AD8591ART-REEL [ADI]

CMOS Single-Supply, Rail-to-Rail Input/Output Operational Amplifiers with Shutdown; CMOS单电源,带有关断轨至轨输入/输出运算放大器
AD8591ART-REEL
型号: AD8591ART-REEL
厂家: ADI    ADI
描述:

CMOS Single-Supply, Rail-to-Rail Input/Output Operational Amplifiers with Shutdown
CMOS单电源,带有关断轨至轨输入/输出运算放大器

运算放大器
文件: 总16页 (文件大小:408K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CMOS Single-Supply, Rail-to-Rail Input/Output  
Operational Amplifiers with Shutdown  
AD8591/AD8592/AD8594  
FEATURES  
PIN CONFIGURATIONS  
Single-supply operation: 2.5 V to 6 V  
High output current: 250 mA  
Extremely low shutdown supply current: 100 nA  
Low supply current: 750 μA/Amp  
Wide bandwidth: 3 MHz  
OUT A  
1
2
3
6
5
4
V+  
AD8591  
V–  
SD  
TOP VIEW  
(Not to Scale)  
+IN A  
–IN A  
Slew rate: 5 V/μs  
Figure 1. 6-Lead SOT-23 (RJ Suffix)  
No phase reversal  
Very low input bias current  
High impedance outputs when in shutdown mode  
Unity-gain stable  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
5
10 V+  
9
8
7
6
OUT B  
–IN B  
+IN B  
SDB  
AD8592  
TOP VIEW  
(Not to Scale)  
SDA  
APPLICATIONS  
Figure 2. 10-Lead MSOP (RM Suffix)  
Mobile communication handset audio  
PC audio  
PCMCIA/modem line driving  
Battery-powered instrumentation  
Data acquisition  
OUT A  
–IN A  
+IN A  
V+  
1
2
3
4
5
6
7
8
16 OUT D  
15 –IN D  
14  
+IN D  
AD8594  
13 V–  
TOP VIEW  
(Not to Scale)  
+IN B  
–IN B  
OUT B  
NC  
12 +IN C  
11 –IN C  
10 OUT C  
ASIC input or output amplifiers  
LCD display reference level drivers  
9
SD  
NC = NO CONNECT  
Figure 3. 16-Lead Narrow SOIC (R Suffix)  
GENERAL DESCRIPTION  
The AD8591, AD8592, and AD8594 are single, dual, and quad  
rail-to-rail, input and output single-supply amplifiers featuring  
250 mA output drive current and a power saving shutdown mode.  
The AD8592 includes an independent shutdown function for  
each amplifier. When both amplifiers are in shutdown mode,  
the total supply current is reduced to less than 1 μA. The AD8591  
and AD8594 include a single master shutdown function that  
reduces the total supply current to less than 1 μA. All amplifier  
outputs are in a high impedance state when in shutdown mode.  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
OUT A  
–IN A  
+IN A  
V+  
OUT D  
–IN D  
+IN D  
V–  
AD8594  
TOP VIEW  
(Not to Scale)  
+IN B  
–IN B  
OUT B  
NC  
+IN C  
–IN C  
OUT C  
SD  
NC = NO CONNECT  
These amplifiers have very low input bias currents, making them  
suitable for integrators and diode amplification. Outputs are stable  
with virtually any capacitive load. Supply current is less than  
750 μA per amplifier in active mode.  
Figure 4. 16-Lead TSSOP (RU Suffix)  
The AD8591, AD8592, and AD8594 are specified over the  
industrial temperature range (−40°C to +85°C). The AD8591,  
single, is available in the tiny 6-lead SOT-23 package. The AD8592,  
dual, is available in the 10-lead surface-mount MSOP package. The  
AD8594, quad, is available in 16-lead narrow SOIC and 16-lead  
TSSOP packages.  
Applications for these amplifiers include audio amplification for  
portable computers, portable phone headsets, sound ports, sound  
cards, and set-top boxes. The AD859x family is capable of driving  
heavy capacitive loads, such as LCD panel reference levels.  
The ability to swing rail to rail at both the input and output enables  
designers to buffer CMOS DACs, ASICs, and other wide output  
swing devices in single-supply systems.  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2009 Analog Devices, Inc. All rights reserved.  
 
AD8591/AD8592/AD8594  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Output Short-Circuit Protection.............................................. 11  
Power Dissipation....................................................................... 11  
Capacitive Loading..................................................................... 12  
PC98-Compliant Headphone/Speaker Amplifier.................. 12  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Pin Configurations ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Typical Performance Characteristics ............................................. 6  
Theory of Operation ...................................................................... 11  
Input Voltage Protection............................................................ 11  
Output Phase Reversal............................................................... 11  
A Combined Microphone and Speaker Amplifier for  
Cellphone and Portable Headsets ............................................ 13  
An Inexpensive Sample-and-Hold Circuit ............................. 13  
Direct Access Arrangement for PCMCIA Modems  
(Telephone Line Interface)........................................................ 14  
Single-Supply Differential Line Driver.................................... 14  
Outline Dimensions....................................................................... 15  
Ordering Guide .......................................................................... 16  
REVISION HISTORY  
1/09—Rev. A to Rev. B  
Updated Format..................................................................Universal  
Changes to Table 1............................................................................ 3  
Changes to Table 2............................................................................ 4  
Deleted Spice Model for AD8591/AD8592/AD8594 Amplifiers  
Sections ............................................................................................ 12  
Changes to PC98-Compliant Headphone/Speaker Amplifier  
Section and Figure 38..................................................................... 12  
Changes to Figure 39...................................................................... 13  
Changes to Figure 42 and Figure 43............................................. 14  
Updated Outline Dimensions....................................................... 15  
Changes to Ordering Guide .......................................................... 16  
Rev. B | Page 2 of 16  
 
AD8591/AD8592/AD8594  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
VS = 2.7 V, VCM = 1.35 V, TA = 25°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
IB  
25  
30  
50  
60  
25  
30  
2.7  
mV  
mV  
pA  
pA  
pA  
pA  
V
dB  
V/mV  
μV/°C  
fA/°C  
fA/°C  
−40°C < TA < +85°C  
−40°C < TA < +85°C  
−40°C < TA < +85°C  
Input Bias Current  
5
1
Input Offset Current  
IOS  
Input Voltage Range  
Common-Mode Rejection Ratio  
Large Signal Voltage Gain  
Offset Voltage Drift  
Bias Current Drift  
Offset Current Drift  
0
38  
CMRR  
AVO  
ΔVOS/ΔT  
ΔIB/ΔT  
ΔIOS/ΔT  
VCM = 0 V to 2.7 V  
45  
25  
20  
50  
20  
RL = 2 kΩ, VO = 0.3 V to 2.4 V  
−40°C < TA < +85°C  
−40°C < TA < +85°C  
−40°C < TA < +85°C  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
VOL  
IL = 10 mA  
−40°C to +85°C  
IL = 10 mA  
2.55  
2.5  
2.61  
60  
V
V
mV  
mV  
mA  
Ω
Output Voltage Low  
100  
125  
−40°C to +85°C  
Output Current  
Open-Loop Impedance  
POWER SUPPLY  
IOUT  
ZOUT  
250  
60  
f = 1 MHz, AV = 1  
Power Supply Rejection Ratio  
Supply Current per Amplifier  
PSRR  
ISY  
VS = 2.5 V to 6 V  
VO = 0 V  
−40°C < TA < +85°C  
All amplifiers shut down  
−40°C < TA < +85°C  
45  
55  
dB  
1
1.25  
1
mA  
mA  
μA  
Supply Current Shutdown Mode  
ISD  
0.1  
1
μA  
ISD1  
ISD2  
Amplifier 1 shut down (AD8592)  
Amplifier 2 shut down (AD8592)  
1.4  
1.4  
mA  
mA  
SHUTDOWN INPUTS  
Logic High Voltage  
Logic Low Voltage  
Logic Input Current  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time  
Gain Bandwidth Product  
Phase Margin  
VINH  
VINL  
IIN  
−40°C < TA < +85°C  
−40°C < TA < +85°C  
−40°C < TA < +85°C  
1.6  
V
V
μA  
0.5  
1
SR  
tS  
GBP  
Φo  
CS  
RL = 2 kΩ  
To 0.01%  
3.5  
1.4  
2.2  
67  
V/μs  
μs  
MHz  
Degrees  
dB  
Channel Separation  
NOISE PERFORMANCE  
Voltage Noise Density  
f = 1 kHz, RL = 2 kΩ  
65  
en  
in  
f = 1 kHz  
f = 10 kHz  
f = 1 kHz  
45  
30  
0.05  
nV/√Hz  
nV/√Hz  
pA/√Hz  
Current Noise Density  
Rev. B | Page 3 of 16  
 
AD8591/AD8592/AD8594  
VS = 5.0 V, VCM = 2.5 V, TA = 25°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
2
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
IB  
25  
30  
50  
60  
25  
30  
5
mV  
mV  
pA  
pA  
pA  
pA  
V
dB  
V/mV  
μV/°C  
fA/°C  
fA/°C  
−40°C < TA < +85°C  
−40°C < TA < +85°C  
−40°C < TA < +85°C  
Input Bias Current  
5
Input Offset Current  
IOS  
1
Input Voltage Range  
Common-Mode Rejection Ratio  
Large Signal Voltage Gain  
Offset Voltage Drift  
Bias Current Drift  
Offset Current Drift  
0
38  
15  
CMRR  
AVO  
ΔVOS/ΔT  
ΔIB/ΔT  
ΔIOS/ΔT  
VCM = 0 V to 5 V  
47  
30  
20  
50  
20  
RL = 2 kΩ, VO = 0.5 V to 4.5 V  
−40°C < TA < +85°C  
−40°C < TA < +85°C  
−40°C < TA < +85°C  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
VOL  
IL = 10 mA  
−40°C to +85°C  
IL = 10 mA  
4.9  
4.85  
4.94  
50  
V
V
mV  
mV  
mA  
Ω
Output Voltage Low  
100  
125  
−40°C to +85°C  
Output Current  
Open-Loop Impedance  
POWER SUPPLY  
IOUT  
ZOUT  
250  
40  
f = 1 MHz, AV = 1  
Power Supply Rejection Ratio  
Supply Current per Amplifier  
PSRR  
ISY  
VS = 2.5 V to 6 V  
VO = 0 V  
−40°C < TA < +85°C  
All amplifiers shut down  
−40°C < TA < +85°C  
45  
55  
dB  
1.25  
1.75  
1
mA  
mA  
μA  
Supply Current Shutdown Mode  
ISD  
0.1  
1
μA  
ISD1  
ISD2  
Amplifier 1 shut down (AD8592)  
Amplifier 2 shut down (AD8592)  
1.6  
1.6  
mA  
mA  
SHUTDOWN INPUTS  
Logic High Voltage  
Logic Low Voltage  
Logic Input Current  
DYNAMIC PERFORMANCE  
Slew Rate  
Full Power Bandwidth  
Settling Time  
Gain Bandwidth Product  
Phase Margin  
VINH  
VINL  
IIN  
−40°C < TA < +85°C  
−40°C < TA < +85°C  
−40°C < TA < +85°C  
2.4  
V
V
μA  
0.8  
1
SR  
BWP  
tS  
GBP  
Φo  
CS  
RL = 2 kΩ  
1% distortion  
To 0.01%  
5
V/μs  
kHz  
μs  
MHz  
Degrees  
dB  
325  
1.6  
3
70  
65  
Channel Separation  
NOISE PERFORMANCE  
Voltage Noise Density  
f = 1 kHz, RL = 10 kΩ  
en  
in  
f = 1 kHz  
f = 10 kHz  
f = 1 kHz  
45  
30  
0.05  
nV/√Hz  
nV/√Hz  
pA/√Hz  
Current Noise Density  
Rev. B | Page 4 of 16  
AD8591/AD8592/AD8594  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 3.  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Parameter  
Rating  
Supply Voltage  
6 V  
Input Voltage  
GND to VS  
6 V  
Table 4.  
Package Type  
Differential Input Voltage  
Output Short-Circuit Duration to GND1  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range  
Lead Temperature (Soldering, 60 sec)  
θJA  
θJC  
92  
44  
36  
35  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
Observe Derating Curves  
−65°C to +150°C  
−40°C to +85°C  
−65°C to +150°C  
300°C  
6-Lead SOT-23 (RJ)  
10-Lead MSOP (RM)  
16-Lead SOIC (R)  
16-Lead TSSOP (RU)  
230  
200  
120  
180  
1 For supplies less than 5 V, the differential input voltage is limited to the  
supplies.  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those listed in the operational sections  
of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. B | Page 5 of 16  
 
AD8591/AD8592/AD8594  
TYPICAL PERFORMANCE CHARACTERISTICS  
1k  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
= 2.7V  
= 25°C  
T
= 25°C  
S
A
A
T
100  
10  
1
SOURCE  
SINK  
0.1  
0.01  
0.1  
1
10  
100  
1k  
0.75  
1.25  
1.75  
2.25  
2.75 3.00  
LOAD CURRENT (mA)  
SUPPLY VOLTAGE (±V)  
Figure 5. Output Voltage to Supply Rail vs. Load Current  
Figure 8. Supply Current per Amplifier vs. Supply Voltage  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
10k  
1k  
V
= 5V  
= 25°C  
S
A
V
V
= 5V  
CM  
S
T
= 2.5V  
100  
10  
1
SINK  
SOURCE  
0.1  
0.01  
–50  
–35  
–15  
5
25  
45  
65  
85  
0.1  
1
10  
100  
1k  
LOAD CURRENT (mA)  
TEMPERATURE (°C)  
Figure 6. Output Voltage to Supply Rail vs. Load Current  
Figure 9. Input Offset Voltage vs. Temperature  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
8
7
6
5
4
3
2
V
V
= 2.7V, 5V  
S
= V /2  
CM  
S
V
= 5V  
S
V
= 2.7V  
S
–40  
–20  
0
20  
40  
60  
80  
100  
–50  
–35  
–15  
5
25  
45  
65  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 10. Input Bias Current vs. Temperature  
Figure 7. Supply Current per Amplifier vs. Temperature  
Rev. B | Page 6 of 16  
 
 
 
AD8591/AD8592/AD8594  
80  
60  
40  
20  
0
4
3
V
= 5V  
= NO LOAD  
= 25°C  
S
L
V
V
= 2.7V, 5V  
S
R
= V /2  
CM  
S
T
A
45  
90  
2
135  
180  
1
0
–1  
–2  
–50  
1k  
10k  
100k  
1M  
10M  
100M  
–35  
–15  
5
25  
45  
65  
85  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 11. Input Offset Current vs. Temperature  
Figure 14. Open-Loop Gain and Phase vs. Frequency  
8
7
6
5
4
3
2
1
5
V
= 2.7V  
= 2k  
= 25°C  
V
A
= 5V  
= 25°C  
S
L
S
R
T
T
A
V
= 2.5V p-p  
IN  
4
3
2
1
0
0
1
2
3
4
5
1k  
10k  
100k  
1M  
10M  
COMMON-MODE VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 15. Closed-Loop Output Voltage Swing vs. Frequency  
Figure 12. Input Bias Current vs. Common-Mode Voltage  
5
80  
60  
40  
20  
0
V
= 2.7V  
V
= 5V  
S
L
S
L
R
= NO LOAD  
= 25°C  
R
= 2kΩ  
= 25°C  
T
T
A
A
45  
V
= 2.5V p-p  
IN  
4
3
2
1
0
90  
135  
180  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 16. Closed-Loop Output Voltage Swing vs. Frequency  
Figure 13. Open-Loop Gain and Phase vs. Frequency  
Rev. B | Page 7 of 16  
AD8591/AD8592/AD8594  
200  
140  
120  
100  
80  
V
T
= 5V  
= 25°C  
V
T
= 5V  
= 25°C  
S
A
S
A
180  
160  
140  
120  
100  
80  
A
= 10  
V
–PSRR  
+PSRR  
60  
40  
20  
A
= 1  
V
60  
0
40  
–20  
–40  
–60  
20  
0
1k  
10k  
100k  
1M  
10M  
100M  
100  
1k  
10k  
100k  
1M  
10M  
10k  
10k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 17. Closed-Loop Output Impedance vs. Frequency  
Figure 20. Power Supply Rejection Ratio vs. Frequency  
110  
100  
90  
60  
50  
40  
30  
20  
10  
0
V
= 5V  
S
A
V
= 2.5V  
= 2k  
= 25°C  
S
L
T
= 25°C  
R
T
A
+OS  
–OS  
80  
70  
60  
50  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
FREQUENCY (Hz)  
CAPACITANCE (pF)  
Figure 18. Common-Mode Rejection Ratio vs. Frequency  
Figure 21. Small Signal Overshoot vs. Load Capacitance  
140  
120  
100  
80  
60  
50  
40  
30  
20  
10  
0
V
T
= 2.5V  
= 25°C  
V
= 5V  
= 2kΩ  
= 25°C  
S
A
S
L
R
T
A
–OS  
60  
+PSRR  
–PSRR  
+OS  
40  
20  
0
–20  
–40  
–60  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
FREQUENCY (Hz)  
CAPACITANCE (pF)  
Figure 19. Power Supply Rejection Ratio vs. Frequency  
Figure 22. Small Signal Overshoot vs. Load Capacitance  
Rev. B | Page 8 of 16  
AD8591/AD8592/AD8594  
V
= ±2.5V  
= +1  
= 2k  
= 25°C  
S
V
L
A
R
100  
90  
T
A
V
V
= ±1.35V  
= ±50mV  
= +1  
S
IN  
V
L
L
0V  
A
R
C
= 2kΩ  
= 300pF  
= 25°C  
T
A
10  
0
500mV  
500ns  
500 ns/DIV  
Figure 23. Small Signal Transient Response  
Figure 26. Large Signal Transient Response  
1V  
10µs  
100  
90  
V
V
= ±2.5V  
= ±50mV  
= +1  
S
IN  
V
L
L
0V  
A
R
C
= 2kΩ  
= 300pF  
= 25°C  
T
A
10  
0
V
= ±2.5V  
= +1  
= +25°C  
S
V
A
T
1V  
A
500 ns/DIV  
Figure 24. Small Signal Transient Response  
Figure 27. No Phase Reversal  
1
V
= 5V  
= 25°C  
V
= ±1.35V  
= +1  
= 2kΩ  
= 25°C  
S
A
S
V
L
T
A
R
100  
90  
T
A
0.1  
10  
0
500mV  
500ns  
0.01  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 25. Large Signal Transient Response  
Figure 28. Current Noise Density vs. Frequency  
Rev. B | Page 9 of 16  
AD8591/AD8592/AD8594  
600  
500  
400  
300  
200  
100  
0
V
A
= 5V  
= +1000  
= 25°C  
V
V
= 2.7V  
CM  
= 25°C  
A
S
S
= 1.35V  
V
T
T
A
100  
90  
FREQUENCY = 1kHz  
10  
0
MARKER 41µV/Hz  
–14 –12 –10  
–8  
–6  
–4  
–2  
0
2
4
6
INPUT OFFSET VOLTAGE (mV)  
Figure 29. Voltage Noise Density vs. Frequency  
Figure 31. Input Offset Voltage Distribution  
600  
500  
400  
300  
200  
100  
0
V
A
= 5V  
= +1000  
= 25°C  
S
V
V
T
= 5V  
S
= 2.5V  
V
CM  
= 25°C  
T
A
A
100  
90  
FREQUENCY = 10kHz  
10  
0
MARKER 25.9µV/Hz  
–14 –12 –10  
–8  
–6  
–4  
–2  
0
2
4
6
INPUT OFFSET VOLTAGE (mV)  
Figure 30. Voltage Noise Density vs. Frequency  
Figure 32. Input Offset Voltage Distribution  
Rev. B | Page 10 of 16  
AD8591/AD8592/AD8594  
THEORY OF OPERATION  
The AD859x amplifiers are CMOS, high output drive, rail-to-  
rail input and output single-supply amplifiers designed for low  
cost and high output current drive. The parts include a power  
saving shutdown function that makes the AD8591/AD8592/  
AD8594 op amps ideal for portable multimedia and  
telecommunications applications.  
OUTPUT PHASE REVERSAL  
The AD8591/AD8592/AD8594 are immune to output voltage  
phase reversal with an input voltage within the supply voltages  
of the device. However, if either of the inputs of the device exceeds  
0.6 V outside of the supply rails, the output could exhibit phase  
reversal. This is due to the ESD protection diodes becoming  
forward-biased, thus causing the polarity of the input terminals  
of the device to switch.  
Figure 33 shows the simplified schematic for the AD8591/AD8592/  
AD8594 amplifiers. Two input differential pairs, consisting of  
an n-channel pair (M1, M2) and a p-channel pair (M3, M4),  
provide a rail-to-rail input common-mode range. The outputs of  
the input differential pairs are combined in a compound folded-  
cascode stage that drives the input to a second differential pair  
gain stage. The outputs of the second gain stage provide the gate  
voltage drive to the rail-to-rail output stage.  
The technique recommended in the Input Voltage Protection  
section should be applied in applications where the possibility  
of input voltages exceeding the supply voltages exists.  
OUTPUT SHORT-CIRCUIT PROTECTION  
To achieve high output current drive and rail-to-rail performance,  
the outputs of the AD859x family do not have internal short-  
circuit protection circuitry. Although these amplifiers are  
designed to sink or source as much as 250 mA of output current,  
shorting the output directly to the positive supply could damage or  
destroy the device. To protect the output stage, limit the maximum  
output current to 250 mA.  
The rail-to-rail output stage consists of M15 and M16, which  
are configured in a complementary common source configuration.  
As with any rail-to-rail output amplifier, the gain of the output  
stage, and thus the open-loop gain of the amplifier, is dependent  
on the load resistance. In addition, the maximum output voltage  
swing is directly proportional to the load current. The difference  
between the maximum output voltage to the supply rails, known as  
the dropout voltage, is determined by the on-channel resistance  
of the AD8591/AD8592/AD8594 output transistors. The output  
dropout voltage is given in Figure 5 and Figure 6.  
By placing a resistor in series with the output of the amplifier,  
as shown in Figure 34, the output current can be limited. The  
minimum value for RX is  
VSY  
250 mA  
RX ≥  
(2)  
100µA  
V+  
*
*
*
*
100µA  
50µA  
For a 5 V single-supply application, RX should be at least 20 Ω.  
Because RX is inside the feedback loop, VOUT is not affected. The  
trade-off in using RX is a slight reduction in output voltage  
swing under heavy output current loads. RX also increases the  
effective output impedance of the amplifier to RO + RX, where RO  
is the output impedance of the device.  
20µA  
M11  
INV  
M337  
M5  
M12  
M30  
SD  
M8  
V
B2  
M3  
M1  
M4  
M15  
M16  
IN–  
OUT  
M2  
M6  
M7  
IN+  
+5V  
V
M9  
20µA  
B3  
M14  
R
20  
V
X
IN  
*
INV  
V
AD8592  
OUT  
M340  
M13  
*
M10  
M31  
50µA  
Figure 34. Output Short-Circuit Protection  
V–  
*ALL CURRENT SOURCES GO TO 0µA IN SHUTDOWN MODE.  
POWER DISSIPATION  
Figure 33. Simplified Schematic  
Although the AD859x amplifiers are able to provide load  
currents of up to 250 mA, proper attention should be given to  
not exceeding the maximum junction temperature for the device.  
The junction temperature equation is  
INPUT VOLTAGE PROTECTION  
Although not shown in the simplified schematic, ESD protection  
diodes are connected from each input to each power supply rail.  
These diodes are normally reverse-biased, but turn on if either  
input voltage exceeds either supply rail by more than 0.6 V. If this  
condition occurs, limit the input current to less than 5 mA.  
This is done by placing a resistor in series with the input(s).  
The minimum resistor value should be  
TJ = PDISS × θJA + TA  
where:  
(3)  
TJ is the AD859x junction temperature.  
PDISS is the AD859x power dissipation.  
θJA is the AD859x junction-to-ambient thermal resistance of the  
package.  
VIN,MAX  
5 mA  
RIN  
(1)  
TA is the ambient temperature of the circuit.  
Rev. B | Page 11 of 16  
 
 
 
 
AD8591/AD8592/AD8594  
In any application, the absolute maximum junction temperature  
must be limited to 150°C. If the junction temperature is exceeded,  
the device could suffer premature failure. If the output voltage  
and output current are in phase, for example, with a purely resistive  
load, the power dissipated by the AD859x can be found as  
50mV  
47nF LOAD  
ONLY  
PDISS = ILOAD × (VSY VOUT  
)
(4)  
where:  
ILOAD is the AD859x output load current.  
VSY is the AD859x supply voltage.  
VOUT is the output voltage.  
SNUBBER  
IN CIRCUIT  
50mV  
10µs  
By calculating the power dissipation of the device and using the  
thermal resistance value for a given package type, the maximum  
allowable ambient temperature for an application can be found  
using Equation 3.  
Figure 37. Snubber Network Reduces Overshoot and Ringing  
Caused by Driving Heavy Capacitive Loads  
The optimum values for the snubber network should be  
determined empirically based on the size of the capacitive load.  
Table 5 shows a few sample snubber network values for a given  
load capacitance.  
CAPACITIVE LOADING  
The AD859x exhibits excellent capacitive load driving capabilities  
and can drive to 10 nF directly. Although the device is stable  
with large capacitive loads, there is a decrease in amplifier  
bandwidth as the capacitive load increases. Figure 35 shows  
a graph of the AD8592 unity-gain bandwidth under various  
capacitive loads.  
Table 5. Snubber Networks for Large Capacitive Loads  
Snubber Network  
Load Capacitance, CL (nF)  
RS (Ω)  
300  
30  
CS (μF)  
0.47  
4.7  
47  
0.1  
1
1
4.0  
V
= ±2.5V  
= 1kΩ  
= 25°C  
S
L
R
5
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
T
A
PC98-COMPLIANT HEADPHONE/SPEAKER  
AMPLIFIER  
Because of its high output current performance and shutdown  
feature, the AD8592 makes an excellent amplifier for driving an  
audio output jack in a computer application. Figure 38 shows  
how the AD8592 can be interfaced with an AC’97 codec to  
drive headphones or speakers.  
+5V  
+5V  
0.01  
0.1  
1
10  
100  
25  
38  
AV  
AV  
DD1  
DD2  
C1  
100µF  
CAPACITIVE LOAD (nF)  
R4  
10  
4
2
3
20  
U1-A  
Figure 35. Unity-Gain Bandwidth vs. Capacitive Load  
1
R2  
2kΩ  
NC  
35  
LINE_OUT_L  
When driving heavy capacitive loads directly from the AD859x  
output, a snubber network can be used to improve the transient  
response. This network consists of a series RC connected from  
the output of the amplifier to ground, placing it in parallel with  
the capacitive load. The configuration is shown in Figure 36.  
Although this network does not increase the bandwidth of the  
amplifier, it significantly reduces the amount of overshoot, as  
shown in Figure 37.  
+5V  
R1  
5
AD1881A*  
(AC’97)  
100kΩ  
6
C2  
100µF  
36  
26  
LINE_OUT_R  
R5  
20Ω  
7
8
U1-B  
AV  
SS1  
9
R3  
2kΩ  
+5V  
U1 = AD8592  
*ADDITIONAL PINS OMITTED FOR CLARITY.  
V
AD8592  
OUT  
V
Figure 38. PC98-Compliant Headphone/Line Out Amplifier  
R
5  
IN  
S
100mV p-p  
C
C
L
S
1µF  
47nF  
Figure 36. Configuration for Snubber Network to Compensate for Capacitive Loads  
Rev. B | Page 12 of 16  
 
 
 
 
 
 
 
AD8591/AD8592/AD8594  
When headphones are plugged into the jack, the normalizing  
contacts disconnect from the audio contacts. This allows the  
voltage to the AD8592 shutdown pins to be pulled to 5 V,  
activating the amplifiers. With no plug in the output jack, the  
shutdown voltage is pulled to 100 mV through the R1 and R3 + R5  
voltage divider. This powers the AD8592 down when it is not  
needed, saving current from the power supply or battery.  
A COMBINED MICROPHONE AND SPEAKER  
AMPLIFIER FOR CELLPHONE AND PORTABLE  
HEADSETS  
The dual amplifiers in the AD8592 make an efficient design for  
interfacing with a headset containing a microphone and speaker.  
Figure 40 demonstrates a simple method for constructing an  
interface to a codec.  
If gain is required from the output amplifier, add four additional  
resistors, as shown in Figure 39. The gain of the AD8592 can  
be set as  
R3  
100k  
+5V  
R1  
2.2kΩ  
C1  
0.1µF  
+5V  
10  
R2  
10kΩ  
R7  
R6  
2
3
NC  
TO  
AV  
=
(5)  
U1-A  
CODEC  
1
4
+5V  
5
R7  
1kΩ  
+5V  
R7  
R8  
MICROPHONE  
AND SPEAKER  
JACK  
V
25  
38  
AV  
AV  
REF  
10kΩ  
100kΩ  
DD1  
DD2  
FROM CODEC  
+5V  
6
C2  
10µF  
7
8
C1  
100µF  
R4  
R4  
35  
10  
LINE_OUT_L  
U1-B  
FROM CODEC  
MONO OUT  
(OR LEFT OUT)  
2
3
20Ω  
9
10kΩ  
R6  
10kΩ  
U1-A  
1
R2  
2kΩ  
NC  
4
+5V  
R1  
U1 = AD8592  
(RIGHT OUT)  
R5  
10kΩ  
R6  
10kΩ  
5
100kΩ  
(OPTIONAL)  
27  
VREF  
Figure 40. Speaker/Microphone Headset Amplifier Circuit  
6
C2  
AD1881A*  
(AC’97)  
R5  
20Ω  
100µF  
U1-A is used as a microphone preamplifier, where the gain of  
the preamplifier is set as R3/R2. R1 is used to bias an electret  
microphone, and C1 blocks any dc voltages from the amplifier.  
U1-B is the speaker amplifier, and its gain is set at R5/R4. To  
sum a stereo output, add R6, equal in value to R4.  
7
8
R6  
10kΩ  
U1-B  
9
R3  
2kΩ  
36  
26  
LINE_OUT_R  
AV  
SS1  
R7  
10kΩ  
U1 = AD8592  
R7  
Using the same principle described in the PC98-Compliant  
Headphone/Speaker Amplifier section, the normalizing contact  
on the microphone/speaker jack can be used to put the AD8592  
into shutdown when the headset is not plugged in. The AD8592  
shutdown inputs can also be controlled with TTL- or CMOS-  
compatible logic, allowing microphone or speaker muting, if  
desired.  
A
=
= 6dB WITH VALUES SHOWN  
V
R6  
*ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 39. PC98-Compliant Headphone/Line Out Amplifier with Gain  
Input coupling capacitors are not required for either circuit  
because the reference voltage is supplied from the AD1881A.  
R4 and R5 help protect the AD8592 output in case the output  
AN INEXPENSIVE SAMPLE-AND-HOLD CIRCUIT  
jack or headphone wires accidentally are shorted to ground. The  
output coupling capacitors, C1 and C2, block dc current from the  
headphones and create a high-pass filter with a corner frequency of  
The independent shutdown control of each amplifier in the  
AD8592 allows a degree of flexibility in circuit design. One  
particular application for which this feature is useful is in  
designing a sample-and-hold circuit for data acquisition. Figure 41  
shows a schematic of a simple, yet extremely effective, sample-  
and-hold circuit using a single AD8592 and one capacitor.  
1
f 3dB =  
(6)  
(
)
2π C1 R4 + RL  
where RL is the resistance of the headphones.  
8
+5V  
SAMPLE  
AND HOLD  
OUTPUT  
9
2
3
10  
U1-A  
U1-B  
+5V  
6
1
7
4
C1  
1nF  
V
IN  
5
U1 = AD8592  
SAMPLE  
CLOCK  
Figure 41. An Efficient Sample-and-Hold Circuit  
Rev. B | Page 13 of 16  
 
 
 
 
AD8591/AD8592/AD8594  
The U1-A amplifier is configured as a unity-gain buffer driving  
a 1 nF capacitor. The input signal is connected to the noninverting  
input, and the sample clock controls the shutdown for that  
amplifier. When the sample clock is high, the U1-A amplifier is  
active and the output follows VIN. When the sample clock goes  
low, U1-A shuts down with the output of the amplifier going to  
a high impedance state, holding the voltage on the C1 capacitor.  
SINGLE-SUPPLY DIFFERENTIAL LINE DRIVER  
Figure 43 shows a single-supply differential line driver circuit  
that can drive a 600 Ω load with less than 0.7% distortion from  
20 Hz to 15 kHz with an input signal of 4 V p-p and a single 5 V  
supply. The design uses an AD8594 to mimic the performance  
of a fully balanced transformer-based solution. However, this  
design occupies much less board space, while maintaining low  
distortion, and can operate down to dc. Like the transformer-based  
design, either output can be shorted to ground for unbalanced  
line driver applications without changing the circuit gain of 1.  
The U1-B amplifier is used as a unity-gain buffer to prevent  
loading on C1. Because of the low input bias current of the U1-B  
CMOS input stage and the high impedance state of the U1-A  
output in shutdown, there is little voltage droop from C1 during  
the hold period. This circuit can be used with sample frequencies as  
high as 500 kHz and as low as 1 Hz. By increasing the C1 value,  
lower voltage droop is achieved for very low sample rates.  
R3  
10k  
C3  
47µF  
2
3
R5  
50Ω  
1
A2  
V
O1  
R6  
10kΩ  
R2  
DIRECT ACCESS ARRANGEMENT FOR PCMCIA  
MODEMS (TELEPHONE LINE INTERFACE)  
10kΩ  
R7  
10kΩ  
+5V  
+5V  
10  
+5V  
2
3
8
10  
Figure 42 illustrates a 5 V transmit/receive telephone line  
interface for 600 Ω systems. It allows full duplex transmission  
of signals on a transformer-coupled 600 Ω line in a differential  
manner. Amplifier A1 provides gain that can be adjusted to  
meet the modem output drive requirements. Both A1 and A2  
are configured to apply the largest possible signal on a single  
supply to the transformer. Because of the high output current  
drive and low dropout voltages of the AD8594, the largest signal  
available on a single 5 V supply is approximately 4.5 V p-p into  
a 600 Ω transmission system. Amplifier A3 is configured as a  
difference amplifier for two reasons. It prevents the transmit  
signal from interfering with the receive signal, and it extracts  
the receive signal from the transmission line for amplification  
by A4. The gain of A4 can be adjusted in the same manner as  
the gain of A1 to meet the input signal requirements of the  
modem. Standard resistor values permit the use of single  
inline package (SIP) format resistor arrays. Couple this with  
the 16-lead TSSOP or SOIC footprint of the AD8594, and this  
circuit offers a compact, cost-effective solution.  
C1  
R8  
1
22µF  
R
600Ω  
100kΩ  
A1  
L
A1  
7
9
V
4
4
IN  
C2  
1µF  
R9  
100kΩ  
R1  
10kΩ  
R11  
10kΩ  
R12  
10kΩ  
C4  
47µF  
R10  
10kΩ  
8
R14  
50Ω  
9
A2  
V
O2  
7
A1, A2 = 1/2 AD8592  
R13  
10kΩ  
R3  
R2  
GAIN =  
SET: R7, R10, R11 = R2  
SET: R6, R12, R13 = R3  
Figure 43. Low Noise, Single-Supply Differential Line Driver  
R8 and R9 set up the common-mode output voltage equal to  
half of the supply voltage. C1 is used to couple the input signal  
and can be omitted if the dc voltage of the input is equal to half  
of the supply voltage.  
The circuit can also be configured to provide additional gain, if  
desired. The gain of the circuit is  
VOUT  
VIN  
R3  
R2  
AV  
=
=
(7)  
P1  
Tx GAIN  
where:  
OUT = VO1 − VO2  
ADJUST  
R2  
9.09k  
V
C1  
0.1µF  
TRANSMIT  
TxA  
R1  
10kΩ  
TO TELEPHONE  
LINE  
2kΩ  
R2 = R7 = R10 = R11  
R3 = R6 = R12 = R1  
R3  
360Ω  
2
3
1
1:1  
A1  
9
R5  
10kΩ  
6.2V  
6.2V  
Z
SHUTDOWN  
+5V  
O
600Ω  
T1  
R6  
10kΩ  
9
6
5
MIDCOM  
671-8005  
R7  
10kΩ  
7
A2  
R8  
10kΩ  
10µF  
R9  
R10  
P2  
Rx GAIN  
ADJUST  
10kΩ  
10kΩ  
9
RECEIVE  
RxA  
R13  
R14  
11  
12  
10k14.3kΩ  
R11  
10kΩ  
10  
A3  
2kΩ  
15  
14  
9
C2  
0.1µF  
R12  
10kΩ  
16  
A4  
A1, A2 = 1/4 AD8594  
A3, A4 = 1/4 AD8594  
Figure 42. Single-Supply Direct Access Arrangement for PCMCIA Modems  
Rev. B | Page 14 of 16  
 
 
 
AD8591/AD8592/AD8594  
OUTLINE DIMENSIONS  
2.90 BSC  
6
1
5
2
4
3
2.80 BSC  
1.60 BSC  
PIN 1  
INDICATOR  
0.95 BSC  
1.90  
BSC  
1.30  
1.15  
0.90  
1.45 MAX  
0.22  
0.08  
10°  
4°  
0°  
0.60  
0.45  
0.30  
0.50  
0.30  
0.15 MAX  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-178-AB  
Figure 44. 6-Lead Small Outline Transistor Package [SOT-23]  
(RJ-6)  
Dimensions shown in millimeters  
3.10  
3.00  
2.90  
6
10  
5.15  
4.90  
4.65  
3.10  
3.00  
2.90  
1
5
PIN 1  
0.50 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.05  
0.33  
0.17  
SEATING  
PLANE  
0.23  
0.08  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-BA  
Figure 45. 10-Lead Mini Small Outline Package [MSOP]  
(RM-10)  
Dimensions shown in millimeters  
10.00 (0.3937)  
9.80 (0.3858)  
9
8
16  
1
6.20 (0.2441)  
5.80 (0.2283)  
4.00 (0.1575)  
3.80 (0.1496)  
1.27 (0.0500)  
0.50 (0.0197)  
0.25 (0.0098)  
45°  
BSC  
1.75 (0.0689)  
1.35 (0.0531)  
0.25 (0.0098)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
1.27 (0.0500)  
0.40 (0.0157)  
0.51 (0.0201)  
0.31 (0.0122)  
0.25 (0.0098)  
0.17 (0.0067)  
COMPLIANT TO JEDEC STANDARDS MS-012-AC  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 46. 16-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body (R-16)  
Dimensions shown in millimeters and (inches)  
Rev. B | Page 15 of 16  
 
AD8591/AD8592/AD8594  
5.10  
5.00  
4.90  
16  
9
8
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
1.20  
MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
0.65  
BSC  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AB  
Figure 47. 16-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-16)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
6-Lead SOT-23  
6-Lead SOT-23  
6-Lead SOT-23  
6-Lead SOT-23  
10-Lead MSOP  
10-Lead MSOP  
16-Lead SOIC_N  
16-Lead SOIC_N  
16-Lead SOIC_N  
16-Lead SOIC_N  
16-Lead SOIC_N  
16-Lead SOIC_N  
16-Lead TSSOP  
16-Lead TSSOP  
Package Option  
RJ-6  
RJ-6  
RJ-6  
RJ-6  
Branding  
A9A  
A9A  
A9A#  
A9A#  
AQA  
AD8591ART-REEL  
AD8591ART-REEL7  
AD8591ARTZ-REEL1  
AD8591ARTZ-REEL71  
AD8592ARM-REEL  
AD8592ARMZ-REEL1  
AD8594AR  
AD8594AR-REEL  
AD8594AR-REEL7  
AD8594ARZ1  
AD8594ARZ-REEL1  
AD8594ARZ-REEL71  
AD8594ARU-REEL  
AD8594ARUZ-REEL1  
RM-10  
RM-10  
R-16  
R-16  
R-16  
R-16  
R-16  
R-16  
RU-16  
RU-16  
AQA#  
1 Z = RoHS Compliant Part, # denotes RoHS compliant part may be top or bottom marked.  
©2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D01106-0-1/09(B)  
Rev. B | Page 16 of 16  
 
 
 

相关型号:

AD8591ART-REEL7

IC OP-AMP, 30000 uV OFFSET-MAX, 2.2 MHz BAND WIDTH, PDSO6, SOT-23, 6 PIN, Operational Amplifier
ADI

AD8591ART-REEL7

OP-AMP, 30000 uV OFFSET-MAX, 2.2 MHz BAND WIDTH, PDSO6, SOT-23, 6 PIN
ROCHESTER

AD8591ARTZ

CMOS Single-Supply, Rail-to-Rail Input/Output Operational Amplifiers with Shutdown
ADI

AD8591ARTZ-REEL

CMOS Single-Supply, Rail-to-Rail Input/Output Operational Amplifiers with Shutdown
ADI

AD8591ARTZ-REEL7

CMOS Single Supply RRIO Op Amp with ±250 mA Output Current and Shutdown Mode
ADI

AD8591SD

Operational Amplifiers Selection Guide
ADI

AD8591_15

CMOS Single-Supply, Rail-to-Rail Input/Output Operational Amplifiers with Shutdown
ADI

AD8592

CMOS Single Supply Rail-to-Rail Input/Output Operational Amplifiers with Shutdown
ADI

AD8592ARM

CMOS Single Supply Rail-to-Rail Input/Output Operational Amplifiers with Shutdown
ADI

AD8592ARM-REEL

CMOS Single-Supply, Rail-to-Rail Input/Output Operational Amplifiers with Shutdown
ADI

AD8592ARM-REEL

DUAL OP-AMP, 30000 uV OFFSET-MAX, 2.2 MHz BAND WIDTH, PDSO10, MICRO, SOIC-10
ROCHESTER

AD8592ARM-REEL7

IC DUAL OP-AMP, 30000 uV OFFSET-MAX, 2.2 MHz BAND WIDTH, PDSO10, MICRO, SOIC-10, Operational Amplifier
ADI