AD8601ART [ADI]

Precision CMOS Single Supply Rail-to-Rail Input/Output Wideband Operational Amplifiers; 精密CMOS单电源轨到轨输入/输出宽带运算放大器
AD8601ART
型号: AD8601ART
厂家: ADI    ADI
描述:

Precision CMOS Single Supply Rail-to-Rail Input/Output Wideband Operational Amplifiers
精密CMOS单电源轨到轨输入/输出宽带运算放大器

运算放大器 放大器电路 光电二极管
文件: 总16页 (文件大小:255K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision CMOS Single Supply  
Rail-to-Rail Input/Output Wideband  
Operational Amplifiers  
a
AD8601/AD8602  
FUNCTIONAL BLOCK DIAGRAMS  
5-Lead SOT-23  
FEATURES  
Low Offset Voltage: 500 V Max  
Single Supply Operation: 2.7 V to 6 V  
Low Supply Current: 750 A/Amplifier  
Wide Bandwidth: 8 MHz  
Slew Rate: 5 V/s  
(RT Suffix)  
V+  
OUT A  
V؊  
1
2
5
4
AD8601  
Low Distortion  
No Phase Reversal  
+IN  
3
؊IN  
Low Input Currents  
Unity Gain Stable  
8-Lead SOIC  
(RM Sufx)  
APPLICATIONS  
Barcode Scanners  
Battery-Powered Instrumentation  
Multipole Filters  
Sensors  
V+  
OUT A  
؊IN A  
؉IN A  
V؊  
1
8
OUT B  
؊IN B  
+IN B  
AD8602  
4
5
Current Sensing  
ASIC Input or Output Amplifier  
Audio  
8-Lead SOIC  
(R Sufx)  
GENERAL DESCRIPTION  
The AD8601 and AD8602 are single and dual rail-to-rail input  
and output single supply amplifiers featuring very low offset voltage  
and wide signal bandwidth. These amplifiers use a new, patented  
trimming technique that achieves superior performance without  
laser trimming. All are fully specified to operate from 3 V to 5 V  
single supply.  
OUT A  
؊IN A  
+IN A  
V؊  
V+  
1
2
3
4
8
7
6
5
OUT B  
AD8602  
؊IN B  
+IN B  
The ability to swing rail-to-rail at both the input and output  
enables designers to buffer CMOS ADCs, DACs, ASICs, and  
other wide output swing devices in single supply systems.  
The combination of low offsets, very low input bias currents, and  
high speed make these amplifiers useful in a wide variety of applica-  
tions. Filters, integrators, diode amplifiers, shunt current sensors,  
and high impedance sensors all benefit from the combination of  
performance features. Audio and other ac applications benefit from  
the wide bandwidth and low distortion. For the most cost-sensitive  
applications the D grades offer this ac performance with lower dc  
precision at a lower price point.  
The AD8601 and AD8602 are specified over the extended industrial  
(–40°C to +125°C) temperature range. The AD8601, single, is avail-  
able in the tiny 5-lead SOT-23 package. The AD8602, dual, is avail-  
able in 8-lead MSOP and narrow SOIC surface-mount packages.  
SOT and µSOIC versions are available in tape and reel only.  
Applications for these amplifiers include audio amplification for  
portable devices, portable phone headsets, bar code scanners,  
portable instruments, and multipole filters.  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 2000  
AD8601/AD8602SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS (VS = 3 V, VCM = VS/2, TA = 25؇C unless otherwise noted)  
A Grade  
D Grade  
Min Typ Max  
Parameter  
Symbol  
Conditions  
Min Typ Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
0 V VCM 1.3 V  
40°C TA +85°C  
40°C TA +125°C  
0 V VCM 3 V1  
80  
500  
700  
1,100  
6,000  
7,000  
7,000  
6,000  
7,000  
µV  
µV  
µV  
µV  
µV  
µV  
pA  
pA  
pA  
pA  
pA  
pA  
V
350 750  
1,800  
2,100  
0.2 60  
40°C TA +85°C  
40°C TA +125°C  
7,000  
Input Bias Current  
Input Offset Current  
IB  
0.2 200  
200  
1,000  
0.1 100  
100  
40°C TA +85°C  
40°C TA +125°C  
100  
1,000  
IOS  
0.1 30  
40°C TA +85°C  
40°C TA +125°C  
50  
500  
3
500  
3
Input Voltage Range  
0
0
Common-Mode Rejection Ratio  
Large Signal Voltage Gain  
CMRR  
AVO  
VCM = 0 V to 3 V  
VO = 0.5 V to 2.5 V  
RL = 2 k, VCM = 0 V  
68  
83  
52  
65  
dB  
30  
100  
2
20  
60  
2
V/mV  
µV/°C  
Offset Voltage Drift  
VOS/T  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
VOL  
IOUT  
IL = 1.0 mA  
40°C TA +125°C  
IL = 1.0 mA  
2.92 2.96  
2.88  
2.92 2.96  
2.88  
V
V
mV  
mV  
mA  
Output Voltage Low  
20  
35  
50  
20  
35  
50  
40°C TA +125°C  
Output Current  
Closed-Loop Output Impedance ZOUT  
30  
12  
30  
12  
f = 1 MHz, AV = 1  
POWER SUPPLY  
Power Supply Rejection Ratio  
Supply Current/Amplier  
PSRR  
ISY  
VS = 2.7 V to 5.5 V  
VO = 0 V  
40°C TA +125°C  
67  
80  
56  
72  
dB  
µA  
µA  
680 1,000  
680 1,000  
1,300  
1,300  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time  
Gain Bandwidth Product  
Phase Margin  
SR  
tS  
GBP  
RL = 2 kΩ  
To 0.01%  
5.2  
<0.5  
8.2  
50  
5.2  
<0.5  
8.2  
50  
V/µs  
µs  
MHz  
Degrees  
Φo  
NOISE PERFORMANCE  
Voltage Noise Density  
en  
en  
in  
f = 1 kHz  
f = 10 kHz  
33  
18  
0.05  
33  
18  
0.05  
nV/Hz  
nV/Hz  
pA/Hz  
Current Noise Density  
NOTES  
1For VCM between 1.3 V and 1.8 V, VOS may exceed specified value.  
Specications subject to change without notice.  
–2–  
REV. 0  
AD8601/AD8602  
(V = 5.0 V, VCM = VS/2, TA = 25؇C unless otherwise noted)  
ELECTRICAL CHARACTERISTICS  
S
A Grade  
D Grade  
Min Typ Max  
Parameter  
Symbol  
Conditions  
Min Typ Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
IB  
0 V VCM 5 V  
80  
500  
1,300  
6,000  
7,000  
0.2 200  
200  
1,000  
0.1 100  
100  
µV  
40°C TA +125°C  
µV  
Input Bias Current  
0.2 60  
100  
1,000  
0.1 30  
pA  
pA  
pA  
pA  
pA  
pA  
V
40°C TA +85°C  
40°C TA +125°C  
Input Offset Current  
IOS  
40°C TA +85°C  
40°C TA +125°C  
50  
500  
5
500  
5
Input Voltage Range  
0
0
Common-Mode Rejection Ratio  
Large Signal Voltage Gain  
CMRR  
AVO  
VCM = 0 V to 5 V  
VO = 0.5 V to 4.5 V  
RL = 2 k, VCM = 0 V  
74  
30  
89  
100  
56  
20  
67  
60  
dB  
V/mV  
Offset Voltage Drift  
VOS/T  
2
2
µV/°C  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
IL = 1.0 mA  
IL = 10 mA  
40°C TA +125°C  
IL = 1.0 mA  
IL = 10 mA  
40°C TA +125°C  
4.925 4.975  
4.7 4.77  
4.6  
4.925 4.975  
4.7 4.77  
4.6  
V
V
V
mV  
mV  
mV  
mA  
Output Voltage Low  
Output Current  
VOL  
15  
30  
15  
30  
125 175  
125 175  
250  
250  
IOUT  
50  
10  
50  
10  
Closed-Loop Output Impedance ZOUT  
f = 1 MHz, AV = 1  
POWER SUPPLY  
Power Supply Rejection Ratio  
Supply Current/Amplier  
PSRR  
ISY  
VS = 2.7 V to 5.5 V  
VO = 0 V  
40°C TA +125°C  
67  
80  
56  
72  
dB  
µA  
µA  
750 1,200  
750 1,200  
1,500  
1,500  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time  
Full Power Bandwidth  
Gain Bandwidth Product  
Phase Margin  
SR  
tS  
BWp  
GBP  
Φo  
RL = 2 kΩ  
6
6
V/µs  
To 0.01%  
< 1.0  
360  
8.4  
55  
< 1.0  
360  
8.4  
55  
µs  
< 1% Distortion  
kHz  
MHz  
Degrees  
NOISE PERFORMANCE  
Voltage Noise Density  
en  
en  
in  
f = 1 kHz  
f = 10 kHz  
f = 1 kHz  
33  
18  
0.05  
33  
18  
0.05  
nV/Hz  
nV/Hz  
pA/Hz  
Current Noise Density  
Specications subject to change without notice.  
REV. 0  
–3–  
AD8601/AD8602  
ABSOLUTE MAXIMUM RATINGS*  
Package Type  
JA*  
Unit  
JC  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GND to VS  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . 6 V  
Storage Temperature Range  
5-Lead SOT-23 (RT)  
8-Lead SOIC (R)  
8-Lead MSOP (RM)  
230  
158  
210  
92  
43  
45  
°C/W  
°C/W  
°C/W  
R, RM, RT Packages . . . . . . . . . . . . . . . . 65°C to +150°C  
*θJA is specied for worst-case conditions, i.e., θJA is specied for device in  
socket for PDIP packages; θJA is specied for device soldered onto a circuit  
board for surface mount packages.  
Operating Temperature Range  
AD8601/AD8602 . . . . . . . . . . . . . . . . . . . 40°C to +125°C  
Junction Temperature Range  
R, RM, RT Packages . . . . . . . . . . . . . . . . 65°C to +150°C  
Lead Temperature Range (Soldering, 60 sec) . . . . . . . . 300°C  
ESD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 kV HBM  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational sections  
of this specication is not implied. Exposure to absolute maximum rating condi-  
tions for extended periods may affect device reliability.  
ORDERING GUIDE  
Temperature  
Range  
Package  
Description  
Package  
Option  
Branding  
Information  
Model  
AD8601ART  
AD8601DRT  
AD8602AR  
AD8602DR  
AD8602ARM  
AD8602DRM  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
5-Lead SOT-23  
5-Lead SOT-23  
8-Lead SOIC  
8-Lead SOIC  
8-Lead MSOP  
8-Lead MSOP  
RT-5  
RT-5  
SO-8  
SO-8  
RM-8  
RM-8  
AAA  
AAD  
ABA  
ABD  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the AD8601/AD8602 features proprietary ESD protection circuitry, permanent damage may occur  
on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–4–  
REV. 0  
Typical Performance Characteristics–  
AD8601/AD8602  
60  
3,000  
2,500  
2,000  
1,500  
1,000  
V
T
= 5V  
= 25؇C TO 85؇C  
S
A
V
T
= 3V  
= 25؇C  
= 0V TO 3V  
S
A
50  
40  
30  
V
CM  
20  
10  
0
500  
0
؊1.0 ؊0.8 ؊0.6 ؊0.4 ؊0.2  
0
0
1
2
3
4
5
6
7
8
9
10  
0.2  
0.4  
0.6  
0.8  
1.0  
1.0  
10  
INPUT OFFSET VOLTAGE – mV  
TCVOS V/؇C  
TPC 1. Input Offset Voltage Distribution  
TPC 4. Input Offset Voltage Drift Distribution  
1.5  
3,000  
2,500  
2,000  
1,500  
1,000  
V
T
= 3V  
= 25؇C  
S
A
V
T
= 5V  
= 25؇C  
= 0V TO 5V  
S
A
1.0  
0.5  
V
CM  
0
؊0.5  
؊1.0  
؊1.5  
؊2.0  
500  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
؊1.0 ؊0.8 ؊0.6 ؊0.4 ؊0.2  
0
0.2  
0.4  
0.6  
0.8  
COMMON-MODE VOLTAGE V  
INPUT OFFSET VOLTAGE mV  
TPC 5. Input Offset Voltage vs. Common-Mode Voltage  
TPC 2. Input Offset Voltage Distribution  
1.5  
60  
50  
V
T
= 5V  
= 25؇C  
S
A
V
T
= 3V  
= 25؇C TO 85؇C  
S
A
1.0  
0.5  
40  
30  
20  
10  
0
0
؊0.5  
؊1.0  
؊1.5  
؊2.0  
0
1
2
3
4
5
0
1
2
3
4
5
6
7
8
9
COMMON-MODE VOLTAGE V  
TCVOS V/؇C  
TPC 6. Input Offset Voltage vs. Common-Mode Voltage  
TPC 3. Input Offset Voltage Drift Distribution  
REV. 0  
–5–  
AD8601/AD8602  
300  
30  
25  
20  
15  
10  
5
V
= 3V  
S
V = 3V  
S
250  
200  
150  
100  
50  
0
0
؊40 ؊25 ؊10  
5
20  
35  
50  
65  
80  
95 110 125  
؊40 ؊25 ؊10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE ؇C  
TEMPERATURE ؇C  
TPC 7. Input Bias Current vs. Temperature  
TPC 10. Input Offset Current vs. Temperature  
300  
250  
200  
150  
100  
50  
30  
V
= 5V  
S
V
= 5V  
S
25  
20  
15  
10  
5
0
0
؊40 ؊25 ؊10  
5
20  
35  
50  
65  
80  
95 110 125  
؊40 ؊25 ؊10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE ؇C  
TEMPERATURE ؇C  
TPC 8. Input Bias Current vs. Temperature  
TPC 11. Input Offset Current vs. Temperature  
5
10k  
V
T
= 2.7V  
= 25؇C  
S
A
V
T
= 5V  
= 25؇C  
S
A
4
3
1k  
100  
10  
SOURCE  
SINK  
2
1
0
1
0.1  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
0.001  
0.01  
0.1  
1
10  
100  
COMMON-MODE VOLTAGE V  
LOAD CURRENT mA  
TPC 9. Input Bias Current vs. Common-Mode Voltage  
TPC 12. Output Voltage to Supply Rail vs. Load Current  
–6–  
REV. 0  
AD8601/AD8602  
10k  
1k  
35  
30  
25  
V
T
= 5V  
= 25؇C  
S
A
V
= 2.7V  
S
SOURCE  
SINK  
V
@ 1mA LOAD  
OL  
100  
10  
20  
15  
10  
1
5
0
0.1  
0.001  
0.01  
0.1  
1
10  
100  
؊40 ؊25 ؊10  
5
20  
35  
50  
65  
80  
95 110 125  
LOAD CURRENT mA  
TEMPERATURE ؇C  
TPC 13. Output Voltage to Supply Rail vs. Load Current  
TPC 16. Output Voltage Swing vs. Temperature  
5.1  
2.67  
2.66  
2.65  
2.64  
2.63  
2.62  
V
= 5V  
S
V
= 2.7V  
S
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
V
@ 1mA LOAD  
OH  
V
@ 1mA LOAD  
OH  
V
@ 10mA LOAD  
OH  
؊40 ؊25 ؊10  
5
20  
35  
50  
65  
80  
95 110 125  
؊40 ؊25 ؊10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE ؇C  
TEMPERATURE ؇C  
TPC 14. Output Voltage Swing vs. Temperature  
TPC 17. Output Voltage Swing vs. Temperature  
250  
V
R
= 3V  
= NO LOAD  
= 25؇C  
S
V
= 5V  
S
L
T
A
200  
150  
80  
60  
40  
20  
0
45  
90  
V
@ 10mA LOAD  
OL  
135  
180  
100  
50  
0
V
@ 1mA LOAD  
OL  
؊40 ؊25 ؊10  
5
20  
35  
50  
65  
80  
95 110 125  
1k  
10k  
100k  
1M  
10M  
100M  
TEMPERATURE ؇C  
FREQUENCY Hz  
TPC 15. Output Voltage Swing vs. Temperature  
TPC 18. Open-Loop Gain and Phase vs. Frequency  
REV. 0  
–7–  
AD8601/AD8602  
3.0  
2.5  
2.0  
1.5  
V
R
= 5V  
= NO LOAD  
= 25؇C  
S
L
T
A
80  
60  
40  
20  
0
V
V
R
= 2.7V  
= 2.6V p-p  
= 2k⍀  
= 25؇C  
= 1  
S
IN  
45  
L
T
A
90  
A
V
135  
180  
1.0  
0.5  
0
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY Hz  
FREQUENCY Hz  
TPC 22. Closed-Loop Output Voltage Swing vs. Frequency  
TPC 19. Open-Loop Gain and Phase vs. Frequency  
6
5
V
T
= 3V  
= 25؇C  
S
A
A
A
A
= 100  
= 10  
= 1  
V
V
V
40  
20  
0
V
V
R
= 5V  
S
= 4.9V p-p  
= 2k⍀  
= 25؇C  
= 1  
IN  
4
3
L
T
A
A
V
2
1
0
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY Hz  
FREQUENCY Hz  
TPC 23. Closed-Loop Output Voltage Swing vs. Frequency  
TPC 20. Closed-Loop Gain vs. Frequency  
200  
V
T
= 3V  
= 25؇C  
V
T
= 5V  
= 25؇C  
S
S
180  
160  
140  
120  
100  
80  
A
A
A
A
A
= 100  
= 10  
= 1  
V
V
V
40  
20  
0
A
= 100  
V
A
= 10  
V
A
= 1  
V
60  
40  
20  
0
100  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY Hz  
FREQUENCY Hz  
TPC 24. Output Impedance vs. Frequency  
TPC 21. Closed-Loop Gain vs. Frequency  
–8–  
REV. 0  
AD8601/AD8602  
200  
180  
160  
140  
120  
100  
80  
160  
140  
120  
100  
80  
V
T
= 5V  
= 25؇C  
V
T
= 5V  
= 25؇C  
S
A
S
A
A
= 100  
V
60  
A
= 10  
V
40  
A
= 1  
V
60  
20  
40  
0
20  
؊20  
0
؊40  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY Hz  
FREQUENCY Hz  
TPC 25. Output Impedance vs. Frequency  
TPC 28. Power Supply Rejection Ratio vs. Frequency  
70  
160  
140  
120  
100  
80  
V
T
= 3V  
= 25؇C  
S
A
V
R
= 2.7V  
=
S
60  
50  
40  
30  
20  
10  
0
L
T
= 25؇C  
A
؊OS  
60  
40  
+OS  
20  
0
؊20  
؊40  
1k  
10k  
100k  
1M  
10M 20M  
10  
100  
CAPACITANCE pF  
1k  
FREQUENCY Hz  
TPC 26. Common-Mode Rejection Ratio vs. Frequency  
TPC 29. Small Signal Overshoot vs. Load Capacitance  
70  
160  
V
T
= 5V  
= 25؇C  
S
A
V
R
= 5V  
=
= 25؇C  
S
140  
120  
100  
80  
60  
50  
40  
30  
20  
10  
0
L
T
A
60  
40  
20  
؊OS  
+OS  
0
؊20  
؊40  
1k  
10k  
100k  
1M  
10M 20M  
10  
100  
1k  
CAPACITANCE pF  
FREQUENCY Hz  
TPC 27. Common-Mode Rejection Ratio vs. Frequency  
TPC 30. Small Signal Overshoot vs. Load Capacitance  
REV. 0  
–9–  
AD8601/AD8602  
1.2  
0.1  
0.01  
V
T
= 5V  
= 25؇C  
S
A
V
= 5V  
S
R
= 600⍀  
L
1.0  
0.8  
0.6  
0.4  
0.2  
0
R
= 2k⍀  
L
G = 10  
R
= 10k⍀  
L
R
= 600⍀  
R
= 2k⍀  
L
L
G = 1  
R
= 10k⍀  
L
0.001  
0.0001  
؊40 ؊25 ؊10  
5
20  
35  
50  
65  
80  
95 110 125  
20  
100  
1k  
FREQUENCY Hz  
10k 20k  
TEMPERATURE ؇C  
TPC 34. Total Harmonic Distortion + Noise vs. Frequency  
TPC 31. Supply Current per Amplifier vs. Temperature  
1.0  
64  
V
= 3V  
S
V
T
= 2.7V  
= 25؇C  
S
A
56  
48  
40  
0.8  
0.6  
0.4  
0.2  
32  
24  
16  
8
0
0
؊40 ؊25 ؊10  
5
20  
35  
50  
65  
80  
95 110 125  
0
5
10  
15  
20  
25  
FREQUENCY kHz  
TEMPERATURE ؇C  
TPC 35. Voltage Noise Density vs. Frequency  
TPC 32. Supply Current per Amplifier vs. Temperature  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
208  
V
T
= 2.7V  
= 25؇C  
S
A
182  
156  
130  
104  
78  
52  
26  
0
0
1
2
3
4
5
6
0
0.5  
1.0  
1.  
2.0  
2.5  
5
FREQUENCY kHz  
SUPPLY VOLTAGE V  
TPC 33. Supply Current per Amplifier vs. Supply Voltage  
TPC 36. Voltage Noise Density vs. Frequency  
–10–  
REV. 0  
AD8601/AD8602  
208  
182  
156  
130  
V
T
= 5V  
= 25؇C  
S
V
T
= 5V  
= 25؇C  
S
A
A
104  
78  
52  
26  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
FREQUENCY kHz  
TIME 1s/DIV  
TPC 37. Voltage Noise Density vs. Frequency  
TPC 40. 0.1 Hz to 10 Hz Input Voltage Noise  
64  
V
R
C
= 5V  
S
V
T
= 5V  
= 25؇C  
= 10k⍀  
= 100pF  
= 25؇C  
S
L
L
56  
48  
40  
A
T
A
32  
24  
16  
8
0
0
5
10  
15  
20  
25  
TIME 200ns/DIV  
FREQUENCY kHz  
TPC 41. Small Signal Transient Response  
TPC 38. Voltage Noise Density vs. Frequency  
V
T
= 5V  
= 25؇C  
V
T
= 2.7V  
= 25؇C  
S
S
A
A
TIME 1s/DIV  
TIME 1s/DIV  
TPC 42. Small Signal Transient Response  
TPC 39. 0.1 Hz to 10 Hz Input Voltage Noise  
REV. 0  
–11–  
AD8601/AD8602  
V
= 5V  
V
= 5V  
S
S
R
A
T
= 10k⍀  
= 1  
= 25؇C  
R
C
A
= 10k⍀  
= 200pF  
= 1  
L
V
L
L
A
V
A
V
IN  
T
= 25؇C  
V
OUT  
TIME 400ns/DIV  
TIME 2.0s/DIV  
TPC 43. Large Signal Transient Response  
TPC 46. No Phase Reversal  
V
= 2.7V  
= 10k⍀  
= 200pF  
= 1  
S
V
= 5V  
S
R
C
A
L
L
R
V
= 10k⍀  
= 2V p-p  
= 25؇C  
L
O
A
V
A
T
T
= 25؇C  
V
IN  
+0.1%  
ERROR  
V
OUT  
؊0.1%  
ERROR  
V
TRACE 0.5V/DIV  
IN  
V
TRACE 10mV/DIV  
OUT  
TIME 100ns/DIV  
TIME 400ns/DIV  
TPC 44. Large Signal Transient Response  
TPC 47. Settling Time  
2.0  
1.5  
V
= 2.7V  
= 10k⍀  
= 1  
S
V
= 2.7V  
= 25؇C  
S
R
A
L
V
A
T
A
T
= 25؇C  
1.0  
0.1%  
0.1%  
0.01%  
V
IN  
0.5  
V
OUT  
0
؊0.5  
؊1.0  
؊1.5  
؊2.0  
0.01%  
300  
350  
400  
450  
500  
550  
600  
TIME 2.0s/DIV  
SETTLING TIME ns  
TPC 45. No Phase Reversal  
TPC 48. Output Swing vs. Settling Time  
–12–  
REV. 0  
AD8601/AD8602  
for single supply and low voltage applications. This rail-to-rail  
input range is achieved by using two input differential pairs, one  
NMOS and one PMOS, placed in parallel. The NMOS pair is  
active at the upper end of the common-mode voltage range, and  
the PMOS pair is active at the lower end of the common-mode  
range.  
5
4
3
2
V
T
= 5V  
= 25؇C  
S
A
1
0
0.1%  
0.1%  
0.01%  
0.01%  
The NMOS and PMOS input stage are separately trimmed using  
DigiTrim to minimize the offset voltage in both differential pairs.  
Both NMOS and PMOS input differential pairs are active in a  
500 mV transition region, when the input common-mode voltage  
is between approximately 1.5 V and 1 V below the positive supply  
voltage. Input offset voltage will shift slightly in this transition  
region, as shown in Figures 5 and 6. Common-mode rejection  
ratio will also be slightly lower when the input common-mode  
voltage is within this transition band. Compared to the Burr  
Brown OPA2340 rail-to-rail input amplier, shown in Figure 1,  
the AD860x, shown in Figure 2, exhibits lower offset voltage shift  
across the entire input common-mode range, including the transi-  
tion region.  
؊1  
؊2  
؊3  
؊4  
؊5  
0
200  
400  
600  
800  
1,000  
SETTLING TIME ns  
TPC 49. Output Swing vs. Settling Time  
THEORY OF OPERATION  
The AD8601/AD8602 family of ampliers are rail-to-rail input and  
output precision CMOS ampliers specied from 2.7 V to 5.0 V of  
power supply voltage. These ampliers use Analog Devicespropri-  
etary technology called DigiTrimto achieve a higher degree of  
precision than available from most CMOS ampliers. DigiTrim  
technology is a method of trimming the offset voltage of the  
amplier after it has already been assembled. The advantage in  
post-package trimming lies in the fact that it corrects any offset  
voltages due to the mechanical stresses of assembly. This tech-  
nology is scalable and utilized with every package option, including  
SOT23-5, providing lower offset voltages than previously achieved in  
these small packages.  
0.7  
0.4  
0.1  
؊0.2  
؊0.5  
؊0.8  
؊1.1  
؊1.4  
The DigiTrim process is done at the factory and does not add  
additional pins to the amplier. All AD860x ampliers are avail-  
able in standard op amp pinouts, making DigiTrim completely  
transparent to the user. The AD860x can be used in any preci-  
sion op amp application.  
0
1
2
3
4
5
V
V  
CM  
The input stage of the amplier is a true rail-to-rail architecture,  
allowing the input common-mode voltage range of the op amp to  
extend to both positive and negative supply rails. The voltage swing  
of the output stage is also rail-to-rail and is achieved by using an  
NMOS and PMOS transistor pair connected in a common-source  
conguration. The maximum output voltage swing is proportional  
to the output current, and larger currents will limit how close the  
output voltage can get to the supply rail. This is a characteristic of  
all rail-to-rail output ampliers. With 1 mA of output current, the  
output voltage can reach within 20 mV of the positive rail and  
15 mV of the negative rail.  
Figure 1. Burr Brown OPA2340UR Input Offset Voltage  
vs. Common-Mode Voltage, 24 SOIC Units @ 25°C  
0.7  
0.4  
0.1  
؊0.2  
؊0.5  
؊0.8  
؊1.1  
؊1.4  
The open-loop gain of the AD860x is 100 dB, typical, with a load  
of 2 k. Because of the rail-to-rail output conguration, the gain  
of the output stage, and thus the open-loop gain of the amplier,  
is dependent on the load resistance. Open-loop gain will decrease  
with smaller load resistances. Again, this is a characteristic inher-  
ent to all rail-to-rail output ampliers.  
Rail-to-Rail Input Stage  
The input common-mode voltage range of the AD860x extends  
to both positive and negative supply voltages. This maximizes  
the usable voltage range of the amplier, an important feature  
0
1
2
3
4
5
V
V  
CM  
Figure 2. AD8602AR Input Offset Voltage vs.  
Common-Mode Voltage, 300 SOIC Units @ 25°C  
DigiTrim is a trademark of Analog Devices.  
REV. 0  
–13–  
AD8601/AD8602  
Input Overvoltage Protection  
10pF  
(OPTIONAL)  
As with any semiconductor device, if a condition could exist for  
the input voltage to exceed the power supply, the devices input  
overvoltage characteristic must be considered. Excess input voltage  
will energize internal PN junctions in the AD860x, allowing  
current to flow from the input to the supplies.  
4.7m  
V
OUT  
D1  
4.7V/A  
AD8601  
This input current will not damage the amplier provided it is  
limited to 5 mA or less. This can be ensured by placing a resistor  
in series with the input. For example, if the input voltage could  
exceed the supply by 5 V, the series resistor should be at least  
(5 V/5 mA) = 1 k. With the input voltage within the supply  
rails, a minimal amount of current is drawn into the inputs  
which, in turn, causes a negligible voltage drop across the series  
resistor. Thus, adding the series resistor will not adversely affect  
circuit performance.  
Figure 3. Amplifier Photdiode Circuit  
High- and Low-Side Precision Current Monitoring  
Because of its low input bias current and low offset voltage, the  
AD860x can be used for precision current monitoring. The true  
rail-to-rail input feature of the AD860x allows the amplier to  
monitor current on either high-side or low-side. Using both  
ampliers in an AD8602 provides a simple method for monitoring  
both current supply and return paths for load or fault detection.  
Figure 4 and 54 demonstrate both circuits.  
Overdrive Recovery  
Overdrive recovery is dened as the time it takes the output of an  
amplier to come off the supply rail when recovering from an over-  
load signal. This is tested by placing the amplier in a closed-loop  
gain of 10 with an input square wave of 2 V peak-to-peak while the  
amplier is powered from either 5 V or 3 V.  
3V  
R2  
2.49k  
MONITOR  
OUTPUT  
Q1  
The AD860x has excellent recovery time from overload conditions.  
The output recovers from the positive supply rail within 200 ns at all  
supply voltages. Recovery from the negative rail is within 500 ns  
at 5 V supply, decreasing to within 350 ns when the device is  
powered from 2.7 V.  
2N3905  
3V  
R1  
1/2 AD8602  
100⍀  
RETURN TO  
GROUND  
Power-On Time  
R
0.1⍀  
SENSE  
Power-on time is important in portable applications, where the  
supply voltage to the amplier may be toggled to shut down the  
device to improve battery life. Fast power-up behavior ensures  
the output of the amplier will quickly settle to its nal voltage,  
thus improving the power-up speed of the entire system. Once  
the supply voltage reaches a minimum of 2.5 V, the AD860x  
will settle to a valid output within 1 µs. This turn-on response  
time is faster than many other precision ampliers, which can  
take tens or hundreds of microseconds for their output to settle.  
Figure 4. A Low-Side Current Monitor  
R
SENSE  
I
L
0.1⍀  
V+  
3V  
3V  
0.1F  
R1  
100⍀  
1/2  
AD8602  
Using the AD8602 in High Source Impedance Applications  
The CMOS rail-to-rail input structure of the AD860x allows  
these ampliers to have very low input bias currents, typically  
0.2 pA. This allows the AD860x to be used in any application  
that has a high source impedance or must use large value resistances  
around the amplier. For example, the photodiode amplier circuit  
shown in Figure 3 requires a low input bias current op amp to  
reduce output voltage error. The AD8601 minimizes offset errors  
due to its low input bias current and low offset voltage.  
Q1  
2N3904  
MONITOR  
OUTPUT  
R2  
2.49k⍀  
Figure 5. A High-Side Current Monitor  
Voltage drop is created across the 0.1 resistor that is propor-  
tional to the load current. This voltage appears at the inverting  
input of the amplier due to the feedback correction around the  
op amp. This creates a current through R1 which, in turn, pulls  
current through R2. For the low side monitor, the monitor  
output voltage is given by:  
The current through the photodiode is proportional to the incident  
light power on its surface. The 4.7 Mresistor converts this  
current into a voltage, with the output of the AD8601 increas-  
ing at 4.7 V/µA. The feedback capacitor reduces excess noise at  
higher frequencies by limiting the bandwidth of the circuit to:  
1
BW =  
RSENSE  
(1)  
2π 4.7 MC  
Monitor Output = R2 ×  
× I  
L
(
)
F
(2)  
R1  
Using a 10 pF feedback capacitor limits the bandwidth to approxi-  
mately 3.3 kHz.  
For the high-side monitor, the monitor output voltage is:  
–14–  
REV. 0  
AD8601/AD8602  
PC100 Compliance for Computer Audio Applications  
RSENSE  
Monitor Output =V + −R2 ×  
× I  
L
(
)
Because of its low distortion and rail-to-rail input and output, the  
AD860x is an excellent choice for low cost, single supply audio  
applications, ranging from microphone amplication to line output  
buffering. TPC 34 shows the total harmonic distortion plus noise  
(THD + N) gures for the AD860x. In unity gain, the amplier  
has a typical THD + N of 0.004%, or 86 dB, even with a load  
resistance of 600 . This is compliant with the PC100 specication  
requirements for audio in both portable and desktop computers.  
(3)  
R1  
Using the components shown, the monitor output transfer function  
is 2.5 V/A.  
Using the AD8601 in Single Supply Mixed-Signal Applications  
Single supply mixed-signal applications requiring 10 or more bits of  
resolution demand both a minimum of distortion and a maximum  
range of voltage swing to optimize performance. To ensure the A/D  
or D/A converters achieve their best performance an amplier often  
must be used for buffering or signal conditioning. The 750 µV  
maximum offset voltage of the AD8601 allows the amplier to be  
used in 12-bit applications powered from a 3 V single supply, and  
its rail-to-rail input and output ensure no signal clipping.  
Figure 8 shows how an AD8602 can be interfaced with an AC97  
codec to drive the line output. Here, the AD8602 is used as a  
unity-gain buffer from the left and right outputs of the AC97  
CODEC. The 100 µF output coupling capacitors block dc current  
and the 20 series resistors protect the amplier from short-circuits  
at the jack.  
Figure 6 shows the AD8601 used as a input buffer amplier to  
the AD7476, a 12-bit 1 MHz A/D converter. As with most A/D  
converters, total harmonic distortion (THD) increases with higher  
source impedances. By using the AD8601 in a buffer congura-  
tion, the low output impedance of the amplier minimizes THD  
while the high input impedance and low bias current of the op  
amp minimizes errors due to source impedance. The 8 MHz  
gain-bandwidth product of the AD8601 ensures no signal attenu-  
ation up to 500 kHz, which is the maximum Nyquist frequency  
for the AD7476.  
+5V  
+5V  
V
DD  
2
3
C1  
R4  
20⍀  
8
100F  
28  
35  
V
DD  
1
U1-A  
4
R2  
2k⍀  
LEFT  
OUT  
AD1881  
(AC97)  
5
C2  
100F  
R5  
20⍀  
3V  
36  
RIGHT  
OUT  
5V  
REF193  
SUPPLY  
7
U1-B  
1F  
TANT  
V
SS  
0.1F  
10F  
0.1F  
6
680nF  
R3  
2k⍀  
4
3
V
DD  
5
2
SCLK  
NOTE: ADDITIONAL PINS  
OMITTED FOR CLARITY  
1
U1 = AD8602D  
R
V
S
IN  
SDATA  
C/P  
AD8601  
V
CS  
GND  
Figure 8. A PC100 Compliant Line Output Amplifier  
SPICE Model  
IN  
AD7476/AD7477  
SERIAL  
The SPICE macro-model for the AD860x amplier is available  
and can be downloaded from the Analog Devices website at  
http://www.analog.com. The model will accurately simulate a  
number of both dc and ac parameters, including open-loop gain,  
bandwidth, phase margin, input voltage range, output voltage  
swing versus output current, slew rate, input voltage noise, CMRR,  
PSRR, and supply current versus supply voltage. The model is  
optimized for performance at 27°C. Although it will function at  
different temperatures, it may lose accuracy with respect to the  
actual behavior of the AD860x.  
INTERFACE  
Figure 6. A Complete 3 V 12-Bit 1 MHz A/D  
Conversion System  
Figure 7 demonstrates how the AD8601 can be used as an output  
buffer for the DAC for driving heavy resistive loads. The AD5320  
is a 12-bit D/A converter that can be used with clock frequencies  
up to 30 MHz and signal frequencies up to 930 kHz. The rail-to-  
rail output of the AD8601 allows it to swing within 100 mV of the  
positive supply rail while sourcing 1 mA of current. The total  
current drawn from the circuit is less than 1 mA, or 3 mW from  
a 3 V single supply.  
3V  
1F  
V
OUT  
4
3
5
2
0V TO 3.0V  
4
5
6
1
3-WIRE  
SERIAL  
INTERFACE  
1
AD5320  
AD8601  
R
L
2
Figure 7. Using the AD8601 as a DAC Output Buffer to  
Drive Heavy Loads  
The AD8601, AD7476, and AD5320 are all available in space-  
saving SOT-23 packages.  
REV. 0  
–15–  
AD8601/AD8602  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
5-Lead SOT-23  
(RT Sufx)  
8-Lead SOIC  
(RM Sufx)  
0.122 (3.10)  
0.114 (2.90)  
0.1220 (3.100)  
0.1063 (2.700)  
8
5
4
5
1
4
0.1181 (3.000)  
0.0984 (2.500)  
0.0709 (1.800)  
0.0590 (1.500)  
0.122 (3.10)  
0.114 (2.90)  
0.199 (5.05)  
0.187 (4.75)  
2
3
1
PIN 1  
0.0374 (0.950) REF  
PIN 1  
0.0256 (0.65) BSC  
0.0748 (1.900)  
REF  
0.120 (3.05)  
0.112 (2.84)  
0.120 (3.05)  
0.112 (2.84)  
0.0079 (0.200)  
0.0035 (0.090)  
0.043 (1.09)  
0.037 (0.94)  
0.0512 (1.300)  
0.0354 (0.900)  
0.0571 (1.450)  
0.0354 (0.900)  
0.006 (0.15)  
0.002 (0.05)  
33؇  
27؇  
0.018 (0.46)  
0.008 (0.20)  
10؇  
0؇  
0.028 (0.71)  
0.016 (0.41)  
0.011 (0.28)  
0.003 (0.08)  
SEATING  
PLANE  
SEATING  
PLANE  
0.0197 (0.500)  
0.0118 (0.300)  
0.0059 (0.150)  
0.0000 (0.000)  
0.0236 (0.600)  
0.0039 (0.100)  
8-Lead SOIC  
(SO Sufx)  
0.1968 (5.00)  
0.1890 (4.80)  
8
1
5
4
0.1574 (4.00)  
0.1497 (3.80)  
0.2440 (6.20)  
0.2284 (5.80)  
PIN 1  
0.0688 (1.75)  
0.0532 (1.35)  
0.0196 (0.50)  
0.0099 (0.25)  
x 45؇  
0.0098 (0.25)  
0.0040 (0.10)  
8؇  
0؇  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0138 (0.35)  
SEATING  
PLANE  
0.0500 (1.27)  
0.0160 (0.41)  
0.0098 (0.25)  
0.0075 (0.19)  
–16–  
REV. 0  

相关型号:

AD8601ART-R2

Precision CMOS Single-Supply Rail-to-Rail Input/Output Wideband Operational Amplifiers
ADI

AD8601ART-REEL

Precision CMOS Single-Supply Rail-to-Rail Input/Output Wideband Operational Amplifiers
ADI

AD8601ART-REEL7

Precision CMOS Single-Supply Rail-to-Rail Input/Output Wideband Operational Amplifiers
ADI

AD8601ARTZ-R2

Precision CMOS, Single-Supply, Rail-to-Rail, Input/Output Wideband Operational Amplifiers
ADI

AD8601ARTZ-R2

OP-AMP, 2100 uV OFFSET-MAX, 8.2 MHz BAND WIDTH, PDSO5, ROHS COMPLIANT, MO-178AA, SOT-23, 5 PIN
ROCHESTER

AD8601ARTZ-REEL

Precision CMOS, Single-Supply, Rail-to-Rail, Input/Output Wideband Operational Amplifiers
ADI

AD8601ARTZ-REEL7

Precision CMOS, Single-Supply, Rail-to-Rail, Input/Output Wideband Operational Amplifiers
ADI

AD8601ARTZ-REEL7

OP-AMP, 2100 uV OFFSET-MAX, 8.2 MHz BAND WIDTH, PDSO5, ROHS COMPLIANT, MO-178AA, SOT-23, 5 PIN
ROCHESTER

AD8601DRT

Precision CMOS Single Supply Rail-to-Rail Input/Output Wideband Operational Amplifiers
ADI

AD8601DRT-R2

Precision CMOS Single-Supply Rail-to-Rail Input/Output Wideband Operational Amplifiers
ADI

AD8601DRT-REEL

Precision CMOS Single-Supply Rail-to-Rail Input/Output Wideband Operational Amplifiers
ADI

AD8601DRT-REEL7

Precision CMOS Single-Supply Rail-to-Rail Input/Output Wideband Operational Amplifiers
ADI