AD8546ARMZ [ADI]

22 μA, RRIO, CMOS, 18 V; 22 μA , RRIO , CMOS , 18 V
AD8546ARMZ
型号: AD8546ARMZ
厂家: ADI    ADI
描述:

22 μA, RRIO, CMOS, 18 V
22 μA , RRIO , CMOS , 18 V

运算放大器 放大器电路 光电二极管
文件: 总24页 (文件大小:682K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
22 μA, RRIO, CMOS, 18 V  
Operational Amplifier  
AD8546/AD8548  
Data Sheet  
FEATURES  
PIN CONFIGURATIONS  
Micropower at high voltage: 22 μA maximum  
Low input bias current: 20 pA maximum  
Gain bandwidth product: 240 kHz  
Slew rate: 80 V/ms  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
AD8546  
OUT B  
–IN B  
+IN B  
TOP VIEW  
(Not to Scale)  
Large signal voltage gain: 110 dB minimum  
Single-supply operation: 2.7 V to 18 V  
Dual-supply operation: 1.35 V to 9 V  
Unity-gain stable  
Figure 1. AD8546 (8-Lead MSOP)  
OUT A  
–IN A  
+IN A  
V+  
1
2
3
4
5
6
7
14 OUT D  
13 –IN D  
12 +IN D  
11 V–  
AD8548  
TOP VIEW  
APPLICATIONS  
(Not to Scale)  
+IN B  
–IN B  
OUT B  
10 +IN C  
Portable medical equipment  
Remote sensors  
9
8
–IN C  
OUT C  
Transimpedance amplifiers  
Current monitors  
Figure 2. AD8548 (14-Lead SOIC_N)  
4 mA to 20 mA loop drivers  
Buffer/level shifting  
Table 1. Micropower Op Amps1  
GENERAL DESCRIPTION  
The AD8546 and AD8548 are dual and quad micropower, high  
input impedance amplifiers optimized for low power and wide  
operating supply voltage range applications.  
Supply Voltage  
12 V to 18 V  
AD8663  
Amplifier  
5 V  
36 V  
Single  
AD8500  
AD8505  
AD8541  
AD8603  
ADA4505-1  
AD8502  
AD8506  
AD8542  
AD8607  
ADA4505-2  
AD8504  
AD8508  
AD8544  
AD8609  
ADA4505-4  
The AD8546/AD8548 rail-to-rail input/output (RRIO) feature  
provides increased dynamic range to drive low frequency data  
converters, making these amplifiers ideal for dc gain and buffering  
of sensor front ends or high impedance input sources used in  
wireless or remote sensors or transmitters.  
Dual  
AD8546  
AD8657  
AD8667  
OP281  
OP295  
ADA4062-2  
The low supply current specification (22 μA) of the AD8546/  
AD8548 over a wide operating voltage range of 2.7 V to 18 V  
or dual supplies (±1.ꢀ5 V to ±± V) makes these amplifiers useful  
for a variety of battery-powered, portable applications, such as  
ECGs, pulse monitors, glucose meters, smoke and fire detectors,  
vibration monitors, and backup battery sensors.  
Quad  
AD8548  
AD8669  
OP481  
OP495  
ADA4062-4  
The AD8546/AD8548 are specified over the extended industrial  
temperature range of −40°C to +125°C. The AD8546 is available  
in an 8-lead MSOP package; the AD8548 is available in a 14-lead  
SOIC_N package.  
1 See www.analog.com for the latest selection of micropower op amps.  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2011–2012 Analog Devices, Inc. All rights reserved.  
 
 
 
 
AD8546/AD8548  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Performance Characteristics ..............................................7  
Applications Information .............................................................. 17  
Input Stage................................................................................... 17  
Output Stage................................................................................ 18  
Rail-to-Rail Input and Output.................................................. 18  
Resistive Load ............................................................................. 18  
Comparator Operation.............................................................. 19  
4 mA to 20 mA Process Control Current Loop Transmitter .. 20  
Outline Dimensions....................................................................... 21  
Ordering Guide .......................................................................... 21  
Applications....................................................................................... 1  
Pin Configurations ........................................................................... 1  
General Description ......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics—18 V Operation ............................. 3  
Electrical Characteristics—10 V Operation ............................. 4  
Electrical Characteristics—2.7 V Operation ............................ 5  
Absolute Maximum Ratings............................................................ 6  
Thermal Resistance ...................................................................... 6  
ESD Caution.................................................................................. 6  
REVISION HISTORY  
4/12—Rev. A to Rev. B  
Added AD8548 and 14-Lead SOIC..................................Universal  
Changes to Product Title, Features Section, General  
Changes to Figure 9, Figure 10, Figure 12, and Figure 13............8  
Changes to Figure 22 and Figure 25 ............................................ 10  
Changes to Figure 33...................................................................... 12  
Changes to Figure 63 and Figure 64 ............................................ 18  
Updated Outline Dimensions....................................................... 21  
Added Figure 72 ............................................................................. 21  
Changes to Ordering Guide.......................................................... 21  
Description Section, and Table 1.................................................... 1  
Added Figure 2; Renumbered Figures Sequentially..................... 1  
Moved Electrical Characteristics—18 V Operation Section ...... 3  
Changes to Table 2............................................................................ 3  
Changes to Table 3............................................................................ 4  
Moved Electrical Characteristics—2.7 V Operation Section ..... 5  
Changes to Table 4............................................................................ 5  
Changes to Table 6............................................................................ 6  
Changes to Figure 4, Figure 5, Figure 7, and Figure 8 ................. 7  
Deleted Figure 8 and Figure 11....................................................... 8  
4/11—Rev. 0 to Rev. A  
Changes to Product Title, Features Section, Applications  
Section, General Description Section, and Table 1.......................1  
1/11—Revision 0: Initial Version  
Rev. B | Page 2 of 24  
 
Data Sheet  
AD8546/AD8548  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS—18 V OPERATION  
VSY = 18 V, VCM = VSY/2, TA = 25°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
VCM = 0 V to 18 V  
VCM = 0.3 V to 17.7 V; −40°C ≤ TA ≤ +125°C  
VCM = 0 V to 18 V; −40°C ≤ TA ≤ +125°C  
3
7
12  
mV  
mV  
mV  
µV/°C  
pA  
nA  
pA  
nA  
V
Offset Voltage Drift  
Input Bias Current  
ΔVOS/ΔT  
IB  
3
5
20  
2.6  
40  
5.2  
18  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
VCM = 0 V to 18 V  
Input Offset Current  
IOS  
Input Voltage Range  
Common-Mode Rejection Ratio  
IVR  
CMRR  
0
74  
95  
dB  
VCM = 0.3 V to 17.7 V; −40°C ≤ TA ≤ +125°C 68  
dB  
VCM = 0 V to 18 V; −40°C ≤ TA ≤ +125°C  
RL = 100 kΩ; VO = 0.5 V to 17.5 V  
−40°C ≤ TA ≤ +125°C  
65  
110  
105  
dB  
dB  
dB  
GΩ  
Large Signal Voltage Gain  
AVO  
RIN  
125  
10  
Input Resistance  
Input Capacitance  
Differential Mode  
Common Mode  
CINDM  
CINCM  
3.5  
10.5  
pF  
pF  
OUTPUT CHARACTERISTICS  
Output Voltage High  
Output Voltage Low  
Short-Circuit Current  
Closed-Loop Output Impedance  
POWER SUPPLY  
VOH  
VOL  
ISC  
RL = 100 kΩ to VCM; −40°C ≤ TA ≤ +125°C  
RL = 100 kΩ to VCM; −40°C ≤ TA ≤ +125°C  
17.97  
V
30  
mV  
mA  
12  
15  
ZOUT  
f = 1 kHz; AV = +1  
Power Supply Rejection Ratio  
PSRR  
ISY  
VSY = 2.7 V to 18 V  
−40°C ≤ TA ≤ +125°C  
IO = 0 mA  
95  
90  
115  
18  
dB  
dB  
µA  
µA  
Supply Current per Amplifier  
22  
33  
−40°C ≤ TA ≤ +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time to 0.1%  
Gain Bandwidth Product  
Phase Margin  
Channel Separation  
NOISE PERFORMANCE  
Voltage Noise  
SR  
tS  
GBP  
ΦM  
CS  
RL = 1 MΩ; CL = 10 pF; AV = +1  
VIN = 1 V step; RL = 100 kΩ; CL = 10 pF  
RL = 1 MΩ; CL = 10 pF; AV = +1  
RL = 1 MΩ; CL = 10 pF; AV = +1  
f = 10 kHz; RL = 1 MΩ  
80  
15  
240  
60  
105  
V/ms  
µs  
kHz  
Degrees  
dB  
en p-p  
en  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
f = 10 kHz  
5
µV p-p  
nV/√Hz  
nV/√Hz  
pA/√Hz  
Voltage Noise Density  
50  
45  
0.1  
Current Noise Density  
in  
f = 1 kHz  
Rev. B | Page 3 of 24  
 
 
AD8546/AD8548  
Data Sheet  
ELECTRICAL CHARACTERISTICS—10 V OPERATION  
VSY = 10 V, V CM = VSY/2, TA = 25°C, unless otherwise noted.  
Table 3.  
Parameter  
Symbol Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
VCM = 0 V to 10 V  
VCM = 0.3 V to 9.7 V; −40°C ≤ TA ≤ +125°C  
VCM = 0 V to 10 V; −40°C ≤ TA ≤ +125°C  
3
8
12  
mV  
mV  
mV  
µV/°C  
pA  
nA  
pA  
nA  
V
Offset Voltage Drift  
Input Bias Current  
ΔVOS/ΔT  
IB  
3
2
15  
2.6  
30  
5.2  
10  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
Input Offset Current  
IOS  
Input Voltage Range  
IVR  
0
Common-Mode Rejection Ratio  
CMRR  
VCM = 0 V to 10 V  
70  
62  
60  
105  
100  
88  
dB  
dB  
dB  
dB  
dB  
GΩ  
VCM = 0.3 V to 9.7 V; −40°C ≤ TA ≤ +125°C  
VCM = 0 V to 10 V; −40°C ≤ TA ≤ +125°C  
RL = 100 kΩ; VO = 0.5 V to 9.5 V  
−40°C ≤ TA ≤ +125°C  
Large Signal Voltage Gain  
AVO  
RIN  
120  
10  
Input Resistance  
Input Capacitance  
Differential Mode  
Common Mode  
CINDM  
CINCM  
3.5  
3.5  
pF  
pF  
OUTPUT CHARACTERISTICS  
Output Voltage High  
Output Voltage Low  
Short-Circuit Current  
Closed-Loop Output Impedance  
POWER SUPPLY  
VOH  
VOL  
ISC  
RL = 100 kΩ to VCM; −40°C ≤ TA ≤ +125°C  
RL = 100 kΩ to VCM; −40°C ≤ TA ≤ +125°C  
9.98  
V
20  
mV  
mA  
11  
15  
ZOUT  
f = 1 kHz; AV = +1  
Power Supply Rejection Ratio  
PSRR  
ISY  
VSY = 2.7 V to 18 V  
−40°C ≤ TA ≤ +125°C  
IO = 0 mA  
95  
90  
115  
18  
dB  
dB  
µA  
µA  
Supply Current per Amplifier  
22  
33  
−40°C ≤ TA ≤ +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time to 0.1%  
Gain Bandwidth Product  
Phase Margin  
Channel Separation  
NOISE PERFORMANCE  
Voltage Noise  
SR  
tS  
GBP  
ΦM  
CS  
RL = 1 MΩ; CL = 10 pF; AV = +1  
VIN = 1 V step; RL = 100 kΩ; CL = 10 pF  
RL = 1 MΩ; CL = 10 pF; AV = +1  
RL = 1 MΩ; CL = 10 pF; AV = +1  
f = 10 kHz; RL = 1 MΩ  
75  
15  
235  
60  
105  
V/ms  
µs  
kHz  
Degrees  
dB  
en p-p  
en  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
f = 10 kHz  
5
µV p-p  
nV/√Hz  
nV/√Hz  
pA/√Hz  
Voltage Noise Density  
50  
45  
0.1  
Current Noise Density  
in  
f = 1 kHz  
Rev. B | Page 4 of 24  
 
Data Sheet  
AD8546/AD8548  
ELECTRICAL CHARACTERISTICS—2.7 V OPERATION  
VSY = 2.7 V, V CM = VSY/2, TA = 25°C, unless otherwise noted.  
Table 4.  
Parameter  
Symbol Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
VCM = 0 V to 2.7 V  
VCM = 0.3 V to 2.4 V; −40°C ≤ TA ≤ +125°C  
VCM = 0 V to 2.7 V; −40°C ≤ TA ≤ +125°C  
3
4
12  
mV  
mV  
mV  
µV/°C  
pA  
nA  
pA  
nA  
V
Offset Voltage Drift  
Input Bias Current  
ΔVOS/ΔT  
IB  
3
1
10  
2.6  
20  
5.2  
2.7  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
Input Offset Current  
IOS  
Input Voltage Range  
IVR  
0
Common-Mode Rejection Ratio  
CMRR  
VCM = 0 V to 2.7 V  
60  
58  
49  
97  
90  
75  
dB  
dB  
dB  
dB  
dB  
GΩ  
VCM = 0.3 V to 2.4 V; −40°C ≤ TA ≤ +125°C  
VCM = 0 V to 2.7 V; −40°C ≤ TA ≤ +125°C  
RL = 100 kΩ; VO = 0.5 V to 2.2 V  
−40°C ≤ TA ≤ +125°C  
Large Signal Voltage Gain  
AVO  
RIN  
115  
10  
Input Resistance  
Input Capacitance  
Differential Mode  
Common Mode  
CINDM  
CINCM  
3.5  
3.5  
pF  
pF  
OUTPUT CHARACTERISTICS  
Output Voltage High  
Output Voltage Low  
Short-Circuit Current  
Closed-Loop Output Impedance  
POWER SUPPLY  
VOH  
VOL  
ISC  
RL = 100 kΩ to VCM; −40°C ≤ TA ≤ +125°C  
RL = 100 kΩ to VCM; −40°C ≤ TA ≤ +125°C  
2.69  
V
10  
mV  
mA  
4
20  
ZOUT  
f = 1 kHz; AV = +1  
Power Supply Rejection Ratio  
PSRR  
ISY  
VSY = 2.7 V to 18 V  
−40°C ≤ TA ≤ +125°C  
IO = 0 mA  
95  
90  
115  
18  
dB  
dB  
µA  
µA  
Supply Current per Amplifier  
22  
33  
−40°C ≤ TA ≤ +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time to 0.1%  
Gain Bandwidth Product  
Phase Margin  
Channel Separation  
NOISE PERFORMANCE  
Voltage Noise  
SR  
tS  
GBP  
ΦM  
CS  
RL = 1 MΩ; CL = 10 pF; AV = +1  
VIN = 1 V step; RL = 100 kΩ; CL = 10 pF  
RL = 1 MΩ; CL = 10 pF; AV = +1  
RL = 1 MΩ; CL = 10 pF; AV = +1  
f = 10 kHz; RL = 1 MΩ  
50  
20  
190  
60  
105  
V/ms  
µs  
kHz  
Degrees  
dB  
en p-p  
en  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
f = 10 kHz  
6
µV p-p  
nV/√Hz  
nV/√Hz  
pA/√Hz  
Voltage Noise Density  
60  
56  
0.1  
Current Noise Density  
in  
f = 1 kHz  
Rev. B | Page 5 of 24  
 
AD8546/AD8548  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 5.  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages using  
a standard 4-layer board.  
Parameter  
Rating  
Supply Voltage  
Input Voltage  
Input Current1  
Differential Input Voltage  
Output Short-Circuit Duration Indefinite  
to GND  
20.5 V  
(V−) − 300 mV to (V+) + 300 mV  
10 mA  
VSY  
Table 6. Thermal Resistance  
Package Type  
θJA  
θJC  
45  
36  
Unit  
°C/W  
°C/W  
8-Lead MSOP (RM-8)  
14-Lead SOIC_N (R-14)  
142  
115  
Storage Temperature Range  
−65°C to +150°C  
Operating Temperature Range −40°C to +125°C  
Junction Temperature Range  
Lead Temperature  
(Soldering, 60 sec)  
−65°C to +150°C  
300°C  
ESD CAUTION  
1 The input pins have clamp diodes to the power supply pins. Limit the input  
current to 10 mA or less whenever input signals exceed the power supply  
rail by 0.3 V.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. B | Page 6 of 24  
 
 
 
Data Sheet  
AD8546/AD8548  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, unless otherwise noted.  
40  
40  
35  
30  
25  
V
V
= 18V  
SY  
V
V
= 2.7V  
= V /2  
SY  
SY  
= V /2  
CM  
SY  
35  
30  
25  
CM  
20  
15  
20  
15  
10  
5
10  
5
0
0
V
(mV)  
V
(mV)  
OS  
OS  
Figure 3. Input Offset Voltage Distribution  
Figure 6. Input Offset Voltage Distribution  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
V
= 2.7V  
V
= 18V  
SY  
SY  
–40°C ≤ T ≤ +125°C  
–40°C ≤ T ≤ +125°C  
A
A
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
TCV (µV/°C)  
OS  
TCV (µV/°C)  
OS  
Figure 7. Input Offset Voltage Drift Distribution  
Figure 4. Input Offset Voltage Drift Distribution  
3.0  
2.5  
3.0  
2.5  
V
= 18V  
V
= 2.7V  
SY  
SY  
2.0  
2.0  
1.5  
1.5  
1.0  
1.0  
0.5  
0.5  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
0
0.3  
0.6  
0.9  
1.2  
1.5  
(V)  
1.8  
2.1  
2.4  
2.7  
0
2
4
6
8
10  
(V)  
12  
14  
16  
18  
V
V
CM  
CM  
Figure 5. Input Offset Voltage vs. Common-Mode Voltage  
Figure 8. Input Offset Voltage vs. Common-Mode Voltage  
Rev. B | Page 7 of 24  
 
 
 
AD8546/AD8548  
Data Sheet  
6
4
6
V
= 18V  
V
= 2.7V  
SY  
SY  
–40°C ≤ T ≤ +125°C  
–40°C ≤ T ≤ +125°C  
A
A
4
2
2
0
0
–2  
–4  
–6  
–2  
–4  
–6  
0
0.3  
0.6  
0.9  
1.2  
1.5  
(V)  
1.8  
2.1  
2.4  
2.7  
0
3
6
9
12  
15  
18  
V
V
(V)  
CM  
CM  
Figure 9. Input Offset Voltage vs. Common-Mode Voltage  
Figure 12. Input Offset Voltage vs. Common-Mode Voltage  
10000  
1000  
100  
10  
10000  
1000  
100  
10  
V
= 2.7V  
SY  
V
= 18V  
SY  
1
1
| I + |  
| I + |  
B
B
| I – |  
| I – |  
B
B
0.1  
0.1  
25  
50  
75  
100  
125  
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 10. Input Bias Current vs. Temperature  
Figure 13. Input Bias Current vs. Temperature  
4
3
4
3
V
= 2.7V  
V
= 18V  
SY  
SY  
2
2
1
1
0
0
125°C  
85°C  
25°C  
125°C  
85°C  
25°C  
–1  
–2  
–3  
–4  
–1  
–2  
–3  
–4  
0
0.3  
0.6  
0.9  
1.2  
1.5  
(V)  
1.8  
2.1  
2.4  
2.7  
0
2
4
6
8
10  
(V)  
12  
14  
16  
18  
V
V
CM  
CM  
Figure 11. Input Bias Current vs. Common-Mode Voltage  
Figure 14. Input Bias Current vs. Common-Mode Voltage  
Rev. B | Page 8 of 24  
 
 
 
 
Data Sheet  
AD8546/AD8548  
10  
10  
1
V
= 2.7V  
V
= 18V  
SY  
SY  
1
100m  
10m  
–40°C  
+25°C  
+85°C  
+125°C  
–40°C  
+25°C  
+85°C  
+125°C  
100m  
10m  
1m  
1m  
0.1m  
0.01m  
0.1m  
0.01m  
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
100  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 15. Output Voltage (VOH) to Supply Rail vs. Load Current  
Figure 18. Output Voltage (VOH) to Supply Rail vs. Load Current  
10  
10  
V
= 2.7V  
V
= 18V  
SY  
SY  
1
100m  
10m  
1
100m  
10m  
–40°C  
+25°C  
+85°C  
+125°C  
–40°C  
+25°C  
+85°C  
+125°C  
1m  
1m  
0.1m  
0.01m  
0.1m  
0.01m  
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
100  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 16. Output Voltage (VOL) to Supply Rail vs. Load Current  
Figure 19. Output Voltage (VOL) to Supply Rail vs. Load Current  
18.000  
2.700  
R
= 1MΩ  
L
R
= 1MΩ  
L
17.995  
17.990  
17.985  
17.980  
17.975  
2.699  
2.698  
2.697  
2.696  
2.695  
R
= 100kΩ  
L
R
= 100kΩ  
L
V
= 2.7V  
V
= 18V  
–25  
SY  
SY  
–50  
0
25  
50  
75  
100  
125  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 17. Output Voltage (VOH) vs. Temperature  
Figure 20. Output Voltage (VOH) vs. Temperature  
Rev. B | Page 9 of 24  
 
 
 
 
AD8546/AD8548  
Data Sheet  
6
12  
10  
8
V
= 2.7V  
V
= 18V  
SY  
SY  
5
4
3
2
1
R
= 100kΩ  
L
6
R
= 100kΩ  
L
4
2
R
= 1MΩ  
L
R
= 1MΩ  
L
0
–50  
0
–50  
–25  
0
25  
50  
75  
100  
125  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 21. Output Voltage (VOL) vs. Temperature  
Figure 24. Output Voltage (VOL) vs. Temperature  
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
V
= 2.7V  
V
= 18V  
SY  
SY  
–40°C  
–40°C  
+25°C  
+85°C  
+25°C  
+85°C  
+125°C  
+125°C  
0
0
0
0
3
6
9
12  
15  
18  
0.3  
0.6  
0.9  
1.2  
V
1.5  
(V)  
1.8  
2.1  
2.4  
2.7  
V
(V)  
CM  
CM  
Figure 22. Supply Current per Amplifier vs. Common-Mode Voltage  
Figure 25. Supply Current per Amplifier vs. Common-Mode Voltage  
35  
30  
25  
20  
15  
60  
50  
V
V
= 2.7V  
= 18V  
SY  
SY  
40  
30  
20  
10  
0
10  
–40°C  
+25°C  
5
+85°C  
+125°C  
0
0
3
6
9
12  
15  
18  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
V
(V)  
SY  
Figure 26. Supply Current per Amplifier vs. Temperature  
Figure 23. Supply Current per Amplifier vs. Supply Voltage  
Rev. B | Page 10 of 24  
 
 
Data Sheet  
AD8546/AD8548  
135  
90  
135  
60  
60  
40  
V
R
= 2.7V  
= 1MΩ  
V
R
= 18V  
SY  
SY  
PHASE  
PHASE  
= 1MΩ  
L
L
90  
40  
45  
45  
20  
20  
GAIN  
0
0
0
0
GAIN  
–45  
–90  
–135  
–45  
–90  
–135  
–20  
–20  
–40  
–60  
C
C
= 10pF  
C
C
= 10pF  
L
L
L
L
–40  
–60  
= 100pF  
= 100pF  
1k  
10k  
100k  
1M  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 27. Open-Loop Gain and Phase vs. Frequency  
Figure 30. Open-Loop Gain and Phase vs. Frequency  
60  
60  
V
= 2.7V  
V
= 18V  
SY  
SY  
A
= +100  
A
= +100  
V
V
40  
20  
40  
20  
A
A
= +10  
= +1  
A
A
= +10  
= +1  
V
V
V
V
0
0
–20  
–40  
–60  
–20  
–40  
–60  
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 28. Closed-Loop Gain vs. Frequency  
Figure 31. Closed-Loop Gain vs. Frequency  
1000  
100  
10  
1000  
100  
10  
A
= +100  
A
= +100  
V
V
A
= +10  
A
= +10  
V
V
A
= +1  
A
= +1  
V
V
V
= 2.7V  
V
= 18V  
SY  
SY  
1
1
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
Figure 29. Output Impedance vs. Frequency  
Figure 32. Output Impedance vs. Frequency  
Rev. B | Page 11 of 24  
AD8546/AD8548  
Data Sheet  
140  
140  
120  
100  
80  
V
V
= 2.7V  
SY  
CM  
V
V
= 18V  
= V /2  
SY  
= V /2  
SY  
SY  
CM  
120  
100  
80  
60  
40  
20  
0
60  
40  
20  
0
100  
100  
1k  
10k  
100k  
1M  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 33. CMRR vs. Frequency  
Figure 36. CMRR vs. Frequency  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
V
= 18V  
SY  
V
= 2.7V  
SY  
PSRR+  
PSRR–  
PSRR+  
PSRR–  
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 34. PSRR vs. Frequency  
Figure 37. PSRR vs. Frequency  
70  
70  
60  
50  
40  
30  
20  
10  
0
V
V
= 18V  
= 10mV p-p  
V
V
R
= 2.7V  
= 10mV p-p  
= 1MΩ  
SY  
SY  
IN  
IN  
60  
50  
40  
30  
20  
10  
0
R = 1MΩ  
L
L
OS+  
OS–  
OS+  
OS–  
10  
100  
CAPACITANCE (pF)  
1000  
10  
100  
CAPACITANCE (pF)  
1000  
Figure 35. Small Signal Overshoot vs. Load Capacitance  
Figure 38. Small Signal Overshoot vs. Load Capacitance  
Rev. B | Page 12 of 24  
Data Sheet  
AD8546/AD8548  
V
= ±1.35V  
= +1  
= 1MΩ  
SY  
V
= ±9V  
= +1  
= 1MΩ  
= 100pF  
SY  
A
R
C
V
L
L
A
R
C
V
L
L
= 100pF  
TIME (100µs/DIV)  
TIME (100µs/DIV)  
Figure 39. Large Signal Transient Response  
Figure 42. Large Signal Transient Response  
V
= ±1.35V  
= +1  
= 1MΩ  
SY  
V
= ±9V  
= +1  
= 1MΩ  
= 100pF  
SY  
A
R
C
V
L
L
A
R
C
V
L
L
= 100pF  
TIME (100µs/DIV)  
TIME (100µs/DIV)  
Figure 40. Small Signal Transient Response  
Figure 43. Small Signal Transient Response  
V
A
R
= ±9V  
= –10  
= 1MΩ  
SY  
0
–0.2  
–0.4  
V
L
INPUT  
INPUT  
0
–1  
–2  
V
A
R
= ±1.35V  
= –10  
= 1MΩ  
SY  
V
L
2
1
0
10  
5
OUTPUT  
OUTPUT  
0
TIME (40µs/DIV)  
TIME (40µs/DIV)  
Figure 41. Positive Overload Recovery  
Figure 44. Positive Overload Recovery  
Rev. B | Page 13 of 24  
AD8546/AD8548  
Data Sheet  
V
A
R
= ±1.35V  
= –10  
= 1MΩ  
SY  
V
A
R
= ±9V  
= –10  
= 1MΩ  
SY  
0.4  
0.2  
0
2
1
0
V
L
V
L
INPUT  
INPUT  
OUTPUT  
OUTPUT  
0
0
–1  
–2  
–5  
–10  
TIME (40µs/DIV)  
TIME (40µs/DIV)  
Figure 45. Negative Overload Recovery  
Figure 48. Negative Overload Recovery  
INPUT  
INPUT  
V
R
C
= 2.7V  
= 100kΩ  
= 10pF  
V
R
C
= 18V  
= 100kΩ  
= 10pF  
SY  
SY  
L
L
L
L
+5mV  
0
+5mV  
0
ERROR BAND  
ERROR BAND  
OUTPUT  
OUTPUT  
–5mV  
–5mV  
TIME (10µs/DIV)  
TIME (10µs/DIV)  
Figure 46. Positive Settling Time to 0.1%  
Figure 49. Positive Settling Time to 0.1%  
V
R
C
= 2.7V  
= 100kΩ  
= 10pF  
V
R
C
= 18V  
= 100kΩ  
= 10pF  
SY  
SY  
L
L
L
L
INPUT  
INPUT  
+5mV  
0
+5mV  
0
OUTPUT  
OUTPUT  
ERROR BAND  
ERROR BAND  
–5mV  
–5mV  
TIME (10µs/DIV)  
TIME (10µs/DIV)  
Figure 47. Negative Settling Time to 0.1%  
Figure 50. Negative Settling Time to 0.1%  
Rev. B | Page 14 of 24  
Data Sheet  
AD8546/AD8548  
1000  
1000  
100  
10  
V
= 18V  
V
= 2.7V  
SY  
SY  
100  
10  
1
1
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 51. Voltage Noise Density vs. Frequency  
Figure 54. Voltage Noise Density vs. Frequency  
V
= 18V  
V
= 2.7V  
SY  
SY  
TIME (2s/DIV)  
TIME (2s/DIV)  
Figure 52. 0.1 Hz to 10 Hz Noise  
Figure 55. 0.1 Hz to 10 Hz Noise  
20  
18  
16  
14  
12  
10  
8
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 18V  
= 17.9V  
= 1MΩ  
= +1  
V
V
R
A
= 2.7V  
= 2.6V  
= 1MΩ  
= +1  
SY  
SY  
V
IN  
IN  
R
A
L
V
L
V
6
4
2
0
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 53. Output Swing vs. Frequency  
Figure 56. Output Swing vs. Frequency  
Rev. B | Page 15 of 24  
AD8546/AD8548  
Data Sheet  
100  
100  
10  
V
V
R
= 18V  
= 0.5V rms  
= 1MΩ  
= +1  
V
V
R
= 2.7V  
= 0.2V rms  
= 1MΩ  
SY  
IN  
SY  
IN  
L
V
L
V
A
A
= +1  
10  
1
1
0.1  
0.1  
0.01  
0.01  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 57. THD + N vs. Frequency  
Figure 59. THD + N vs. Frequency  
0
–20  
0
–20  
1MΩ  
V
R
A
= 18V  
= 1MΩ  
= –100  
V
R
A
= 2.7V  
= 1MΩ  
= –100  
SY  
SY  
1MΩ  
10kΩ  
L
V
L
V
10kΩ  
R
L
R
–40  
–40  
L
V
V
V
V
V
= 1V p-p  
= 5V p-p  
= 10V p-p  
= 15V p-p  
= 17V p-p  
IN  
IN  
IN  
IN  
IN  
–60  
–60  
V
= 0.5V p-p  
= 1.5V p-p  
= 2.6V p-p  
IN  
–80  
–80  
V
V
IN  
IN  
–100  
–120  
–140  
–100  
–120  
–140  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
Figure 58. Channel Separation vs. Frequency  
Figure 60. Channel Separation vs. Frequency  
Rev. B | Page 16 of 24  
Data Sheet  
AD8546/AD8548  
APPLICATIONS INFORMATION  
The AD8546/AD8548 are low input bias current, micropower  
CMOS amplifiers that operate over a wide supply voltage range  
of 2.7 V to 18 V. T he AD8546/AD8548 also employ unique input  
and output stages to achieve rail-to-rail input and output ranges  
with very low supply current.  
drain impedances contributes to the offset voltage of the ampli-  
fier. This problem is exacerbated at high temperatures due to the  
decrease in the threshold voltage of the input transistors. See  
Figure 9 and Figure 12 for typical performance data.  
Current Source I1 drives the PMOS transistor pair. As the input  
common-mode voltage approaches the upper rail, I1 is steered  
away from the PMOS differential pair through the M5 transistor.  
The bias voltage, VB1, controls the point where this transfer occurs.  
INPUT STAGE  
Figure 61 shows the simplified schematic of the AD8546/AD8548.  
The input stage comprises two differential transistor pairs: an  
NMOS pair (M1, M2) and a PMOS pair (M3, M4). The input  
common-mode voltage determines which differential pair turns  
on and is more active than the other.  
M5 diverts the tail current into a current mirror consisting of the  
M6 and M7 transistors. The output of the current mirror then  
drives the NMOS transistor pair. Note that the activation of this  
current mirror causes a slight increase in supply current at high  
common-mode voltages (see Figure 22 and Figure 25).  
The PMOS differential pair is active when the input voltage  
approaches and reaches the lower supply rail. The NMOS differ-  
ential pair is needed for input voltages up to and including the  
upper supply rail. This topology allows the amplifier to maintain  
a wide dynamic input voltage range and maximize signal swing to  
both supply rails. For the greater part of the input common-mode  
voltage range, the PMOS differential pair is active.  
The AD8546/AD8548 achieve their high performance by using  
low voltage MOS devices for their differential inputs. These low  
voltage MOS devices offer excellent noise and bandwidth per unit  
of current. Each differential input pair is protected by proprietary  
regulation circuitry (not shown in Figure 61). The regulation  
circuitry consists of a combination of active devices, which main-  
tain the proper voltages across the input pairs during normal  
operation, and passive clamping devices, which protect the  
amplifier during fast transients. However, these passive clamping  
devices begin to forward-bias as the common-mode voltage  
approaches either power supply rail. This causes an increase in  
the input bias current (see Figure 11 and Figure 14).  
Differential pairs commonly exhibit different offset voltages.  
The handoff from one pair to the other creates a step-like char-  
acteristic that is visible in the VOS vs. VCM graphs (see Figure 5  
and Figure 8). This characteristic is inherent in all rail-to-rail  
amplifiers that use the dual differential pair topology. Therefore,  
always choose a common-mode voltage that does not include the  
region of handoff from one input differential pair to the other.  
The input devices are also protected from large differential  
input voltages by clamp diodes (D1 and D2). These diodes are  
buffered from the inputs with two 10 kΩ resistors (R1 and R2).  
The differential diodes turn on when the differential input voltage  
exceeds approximately 600 mV; in this condition, the differential  
input resistance drops to 20 kΩ.  
Additional steps in the VOS vs. VCM graphs are also visible as the  
input common-mode voltage approaches the power supply rails.  
These changes are a result of the load transistors (M8, M9, M14,  
and M15) running out of headroom. As the load transistors are  
forced into the triode region of operation, the mismatch of their  
V+  
VB1  
I1  
M8  
M9  
M5  
M10  
M11  
M3  
M4  
+IN x  
–IN x  
M16  
M17  
R1  
R2  
D1  
D2  
VB2  
OUT x  
M1 M2  
M12  
M14  
M13  
M15  
M7  
M6  
V–  
Figure 61. Simplified Schematic  
Rev. B | Page 17 of 24  
 
 
 
AD8546/AD8548  
Data Sheet  
OUTPUT STAGE  
RESISTIVE LOAD  
The AD8546/AD8548 feature a complementary output stage  
consisting of the M16 and M17 transistors (see Figure 61). These  
transistors are configured in a Class AB topology and are biased  
by the voltage source, VB2. This topology allows the output voltage  
to go within millivolts of the supply rails, achieving a rail-to-rail  
output swing. The output voltage is limited by the output imped-  
ance of the transistors, which are low RON MOS devices. The output  
voltage swing is a function of the load current and can be estimated  
using the output voltage to supply rail vs. load current graphs (see  
Figure 15, Figure 16, Figure 18, and Figure 19).  
The feedback resistor alters the load resistance that an amplifier  
sees. Therefore, it is important to carefully select the value of the  
feedback resistors used with the AD8546/AD8548. The amplifiers  
are capable of driving resistive loads down to 100 kΩ. The Inverting  
Op Amp Configuration section and the Noninverting Op Amp  
Configuration section show how the feedback resistor changes  
the actual load resistance seen at the output of the amplifier.  
Inverting Op Amp Configuration  
Figure 63 shows the AD8546/AD8548 in an inverting config-  
uration with a resistive load, RL, at the output. The actual load  
seen by the amplifier is the parallel combination of the feedback  
resistor, R2, and the load, RL. For example, the combination of  
a feedback resistor of 1 kΩ and a load of 1 MΩ results in an  
equivalent load resistance of 999 Ω at the output. Because the  
AD8546/AD8548 are incapable of driving such a heavy load,  
performance degrades greatly.  
RAIL-TO-RAIL INPUT AND OUTPUT  
The AD8546/AD8548 feature rail-to-rail input and output with a  
supply voltage from 2.7 V to 18 V. Figure 62 shows the input and  
output waveforms of the AD8546/AD8548 configured as a unity-  
gain buffer with a supply voltage of 9 V and a resistive load of  
1 MΩ. With an input voltage of 9 V, the AD8546/AD8548 allow  
the output to swing very close to both rails. Additionally, the  
AD8546/AD8548 do not exhibit phase reversal.  
To avoid loading the output, use a larger feedback resistor, but  
consider the effect of resistor thermal noise on the overall circuit.  
R2  
V
= ±9V  
SY  
INPUT  
OUTPUT  
R
= 1MΩ  
L
+V  
SY  
R1  
V
IN  
AD8546/  
AD8548  
V
OUT  
R
L
–V  
SY  
R
= R || R2  
L, EFF  
L
Figure 63. Inverting Op Amp Configuration  
Noninverting Op Amp Configuration  
Figure 64 shows the AD8546/AD8548 in a noninverting config-  
uration with a resistive load, RL, at the output. The actual load seen  
by the amplifier is the parallel combination of R1 + R2 and RL.  
R2  
TIME (200µs/DIV)  
Figure 62. Rail-to-Rail Input and Output  
+V  
SY  
R1  
AD8546/  
AD8548  
V
OUT  
R
L
V
IN  
–V  
SY  
R
= R || (R1 + R2)  
L
L, EFF  
Figure 64. Noninverting Op Amp Configuration  
Rev. B | Page 18 of 24  
 
 
 
 
 
 
 
Data Sheet  
AD8546/AD8548  
+V  
SY  
COMPARATOR OPERATION  
An op amp is designed to operate in a closed-loop configuration  
with feedback from its output to its inverting input. Figure 65  
shows the AD8546 configured as a voltage follower with an input  
voltage that is always kept at the midpoint of the power supplies.  
The same configuration is applied to the unused channel. A1 and  
A2 indicate the placement of ammeters to measure supply current.  
ISY+ refers to the current flowing from the upper supply rail to the  
op amp, and ISY− refers to the current flowing from the op amp  
to the lower supply rail.  
A1  
I
+
SY  
100k  
100kΩ  
AD8546  
V
OUT  
1/2  
A2  
I
SY  
+V  
SY  
–V  
SY  
Figure 67. Comparator Configuration A  
A1  
I
+
SY  
+V  
SY  
100k  
100kΩ  
AD8546  
A1  
I
+
SY  
V
OUT  
1/2  
100kΩ  
A2  
I
SY  
AD8546  
V
OUT  
1/2  
–V  
SY  
100kΩ  
A2  
I
SY  
Figure 65. Voltage Follower Configuration  
As expected, Figure 66 shows that in normal operating condition,  
the total current flowing into the op amp is equivalent to the total  
current flowing out of the op amp, where ISY+ = ISY− = 36 μA for  
the AD8546 at VSY = 18 V.  
–V  
SY  
Figure 68. Comparator Configuration B  
The AD8546/AD8548 have input devices that are protected  
from large differential input voltages by Diode D1 and Diode D2  
(see Figure 61). These diodes consist of substrate PNP bipolar  
transistors and turn on when the differential input voltage  
exceeds approximately 600 mV; however, these diodes also allow  
a current path from the input to the lower supply rail, resulting  
in an increase in the total supply current of the system. As shown  
in Figure 69, both configurations yield the same result. At 18 V  
of power supply, ISY+ remains at 36 μA per dual amplifier, but  
ISY− increases to 140 μA in magnitude per dual amplifier.  
160  
40  
35  
30  
25  
20  
15  
I
I
+
SY  
SY  
10  
5
140  
120  
100  
0
0
2
4
6
8
10  
(V)  
12  
14  
16  
18  
V
SY  
Figure 66. Supply Current vs. Supply Voltage (Voltage Follower)  
I
I
+
SY  
SY  
80  
60  
40  
20  
0
In contrast to op amps, comparators are designed to work in an  
open-loop configuration and to drive logic circuits. Although  
op amps are different from comparators, occasionally an unused  
section of a dual or quad op amp is used as a comparator to save  
board space and cost; however, this is not recommended.  
Figure 67 and Figure 68 show the AD8546 configured as a com-  
parator, with 100 kΩ resistors in series with the input pins. The  
unused channel is configured as a buffer with the input voltage  
kept at the midpoint of the power supplies.  
0
2
4
6
8
10  
(V)  
12  
14  
16  
18  
V
SY  
Figure 69. Supply Current vs. Supply Voltage (AD8546 as a Comparator)  
Rev. B | Page 19 of 24  
 
 
 
 
 
 
AD8546/AD8548  
Data Sheet  
Note that 100 kΩ resistors are used in series with the input of  
the op amp. If smaller resistor values are used, the supply current  
of the system increases much more. For more information about  
using op amps as comparators, see the AN-849 Application Note,  
Using Op Amps as Comparators.  
The AD8546 is an excellent choice due to its low supply current  
of 33 μA per amplifier over temperature and supply voltage. The  
current transmitter controls the current flowing in the loop, where  
a zero-scale input signal is represented by 4 mA of current and a  
full-scale input signal is represented by 20 mA. The transmitter  
also floats from the control loop power supply, VDD, whereas signal  
ground is in the receiver. The loop current is measured at the load  
resistor, RL, at the receiver side.  
4 mA TO 20 mA PROCESS CONTROL CURRENT  
LOOP TRANSMITTER  
A 2-wire current transmitter is often used in distributed control  
systems and process control applications to transmit analog signals  
between sensors and process controllers. Figure 70 shows a 4 mA  
to 20 mA current loop transmitter.  
With a zero-scale input, a current of VREF/RNULL flows through  
R. This creates a current, ISENSE, that flows through the sense  
resistor, as determined by the following equation:  
ISENSE, MIN = (VREF × R)/(RNULL × RSENSE)  
ADR125  
V
REF  
V
V
OUT  
IN  
With a full-scale input voltage, current flowing through R is  
increased by the full-scale change in VIN/RSPAN. This creates an  
increase in the current flowing through the sense resistor.  
GND  
R
NULL  
1MΩ  
1%  
C2  
C3  
C4  
C5  
10µF 0.1µF  
0.1µF 10µF  
I
SENSE, DELTA = (Full-Scale Change in VIN × R)/(RSPAN × RSENSE  
)
R
SPAN  
200kΩ  
1/2  
AD8546  
1%  
V
Therefore,  
Q1  
IN  
0V TO 5V  
V
DD  
18V  
R4  
3.3kΩ  
ISENSE, MAX = ISENSE, MIN + ISENSE, DELTA  
R1  
68kΩ  
1%  
D1  
4mA  
TO  
20mA  
R3  
1.2kΩ  
When R >> RSENSE, the current through the load resistor at the  
receiver side is almost equivalent to ISENSE  
C1  
390pF  
.
R
100Ω  
R2  
2kΩ  
1%  
L
R
SENSE  
100Ω  
1%  
Figure 70 shows a design for a full-scale input voltage of 5 V. At  
0 V of input, the loop current is 3.5 mA, and at a full-scale input  
of 5 V, the l o op current is 21 mA. This allows software calibration  
to fine-tune the current loop to the 4 mA to 20 mA range.  
NOTES  
1. R1 + R2 = R´.  
Figure 70. 4 mA to 20 mA Current Loop Transmitter  
Together, the AD8546 and the ADR125 consume quiescent  
current of only 160 µA, making 3.34 mA current available to  
power additional signal conditioning circuitry or to power a  
bridge circuit.  
The transmitter is powered directly from the control loop  
power supply, and the current in the loop carries signal from  
4 mA to 20 mA. Thus, 4 mA establishes the baseline current  
budget within which the circuit must operate.  
Rev. B | Page 20 of 24  
 
 
Data Sheet  
AD8546/AD8548  
OUTLINE DIMENSIONS  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
IDENTIFIER  
0.65 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.80  
0.55  
0.40  
0.15  
0.05  
0.23  
0.09  
6°  
0°  
0.40  
0.25  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 71. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
8.75 (0.3445)  
8.55 (0.3366)  
8
7
14  
1
6.20 (0.2441)  
5.80 (0.2283)  
4.00 (0.1575)  
3.80 (0.1496)  
1.27 (0.0500)  
0.50 (0.0197)  
0.25 (0.0098)  
45°  
BSC  
1.75 (0.0689)  
1.35 (0.0531)  
0.25 (0.0098)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
1.27 (0.0500)  
0.40 (0.0157)  
0.51 (0.0201)  
0.31 (0.0122)  
0.25 (0.0098)  
0.17 (0.0067)  
COMPLIANT TO JEDEC STANDARDS MS-012-AB  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 72. 14-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-14)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
RM-8  
Branding  
A2V  
A2V  
AD8546ARMZ  
AD8546ARMZ-RL  
AD8546ARMZ-R7  
AD8548ARZ  
AD8548ARZ-RL  
AD8548ARZ-R7  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
8-Lead Mini Small Outline Package [MSOP]  
8-Lead Mini Small Outline Package [MSOP]  
8-Lead Mini Small Outline Package [MSOP]  
14-Lead Standard Small Outline Package [SOIC_N]  
14-Lead Standard Small Outline Package [SOIC_N]  
14-Lead Standard Small Outline Package [SOIC_N]  
RM-8  
RM-8  
R-14  
R-14  
R-14  
A2V  
1 Z = RoHS Compliant Part.  
Rev. B | Page 21 of 24  
 
 
AD8546/AD8548  
NOTES  
Data Sheet  
Rev. B | Page 22 of 24  
Data Sheet  
NOTES  
AD8546/AD8548  
Rev. B | Page 23 of 24  
AD8546/AD8548  
NOTES  
Data Sheet  
©2011–2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D09585-0-4/12(B)  
Rev. B | Page 24 of 24  

相关型号:

AD8546ARMZ-R7

22 μA, RRIO, CMOS, 18 V
ADI

AD8546ARMZ-RL

22 μA, RRIO, CMOS, 18 V
ADI

AD8546_12

22 μA, RRIO, CMOS, 18 V
ADI

AD8548

22 μA, RRIO, CMOS, 18 V
ADI

AD8548ARZ

22 μA, RRIO, CMOS, 18 V
ADI

AD8548ARZ-R7

22 μA, RRIO, CMOS, 18 V
ADI

AD8548ARZ-RL

22 μA, RRIO, CMOS, 18 V
ADI

AD8551

Zero-Drift, Single-Supply, Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8551AN

IC OP-AMP, 10 uV OFFSET-MAX, 1 MHz BAND WIDTH, PDIP8, PLASTIC, DIP-8, Operational Amplifier
ADI

AD8551AR

Zero-Drift, Single-Supply, Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8551AR-REEL

Zero-Drift, Single-Supply, Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8551AR-REEL7

Zero-Drift, Single-Supply, Rail-to-Rail Input/Output Operational Amplifiers
ADI