V  
SY  
V
= ±15V  
SY  
R
C
A
= 2kΩ  
= 100pF  
= 1  
L
L
V
100k  
FREQUENCY (Hz)  
100  
1k  
10k  
1M  
10M  
100M  
TIME (100ns/DIV)  
Figure 27. Small-Signal Transient Response  
Figure 30. CMRR vs. Frequency  
Rev. I | Page 10 of 20  
AD8510/AD8512/AD8513  
300  
270  
240  
210  
180  
150  
120  
V
SY  
V
IN  
= ±5V  
= 50mV  
V
= ±5V  
= 2k  
= 100pF  
= 1  
SY  
R
C
A
L
L
V
A
V
= 1  
A
V
= 100  
90  
60  
A
V
= 10  
30  
0
100  
1k  
10k  
100k  
1M  
10M  
100M  
TIME (100ns/DIV)  
FREQUENCY (Hz)  
Figure 34. Small-Signal Transient Response  
Figure 31. Output Impedance vs. Frequency  
100  
90  
V
R
= ±5V  
= 2kΩ  
V
= ±5V  
SY  
SY  
L
80  
70  
60  
50  
40  
+OS  
–OS  
30  
20  
10  
0
1
10  
100  
LOAD CAPACITANCE (pF)  
1k  
10k  
TIME (1s/DIV)  
Figure 32. 0.1 Hz to 10 Hz Input Voltage Noise  
Figure 35. Small-Signal Overshoot vs. Load Capacitance  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
V
= ±15V  
S
V
= ±5V  
= 2kΩ  
= 100pF  
= 1  
SY  
R
C
A
L
L
V
0
0
1
2
3
4
5
6
T
V
(µV/°C)  
OS  
TIME (1µs/DIV)  
C
Figure 33. Large-Signal Transient Response  
Figure 36. AD8513 TCVOS Distribution  
Rev. I | Page 11 of 20  
AD8510/AD8512/AD8513  
120  
100  
80  
16  
14  
12  
10  
8
V
= ±5V  
S
V
V
V
= ±15V  
SY  
OL  
OH  
60  
6
40  
V
= ±5V  
SY  
V
V
OL  
OH  
4
20  
2
0
0
0
1
2
3
4
5
6
0
20  
30  
40  
50  
60  
70  
80  
10  
T
V
(µV/°C)  
OS  
C
LOAD CURRENT (mA)  
Figure 37. AD8513 TCVOS Distribution  
Figure 39. AD8513 Output Voltage vs. Load Current  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
T
= 25°C  
A
±15V  
±5V  
1.5  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
8
18  
23  
28  
33  
13  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V+ – V–)  
Figure 38. AD8513 Supply Current per Amplifier vs. Supply Voltage  
Figure 40. AD8513 Supply Current per Amplifier vs. Temperature  
Rev. I | Page 12 of 20  
AD8510/AD8512/AD8513  
GENERAL APPLICATION INFORMATION  
INPUT OVERVOLTAGE PROTECTION  
0.01  
V
R
= ±5V  
= 100k  
SY  
L
The AD8510/AD8512/AD8513 have internal protective  
circuitry that allows voltages as high as 0.7 V beyond the  
supplies to be applied at the input of either terminal without  
causing damage. For higher input voltages, a series resistor is  
necessary to limit the input current. The resistor value can be  
determined from the formula  
BW = 22kHz  
0.001  
VIN VS  
5 mA  
RS  
With a very low offset current of <0.5 nA up to 125°C, higher  
resistor values can be used in series with the inputs. A 5 kΩ  
resistor protects the inputs from voltages as high as 25 V  
beyond the supplies and adds less than 10 μV to the offset.  
0.0001  
20  
100  
1k  
10k 20k  
FREQUENCY (Hz)  
Figure 42. THD + N vs. Frequency  
TOTAL NOISE INCLUDING SOURCE RESISTORS  
OUTPUT PHASE REVERSAL  
The low input current noise and input bias current of the  
AD8510/AD8512/AD8513 make them the ideal amplifiers for  
circuits with substantial input source resistance. Input offset  
voltage increases by less than 15 nV per 500 Ω of source  
resistance at room temperature. The total noise density of the  
circuit is  
Phase reversal is a change of polarity in the transfer function of  
the amplifier. This can occur when the voltage applied at the  
input of an amplifier exceeds the maximum common-mode  
voltage.  
Phase reversal can cause permanent damage to the device and  
can result in system lockups. The AD8510/AD8512/AD8513 do  
not exhibit phase reversal when input voltages are beyond the  
supplies.  
2
2
enTOTAL  
where:  
=
en  
+
(
in RS  
)
+ 4kTRS  
V
= ±5V  
SY  
en is the input voltage noise density of the parts.  
in is the input current noise density of the parts.  
RS is the source resistance at the noninverting terminal.  
k is Boltzmann’s constant (1.38 × 10–23 J/K).  
A
V
R
L
= 1  
= 10kΩ  
V
OUT  
T is the ambient temperature in Kelvin (T = 273 + °C).  
For RS < 3.9 kΩ, en dominates and enTOTAL ≈ en. The current noise  
of the AD8510/AD8512/AD8513 is so low that its total density  
does not become a significant term unless RS is greater than  
165 MΩ, an impractical value for most applications.  
V
IN  
The total equivalent rms noise over a specific bandwidth is  
expressed as  
TIME (20µs/DIV)  
enTOTAL = enTOTAL BW  
Figure 41. No Phase Reversal  
where BW is the bandwidth in hertz.  
TOTAL HARMONIC DISTORTION (THD) + NOISE  
Note that the previous analysis is valid for frequencies larger  
than 150 Hz and assumes flat noise above 10 kHz. For lower  
frequencies, flicker noise (1/f) must be considered.  
The AD8510/AD8512/AD8513 have low THD and excellent gain  
linearity, making these amplifiers great choices for precision  
circuits with high closed-loop gain and for audio application  
circuits. Figure 42 shows that the AD8510/AD8512/AD8513 have  
approximately 0.0005% of total distortion when configured in  
positive unity gain (the worst case) and driving a 100 kΩ load.  
Rev. I | Page 13 of 20  
 
 
AD8510/AD8512/AD8513  
SETTLING TIME  
V
A
R
= ±15V  
= –100  
= 10kΩ  
SY  
V
L
Settling time is the time it takes the output of the amplifier to  
reach and remain within a percentage of its final value after a  
pulse is applied at the input. The AD8510/AD8512/AD8513  
settle to within 0.01% in less than 900 ns with a step of 0 V to  
10 V in unity gain. This makes each of these parts an excellent  
choice as a buffer at the output of DACs whose settling time is  
typically less than 1 μs.  
+15V  
0V  
0V  
–200mV  
In addition to the fast settling time and fast slew rate, low offset  
voltage drift and input offset current maintain the full accuracy  
of 12-bit converters over the entire operating temperature range.  
TIME (2µs/DIV)  
OVERLOAD RECOVERY TIME  
Figure 44. Negative Overload Recovery  
Overload recovery, also known as overdrive recovery, is the  
time it takes the output of an amplifier to recover to its linear  
region from a saturated condition. This recovery time is par-  
ticularly important in applications where the amplifier must  
amplify small signals in the presence of large transient voltages.  
CAPACITIVE LOAD DRIVE  
The AD8510/AD8512/AD8513 are unconditionally stable at all  
gains in inverting and noninverting configurations. Each device  
is capable of driving a capacitive load of up to 1000 pF without  
oscillation in unity gain using the worst-case configuration.  
Figure 43 shows the positive overload recovery of the AD8510/  
AD8512/AD8513. The output recovers in approximately 200 ns  
from a saturated condition.  
However, as with most amplifiers, driving larger capacitive  
loads in a unity gain configuration may cause excessive  
overshoot and ringing, or even oscillation. A simple snubber  
network significantly reduces the amount of overshoot and  
ringing. The advantage of this configuration is that the output  
swing of the amplifier is not reduced, because RS is outside the  
feedback loop.  
V
V
A
R
= ±15V  
= 200mV  
= –100  
SY  
IN  
0V  
V
L
= 10k  
–15V  
V+  
200mV  
0V  
2
7
6
V
OUT  
AD8510  
4
3
200mV  
R
S
TIME (2µs/DIV)  
C
S
C
L
Figure 43. Positive Overload Recovery  
V–  
Figure 45. Snubber Network Configuration  
The negative overdrive recovery time shown in Figure 44 is less  
than 200 ns.  
In addition to the fast recovery time, the AD8510/AD8512/  
AD8513 show excellent symmetry of the positive and negative  
recovery times. This is an important feature for transient signal  
rectification because the output signal is kept equally undistorted  
throughout any given period.  
Rev. I | Page 14 of 20  
 
 
 
AD8510/AD8512/AD8513  
Figure 46 shows a scope plot of the output of the AD8510/AD8512/  
AD8513 in response to a 400 mV pulse. The circuit is configured in  
positive unity gain (worst case) with a load experience of 500 pF.  
OPEN-LOOP GAIN AND PHASE RESPONSE  
In addition to their impressive low noise, low offset voltage, and  
offset current, the AD8510/AD8512/AD8513 have excellent  
loop gain and phase response even when driving large resistive  
and capacitive loads.  
V
= ±15V  
= 500pF  
=10kΩ  
SY  
C
L
R
L
Compared with Competitor A (see Figure 49) under the same  
conditions, with a 2.5 kΩ load at the output, the AD8510/AD8512/  
AD8513 have more than 8 MHz of bandwidth and a phase margin  
of more than 52°.  
Competitor A, on the other hand, has only 4.5 MHz of band-  
width and 28° of phase margin under the same test conditions.  
Even with a 1 nF capacitive load in parallel with the 2 kΩ load  
at the output, the AD8510/AD8512/AD8513 show much better  
response than Competitor A, whose phase margin is degraded  
to less than 0, indicating oscillation.  
TIME (1µs/DIV)  
70  
315  
270  
225  
180  
Figure 46. Capacitive Load Drive Without Snubber  
V
R
C
= ±15V  
= 2.5kΩ  
= 0pF  
SY  
60  
L
L
When the snubber circuit is used, the overshoot is reduced from  
55% to less than 3% with the same load capacitance. Ringing is  
virtually eliminated, as shown in Figure 47.  
50  
40  
30  
20  
10  
135  
90  
V
= ±15V  
= 10k  
= 500pF  
= 100Ω  
= 1nF  
SY  
R
C
R
C
L
L
S
S
45  
0
0
–10  
–20  
–30  
–45  
–90  
–135  
50M  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 48. Frequency Response of the AD8510/AD8512/AD8513  
70  
315  
270  
225  
180  
V
R
C
= ±15V  
= 2.5kΩ  
= 0pF  
SY  
TIME (1µs/DIV)  
60  
L
L
Figure 47. Capacitive Load with Snubber Network  
50  
40  
30  
20  
10  
Optimum values for RS and CS depend on the load capacitance  
and input stray capacitance and are determined empirically.  
Table 5 shows a few values that can be used as starting points.  
135  
90  
Table 5. Optimum Values for Capacitive Loads  
45  
CLOAD  
500 pF  
2 nF  
RS (Ω)  
100  
70  
CS  
0
0
–10  
–20  
–30  
1 nF  
100 pF  
300 pF  
–45  
–90  
5 nF  
60  
–135  
50M  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 49. Frequency Response of Competitor A  
Rev. I | Page 15 of 20  
 
 
 
 
 
AD8510/AD8512/AD8513  
PRECISION RECTIFIERS  
Rectifying circuits are used in a multitude of applications. One  
of the most popular uses is in the design of regulated power  
supplies, where a rectifier circuit is used to convert an input  
sinusoid to a unipolar output voltage.  
However, there are some potential problems with amplifiers  
used in this manner. When the input voltage (VIN) is negative,  
the output is zero, and the magnitude of VIN is doubled at the  
inputs of the op amp. If this voltage exceeds the power supply  
voltage, it may permanently damage some amplifiers. In addition,  
the op amp must come out of saturation when VIN is negative.  
This delays the output signal because the amplifier requires  
time to enter its linear region.  
TIME (1ms/DIV)  
Although the AD8510/AD8512/AD8513 have a very fast  
overdrive recovery time, which makes them great choices for the  
rectification of transient signals, the symmetry of the positive  
and negative recovery times is also important to keep the output  
signal undistorted.  
Figure 51. Half-Wave Rectifier Signal (OUT A in Figure 50)  
Figure 50 shows the test circuit of the rectifier. The first stage of  
the circuit is a half-wave rectifier. When the sine wave applied at  
the input is positive, the output follows the input response.  
During the negative cycle of the input, the output tries to swing  
negative to follow the input, but the power supply restrains it to  
zero. In a similar fashion, the second stage is a follower during  
the positive cycle of the sine wave and an inverter during the  
negative cycle.  
R2  
R3  
10k  
10kΩ  
TIME (1ms/DIV)  
Figure 52. Full-Wave Rectifier Signal (OUT B in Figure 50)  
10V  
V
IN  
3V p-p  
6
5
4
2/2  
7
3
2
AD8512  
8
1/2  
OUT B  
(FULL WAVE)  
R1  
1kΩ  
8
1
AD8512  
4
10V  
OUT A  
(HALF WAVE)  
Figure 50. Half-Wave and Full-Wave Rectifiers  
Rev. I | Page 16 of 20  
 
 
AD8510/AD8512/AD8513  
A typical value for Rd is 1000 MΩ. Because Rd >> R2, the  
circuit behavior is not impacted by the effect of the junction  
resistance. The maximum signal bandwidth is  
I-V CONVERSION APPLICATIONS  
Photodiode Circuits  
Common applications for I-V conversion include photodiode  
circuits where the amplifier is used to convert a current emitted  
by a diode placed at the positive input terminal into an output  
voltage.  
ft  
fMAX  
=
2πR2Ct  
where ft is the unity gain frequency of the amplifier.  
The AD8510/AD8512/AD8513’s low input bias current, wide  
bandwidth, and low noise make them each an excellent choice  
for various photodiode applications, including fax machines,  
fiber optic controls, motion sensors, and bar code readers.  
Cf can be calculated by  
Ct  
Cf =  
2πR2 ft  
The circuit shown in Figure 53 uses a silicon diode with zero  
bias voltage. This is known as a photovoltaic mode; this  
configuration limits the overall noise and is suitable for  
instrumentation applications.  
where ft is the unity gain frequency of the op amp, and it achieves  
a phase margin, φM, of approximately 45°.  
A higher phase margin can be obtained by increasing the value  
of Cf. Setting Cf to twice the previous value yields approximately  
φM = 65° and a maximal flat frequency response, but it reduces the  
maximum signal bandwidth by 50%.  
Cf  
R2  
Using the previous parameters with a Cf ≈ 1 pF, the signal  
bandwidth is approximately 2.6 MHz.  
VEE  
Signal Transmission Applications  
4
2
One popular signal transmission method uses pulse-width  
modulation. High data rates may require a fast comparator  
rather than an op amp. However, the need for sharp, undistorted  
signals may favor using a linear amplifier.  
6
AD8510  
3
Rd  
Ct  
7
VCC  
The AD8510/AD8512/AD8513 make excellent voltage  
comparators. In addition to a high slew rate, the AD8510/  
AD8512/AD8513 have a very fast saturation recovery time. In  
the absence of feedback, the amplifiers are in open-loop mode  
(very high gain). In this mode of operation, they spend much of  
their time in saturation.  
Figure 53. Equivalent Preamplifier Photodiode Circuit  
A larger signal bandwidth can be attained at the expense of  
additional output noise. The total input capacitance (Ct)  
consists of the sum of the diode capacitance (typically 3 pF to  
4 pF) and the amplifiers input capacitance (12 pF), which  
includes external parasitic capacitance. Ct creates a pole in the  
frequency response that can lead to an unstable system. To  
ensure stability and optimize the bandwidth of the signal, a  
capacitor is placed in the feedback loop of the circuit shown in  
Figure 53. It creates a zero and yields a bandwidth whose corner  
frequency is 1/(2π(R2Cf)).  
The circuit shown in Figure 54 was used to compare two signals  
of different frequencies, namely a 100 Hz sine wave and a 1 kHz  
triangular wave. Figure 55 shows a scope plot of the resulting  
output waveforms. A pull-up resistor (typically 5 kΩ) can be  
connected from the output to VCC if the output voltage needs to  
reach the positive rail. The trade-off is that power consumption  
is higher.  
The value of R2 can be determined by the ratio  
+15V  
V/ID  
where:  
3
7
6
V is the desired output voltage of the op amp.  
V
OUT  
ID is the diode current.  
2
4
V1  
For example, if ID is 100 μA and a 10 V output voltage is desired,  
R2 should be 100 kΩ. Rd (see Figure 53) is a junction resistance  
that drops typically by a factor of 2 for every 10°C increase in  
temperature.  
–15V  
V2  
Figure 54. Pulse-Width Modulator  
Rev. I | Page 17 of 20  
 
 
 
AD8510/AD8512/AD8513  
The AD8510 single has two additional active terminals that are  
not present on the AD8512 dual or AD8513 quad parts. These  
pins are labeled “null” and are used for fine adjustment of the  
input offset voltage. Although the guaranteed maximum offset  
voltage at room temperature is 400 μV and over the −40°C to  
+125°C range is 800 mV maximum, this offset voltage can be  
reduced by adding a potentiometer to the null pins as shown in  
Figure 58. With the 20 kꢀ potentiometer shown, the adjustment  
range is approximately 3.5 mV. The potentiometer parallels  
low value resistors in the drain circuit of the JFET differential  
input pair and allows unbalancing of the drain currents to  
change the offset voltage. If offset adjustment is not required,  
these pins should be left unconnected.  
TIME (2ms/DIV)  
Caution should be used when adding adjusting potentiometers to  
any op amp with this capability for several reasons. First, there is  
gain from these nodes to the output; therefore, capacitive coupling  
from noisy traces to these nodes will inject noise into the signal  
path. Second, the temperature coefficient of the potentiometer  
will not match the temperature coefficient of the internal resistors,  
so the offset voltage drift with temperature will be slightly affected.  
Third, this provision is for adjusting the offset voltage of the  
op amp, not for adjusting the offset of the overall system. Although  
it is tempting to decrease the value of the potentiometer to attain  
more range, this will adversely affect the dc and ac parameters.  
Instead, increase the potentiometer to 50 kΩ to decrease the  
range if needed.  
Figure 55. Pulse-Width Modulation  
Crosstalk  
Crosstalk, also known as channel separation, is a measure of  
signal feedthrough from one channel to another on the same  
IC. The AD8512/AD8513 have a channel separation of better  
than −90 dB for frequencies up to 10 kHz and of better than  
−50 dB for frequencies up to 10 MHz. Figure 57 shows the  
typical channel separation behavior between Amplifier A  
(driving amplifier) and each of the following: Amplifier B,  
Amplifier C, and Amplifier D.  
V
OUT  
20kΩ  
2.2kΩ  
20kΩ  
+V  
S
V+  
2
3
6
5
8
1
1
7
18V p-p  
5
2
3
INPUT  
+
7
6
OUTPUT  
AD8510  
4
5kΩ  
5kΩ  
V
IN  
–V  
V
S
OUT  
10V  
4
CROSSTALK = 20 log  
V
TRIM RANGE IS  
OS  
IN  
TYPICALLY ±3.5mV  
Figure 56. Crosstalk Test Circuit  
V–  
0
–20  
Figure 58. Optional Offset Nulling Circuit  
–40  
–60  
CH B  
CH D  
CH C  
–80  
–100  
–120  
–140  
–160  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 57. Channel Separation  
Rev. I | Page 18 of 20  
 
 
 
AD8510/AD8512/AD8513  
OUTLINE DIMENSIONS  
5.10  
5.00  
4.90  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
14  
8
7
4.00 (0.1574)  
3.80 (0.1497)  
4.50  
4.40  
4.30  
6.40  
BSC  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
1
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
PIN 1  
0.65  
BSC  
1.05  
1.00  
0.80  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
0.20  
1.20  
SEATING  
PLANE  
0.75  
0.60  
0.45  
0.09  
MAX  
8°  
0°  
0.15  
0.05  
0.30  
0.19  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
SEATING  
PLANE  
COPLANARITY  
0.10  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1  
Figure 59. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body (R-8)  
Figure 61. 14-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-14)  
Dimensions shown in millimeters and (inches)  
Dimensions shown in millimeters  
3.20  
3.00  
2.80  
8.75 (0.3445)  
8.55 (0.3366)  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
8
14  
6.20 (0.2441)  
5.80 (0.2283)  
4.00 (0.1575)  
3.80 (0.1496)  
1
7
PIN 1  
1.27 (0.0500)  
BSC  
0.65 BSC  
0.50 (0.0197)  
0.25 (0.0098)  
45°  
1.75 (0.0689)  
1.35 (0.0531)  
0.95  
0.85  
0.75  
0.25 (0.0098)  
0.10 (0.0039)  
8°  
0°  
1.10 MAX  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.80  
0.60  
0.40  
1.27 (0.0500)  
0.40 (0.0157)  
0.51 (0.0201)  
0.31 (0.0122)  
0.25 (0.0098)  
0.17 (0.0067)  
8°  
0°  
0.15  
0.00  
0.38  
0.22  
0.23  
0.08  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MS-012-AB  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 62. 14-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body (R-14)  
Figure 60. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters and (inches)  
Dimensions shown in millimeters  
Rev. I | Page 19 of 20  
 
AD8510/AD8512/AD8513  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
8-Lead MSOP  
8-Lead MSOP  
Package Option  
RM-8  
RM-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
Branding  
B7A#  
B7A#  
AD8510ARMZ-REEL1  
AD8510ARMZ1  
AD8510AR  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead MSOP  
AD8510ARZ1  
AD8510ARZ-REEL1  
AD8510ARZ-REEL71  
AD8510BR  
AD8510BR-REEL  
AD8510BRZ1  
AD8510BRZ-REEL1  
AD8510BRZ-REEL71  
AD8512ARMZ-REEL1  
AD8512ARMZ1  
AD8512AR  
AD8512AR-REEL  
AD8512AR-REEL7  
AD8512ARZ1  
AD8512ARZ-REEL1  
AD8512ARZ-REEL71  
AD8512BR  
AD8512BR-REEL  
AD8512BR-REEL7  
AD8512BRZ1  
AD8512BRZ-REEL1  
AD8512BRZ-REEL71  
AD8513AR  
AD8513AR-REEL  
AD8513AR-REEL7  
AD8513ARZ1  
AD8513ARZ-REEL1  
AD8513ARZ-REEL71  
AD8513ARU  
AD8513ARU-REEL  
AD8513ARUZ1  
AD8513ARUZ-REEL1  
R-8  
R-8  
RM-8  
RM-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
B8A#  
B8A#  
8-Lead MSOP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
R-8  
R-14  
R-14  
R-14  
R-14  
R-14  
R-14  
RU-14  
RU-14  
RU-14  
RU-14  
1 Z = RoHS Compliant Part, # denotes RoHS compliant product may be top or bottom marked.  
©2002–2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D02729-0-2/09(I)  
Rev. I | Page 20 of 20  
 
 
 

相关型号:

AD8510ARMZ-R2

Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifiers
ADI

AD8510ARMZ-REEL

Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifiers
ADI

AD8510ARMZ-REEL

OP-AMP, 1800 uV OFFSET-MAX, 8 MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, MO-187AA, MSOP-8
ROCHESTER

AD8510ARZ

Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifiers
ADI

AD8510ARZ

OP-AMP, 1800 uV OFFSET-MAX, 8 MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, MS-012AA, SOIC-8
ROCHESTER

AD8510ARZ-REEL

Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifiers
ADI

AD8510ARZ-REEL

OP-AMP, 1800 uV OFFSET-MAX, 8 MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, MS-012AA, SOIC-8
ROCHESTER

AD8510ARZ-REEL7

Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifiers
ADI

AD8510B

Operational Amplifiers Selection Guide
ADI

AD8510BR

Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifiers
ADI

AD8510BR

OP-AMP, 800 uV OFFSET-MAX, 8 MHz BAND WIDTH, PDSO8, MS-012AA, SOIC-8
ROCHESTER

AD8510BR-REEL

Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifiers
ADI