AD8600CHIPS [ADI]

16-Channel, 8-Bit Multiplying DAC; 16通道, 8位乘法DAC
AD8600CHIPS
型号: AD8600CHIPS
厂家: ADI    ADI
描述:

16-Channel, 8-Bit Multiplying DAC
16通道, 8位乘法DAC

文件: 总16页 (文件大小:238K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
16-Channel, 8-Bit  
Multiplying DAC  
a
AD8600*  
FUNCTIO NAL BLO CK D IAGRAM  
FEATURES  
16 Independently Addressable Voltage Outputs  
Full-Scale Set by External Reference  
2 µs Settling Tim e  
Double Buffered 8-Bit Parallel Input  
High Speed Data Load Rate  
Data Readback  
V
V
V
V
CC  
RS  
LD  
R/W  
DD1  
DD2  
REF  
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
CS  
EN  
CONTROL  
LOGIC  
A3  
A2  
A1  
A0  
ADDRESS  
DECODE  
16 x 8  
DAC  
REGISTERS  
16  
Operates from Single +5 V  
Optional ±6 V Supply Extends Output Range  
8-BIT  
DACS  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
O8  
O9  
16 x 8  
INPUT  
O10  
O11  
O12  
O13  
O14  
O15  
APPLICATIONS  
Phased Array Ultrasound & Sonar  
Pow er Level Setting  
Receiver Gain Setting  
Autom atic Test Equipm ent  
LCD Clock Level Setting  
REGISTERS  
AD8600  
D
V
EE  
D
DACGND  
GND2  
GND1  
At system power up or during fault recovery the reset (RS) pin  
forces all DAC registers into the zero state which places zero  
volts at all DAC outputs.  
GENERAL D ESCRIP TIO N  
T he AD8600 contains 16 independent voltage output digital-to-  
analog converters that share a common external reference input  
voltage. Each DAC has its own DAC register and input register  
to allow double buffering. An 8-bit parallel data input, four ad-  
dress pins, a CS select, a LD, EN, R/W, and RS provide the  
digital interface.  
T he AD8600 is offered in the PLCC-44 package. T he device is  
designed and tested for operation over the extended industrial  
temperature range of –40°C to +85°C.  
V
LDEN  
R/WCS•ADDR•EN  
V
REF  
V
DD2  
DD1  
T he AD8600 is constructed in a monolithic CBCMOS process  
which optimizes use of CMOS for logic and bipolar for speed  
and precision. T he digital-to-analog converter design uses volt-  
age mode operation ideally suited to single supply operation.  
V
CC  
INPUT  
REGISTER  
R-2R  
DAC  
DAC  
REGISTER  
DB7...DB0  
O
X
T he internal DAC voltage range is fixed at DACGND to VREF  
T he voltage buffers provide an output voltage range that ap-  
proaches ground and extends to 1.0 V below VCC. Changes in  
reference voltage values and digital inputs will settle within  
±1 LSB in 2 µs.  
.
RS  
RS  
D
GND2  
DACGND  
V
EE  
D
GND1  
R/WCS•ADDRESS  
Data is preloaded into the input registers one at a time after the  
internal address decoder selects the input register. In the write  
mode (R/W low) data is latched into the input register during  
the positive edge of the EN pulse. Pulses as short as 40 ns can  
be used to load the data. After changes have been submitted to  
the input registers, the DAC registers are simultaneously up-  
dated by a common load EN × LD strobe. T he new analog out-  
put voltages simultaneously appear on all 16 outputs.  
Figure 1. Equivalent DAC Channel  
*P atent pending.  
REV. 0  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norw ood. MA 02062-9106, U.S.A.  
Tel: 617/ 329-4700 Fax: 617/ 326-8703  
AD8600–SPECIFICATIONS  
(@ V = V = V = +5 V ± 5%, V = 0 V, V = +2.500 V, 40°C T +85°C, unless otherwise noted)  
SINGLE SUPPLY  
DD1  
DD2  
CC  
EE  
REF  
A
P aram eter  
Sym bol Condition  
Min  
Typ  
Max  
Units  
ST AT IC PERFORMANCE1  
Resolution  
N
INL  
8
–1  
–1  
2.480  
Bits  
LSB  
LSB  
V
ppm/°C  
LSB  
LSB  
kΩ  
Relative Accuracy2  
Differential Nonlinearity2  
Full-Scale Voltage  
Full-Scale T empco  
Zero Scale Error  
±1/2 +1  
±1/4 +1  
2.490 2.500  
±20  
+3.5  
+5  
DNL  
VFS  
T CVFS  
VZSE  
VZSE  
RREF  
Guaranteed Monotonic  
Data = FFH  
Data = FFH  
Data = 00H, RS = “0,” T A = +25°C  
Data = 00H , RS = “0”  
Data = ABH  
Reference Input Resistance  
1.2  
2
ANALOG OUT PUT  
Output Voltage Range2  
Output Current  
OVRSS  
IOUT  
CL  
VREF = +2.5 V  
Data = 80H  
No Oscillation  
0.000  
2.500  
V
mA  
pF  
±2  
50  
Capacitive Load  
LOGIC INPUT S  
Logic Input Low Voltage  
Logic Input High Voltage  
Logic Input Current  
VIL  
VIH  
IIL  
0.8  
V
V
µA  
pF  
2.4  
10  
10  
Logic Input Capacitance3  
CIL  
LOGIC OUT PUT S  
Logic Out High Voltage  
Logic Out Low Voltage  
VOH  
VOL  
IOH = –0.4 mA  
IOL = 1.6 mA  
3.5  
4
V
V
0.4  
AC CHARACT ERIST ICS3  
Slew Rate  
SR  
For VREF or FS Code Change  
±1 LSB of Final Value, Full-Scale Data Change  
±1 LSB of Final Value, VREF = 1 V, Data = FFH  
7
2
2
V/µs  
µs  
µs  
Voltage Output Settling T ime2 tS1  
Voltage Output Settling T ime2 tS2  
POWER SUPPLIES  
Positive Supply Current  
Logic Supply Currents  
Power Dissipation  
ICC  
VIH = 5 V, VIL = 0 V, No Load  
VIH = 5 V, VIL = 0 V, No Load  
VIH = 5 V, VIL = 0 V, No Load  
VCC = ±5%  
24  
35  
0.1  
175  
0.007 %/%  
5.25  
7.0  
mA  
mA  
mW  
IDD1&2  
PDISS  
PSS  
120  
Power Supply Sensitivity  
Logic Power Supply Range  
VDDR  
4.75  
VDD  
V
V
Positive Power Supply Range3 VCCR  
NOT ES  
1When VREF = 2.500 V, 1 LSB = 9.76 mV.  
2Single supply operation does not include the final 2 LSBs near analog ground. If this performance is critical, use a negative supply (VEE  
)
pin of at least –0.7 V to  
–5.25 V. Note that for the INL measurement zero-scale voltage is extrapolated using codes 7 10 to 8010  
.
3Guaranteed by design not subject to production test.  
Specifications subject to change without notice.  
–2–  
REV. 0  
AD8600  
(@ V = V = V = +5 V ± 5%, V = –5 V ± 5%, V = +3.500 V, 40°C T +85°C, unless otherwise noted)  
DUAL SUPPLY  
DD1  
DD2  
CC  
EE  
REF  
A
P aram eter  
Sym bol Condition  
Min  
Typ  
Max  
Units  
ST AT IC PERFORMANCE1  
Resolution  
T otal Unadjusted Error  
Relative Accuracy  
Differential Nonlinearity  
Full-Scale Voltage  
Full-Scale Voltage Error  
Full-Scale T empco  
Zero Scale Error  
Zero Scale Error  
Zero Scale Error  
Zero Scale T empco  
Reference Input Resistance  
Reference Input Capacitance2  
N
T UE  
INL  
DNL  
VFS  
VFSE  
T CVFS  
VZSE  
VZSE  
VZSE  
T CVZS  
RREF  
CREF  
8
–1  
–1  
–1  
3.473  
–1  
Bits  
LSB  
LSB  
LSB  
V
LSB  
ppm/°C  
mV  
LSB  
LSB  
µV/°C  
kΩ  
All Other DACs Loaded with Data = 55H  
±3/4  
±1/2  
±1/4  
3.486  
+1  
+1  
+1  
3.500  
+1  
Guaranteed Monotonic  
Data = FFH, VREF = +3.5 V  
Data = FFH, VREF = +3.5 V  
Data = FFH, VREF = +3.5 V  
Data = 00H, RS = “0,” T A = +25°C  
Data = 00H, All Other DACs Data = 00H  
Data = 00H, All Other DACs Data = 55H  
Data = 00H, VCC = +5 V, VEE = –5 V  
Data = ABH  
±20  
±1  
–2  
–1  
+2  
+1  
±1/2  
±10  
2
1.2  
Data = ABH  
240  
pF  
ANALOG OUT PUT  
Output Voltage Range  
Output Voltage Range2  
Output Current  
OVR1  
OVR2  
IOUT  
CL  
VREF = +3.5 V  
VCC = VDD2 = +7 V, VEE = –0.7 V, VREF = 5 V  
Data = 80H  
No Oscillation  
0.000  
0.000  
3.500  
5.000  
V
V
mA  
pF  
±2  
50  
Capacitive Load2  
LOGIC INPUT S  
Logic Input Low Voltage  
Logic Input High Voltage  
Logic Input Current  
VIL  
VIH  
IIL  
0.8  
V
V
µA  
pF  
2.4  
3.5  
10  
10  
Logic Input Capacitance2  
CIL  
LOGIC OUT PUT S  
Logic Out High Voltage  
Logic Out Low Voltage  
VOH  
VOL  
IOH = –0.4 mA  
IOL = 1.6 mA  
V
V
0.4  
AC CHARACT ERIST ICS2  
Reference In Bandwidth  
Slew Rate  
BW  
SR  
eN  
–3 dB Frequency, VREF = 2.5 VDC + 0.1 VAC  
For VREF or FS Code Change  
f = 1 kHz, VREF = 0 V  
Digital Inputs to DAC Outputs  
±1 LSB of Final Value, FS Data Change  
±1 LSB of Final Value, VREF = 1 V, Data = FFH  
500  
4
kHz  
V/µs  
nV/Hz  
nVs  
µs  
7
Voltage Noise Density  
Digital Feedthrough  
46  
10  
1
FT  
Voltage Output Settling T ime3 tS1  
Voltage Output Settling T ime3 tS2  
2
2
1
µs  
POWER SUPPLIES  
Positive Supply Current  
Negative Supply Current  
Logic Supply Currents  
Power Dissipation4  
Power Supply Sensitivity  
Logic Power Supply Range  
Pos Power Supply Range2  
Neg Power Supply Range2  
ICC  
IEE  
VIH = 5 V, VIL = 0 V, VEE = –5 V, No Load  
VIH = 5 V, VIL = 0 V, VEE = –5 V, No Load  
VIH = 5 V, VIL = 0 V, VEE = –5 V, No Load  
VIH = 5 V, VIL = 0 V, VEE = –5 V, No Load  
VCC & VEE = ±5%  
22  
22  
35  
35  
0.1  
350  
0.007  
5.25  
7.0  
mA  
mA  
mA  
mW  
%/%  
V
IDD1&2  
PDISS  
PSS  
VDDR  
VCCR  
VEER  
225  
4.75  
VDD  
–5.25  
V
V
0.0  
NOT ES  
1When VREF = +3.500 V, 1 LSB = 13.67 mV.  
2Guaranteed by design not subject to production test.  
3Settling time test is performed using RL = 50 kand CL = 35 pF.  
4Power Dissipation is calculated using 5 V × (IDD + | ISS| + IDD1 + IDD2).  
Specifications subject to change without notice.  
REV. 0  
–3–  
AD8600  
(@ VDD1 = V = V = +5 V ± 5%, V = –5 V, V = +3.500 V, 40°C T +85°C,  
DD2  
CC  
EE  
REF  
A
unless otherwise noted)  
ELECTRICAL CHARACTERISTICS  
P aram eter  
Sym bol  
Condition  
Min  
Typ  
Max  
Units  
INT ERFACE T IMING1, 2  
Clock (EN) Frequency  
Clock (EN) High Pulse Width  
Clock (EN) LowPulse Width  
Data Setup T ime  
Data Hold T ime  
Address Setup T ime  
Address Hold T ime  
Valid Address to Data Valid  
Load Enable Setup T ime  
Load Enable Hold T ime  
Read/Write to Clock (EN)  
Read/Write to DataBus Hi-Z  
Read/Write to DataBus Active  
Clock (EN) to Read/Write  
Clock (EN) to Chip Select  
Chip Select to Clock (EN)  
Chip Select to Data Valid  
Chip Select to DataBus Hi-Z  
Reset Pulse Width  
fCLK  
tCH  
tCL  
tDS  
tDH  
tAS  
tAH  
tAD  
tLS  
Data Loading  
12.5  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
40  
40  
40  
10  
0
0
160  
0
0
30  
tLH  
tRWC  
tRWZ  
tRWD  
tT WH  
tT CH  
tCSC  
tCSD  
tCSZ  
tRS  
120  
120  
0
0
30  
120  
150  
25  
NOT ES  
1Guaranteed by design not subject to production test.  
2All logic input signals have maximum rise and fall times of 2 ns.  
Specifications subject to change without notice.  
R/W  
R/W  
tTWH  
tRWD  
tRWZ  
tDS  
tDH  
HIGH -Z  
HIGH-Z  
DATA  
DATA  
ADDR  
tAS  
tAD  
tAH  
ADDR  
tCH  
EN  
tCSD  
tCSZ  
EN  
CS  
tTCH  
tCL  
tRWC  
tCSC  
CS  
Figure 2. Write Tim ing  
Figure 3. Readback Tim ing  
LD  
EN  
tLS  
tLH  
tRS  
RS  
OUT  
tS1  
tS1  
Figure 4. Write to DAC Register & Voltage Output Settling  
Tim ing (CS= High, Prevents Input Register Changes)  
–4–  
REV. 0  
AD8600  
ABSO LUTE MAXIMUM RATINGS  
P IN D ESCRIP TIO N  
(T A= +25°C unless otherwise noted)  
P in No.  
Nam e  
D escription  
VDD1 (Digital Supply) to GND . . . . . . . . . . . . . . –0.3 V, +7 V  
VDD2 (DAC Buffer/Driver Supply) . . . . . . . . . . . . –0.3 V, +7 V  
VCC (Analog Supply) to GND . . . . . . . . . . . . . . . –0.3 V, +7 V  
VEE (Analog Supply) to GND . . . . . . . . . . . . . . . +0.3 V, –7 V  
1
2
NC  
VREF  
No Connection  
Reference input voltage common  
to all DACs.  
VREF to GND . . . . . . . . . . . . . . . . . . . . . . –0.3 V, VCC + 0.3 V  
3
DACGND  
DAC Analog Ground Return. Sets  
analog zero-scale voltage.  
Output Amplifier Positive Supply  
Output Amplifier Negative Supply  
DAC Channel Output No. 7  
DAC Channel Output No. 6  
DAC Channel Output No. 5  
DAC Channel Output No. 4  
DAC Channel Output No. 3  
DAC Channel Output No. 2  
DAC Channel Output No. 1  
DAC Channel Output No. 0  
Digital Logic Power Supply  
Active Low Reset Input Pin  
Data Bit Zero I/O (LSB)  
Data Bit I/O  
VDD2 to VREF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V  
VOUT to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VCC  
Short Circuit Duration  
4
5
6
7
8
9
VCC  
VEE  
O7  
O6  
O5  
O4  
O3  
O2  
O1  
VOUT to GND or Power Supplies1 . . . . . . . . . . . . . . . Continuous  
Digital Input/Output Voltage to GND . . . –0.3 V, VDD + 0.3 V  
T hermal Resistance–T heta Junction-to-Ambient (θJA)  
PLCC-44 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47°C/W  
Package Power Dissipation . . . . . . . . . . . . . . . . (TJ – T A)/θJA  
Maximum Junction T emperature TJ max . . . . . . . . . . . 150°C  
Operating T emperature Range . . . . . . . . . . . . –40°C to +85°C  
Storage T emperature Range . . . . . . . . . . . . –65°C to +150°C  
Lead T emperature (Soldering, 10 sec) . . . . . . . . . . . . +300°C  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
O0  
VDD1  
RS  
NOT E  
1No more than four outputs may be shorted to power or GND simultaneously.  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
A0  
A1  
A2  
A3  
R/W  
EN  
P IN CO NFIGURATIO N  
Data Bit I/O  
Data Bit I/O  
Data Bit I/O  
Data Bit I/O  
6
5
4
3
2
1
44 43 42 41 40  
O6  
O5  
O4  
O3  
7
8
39 O9  
38  
Data Bit I/O  
O10  
Most Significant Data Bit I/O (MSB)  
Address Bit Zero (LSB)  
Address Bit  
9
37 O11  
36 O12  
10  
O2 11  
O1 12  
35  
34  
33  
32  
31  
30  
29  
O13  
O14  
O15  
DGND1  
LD  
AD8600  
TOP VIEW  
(Not to Scale)  
Address Bit  
Most Significant Addr Bit (MSB)  
Read/Write Select Control Input  
Active Low Enable Clock Strobe  
Chip Select Input  
13  
14  
O0  
VDD1  
RS 15  
DB0 16  
DB1 17  
CS  
LD  
CS  
DAC Register Load Strobe  
Digital Ground Input No. 1  
DAC Channel Output No. 15  
DAC Channel Output No. 14  
DAC Channel Output No. 13  
DAC Channel Output No. 12  
DAC Channel Output No. 11  
DAC Channel Output No. 10  
DAC Channel Output No. 9  
DAC Channel Output No. 8  
Output Amplifier Negative Supply  
Output Amplifier Positive Supply  
Digital Ground Input No. 2  
DAC Analog Supply Voltage  
EN  
DGND1  
O15  
O14  
O13  
O12  
O11  
O10  
O9  
O8  
VEE  
VCC  
DGND2  
VDD2  
18 19  
21 22  
24 25 26  
28  
27  
20  
23  
NC = NO CONNECT  
O RD ERING GUID E  
P ackage  
D escription  
P ackage  
O ption  
Model  
AD8600AP  
Tem perature  
–40°C to +85°C 44-Lead PLCC P-44A  
AD8600Chips +25°C Die*  
*For die specifications contact your local Analog Devices sales office.  
T he AD8600 contains 5782 transistors.  
CAUTIO N  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD8600 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. T herefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. 0  
–5–  
AD8600  
TRANSFER EQ UATIO NS  
O utput Voltage  
D ecoded D AC Register  
Oi = A  
V
256  
REF  
Oi = D ×  
where A is the decimal value of the decoded address bits A3,  
A2, A1, A0 (LSB).  
where i is the DAC channel number and D is the decimal value  
of the DAC register data.  
Address, CS, R/W and data inputs should be stable prior to acti-  
vation of the active low EN input. Input registers are transpar-  
ent when EN is low. When EN returns high, data is latched into  
the decoded input register. When the load strobe LD and EN  
pins are active low, all input register data is transferred to the  
DAC registers. T he DAC registers are transparent while they  
are enabled.  
Table I. Truth Table  
EN R/W CS LD RS  
O peration  
Write to DAC Register  
Update DAC Register  
Update DAC Register  
Latches DAC Register  
Latches DAC Register  
DAC Register T ransparent  
X
X
X
X
L
H
H
H
H
L
L
L
+
L
H
H
H
H
H
L
+
L
L
Table II. Address D ecode Table  
A3  
(MSB)  
A2  
A1  
A0  
(LSB)  
Addr  
Code  
(H ex)  
D AC  
Updated  
Write to Input Register  
Load Data to Input Register at  
Decoded Address  
Latches Data in Input Register at  
Decoded Address  
Latches Data in Input Register at  
Decoded Address  
(Binary)  
L
+
L
L
L
L
L
L
+
H
H
H
H
H
H
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
2
3
4
5
6
7
O0  
O1  
O2  
O3  
O4  
O5  
O6  
O7  
Readback Input Registers  
Input Register Readback (Data  
Access)  
Hi-Z Readback Disconnects from  
Bus  
Hi-Z on Data Bus  
X
X
X
H
H
X
L
+
H
H
X
H
H
X
8
9
O8  
O9  
H
A
B
C
D
E
F
O10  
O11  
O12  
O13  
O14  
O15  
Reset  
X
X
X
X
L
Clear All Registers to Zero,  
VOUT = 0 V  
Latches All Registers to Zero  
CS = Low; Input Register Ready  
for R/W, DAC Register Latched  
to Zero  
X
L
X
X
H
L
H
H
+
+
NOT ES  
1+ symbol means positive edge of control input line.  
2– symbol means negative edge of control input line.  
–6–  
REV. 0  
Typical Performances Characteristics–AD8600  
8
V
V
V
= +5V  
= –5V  
= 3.5V  
CC  
EE  
DACs 00–07 SUPERIMPOSED  
+1/2  
0
3.50  
3.49  
3.48  
3.47  
VCC = +5V  
VEE = –5V  
VREF = 3.5V  
REF  
4
0
VCC = +5V  
VEE = –5V  
VREF = +3.5V  
TA = +25°C  
–1/2  
+1/2  
0
–2  
–4  
DACs 08–015 SUPERIMPOSED  
–1/2  
0
64  
128  
192  
256  
–50 –25  
0
25  
50  
75  
100 125  
–50 –25  
0
25  
50  
75  
100 125  
DIGITAL INPUT CODE – Decimal  
TEMPERATURE – °C  
TEMPERATURE – °C  
Figure 5. Linearity Error vs.  
Digital Code  
Figure 7. Zero-Scale Voltage vs.  
Tem perature  
Figure 6. Full-Scale Voltage vs.  
Tem perature  
100  
4
3
VCC = +5V  
VEE = –5V  
VREF = 0V  
15  
VCC = +5V  
VEE = –5V  
80  
10  
5
RS = 0  
T
A = +25°C  
60  
40  
20  
0
2
VCC = +5V  
VEE = –5V  
VREF = 3.5V  
–5  
–10  
–15  
1
0
0
10  
100  
1k  
10k  
–4  
–3 –2 –1  
0
1
2
3
4
FREQUENCY – Hz  
TIME – 250ns/DIV  
VOUT – Volts  
Figure 8. Output Current vs.  
Voltage  
Figure 9. Full-Scale Settling Tim e  
Figure 10. Voltage Noise Density vs.  
Frequency  
60  
0
V  
= 100mV p-p  
CC  
VIN = 100mV p-p + 2.5VDC  
CODE = FFH  
TA = +25°C  
V
= 2V p-p + 1V  
T = +25°C  
IN  
DC  
A
–20  
–40  
RS = 0  
= +25°C  
CODE = 00  
H
50  
40  
30  
20  
T
V
= –5V  
A
EE  
GAIN  
0
–5  
0
–45  
–90  
–60  
–10  
–15  
PHASE  
–80  
–100  
100  
1k  
10k  
100k  
1k  
FREQUENCY – Hz  
10  
100  
10k  
100k  
1k  
10k  
100k  
1M  
10M  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 11. Gain & Phase vs.  
Frequency  
Figure 12. AC Feedthrough vs.  
Frequency  
Figure 13. PSRR vs. Frequency  
REV. 0  
–7–  
AD8600  
5
4
20  
19  
18  
17  
16  
15  
V
V
V
= +5V  
= –5V  
= 3.5V  
CC  
EE  
V
V
V
= +5V  
= –5V  
= 3.5V  
CC  
EE  
3
REF  
CODE = 00  
H
2
χ + 3σ  
χ − 3σ  
REF  
1
χ
0
–1  
–2  
–3  
–4  
–5  
χ + 3σ  
χ − 3σ  
χ
0
200  
400  
600  
800  
1000 1200  
–75 –50 –25  
0
25  
50  
75 100 125  
T = HOURS OF OPERATION AT +125°C  
TEMPERATURE – °C  
Figure 14. Supply Current vs. Tem perature  
Figure 15. Output Voltage Drift  
Accelerated by Burn-In  
O per ation  
Am plifier Section  
T he AD8600 is a 16-channel voltage output, 8-bit digital to  
analog converter. T he AD8600 operates from a single +5 V  
supply, or for a wider output swing range, the part can operate  
from dual supplies of ±5 V or ±6 V or a single supply of +7 V.  
T he DACs are based upon a unique R-2R ladder structure*  
that removes the possibility of current injection from the refer-  
ence to ground during code switching. Each of the 8-bit DACs  
has an output amplifier to provide 16 low impedance outputs.  
With a single external reference, 16 independent dc output lev-  
els can be programmed through a parallel digital interface. T he  
interface includes 4 bits of address (A0–A3), 8 bits of data  
(DB0–DB7), a read/write select pin (R/W), an enable clock  
strobe (EN), a DAC register load strobe (LD), and a chip select  
pin (CS). Additionally a reset pin (RS) is provided to asynchro-  
nously reset all 16 DACs to 0 V output.  
T he output of the DAC ladder is buffered by a rail-to-rail out-  
put amplifier. T his amplifier is configured as a unity gain fol-  
lower as shown in Figure 16. T he input stage of the amplifier  
contains a PNP differential pair to provide low offset drift and  
noise. T he output stage is shown in Figure 17. It employs  
complementary bipolar transistors with their collectors con-  
nected to the output to provide rail-to-rail operation. T he NPN  
transistor enters into saturation as the output approaches the  
negative rail. T hus, in single supply, the output low voltage is  
limited by the saturation voltage of the transistor. For the tran-  
sistors used in the AD8600, this is approximately 40 mV. T he  
AD8600 was not designed to swing to the positive rail in con-  
trast to some of ADI’s other DACs (for example, the AD8582).  
T he output stage of the amplifier is actually capable of swinging  
to the positive rail, but the input stage limits this swing to ap-  
proximately 1.0 V below VCC  
.
D /A Conver ter Section  
T he internal DAC is an 8-bit voltage mode device with an out-  
put that swings from DACGND to the external reference volt-  
age, VREF. T he equivalent schematic of one of the DACs is  
shown in Figure 16. T he DAC uses an R-2R ladder to ensure  
accuracy and linearity over the full temperature range of the part.  
The switches shown are actually N and P-channel MOSFET s to  
allow maximum flexibility and range in the choice of reference  
V
CC  
V
OUT  
V
REF  
R
R
R
R
R
R
V
OUT  
R
R
V
EE  
R
TO 15  
DACs  
Figure 17. Equivalent Analog Output Circuit  
During normal operation, the output stage can typically source  
and sink ±1 mA of current. However, the actual short circuit  
current is much higher. In fact, each DAC is capable of sourc-  
ing 20 mA and sinking 8 mA during a short condition. T he  
absolute maximum ratings state that, at most, four DACs can  
be shorted simultaneously. T his restriction is due to current  
densities in the metal traces. If the current density is too high,  
voltage drops in the traces will cause a loss in linearity perfor-  
mance for the other DACs in the package. T hus to ensure long-  
term reliability, no more than four DACs should be shorted  
simultaneously.  
*R = 30kΩ  
TYPICALLY  
R
R
2R  
DACGND  
Figure 16. Equivalent Schem atic of Analog Channel  
voltage. T he switches’ low ON resistance and matching is im-  
portant in maintaining the accuracy of the R-2R ladder.  
*Patent Pending.  
–8–  
REV. 0  
AD8600  
V
V
P ower Supply and Gr ounding Consider ations  
CC  
DD2  
T he low power consumption of the AD8600 is a direct result of  
circuit design optimizing using a CBCMOS process. T he over-  
all power dissipation of 120 mW translates to a total supply cur-  
rent of only 24 mA for 16 DACs. T hus, each DAC consumes  
only 1.5 mA. Because the digital interface is comprised entirely  
of CMOS logic, the power dissipation is dependent upon the  
logic input levels. As expected for CMOS, the lowest power  
dissipation is achieved when the input level is either close to  
ground or +5 V. T hus, to minimize the power consumption,  
CMOS logic should be used to interface to the AD8600.  
ALL DIGITAL INPUTS  
(A0–A3, DB0–DB7)  
(R/W, CS, EN, LD, RS)  
DGND1  
V
REF  
DACGND  
T he AD8600 has multiple supply pins. VCC (Pins 4 and 42) is  
the output amplifiers’ positive supply, and VEE (Pins 5 and 41)  
the amplifiers’ negative supply. T he digital input circuitry is  
powered by VDD1 (Pin 14), and finally the DAC register and R-  
2R ladder switches are powered by VDD2 (Pin 44). T o minimize  
noise feedthrough from the supplies, each supply pin should be  
decoupled with a 0.1 µF ceramic capacitor close to the pin.  
When applying power to the device, it is important for the digi-  
tal supply, VDD2, to power on before the reference voltage and  
for VREF to remain less than 0.3 V above VDD2 during normal  
operation. Otherwise, an inherent diode will energize, and it  
could damage the AD8600.  
Figure 18. ESD Protection Diode Locations  
Attention should be paid to the ground pins of the AD8600 to  
ensure that noise is not introduced to the output. T he pin la-  
beled DACGND (Pin 3) is actually the ground for the R-2R  
ladder, and because of this, it is important to connect this pin to  
a high quality analog ground. Ideally, the analog ground should  
be an actual ground plane. T his helps create a low impedance,  
low noise ground to maintain accuracy in the analog circuitry.  
T he digital ground pins (DGND1 at Pin 32 and DGND2 at  
Pin 43) provide the ground reference for the internal digital cir-  
cuitry and latches. T he first thought may be to connect both of  
these pins to the system digital ground. However, this is not the  
best choice because of the high noise typically found on a  
system’s digital ground. T his noise can feed through to the out-  
put through the DACs ground pins. Instead, DGND1 and  
DGND2 should be connected to the analog ground plane. T he  
actual switching current in these pins is small and should not  
degrade the analog ground.  
In order to improve ESD resistance, the AD8600 has several  
ESD protection diodes on its various pins. T hese diodes shunt  
ESD energy to the power supplies and protect the sensitive ac-  
tive circuitry. During normal operation, all the ESD diodes are  
reversed biased and do not affect the part. However, if overvolt-  
ages occur on the various inputs, these diodes will energize. If  
the overvoltage is due to ESD, the electrical spike is typically  
short enough so that the part is not damaged. However, if the  
overvoltage is continuous and has sufficient current, the part  
could be damaged. T o protect the part, it is important not to  
forward bias any of the ESD protection diodes during normal  
operation or during power up. Figure 18 shows the location of  
these diodes. For example, the digital inputs have diodes con-  
nected to VCC and from DGND1. T hus, the voltage on any  
digital input should never exceed the analog supply or drop be-  
low ground, which is also indicated in the absolute maximum  
ratings.  
5 V O utput Swing  
T he output swing is limited to 1.0 V below the positive supply.  
T his gives a maximum output of +4.0 V on a +5 V supply. T o  
increase the output range, the analog supply, VCC, and the DAC  
ladder supply, VDD2, can be increased to +7 V. T his allows an  
output of +5 V with a 5 V reference. VDD1 should remain at  
+5 V to ensure that the input logic levels do not change.  
Refer ence Input Consider ations  
The AD8600 is designed for one reference to drive all 16 DACs.  
T he reference pin (VREF) is connected directly to the R-2R lad-  
ders of each DAC. With 16 DACs in parallel, the input imped-  
ance is typically 2 kand a minimum of 1.2 k. T he input  
resistance is code dependent. T hus, the chosen reference device  
must be able to drive this load. Some examples of +2.5 V refer-  
ences that easily interface to the AD8600 are the REF43,  
AD680, and AD780. T he unique architecture ensures that the  
reference does not have to supply “shoot through” current,  
which is a condition in some voltage mode DACs where the ref-  
erence is momentarily connected to ground through the CMOS  
switches. By eliminating this possibility, all 16 DACs in the  
AD8600 can easily be driven from a single reference.  
REV. 0  
–9–  
AD8600  
Inter face Tim ing and Contr ol  
T o load multiple input registers in the fastest time possible,  
both R/W and CS should remain low, and the EN line be used  
to “clock” in the data. As the write timing diagram shows, the  
address should be updated at the same time as EN goes low.  
Before EN returns high, valid data must be present for a time  
equal to the data setup time (tDS), and after EN returns high,  
the data Hold T ime (tDH) must be maintained. If these mini-  
mum times are violated, invalid data may be latched into the in-  
put register. T his cycle can be repeated 16 times to load all of  
the DACs. T he fastest interface time is equal to the sum of the  
low and high times (tCL and tCH) for the EN input, which gives a  
minimum of 80 ns. Because the EN input is used to clock in  
the data, it is often referred to as the clock input, and the timing  
specifications give a maximum clock frequency of 12.5 MHz,  
which is just the reciprocal of 80 ns.  
T he AD8600 employs a double buffered DAC structure with  
each DAC channel having a unique input register and DAC reg-  
ister as shown in the diagram entitled “Equivalent DAC Chan-  
nel” on the first page of the data sheet. T his structure allows  
maximum flexibility in loading the DACs. For example, each  
DAC can be updated independently, or, if desired, all 16 input  
registers can be loaded, followed by a single LD strobe to up-  
date all 16 DACs simultaneously. An additional feature is the  
ability to read back from the input register to verify the DACs  
data.  
A0  
A1  
N1  
A2  
A3  
N5  
R/W  
EN  
CS  
N2  
N3  
N4  
After all the input registers have been loaded, a single load  
strobe will transfer the contents of the input registers to the  
DAC registers. EN must also be low during this time. If the  
address or data on the inputs could change, then CS should be  
high during this time to ensure that new data is not loaded into  
an input register. Alternatively, a single DAC can be updated  
by first loading its input register and then transferring that to the  
DAC register without loading the other 15 input registers.  
N6  
R/W  
CS  
LD  
EN  
8
8
INPUT  
REGISTER  
DAC  
REGISTER  
R-2R  
LADDER  
D7–D0  
8
READ BACK  
T he final interface option is to read data from the DAC’s input  
registers, which is accomplished by setting R/W high and bring-  
ing CS low. Read back allows the microprocessor to verify that  
correct data has been loaded into the DACs. During this time  
EN and LD should be high. After a delay equal to tRWD, the  
data bus becomes active and the contents of the input register  
are read back to the data pins, DB0–DB7. T he address can be  
changed to look at the contents of all the input registers. Note  
that after an address change, the valid data is not available for a  
time equal to tAD. T he delay time is due to the internal  
readback buffers needing to charge up the data bus (measured  
with a 35 pF load). T hese buffers are low power and do not  
have high current to charge the bus quickly. When CS returns  
high, the data pins assume a high impedance state and control  
of the data lines or bus passes back to the microprocessor.  
Figure 19. Logic Interface Circuit for DAC Channel 0  
T he interface logic for a single DAC channel is shown in Figure  
19. T his figure specifically shows the logic for Channel 0; how-  
ever, by changing the address input configuration to gate N1,  
the other 15 channels are achieved. All of the logic for the  
AD8600 is level sensitive and not edge triggered. For example,  
if all the control inputs (CS, R/W, EN, LD) are low, the input  
and DAC registers are transparent and any change in the digital  
inputs will immediately change the DAC’s R-2R ladder.  
T able I details the different logic combinations and their effects.  
Chip Select (CS), Enable (EN) and R/W must be low to write  
the input register. During this time that all three are low, any  
data on DB7–DB0 changes the contents of the input register.  
T his data is not latched until either EN or CS returns high.  
T he data setup and hold times shown in the timing diagrams  
must be observed to ensure that the proper data is latched into  
the input register.  
–10–  
REV. 0  
AD8600  
Unipolar O utput O per ation  
Table IV. Bipolar Code Table  
T he AD8600 is configured to give unipolar operation. T he full-  
scale output voltage is equivalent to the reference input voltage  
minus 1 LSB. T he output is dependent upon the digital code  
and follows T able III. T he actual numbers given for the analog  
output are calculated assuming a +2.5 V reference.  
D AC  
Binary Input  
MSB  
LSB Analog O utput  
1 1 1 1 1 1 1 1 +2 VREF (255/256) – VREF = +2.49 V  
1 0 0 0 0 0 0 1 +2 VREF (129/256) – VREF = +0.02 V  
1 0 0 0 0 0 0 0 +2 VREF (128/256) – VREF = +0.00 V  
0 1 1 1 1 1 1 1 +2 VREF (127/256) – VREF = –0.02 V  
0 0 0 0 0 0 0 1 +2 VREF (001/256) – VREF = –2.48 V  
0 0 0 0 0 0 0 0 +2 VREF (000/256) – VREF = –2.50 V  
Table III. Unipolar Code Table  
D AC  
Binary Input  
MSB  
LSB  
Analog O utput  
1 1 1 1 1 1 1 1  
1 0 0 0 0 0 0 1  
1 0 0 0 0 0 0 0  
0 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0  
+VREF (255/256) = +2.49 V  
+VREF (129/256) = +1.26 V  
+VREF (128/256) = +1.25 V  
+VREF (127/256) = +1.24 V  
+VREF (001/256) = +0.01 V  
+VREF (000/256) = +0.00 V  
Inter facing to the 68H C11 Micr ocontr oller  
T he 68HC11 is a popular microcontroller from Motorola,  
which is easily interfaced to the AD8600. T he connections be-  
tween the two components are shown in Figure 21. Port C of  
the 68HC11 is used as a bidirectional input/output data port to  
write to and read from the AD8600. Port B is used for address-  
ing and control information. T he bottom 4 LSBs of Port B are  
the address, and the top 4 MSBs are the control lines (LD, CS,  
EN, and R/W). T he microcode for the 68 HC11 is shown in  
Figure 22. T he comments in the program explain the function  
of each step. T hree routines are included in this listing: read  
from the AD8600, write to the AD8600, and a continuous loop  
that generates a saw-tooth waveform. T his loop is used in the  
application below.  
Bipolar O utput O per ation  
T he AD8600 can be configured for bipolar operation with the  
addition of an op amp for each output as shown in Figure 20.  
T he output will now have a swing of ±VREF, as detailed in T able  
IV. T his modification is only needed on those channels that re-  
quire bipolar outputs. For channels which only require unipolar  
output, no external amplifier is needed. T he OP495 quad am-  
plifier is chosen for the external amplifier because of its low  
power, rail-to-rail output swing, and DC accuracy. Again, the  
values calculated for the analog output are based upon an as-  
sumed +2.5 V reference.  
8
DB0–DB7  
PC0–PC7  
4
A0–A3  
LD  
PB0–PB3  
PB4  
AD8600  
MOTOROLA  
EN  
PB5  
PB6  
PB7  
VREF  
68HC11  
R1  
R1  
R/W  
DGND1, DGND2  
DACGND  
10k  
10k  
CS  
GND  
+5V  
DIGITAL GROUND  
ANALOG GROUND  
1/4  
OP495  
VREF  
VOUT  
OUT  
ø
Figure 21. Interfacing the 68HC11 to the AD8600  
AD8600  
–5V  
Figure 20. Circuit for Bipolar Output Operation  
REV. 0  
–11–  
AD8600  
* This program contains subroutines to read and write  
* to the AD8600 from the 68HC11. Additionally, a ramp  
* program has been included, to continuously ramp the  
* output giving a triangle wave output.  
*
* The following connections need to be made:  
*
*
*
*
*
*
*
*
*
68HC11  
GND  
PC0-PC7  
PB0-PB3  
PB4  
PB5  
PB6  
PB7  
AD8600  
DGND1,2  
DB0–DB7 respectively, data port  
A0–A3 respectively, address port  
LD  
EN  
R/W  
CS  
portc equ  
portb equ  
$1003  
$1004  
$1007  
define port addresses  
ddrc  
*
equ  
org  
lds  
$C000  
#$CFFF  
read  
*
subroutine to read from AD8600  
ldaa #$00  
staa ddrc  
initialize port c to 00000000  
configures PC0-PC7 as inputs.  
*
ldx  
ldaa 0,x  
adda #$70  
#$00  
points to DAC address in 68HC11 memory  
put the address in the accumulator  
add the control bits to the address  
R/W, LD, EN are high, CS is low.  
output control and address on port b.  
*
*
staa portb  
inx  
ldaa portc  
staa 0,x  
points to memory location to store the data  
read data from DAC  
Store this data in memory at address “x”  
*
ldy  
#$1000  
bset portb,y $f0  
Set CS, LD, EN high  
Return to BUFFALO  
jmp  
$e000  
*
*
write lds  
#$cfff  
routine to write to AD8600  
initialize port c to 11111111  
configures PC0-PC7 as outputs.  
ldaa #$ff  
staa ddrc  
*
ldx  
ldaa 0,x  
adda #$30  
staa portb  
#$00  
points to DAC address in 68HC11 mem  
puts the address in the accumulator  
set CS, R/W low and LD, EN high  
output to portb for control and address  
*
*
*
inx  
ldaa 0,x  
staa portc  
points to memory location to store the data  
load the data into the accumulator  
write the data to the DAC  
ldy  
#$1000  
bclr portb,y $30  
bset portb,y $b0  
Set LD, EN low to latch data  
Bring LD, EN, CS high, write is complete  
jmp  
$e000  
Return to BUFFALO  
*
*
ramp  
lds  
ldaa #$ff  
#$cfff  
routine to generate a triangle wave  
configure port c as outputs  
–12–  
REV. 0  
AD8600  
staa ddrc  
ldx #$00  
ldaa 0,x  
staa portb  
*
set x to point to the DAC address  
load the address from 68HC11 mem  
set the address on portb  
*
*
LD, CS, EN, R/W are all low for  
transparent DAC loading  
ldab #$ff  
set accumulator b to 255  
*
loop  
ldaa #$00  
staa portc  
start the triangle wave at zero  
write the data to the AD8600  
*
load  
inca  
staa portc  
cba  
increase the data by one  
send the new data to the AD8600  
compare a to b  
bne  
jmp  
load  
loop  
we haven’t reached 255 yet  
we have reached 255, so start over  
Figure 22. 68HC11 Microcode to Interface to the AD8600.  
needs to be 1.25 V. In this application, the C1LO input is set at  
the midscale voltage of 0.625 V, which is generated by a simple  
voltage divider from the REF43. T he AD8600’s output is di-  
vided in half, generating a 0 V to 1.25 V ramp, and then applied  
to C1HI. T his ramp sweeps the gain from 0 dB to 40 dB.  
Tim e D ependent Var iable Gain Am plifier Using the AD 600  
T he AD8600 is ideal for generating a control signal to set the  
gain of the AD600, a wideband, low noise variable gain ampli-  
fier. T he AD600 (and similar parts such as the AD602 and  
AD603) is often used in ultrasound applications, which require  
the gain to vary with time. When a burst of ultrasound is ap-  
plied, the reflections from near objects are much stronger than  
from far objects. T o accurately resolve the far objects, the gain  
must be greater than for the near objects. Additionally, the sig-  
nals take longer to reach the ultrasound sensor when reflected  
from a distant object. T hus, the gain must increase as the time  
increases.  
+5V  
R1  
10k  
VCC, VDD1, VDD2  
Oø  
13  
0V – 1.25V  
DIGITAL  
AD8600  
VREF  
CONTROL  
R2  
10k  
C1  
100pF  
+5V  
2
C1HI  
16  
VPOS  
13  
2
T he AD600 requires a dc voltage to adjust its gain over a  
40 dB range. Since it is a dual, the two variable gain amplifiers  
can be cascaded to achieve 80 dB of gain. T he AD8600 is used  
to generate a ramped output to control the gain of the AD600.  
T he slope of the ramp should correspond to the time delay  
of the ultrasound signal. Since ultrasound applications often  
require multiple channels, the AD8600 is ideal for this  
application.  
VIN  
(FROM  
ULTRASOUND  
SENSOR)  
A1HI  
VOUT  
14  
AD600  
A1OP  
3
15  
A1CM  
+5V  
A1LO  
12  
4
1
2
GAT1 C1LO  
–5V  
0.625V  
4
6
REF43  
+2.5V  
R4  
10k  
R3  
30k  
T he circuit to achieve a time dependent variable gain amp is  
shown in Figure 23. T he AD600’s gain is controlled by differ-  
ential inputs, C1LO and C1HI, with a gain constant of  
32 dB/V. T hus for 40 dB of gain, the differential control input  
Figure 23. Ultrasound Am plifier with Digitally Controlled  
Variable Gain  
REV. 0  
–13–  
AD8600  
T he functionality of this circuit is shown in the scope photo in  
Figure 24 T he top trace is the control ramp, which goes from  
0 V to 1.25 V. T he bottom trace is the output of the AD600.  
T he input is actually a 12 mV p-p, 10 kHz sine wave. T hus, the  
bottom trace shows the envelop of this waveform to illustrate  
the increase in gain as time progresses. T his ramp was gener-  
ated under control of the 68HC11 using the “ramp” subroutine  
as mentioned above. T he slope of the ramp can easily be  
lengthened by adding some delay in the loop, or the slope can  
be increased by stepping by 2 or more LSBs instead of the cur-  
rent 1 LSB changes.  
Glitch Im pulse  
A specification of interest in many DAC applications is the  
glitch impulse. T his is the amount of energy contained in any  
overshoot when a DAC changes at its major carry transition, in  
other words, when the DAC switches from code 01111111 to  
code 10000000. T his point is the most demanding because all  
of the R-2R ladder switches are changing state. T he AD8600’s  
glitch impulse is shown in Figure 25. Calculating the value of  
the glitch is accomplished by calculating the area of the pulse,  
which for the AD8600 is: Glitch Impulse = (1/2) × (100 mV) ×  
(200 ns) = 10 nV sec.  
GAIN  
CONTROL  
1V/DIV  
V
OUT  
50mV/DIV  
AD600  
OUTPUT  
0.2V/DIV  
200ns/DIV  
200µs/DIV  
Figure 24. Tim e Dependent Gain of the AD600  
Figure 25. Glitch Im pulse  
–14–  
REV. 0  
AD8600  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm).  
44-Lead P lastic Lead Chip Car r ier (P LCC) P ackage  
(P -44A)  
0.180 (4.57)  
0.165 (4.19)  
0.048 (1.21)  
0.042 (1.07)  
0.056 (1.42)  
0.042 (1.07)  
0.025 (0.63)  
0.015 (0.38)  
6
40  
39  
7
PIN 1  
0.021 (0.53)  
0.013 (0.33)  
IDENTIFIER  
0.048 (1.21)  
0.042 (1.07)  
0.63 (16.00)  
0.59 (14.99)  
0.032 (0.81)  
TOP VIEW  
0.026 (0.66)  
0.050  
(1.27)  
BSC  
29  
28  
17  
18  
0.020  
(0.50)  
R
0.040 (1.01)  
0.025 (0.64)  
0.656 (16.66)  
0.650 (16.51)  
SQ  
SQ  
0.110 (2.79)  
0.085 (2.16)  
0.695 (17.65)  
0.685 (17.40)  
REV. 0  
–15–  
–16–  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY