AD8605ART-R2

更新时间:2024-10-29 02:21:47
品牌:ADI
描述:Precision Low noise CMOS Rail-to-Rail Input/Output Operational Amplifiers

AD8605ART-R2 概述

Precision Low noise CMOS Rail-to-Rail Input/Output Operational Amplifiers 精密,低噪声CMOS轨到轨输入/输出运算放大器

AD8605ART-R2 数据手册

通过下载AD8605ART-R2数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
Precision Low Noise CMOS Rail-to-Rail  
Input/Output Operational Amplifiers  
AD8605/AD8606/AD8608  
FEATURES  
APPLICATIONS  
Low offset voltage: 65 µV maximum  
Low input bias currents: 1 pA maximum  
Hz  
Low noise: 8 nV/√  
Photodiode amplification  
Battery-powered instrumentation  
Multipole filters  
Sensors  
Barcode scanners  
Audio  
Wide bandwidth: 10 MHz  
High open-loop gain: 120 dB  
Unity gain stable  
Single-supply operation: 2.7 V to 5.5 V  
MicroCSP™  
FUNCTIONAL BLOCK DIAGRAMS  
GENERAL DESCRIPTION  
The AD8605, AD8606, and AD86081 are single, dual, and quad  
rail-to-rail input and output, single-supply amplifiers. They  
feature very low offset voltage, low input voltage and current  
noise, and wide signal bandwidth. They use Analog Devices’  
patented DigiTrim® trimming technique, which achieves  
superior precision without laser trimming.  
OUT  
V–  
1
2
5
V+  
V+  
1
2
3
4
8
7
6
5
OUT A  
–IN A  
OUT B  
–IN B  
+IN B  
AD8605  
AD8608  
+IN A  
V–  
–IN  
3
4
+IN  
Figure 1. 5-Lead SOT-23 (RT Suffix)  
Figure 2. 8-Lead SOIC (R Suffix)  
TOP VIEW  
(BUMP SIDE DOWN)  
The combination of low offsets, low noise, very low input bias  
currents, and high speed makes these amplifiers useful in a  
wide variety of applications. Filters, integrators, photodiode  
amplifiers, and high impedance sensors all benefit from the  
combination of performance features. Audio and other ac  
applications benefit from the wide bandwidth and low  
distortion. Applications for these amplifiers include optical  
control loops, portable and loop-powered instrumentation,  
and audio amplification for portable devices.  
1
2
3
4
5
6
7
14  
OUT D  
OUT A  
–IN A  
+IN A  
V+  
OUT  
1
V+  
5
13 –IN D  
12 +IN D  
V–  
2
AD8608  
11  
10  
9
V–  
+IN B  
–IN B  
OUT B  
+IN C  
–IN C  
OUT C  
+IN  
3
–IN  
4
8
AD8605 ONLY  
Figure 3. 5-Bump MicroCSP  
(CB Suffix)  
Figure 4. 14-Lead SOIC (R Suffix)  
The AD8605, AD8606, and AD8608 are specified over the  
extended industrial temperature range (−40°C to +125°C). The  
AD8605 single is available in the 5-lead SOT-23 and 5-bump  
MicroCSP packages. The 5-bump MicroCSP offers the smallest  
available footprint for any surface-mount operational amplifier.  
The AD8606 dual is available in an 8-lead MSOP package and a  
narrow SOIC surface-mount package. The AD8608 quad is  
available in a 14-lead TSSOP and a narrow 14-lead SOIC  
package. MicroCSP, SOT, MSOP, and TSSOP versions are  
available in tape and reel only.  
OUT A  
OUT D  
–IN D  
+IN D  
V–  
+IN C  
–IN C  
OUT C  
1
14  
OUT A  
V+  
OUT B  
–IN B  
1
8
5
–IN A  
+IN A  
V+  
+IN B  
–IN B  
–IN A  
+IN A  
V–  
AD8606  
AD8608  
4
+IN B  
8
7
OUT B  
Figure 5. 8-Lead MSOP (RM Suffix)  
Figure 6. 14-Lead TSSOP (RU Suffix)  
1 Protected by U.S. Patent No. 5,969,657; other patents pending.  
Rev. D  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
 
AD8605/AD8606/AD8608  
TABLE OF CONTENTS  
5 V Electrical Specifications............................................................ 3  
Channel Separation.................................................................... 14  
Capacitive Load Drive ............................................................... 14  
Light Sensitivity .......................................................................... 15  
MicroCSP Assembly Considerations....................................... 15  
I-V Conversion Applications ........................................................ 16  
Photodiode Preamplifier Applications .................................... 16  
Audio and PDA Applications ................................................... 16  
Instrumentation Amplifiers ...................................................... 17  
D/A Conversion ......................................................................... 17  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 19  
2.7 V Electrical Specifications......................................................... 5  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Typical Performance Characteristics ............................................. 7  
Application Information................................................................ 13  
Output Phase Reversal............................................................... 13  
Maximum Power Dissipation ................................................... 13  
Input Overvoltage Protection ................................................... 13  
THD + Noise............................................................................... 13  
Total Noise Including Source Resistors ................................... 14  
REVISION HISTORY  
5/04—Data Sheet Changed from Rev. C to Rev. D  
3/03—Data Sheet Changed from Rev. A to Rev. B  
Updated Format............................................................. Universal  
Edit to Light Sensitivity Section ...............................................16  
Updated Outline Dimensions...................................................19  
Changes to Ordering Guide ......................................................20  
Changes to Functional Block Diagram....................................... 1  
Changes to Absolute Maximum Ratings.................................... 4  
Changes to Ordering Guide ....................................................... 4  
Changes to Figure 9 .................................................................... 13  
Updated Outline Dimensions.................................................... 15  
7/03—Data Sheet Changed from Rev. B to Rev. C  
Changes to Features....................................................................... 1  
Change to General Description ................................................... 1  
Addition to Functional Block Diagrams .................................... 1  
Addition to Absolute Maximum Ratings ................................... 4  
Addition to Ordering Guide ........................................................ 4  
Change to Equation In Maximum Power Dissipation  
11/02—Data Sheet Changed from Rev. 0 to Rev. A  
Change to Electrical Characteristics........................................... 2  
Changes to Absolute Maximum Ratings.................................... 4  
Changes Ordering Guide ............................................................. 4  
Change to TPC 6 .......................................................................... 5  
Updated Outline Dimensions.................................................... 15  
Section........................................................................................11  
Added Light Sensitivity Section.................................................12  
Added New Figure 8 and Renumbered Subsequent Figures .13  
Added New MicroCSP Assembly Considerations Section ....13  
Changes to Figure 9.....................................................................13  
Change to Equation in Photodiode Preamplifier  
Applications Section ................................................................13  
Changes to Figure 12...................................................................14  
Change to Equation in D/A Conversion Section ....................14  
Updated Outline Dimensions ...................................................15  
Rev. D | Page 2 of 20  
AD8605/AD8606/AD8608  
5 V ELECTRICAL SPECIFICATIONS  
Table 1. @ VS = 5 V, VCM = VS/2, TA = 25°C, unless otherwise noted.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
AD8605/AD8606  
AD8608  
VOS  
VS = 3.5 V, VCM = 3 V  
VS = 3.5 V, VCM = 2.7 V  
VS = 5 V, VCM = 0 V to 5 V  
−40°C < TA < +125°C  
20  
20  
80  
65  
75  
300  
750  
1
µV  
µV  
µV  
µV  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
V
Input Bias Current  
AD8605/AD8606  
AD8605/AD8606  
AD8608  
AD8608  
Input Offset Current  
IB  
0.2  
−40°C < TA < +85°C  
−40°C < TA < +125°C  
−40°C < TA < +85°C  
−40°C < TA < +125°C  
50  
250  
100  
300  
0.5  
20  
IOS  
0.1  
−40°C < TA < +85°C  
−40°C < TA < +125°C  
75  
5
Input Voltage Range  
0
Common-Mode Rejection Ratio  
CMRR  
AVO  
VCM = 0 V to 5 V  
85  
75  
300  
100  
90  
1,000  
dB  
dB  
V/mV  
−40°C < TA < +125°C  
VO = 0.5 V to 4.5 V  
RL = 2 kΩ, VCM = 0 V  
Large Signal Voltage Gain  
Offset Voltage Drift  
AD8605/AD8606  
AD8608  
∆VOS/∆T  
∆VOS/∆T  
1
1.5  
4.5  
6.0  
µV/°C  
µV/°C  
INPUT CAPACITANCE  
Common-Mode Input Capacitance  
Differential Input Capacitance  
OUTPUT CHARACTERISTICS  
Output Voltage High  
8.8  
2.59  
pF  
pF  
VOH  
IL = 1 mA  
IL = 10 mA  
4.96  
4.7  
4.98  
4.79  
V
V
−40°C < TA < +125°C  
IL = 1 mA  
IL= 10 mA  
4.6  
V
Output Voltage Low  
VOL  
20  
170  
40  
210  
290  
mV  
mV  
mV  
mA  
−40°C < TA < +125°C  
Output Current  
Closed-Loop Output Impedance  
POWER SUPPLY  
IOUT  
ZOUT  
80  
10  
f = 1 MHz, AV = 1  
Power Supply Rejection Ratio  
AD8605/AD8606  
AD8608  
PSRR  
VS = 2.7 V to 5.5 V  
VS = 2.7 V to 5.5 V  
−40°C < TA < +125°C  
VO = 0 V  
80  
77  
70  
95  
92  
90  
1
dB  
dB  
dB  
mA  
mA  
Supply Current/Amplifier  
ISY  
1.2  
1.4  
−40°C < TA < +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time  
Full Power Bandwidth  
Gain Bandwidth Product  
Phase Margin  
SR  
tS  
BWP  
GBP  
RL = 2 kΩ  
To 0.01%, 0 V to 2 V step  
< 1% distortion  
5
< 1  
360  
V/µs  
µs  
kHz  
10  
MHz  
Degrees  
65  
ϕO  
Rev. D | Page 3 of 20  
 
AD8605/AD8606/AD8608  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
NOISE PERFORMANCE  
Peak-to-Peak Noise  
Voltage Noise Density  
Voltage Noise Density  
Current Noise Density  
en p-p  
en  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
2.3  
8
3.5  
12  
µV p-p  
Hz  
nV/√  
nV/√  
pA/√  
en  
f = 10 kHz  
6.5  
0.01  
Hz  
Hz  
in  
f = 1 kHz  
Rev. D | Page 4 of 20  
AD8605/AD8606/AD8608  
2.7 V ELECTRICAL SPECIFICATIONS  
Table 2. @ VS = 2.7 V, VCM = VS/2, TA = 25°C, unless otherwise noted.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
AD8605/AD8606  
AD8608  
VOS  
VS = 3.5 V, VCM = 3 V  
20  
20  
80  
65  
75  
300  
750  
1
µV  
µV  
µV  
µV  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
V
VS = 3.5 V, VCM = 2.7 V  
VS = 2.7 V, VCM = 0 V to 2.7 V  
−40°C < TA < +125°C  
Input Bias Current  
AD8605/AD8606  
AD8605/AD8606  
AD8608  
AD8608  
Input Offset Current  
IB  
0.2  
−40°C < TA < +85°C  
−40°C < TA < +125°C  
−40°C < TA < +85°C  
−40°C < TA < +125°C  
50  
250  
100  
300  
0.5  
20  
IOS  
0.1  
−40°C < TA < +85°C  
−40°C < TA < +125°C  
75  
Input Voltage Range  
0
2.7  
Common-Mode Rejection Ratio  
CMRR  
AVO  
VCM = 0 V to 2.7 V  
−40°C < TA < +125°C  
RL = 2 kΩ, VO= 0.5 V to 2.2 V  
80  
70  
110  
95  
85  
350  
dB  
dB  
V/mV  
Large Signal Voltage Gain  
Offset Voltage Drift  
AD8605/AD8606  
AD8608  
∆VOS/∆T  
∆VOS/∆T  
1
1.5  
4.5  
6.0  
µV/°C  
µV/°C  
INPUT CAPACITANCE  
Common-Mode Input Capacitance  
Differential Input Capacitance  
OUTPUT CHARACTERISTICS  
Output Voltage High  
8.8  
2.59  
pF  
pF  
VOH  
VOL  
IL = 1 mA  
−40°C < TA < +125°C  
IL = 1 mA  
2.6  
2.6  
2.66  
25  
V
V
mV  
mV  
mA  
Output Voltage Low  
40  
50  
−40°C < TA < +125°C  
Output Current  
Closed-Loop Output Impedance  
POWER SUPPLY  
IOUT  
ZOUT  
30  
12  
f = 1 MHz, AV = 1  
Power Supply Rejection Ratio  
AD8605/AD8606  
AD8608  
PSRR  
ISY  
VS = 2.7 V to 5.5 V  
VS = 2.7 V to 5.5 V  
−40°C < TA < +125°C  
VO = 0 V  
80  
77  
70  
95  
92  
90  
1.15  
dB  
dB  
dB  
mA  
mA  
Supply Current/Amplifier  
1.4  
1.5  
−40°C < TA < +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time  
Gain Bandwidth Product  
Phase Margin  
SR  
tS  
GBP  
RL = 2 kΩ  
To 0.01%, 0 V to 1 V step  
5
< 0.5  
9
V/µs  
µs  
MHz  
Degrees  
50  
ϕO  
NOISE PERFORMANCE  
Peak-to-Peak Noise  
Voltage Noise Density  
Voltage Noise Density  
Current Noise Density  
en p-p  
en  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
2.3  
8
3.5  
12  
µV p-p  
Hz  
nV/√  
nV/√  
pA/√  
en  
f = 10 kHz  
6.5  
0.01  
Hz  
in  
f = 1 kHz  
Hz  
Rev. D | Page 5 of 20  
 
AD8605/AD8606/AD8608  
ABSOLUTE MAXIMUM RATINGS  
Table 4. Package Type  
Package Type  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those listed in the operational sections  
of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
1
θJA  
θJC  
220  
92  
45  
43  
36  
35  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
5-Bump MicroCSP (CB)  
5-Lead SOT-23 (RT)  
8-Lead MSOP (RM)  
8-Lead SOIC (R)  
14-Lead SOIC (R)  
14-Lead TSSOP (RU)  
220  
230  
210  
158  
120  
180  
Table 3.  
Parameter  
Rating  
1 θJA is specified for worst-case conditions, i.e., θJA is specified for device in  
socket for PDIP packages; θJA is specified for device soldered onto a circuit  
board for surface-mount packages.  
Supply Voltage  
Input Voltage  
Differential Input Voltage  
6 V  
GND to VS  
6 V  
Output Short-Circuit Duration  
to GND  
Observe Derating Curves  
Storage Temperature Range  
All Packages  
Operating Temperature Range  
AD8605/AD8606/AD8608  
Junction Temperature Range  
All Packages  
−65°C to +150°C  
−40°C to +125°C  
−65°C to +150°C  
300°C  
Lead Temperature Range  
(Soldering, 60 sec)  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. D | Page 6 of 20  
 
AD8605/AD8606/AD8608  
TYPICAL PERFORMANCE CHARACTERISTICS  
300  
200  
100  
0
4500  
V
T
= 5V  
= 25°C  
V
T
V
= 5V  
= 25°C  
S
S
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
A
A
= 0V TO 5V  
CM  
–100  
–200  
–300  
0
–200  
–100  
0
100  
200  
300  
–300  
OFFSET VOLTAGE (mV)  
COMMON-MODE VOLTAGE (V)  
Figure 7. Input Offset Voltage Distribution  
Figure 10. Input Offset Voltage vs. Common-Mode Voltage  
(200 Units, 5 Wafer Lots, Including Process Skews)  
24  
20  
16  
12  
8
360  
320  
280  
240  
200  
160  
120  
80  
V
T
V
= 5V  
S
A
V
= ±2.5V  
S
= –40°C TO +125°C  
= 2.5V  
CM  
AD8605/AD8606  
AD8608  
4
40  
0
0
0
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8  
TCVOS (mV/°C)  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
Figure 8. AD8608 Input Offset Voltage Drift Distribution  
Figure 11. Input Bias Current vs. Temperature  
20  
18  
16  
14  
12  
10  
8
1k  
100  
10  
V
T
V
= 5V  
S
V
T
= 5V  
= 25°C  
S
A
= –40°C TO +125°C  
A
= 2.5V  
CM  
SOURCE  
SINK  
6
1
4
2
0
0.1  
0.001  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6  
TCVOS (mV/°C)  
0.01  
0.1  
LOAD CURRENT (mA)  
1
10  
Figure 9. AD8605/AD8606 Input Offset Voltage Drift Distribution  
Figure 12. Output Voltage to Supply Rail vs. Load Current  
Rev. D | Page 7 of 20  
 
AD8605/AD8606/AD8608  
5.000  
6
5
4
3
2
1
0
V
@ 1mA LOAD  
OH  
4.950  
V
= 5V  
S
V
V
T
= 5V  
= 4.9V p-p  
= 25°C  
S
4.900  
4.850  
4.800  
4.750  
4.700  
IN  
A
R
A
= 2k  
= 1  
L
V
V
@ 10mA LOAD  
OH  
1k  
10k  
100k  
1M  
10M  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 16. Closed-Loop Output Voltage Swing  
Figure 13. Output Voltage Swing vs. Temperature  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.250  
0.200  
0.150  
0.100  
0.050  
0
V
= ±2.5V  
S
V
= 5V  
S
V
@ 10mA LOAD  
OH  
A
= 100  
V
A
= 10  
A
= 1  
V
V
V
@ 1mA LOAD  
OH  
1k  
10k  
100k  
1M  
10M  
100M  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 17. Output Impedance vs. Frequency  
Figure 14. Output Voltage Swing vs. Temperature  
120  
110  
100  
90  
100  
80  
225  
180  
135  
90  
V
= ±2.5V  
S
V
R
C
= ±2.5V  
= 2kV  
= 20pF  
= 648  
S
L
L
60  
f
M
40  
80  
20  
45  
70  
0
0
60  
–20  
–40  
–60  
–80  
–100  
–45  
–90  
–135  
–180  
–225  
50  
40  
30  
20  
1k  
10k  
100k  
1M  
10M  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 18. Common-Mode Rejection Ratio vs. Frequency  
Figure 15. Open-Loop Gain and Phase vs. Frequency  
Rev. D | Page 8 of 20  
AD8605/AD8606/AD8608  
140  
120  
100  
80  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
= 5V  
S
60  
40  
20  
0
–20  
–40  
–60  
1k  
10k  
100k  
1M  
10M  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
FREQUENCY (Hz)  
SUPPLY VOLTAGE (V)  
Figure 19. PSRR vs. Frequency  
Figure 22. Supply Current vs. Supply Voltage  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
S
= 5V  
V
R
= 5V  
=
= 25°C  
= 1  
S
L
T
A
A
V
+OS  
–OS  
0
10  
100  
1k  
TIME (1s/DIV)  
CAPACITANCE (pF)  
Figure 20. Small Signal Overshoot vs. Load Capacitance  
Figure 23. 0.1 Hz to 10 Hz Input Voltage Noise  
2.0  
V
= ±2.5V  
= 10k  
= 200pF  
= 1  
S
R
C
A
L
L
V
1.5  
V
= 2.7V  
S
1.0  
V
= 5V  
S
0.5  
0
–0.5  
–1.0  
–1.5  
TIME (200ns/DIV)  
–50 –35 –20  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
Figure 21. Supply Current vs. Temperature  
Figure 24. Small Signal Transient Response  
Rev. D | Page 9 of 20  
AD8605/AD8606/AD8608  
36  
32  
28  
24  
20  
16  
12  
8
V
= ±2.5V  
= 10k  
= 200pF  
= 1  
S
V
= ±2.5V  
S
R
C
A
L
L
V
4
TIME (400ns/DIV)  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
FREQUENCY (kHz)  
Figure 25. Large Signal Transient Response  
Figure 28. Voltage Noise Density  
53.6  
46.9  
40.2  
33.5  
26.8  
20.1  
13.4  
6.7  
V
R
A
= ±2.5V  
= 10kΩ  
= 100  
S
V
= ±2.5V  
S
L
+2.5V  
V
V
= 50mV  
IN  
0V  
0V  
–50mV  
0
TIME (400ns/DIV)  
0
1
2
3
4
5
6
7
8
9
10  
FREQUENCY (kHz)  
Figure 26. Negative Overload Recovery  
Figure 29. Voltage Noise Density  
119.2  
104.3  
99.4  
74.5  
59.6  
44.7  
29.8  
14.9  
0
V
R
A
= ±2.5V  
= 10kΩ  
= 100  
S
V
= ±2.5V  
S
L
V
V
= 50mV  
IN  
+2.5V  
0V  
0V  
–50mV  
TIME (400ns/DIV)  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
FREQUENCY (Hz)  
Figure 27. Positive Overload Recovery  
Figure 30. Voltage Noise Density  
Rev. D | Page 10 of 20  
AD8605/AD8606/AD8608  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
2.680  
2.675  
2.670  
2.665  
2.660  
2.655  
2.650  
V
T
V
= 2.7V  
= 25°C  
S
V
= 2.7V  
S
A
= 0V TO 2.7V  
CM  
V
@ 1mA LOAD  
OH  
–200  
–100  
0
100  
200  
300  
–40 –25 –10  
5
20  
35  
50  
65 80  
95 110 125  
–300  
OFFSET VOLTAGE (µV)  
TEMPERATURE (°C)  
Figure 31. Input Offset Voltage Distribution  
Figure 34. Output Voltage Swing vs. Temperature  
300  
200  
100  
0
0.045  
0.040  
0.035  
0.030  
0.025  
0.020  
0.015  
0.010  
0.005  
0
V
= 2.7V  
S
= 25°C  
V
= 2.7V  
S
T
A
V
@ 1mA LOAD  
OH  
–100  
–200  
–300  
0
0
0.9  
1.8  
2.7  
–40 –25 –10  
5
20  
35  
50  
65 80  
95 110 125  
COMMON-MODE VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 32. Input Offset Voltage vs. Common-Mode Voltage  
(200 Units, 5 Wafer Lots, Including Process Skews)  
Figure 35. Output Voltage Swing vs. Temperature  
100  
80  
225  
180  
135  
90  
1k  
100  
10  
V
R
C
= ±1.35V  
= 2k  
= 20pF  
V
T
= 2.7V  
= 25°C  
S
S
L
A
L
60  
fM = 52.5°  
40  
20  
45  
SOURCE  
0
0
SINK  
–20  
–40  
–60  
–80  
–100  
–45  
–90  
–135  
1
–180  
–225  
0.1  
0.001  
10k  
100k  
1M  
10M  
100M  
0.1  
LOAD CURRENT (mA)  
0.01  
10  
1
FREQUENCY (Hz)  
Figure 36. Open-Loop Gain and Phase vs. Frequency  
Figure 33. Output Voltage to Supply Rail vs. Load Current  
Rev. D | Page 11 of 20  
AD8605/AD8606/AD8608  
3.0  
V
= 2.7V  
S
2.5  
V
V
= 2.7V  
S
= 2.6V p-p  
= 25°C  
IN  
2.0  
1.5  
1.0  
0.5  
0
T
A
R
A
= 2kΩ  
L
V
= 1  
TIME (1s/DIV)  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 40. 0.1 Hz to 10 Hz Input Voltage Noise  
Figure 37. Closed-Loop Output Voltage Swing vs. Frequency  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 1.35V  
= 10kΩ  
= 200pF  
= 1  
S
R
C
A
V
= ±1.35V  
L
L
V
S
A
= 100  
V
A
= 10  
V
A
= 1  
V
TIME (200ns/DIV)  
10k  
100k  
1M  
10M  
100M  
1k  
FREQUENCY (Hz)  
Figure 38. Output Impedance vs. Frequency  
Figure 41. Small Signal Transient Response  
60  
50  
40  
30  
20  
10  
0
V
= 1.35V  
= 10k  
= 200pF  
= 1  
V
T
A
= 2.7V  
= 25°C  
= 1  
S
S
A
R
C
A
L
L
V
V
–OS  
+OS  
10  
100  
1k  
TIME (400ns/DIV)  
CAPACITANCE (pF)  
Figure 42. Large Signal Transient Response  
Figure 39. Small Signal Overshoot vs. Load Capacitance  
Rev. D | Page 12 of 20  
AD8605/AD8606/AD8608  
APPLICATION INFORMATION  
OUTPUT PHASE REVERSAL  
Figure 44 compares the maximum power dissipation with  
temperature for the various AD8605 family packages.  
Phase reversal is defined as a change in polarity at the output of  
the amplifier when a voltage that exceeds the maximum input  
common-mode voltage drives the input.  
2.0  
1.8  
Phase reversal can cause permanent damage to the amplifier; it  
may also cause system lockups in feedback loops. The AD8605  
does not exhibit phase reversal even for inputs exceeding the  
supply voltage by more than 2 V.  
SOIC-14  
1.6  
1.4  
SOIC-8  
1.2  
1.0  
V
V
A
R
= ±2.5V  
= 5V p-p  
= 1  
S
0.8  
IN  
V
OUT  
SOT-23  
0.6  
TSSOP  
0.4  
V
L
= 10k  
MSOP  
0.2  
V
IN  
0
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
Figure 44. Maximum Power Dissipation vs. Temperature  
INPUT OVERVOLTAGE PROTECTION  
The AD8605 has internal protective circuitry. However, if the  
voltage applied at either input exceeds the supplies by more  
than 2.5 V, external resistors should be placed in series with the  
inputs. The resistor values can be determined by the formula  
TIME (4µs/DIV)  
Figure 43. No Phase Reversal  
MAXIMUM POWER DISSIPATION  
(
VIN VS  
RS + 200Ω  
)
5mA  
Power dissipated in an IC causes the die temperature to  
increase. This can affect the behavior of the IC and the  
application circuit performance.  
(
)
The remarkable low input offset current of the AD8605 (<1 pA)  
allows the use of larger value resistors. With a 10 kΩ resistor at  
the input, the output voltage has less than 10 nV of error  
voltage. A 10 kΩ resistor has less than 13 nV/√ of thermal  
noise at room temperature.  
The absolute maximum junction temperature of the AD8605/  
AD8606/AD8608 is 150°C. Exceeding this temperature could  
cause damage or destruction of the device. The maximum  
power dissipation of the amplifier is calculated according to  
the following formula:  
Hz  
THD + NOISE  
Total harmonic distortion is the ratio of the input signal in V  
rms to the total harmonics in V rms throughout the spectrum.  
Harmonic distortion adds errors to precision measurements  
and adds unpleasant sonic artifacts to audio systems.  
TJ TA  
θJA  
PDISS  
=
where:  
TJ = junction temperature  
TA = ambient temperature  
The AD8605 has a low total harmonic distortion. Figure 45  
shows that the AD8605 has less than 0.005% or 86 dB of THD  
+ N over the entire audio frequency range. The AD8605 is  
configured in positive unity gain, which is the worst case, and  
with a load of 10 kΩ.  
θJA = junction to-ambient-thermal resistance  
Rev. D | Page 13 of 20  
 
 
AD8605/AD8606/AD8608  
0.1  
The AD8606 has a channel separation of greater than −160 dB  
up to frequencies of 1 MHz, allowing the two amplifiers to  
amplify ac signals independently in most applications.  
V
A
B
= 2.5V  
= 1  
= 22kHz  
SY  
V
W
0
–20  
0.01  
0.001  
–40  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
0.0001  
20  
100  
1k  
10k 20k  
FREQUENCY (Hz)  
Figure 45. THD + N  
100  
1k  
10k  
100k  
1M  
10M  
100M  
TOTAL NOISE INCLUDING SOURCE RESISTORS  
FREQUENCY (Hz)  
The low input current noise and input bias current of the  
AD8605 make it the ideal amplifier for circuits with substantial  
input source resistance such as photodiodes. Input offset voltage  
increases by less than 0.5 nV per 1 kΩ of source resistance at  
room temperature and increases to 10 nV at 85°C. The total  
noise density of the circuit is  
Figure 46. Channel Separation vs. Frequency  
CAPACITIVE LOAD DRIVE  
The AD8605 can drive large capacitive loads without oscillation.  
Figure 47 shows the output of the AD8606 in response to a  
200 mV input signal. In this case, the amplifier was configured  
in positive unity gain, worst case for stability, while driving a  
1,000 pF load at its output. Driving larger capacitive loads in  
unity gain may require the use of additional circuitry.  
2
2
en  
=
en  
+
(
inRS  
)
+ 4kTRS  
,
TOTAL  
where:  
en is the input voltage noise density of the AD8605  
in is the input current noise density of the AD8605  
RS is the source resistance at the noninverting terminal  
k is Boltzmann’s constant (1.38 × 10−23 J/K)  
V
= ±2.5V  
= 1  
S
A
R
C
V
L
L
= 10k  
= 1  
T is the ambient temperature in Kelvin (T = 273 + °C)  
For example, with RS = 10 kΩ, the total voltage noise density is  
Hz  
roughly 15 nV/√  
.
For RS < 3.9 kΩ, en dominates and en,TOTAL en.  
The current noise of the AD8605 is so low that its total density  
does not become a significant term unless RS is greater than  
6 MΩ. The total equivalent rms noise over a specific bandwidth  
is expressed as  
TIME (10µs/DIV)  
Figure 47. Capacitive Load Drive without Snubber  
A snubber network, shown in Figure 48, helps reduce the signal  
overshoot to a minimum and maintain stability. Although this  
circuit does not recover the loss of bandwidth induced by large  
capacitive loads, it greatly reduces the overshoot and ringing.  
This method does not reduce the maximum output swing of  
the amplifier.  
En =  
(
en,TOTAL  
)
BW  
where BW is the bandwidth in hertz.  
Note that the analysis above is valid for frequencies greater than  
100 Hz and assumes relatively flat noise, above 10 kHz. For  
lower frequencies, flicker noise (1/f) must be considered.  
Figure 49 shows a scope photograph of the output at the  
snubber circuit. The overshoot is reduced from over 70% to  
less than 5%, and the ringing is eliminated by the snubber.  
Optimum values for RS and CS are determined experimentally.  
CHANNEL SEPARATION  
Channel separation, or inverse crosstalk, is a measure of the  
signal feed from one amplifier (channel) to an other on the  
same IC.  
Rev. D | Page 14 of 20  
 
 
AD8605/AD8606/AD8608  
V+  
shown in Figure 50 are not normal for most applications, i.e.,  
even though direct sunlight can have intensities of 50 mW/cm2,  
office ambient light can be as low as 0.1 mW/cm2.  
4
2
3
200mV  
When the MicroCSP package is assembled on the board with  
the bump-side of the die facing the PCB, reflected light from the  
PCB surface is incident on active silicon circuit areas and results  
in the increased IB. No performance degradation occurs due to  
illumination of the backside (substrate) of the AD8605ACB.  
The AD8605ACB is particularly sensitive to incident light with  
wavelengths in the near infrared range (NIR, 700 nm to 1000  
nm). Photons in this waveband have a longer wavelength and  
lower energy than photons in the visible (400 nm to 700 nm)  
and near ultraviolet bands (NUV, 200 nm to 400 nm); therefore,  
they can penetrate more deeply into the active silicon. Incident  
light with wavelengths greater than 1100 nm has no photo-  
electric effect on the AD8605ACB because silicon is trans-  
parent to wave lengths in this range. The spectral content of  
conventional light sources varies: sunlight has a broad spectral  
range, with peak intensity in the visible band that falls off in the  
NUV and NIR bands; fluorescent lamps have significant peaks  
in the visible but not in the NUV or NIR bands.  
1
AD8605  
V
IN  
R
R
C
L
S
L
8
C
S
V–  
Figure 48. Snubber Network Configuration  
V
= ±2.5V  
= 1  
= 1,000pF  
= 700pF  
S
A
R
R
C
C
V
L
S
L
S
= 10k  
= 90  
Efforts have been made at a product level to reduce the effect  
of ambient light; the under bump metal (UBM) has been  
designed to shield the sensitive circuit areas on the active side  
(bump-side) of the die. However, if an application encounters  
any light sensitivity with the AD8605ACB, shielding the bump  
side of the MicroCSP package with opaque material should  
eliminate this effect. Shielding can be accomplished using  
materials such as silica filled liquid epoxies that are used in  
flip chip underfill techniques.  
TIME (10µs/DIV)  
Figure 49. Capacitive Load Drive with Snubber  
Table 5 summarizes a few optimum values for capacitive loads.  
Table 5.  
CL (pF)  
RS (Ω)  
100  
70  
CS (pF)  
1,000  
1,000  
800  
500  
1,000  
2,000  
60  
5000  
4500  
4000  
3500  
An alternate technique is to insert a series resistor inside the  
feedback loop at the output of the amplifier. Typically, the value  
of this resistor is approximately 100 Ω. This method also  
reduces overshoot and ringing but causes a reduction in the  
maximum output swing.  
2
3mW/cm  
3000  
2500  
LIGHT SENSITIVITY  
2
2mW/cm  
2000  
1500  
1000  
The AD8605ACB (MicroCSP package option) is essentially  
a silicon die with additional post fabrication dielectric and  
intermetallic processing designed to contact solder bumps on  
the active side of the chip. With this package type, the die is  
exposed to ambient light and is subject to photoelectric effects.  
Light sensitivity analysis of the AD8605ACB mounted on  
standard PCB material reveals that only the input bias current  
(IB) parameter is impacted when the package is illuminated  
directly by high intensity light. No degradation in electrical  
performance is observed due to illumination by low intensity  
(0.1 mW/cm2) ambient light. Figure 50 shows that IB increases  
with increasing wavelength and intensity of incident light;  
IB can reach levels as high as 4500 pA at a light intensity of  
3 mW/cm2 and a wavelength of 850 nm. The light intensities  
2
1mW/cm  
500  
0
350  
450  
550  
650  
750  
850  
WAVELENGTH (nm)  
Figure 50. AD8605ACB Input Bias Current Response to Direct Illumination of  
Varying Intensity and Wavelength  
MICROCSP ASSEMBLY CONSIDERATIONS  
For detailed information on MicroCSP PCB assembly and  
reliability, refer to ADI Application Note AN-617 on the ADI  
website www.analog.com.  
Rev. D | Page 15 of 20  
 
 
 
AD8605/AD8606/AD8608  
I-V CONVERSION APPLICATIONS  
At room temperature, the AD8605 has an input bias current of  
0.2 pA and an offset voltage of 100 µV. Typical values of RD are  
in the range of 1 GΩ.  
PHOTODIODE PREAMPLIFIER APPLICATIONS  
The low offset voltage and input current of the AD8605 make it  
an excellent choice for photodiode applications. In addition, the  
low voltage and current noise make the amplifier ideal for  
application circuits with high sensitivity.  
For the circuit shown in Figure 9, the output error voltage is  
approximately 100 µV at room temperature, increasing to about  
1 mV at 85°C.  
C
F
10pF  
Where ft is the unity gain frequency of the amplifier, the  
maximum achievable signal bandwidth is  
R
10M  
F
ft  
fMAX  
=
PHOTODIODE  
2πRFCT  
+VOS–  
C
50pF  
D
AD8605  
R
I
D
D
AUDIO AND PDA APPLICATIONS  
V
OUT  
The AD8605s low distortion and wide dynamic range make it a  
great choice for audio and PDA applications, including  
microphone amplification and line output buffering.  
Figure 51. Equivalent Circuit for Photodiode Preamp  
Figure 52 shows a typical application circuit for headphone/line  
out amplification.  
The input bias current of the amplifier contributes an error  
term that is proportional to the value of RF.  
R1 and R2 are used to bias the input voltage at half the supply.  
This maximizes the signal bandwidth range. C1 and C2 are used  
to ac couple the input signal. C1 and R2 form a high-pass filter  
whose corner frequency is 1/2πR1C1.  
The offset voltage causes a dark current induced by the shunt  
resistance of the diode RD. These error terms are combined at  
the output of the amplifier. The error voltage is written as  
RF  
RD  
The high output current of the AD8605 allows it to drive heavy  
resistive loads.  
EO = VOS 1+  
+ RF IB  
The circuit of Figure 52 was tested to drive a 16 W headphone.  
The THD + N is maintained at approximately −60 dB  
throughout the audio range.  
Typically, RF is smaller than RD, thus RF/RD can be ignored.  
5V  
R1  
10k  
C1  
1µF  
8
C3  
R4  
100µF  
20Ω  
3
2
R2  
10kΩ  
1/2  
V1  
500mV  
AD8606  
1
HEADPHONES  
R3  
1kΩ  
4
5V  
C2  
1µF  
8
C4  
100µF  
R6  
20Ω  
5
6
1/2  
V2  
500mV  
AD8606  
7
R5  
1kΩ  
4
Figure 52. Single-Supply Headphone/Speaker Amplifier  
Rev. D | Page 16 of 20  
 
 
AD8605/AD8606/AD8608  
INSTRUMENTATION AMPLIFIERS  
R
R
R
The low offset voltage and low noise of the AD8605 make it a  
great amplifier for instrumentation applications.  
V
REF  
C
F
R
F
Difference amplifiers are widely used in high accuracy circuits  
to improve the common-mode rejection ratio.  
R2  
R2  
R2  
V+  
V
OS  
Figure 53 shows a simple difference amplifier. The CMRR of the  
circuit is plotted versus frequency. Figure 54 shows the  
common-mode rejection for a unity gain configuration and for  
a gain of 10.  
AD8605  
V–  
Making (R4/R3) = (R2/R1) and choosing 0.01% tolerance yields  
a CMRR of 74 dB and minimizes the gain error at the output.  
Figure 55. Simplified Circuit of the DAC8143 with AD8605 Output Buffer  
R1  
1kΩ  
R2  
10kΩ  
To optimize the performance of the DAC, insert a capacitor in  
the feedback loop of the AD8605 to compensate the amplifier  
from the pole introduced by the output capacitance of the DAC.  
Typical values for CF are in the range of 10 pF to 30 pF; it can be  
adjusted for the best frequency response. The total error at the  
output of the op amp can be computed by the formula:  
V1  
5V  
R4 R2  
=
R3 R1  
R2  
R1  
AD8605  
V
OUT  
V
=
(V2 – V1)  
OUT  
RF  
Req  
R3  
1kΩ  
R4  
10kΩ  
EO = VOS 1+  
V2  
where Req is the equivalent resistance seen at the output of the  
DAC. As mentioned above, Req is code dependant and varies  
with the input. A typical value for Req is 15 kΩ. Choosing a  
feedback resistor of 10 kΩ yields an error of less than 200 µV.  
Figure 53. Difference Amplifier, AV = 10  
120  
100  
80  
V
= ±2.5V  
SY  
A
= 10  
V
Figure 56 shows the implementation of a dual-stage buffer at  
the output of a DAC. The first stage is used as a buffer.  
Capacitor C1, with Req, creates a low-pass filter and thus  
provides phase lead to compensate for frequency response. The  
second stage of the AD8606 is used to provide voltage gain at  
the output of the buffer.  
A
= 1  
V
60  
40  
Grounding the positive input terminals in both stages reduces  
errors due to the common-mode output voltage. Choosing R1,  
R2, and R3 to match within 0.01% yields a CMRR of 74 dB and  
maintains minimum gain error in the circuit.  
20  
0
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
R
R3  
20k  
CS  
15V  
Figure 54. Difference Amplifier CMRR vs. Frequency  
R2  
10kΩ  
C1  
33pF  
D/A CONVERSION  
V
R
FB  
DD  
R1  
10kΩ  
The low input bias current and offset voltage of the AD8605  
make it an excellent choice for buffering the output of a current  
output DAC.  
OUT1  
V
AD7545  
OUT  
V
REF  
R
AGND  
V
P
IN  
1/2  
DB11  
1/2  
AD8606  
AD8606  
Figure 55 shows a typical implementation of the AD8605 at the  
output of a 12-bit DAC.  
R4  
5k10%  
The DAC8143 output current is converted to a voltage by the  
feedback resistor. The equivalent resistance at the output of the  
DAC varies with the input code, as does the output capacitance.  
Figure 56. Bipolar Operation  
Rev. D | Page 17 of 20  
 
 
 
 
 
AD8605/AD8606/AD8608  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
2.90 BSC  
8
1
5
4
5
4
3
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
2.80 BSC  
1.60 BSC  
2
1.27 (0.0500)  
BSC  
0.50 (0.0196)  
0.25 (0.0099)  
PIN 1  
× 45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.95 BSC  
0.25 (0.0098)  
0.10 (0.0040)  
1.90  
BSC  
1.30  
1.15  
0.90  
8°  
0.51 (0.0201)  
0.31 (0.0122)  
0° 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.40 (0.0157)  
1.45 MAX  
0.22  
0.08  
COMPLIANT TO JEDEC STANDARDS MS-012AA  
10°  
5°  
0°  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
0.15 MAX  
0.50  
0.30  
0.60  
0.45  
0.30  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-178AA  
Figure 60. 8-Lead Standard Small Outline Package [SOIC] Narrow Body (R-8)  
Figure 57. 5-Lead Small Outline Transistor Package [SOT-23] (RT-5)  
5.10  
5.00  
4.90  
8.75 (0.3445)  
8.55 (0.3366)  
14  
1
8
7
4.00 (0.1575)  
3.80 (0.1496)  
6.20 (0.2441)  
5.80 (0.2283)  
14  
8
7
4.50  
4.40  
4.30  
6.40  
BSC  
1.27 (0.0500)  
BSC  
0.50 (0.0197)  
0.25 (0.0098)  
1.75 (0.0689)  
1.35 (0.0531)  
× 45°  
0.25 (0.0098)  
0.10 (0.0039)  
1
8°  
0°  
PIN 1  
0.51 (0.0201)  
0.31 (0.0122)  
SEATING  
PLANE  
1.27 (0.0500)  
0.40 (0.0157)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
0.65  
BSC  
1.05  
1.00  
0.80  
0.20  
0.09  
1.20  
MAX  
0.75  
0.60  
0.45  
COMPLIANT TO JEDEC STANDARDS MS-012AB  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
8°  
0°  
0.15  
0.05  
0.30  
0.19  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153AB-1  
Figure 58. 14-Lead Standard Small Outline Package [SOIC]  
Narrow Body (R-14)  
Figure 61. 14-Lead Thin Shrink Small Outline Package [TSSOP] (RU-14)  
3.00  
BSC  
0.50 REF  
0.94  
0.90  
0.86  
0.37  
0.36  
0.35  
8
5
4
SEATING  
PLANE  
4.90  
BSC  
3.00  
BSC  
BOTTOM VIEW  
0.87  
0.23  
PIN 1  
IDENTIFIER  
0.18  
0.14  
1.33  
1.29  
1.25  
TOP VIEW  
PIN 1  
0.50  
(BALL SIDE DOWN)  
0.65 BSC  
0.21  
1.10 MAX  
0.15  
0.00  
0.17  
0.14  
0.12  
0.80  
0.60  
0.40  
0.20  
8°  
0°  
0.50  
0.38  
0.22  
0.23  
0.08  
COPLANARITY  
0.10  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-187AA  
Figure 59. 8-Lead Mini Small Outline Package [MSOP] (RM-8)  
Figure 62. 5-Bump 2 × 1 × 2 Array MicroCSP [WLCSP] (CB-5)  
Rev. D | Page 18 of 20  
 
AD8605/AD8606/AD8608  
ORDERING GUIDE  
Model  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
5-Bump MicroCSP  
5-Bump MicroCSP  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
8-Lead MSOP  
8-Lead MSOP  
8-Lead SOIC  
Package Option  
CB-5  
CB-5  
RT-5  
RT-5  
RT-5  
RT-5  
RT-5  
RM-8  
RM-8  
R-8  
R-8  
R-8  
R-14  
R-14  
R-14  
RU-14  
RU-14  
Branding  
B3A  
B3A  
B3A  
B3A  
B3A  
B3A  
B3A  
B6A  
AD8605ACB-REEL  
AD8605ACB-REEL7  
AD8605ART-R2  
AD8605ART-REEL  
AD8605ART-REEL7  
AD8605ARTZ-REEL1  
AD8605ARTZ-REEL71  
AD8606ARM-R2  
AD8606ARM-REEL  
AD8606AR  
AD8606AR-REEL  
AD8606AR-REEL7  
AD8608AR  
AD8608AR-REEL  
AD8608AR-REEL7  
AD8608ARU  
B6A  
8-Lead SOIC  
8-Lead SOIC  
14-Lead SOIC  
14-Lead SOIC  
14-Lead SOIC  
14-Lead TSSOP  
14-Lead TSSOP  
AD8608ARU-REEL  
1 Z = Pb-free part.  
Rev. D | Page 19 of 20  
 
 
 
AD8605/AD8606/AD8608  
NOTES  
© 2004 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C02731-0-5/04(D)  
Rev. D | Page 20 of 20  

AD8605ART-R2 CAD模型

  • 引脚图

  • 封装焊盘图

  • AD8605ART-R2 替代型号

    型号 制造商 描述 替代类型 文档
    AD8605ARTZ-REEL ADI Precision Low noise CMOS Rail-to-Rail Input/Output Operational Amplifiers 功能相似
    AD8605ARTZ-REEL7 ADI Precision Low noise CMOS Rail-to-Rail Input/Output Operational Amplifiers 功能相似
    AD8605ARTZ-R2 ADI Precision, Low Noise, CMOS, Rail-to-Rail, Input/Output Operational Amplifiers 功能相似

    AD8605ART-R2 相关器件

    型号 制造商 描述 价格 文档
    AD8605ART-REEL ADI Precision Low noise CMOS Rail-to-Rail Input/Output Operational Amplifiers 获取价格
    AD8605ART-REEL7 ADI Precision Low noise CMOS Rail-to-Rail Input/Output Operational Amplifiers 获取价格
    AD8605ARTZ ADI Precision, Low Noise, CMOS, Rail-to-Rail, Input/Output Operational Amplifiers 获取价格
    AD8605ARTZ-R2 ADI Precision, Low Noise, CMOS, Rail-to-Rail, Input/Output Operational Amplifiers 获取价格
    AD8605ARTZ-REEL ADI Precision Low noise CMOS Rail-to-Rail Input/Output Operational Amplifiers 获取价格
    AD8605ARTZ-REEL7 ADI Precision Low noise CMOS Rail-to-Rail Input/Output Operational Amplifiers 获取价格
    AD8605_08 ADI Precision, Low Noise, CMOS, Rail-to-Rail, Input/Output Operational Amplifiers 获取价格
    AD8605_15 ADI Precision, Low Noise, CMOS, Rail-to-Rail 获取价格
    AD8606 ADI Precision Low noise CMOS Rail-to-Rail Input/Output Operational Amplifiers 获取价格
    AD8606ACBZ-REEL ADI Precision, Low Noise, CMOS, Rail-to-Rail, Input/Output Operational Amplifiers 获取价格

    AD8605ART-R2 相关文章

  • HARTING(浩亭)圆形连接器产品选型手册
    2024-10-31
    6
  • HYCON(宏康科技)产品选型手册
    2024-10-31
    6
  • GREEGOO整流二极管和晶闸管产品选型手册
    2024-10-31
    7
  • 西门子豪掷106亿美元,战略收购工程软件巨头Altair
    2024-10-31
    8