AD8607AR-REEL [ADI]

Precision Micropower Low Noise CMOS Rail-Rail Input/Output Operational Amplifiers; 精密微功耗,低噪声CMOS轨对轨输入/输出运算放大器
AD8607AR-REEL
型号: AD8607AR-REEL
厂家: ADI    ADI
描述:

Precision Micropower Low Noise CMOS Rail-Rail Input/Output Operational Amplifiers
精密微功耗,低噪声CMOS轨对轨输入/输出运算放大器

运算放大器 放大器电路 光电二极管
文件: 总16页 (文件大小:1108K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision Micropower Low Noise CMOS Rail-  
to-Rail Input/Output Operational Amplifiers  
AD8603/AD8607/AD8609  
FEATURES  
PIN CONFIGURATIONS  
Low offset voltage: 50 µV max  
Low input bias current: 1 pA max  
Single-supply operation: 1.8 V to 5 V  
Low noise: 22 nV/√Hz  
Micropower: 50 µA max  
Low distortion  
5
V+  
OUT  
V–  
1
2
3
AD8603  
TOP VIEW  
(Not to Scale)  
4
–IN  
+IN  
Figure 1. 5-Lead TSOT-23 (UJ Suffix)  
No phase reversal  
Unity gain stable  
1
8
5
OUT A  
V+  
IN A  
OUT B  
IN B  
APPLICATIONS  
Battery-powered instrumentation  
AD8607  
4
+IN A  
V–  
+IN B  
Multipole filters  
Sensors  
Figure 2. 8-Lead MSOP (RM Suffix)  
Low power ASIC input or output amplifiers  
OUT A  
–IN A  
1
2
3
4
8
7
6
5
V+  
GENERAL DESCRIPTION  
OUT B  
–IN B  
+IN B  
AD8607  
The AD8603/AD8607/AD8609 are, single/dual/quad micro-  
power rail-to-rail input and output amplifiers, respectively, that  
features very low offset voltage as well as low input voltage and  
current noise.  
+IN A  
V–  
Figure 3. 8-Lead SOIC (R Suffix)  
These amplifiers use a patented trimming technique that  
achieves superior precision without laser trimming. The parts  
are fully specified to operate from 1.8 V to 5.0 V single supply  
or from 0.9 V to 2.5 V dual supply. The combination of low  
offsets, low noise, very low input bias currents, and low power  
consumption make the AD8603/AD8607/AD8609 especially  
useful in portable and loop-powered instrumentation.  
OUT A  
OUT D  
IN D  
+IN D  
1
14  
IN A  
+IN A  
V+  
AD8609  
V
+IN B  
+IN C  
IN C  
OUT C  
IN B  
8
7
OUT B  
Figure 4. 14-Lead TSSOP (RU Suffix)  
The ability to swing rail to rail at both the input and output  
enables designers to buffer CMOS ADCs, DACs, ASICs, and  
other wide output swing devices in low power single-supply  
systems.  
OUT A  
IN A  
1
2
3
4
5
6
7
14 OUT D  
13 –IN D  
12 +IN D  
+IN A  
V+  
AD8609  
11  
10  
9
V–  
The AD8603 is available in a tiny 5-lead TSOT-23 package. The  
AD8607 is available in 8-lead MSOP and SOIC packages. The  
AD8609 is available in 14-lead TSSOP and SOIC packages.  
+IN B  
–IN B  
OUT B  
+IN C  
–IN C  
OUT C  
8
Figure 5. 14-Lead SOIC (R Suffix)  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
AD8603/AD8607/AD8609  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
Typical Performance Characteristics ............................................. 6  
Applications..................................................................................... 12  
No Phase Reversal ...................................................................... 12  
Input Overvoltage Protection ................................................... 12  
Driving Capacitive Loads.......................................................... 12  
Proximity Sensors....................................................................... 13  
Composite Amplifiers................................................................ 13  
Battery-Powered Applications .................................................. 14  
Photodiodes ................................................................................ 14  
Outline Dimensions....................................................................... 15  
Ordering Guide .......................................................................... 16  
REVISION HISTORY  
10/03—Data Sheet Changed from Rev. 0 to Rev. A  
Change  
Page  
Added AD8607 and AD8609 parts ..............................Universal  
Changes to Specifications............................................................ 3  
Changes to Figure 35.................................................................. 10  
Added Figure 41.......................................................................... 11  
Rev. A | Page 2 of 16  
AD8603/AD8607/AD8609  
SPECIFICATIONS  
Table 1. Electrical Characteristics @ VS = 5 V, VCM = VS/2, TA = 25°C, unless otherwise noted  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
VS = 3.3 V @ VCM = 0.5 V and 2.8 V  
–0.3 V < VCM < +5.2 V  
–40°C < TA < +125°C, –0.3 V < VCM < +5.2 V  
–40°C < TA < +125°C  
12  
40  
50  
µV  
µV  
µV  
µV/°C  
pA  
pA  
pA  
pA  
pA  
pA  
V
300  
700  
4.5  
1
Offset Voltage Drift  
Input Bias Current  
∆VOS/∆T  
IB  
1
0.2  
–40°C < TA < +85°C  
–40°C < TA < +125°C  
50  
500  
0.5  
50  
250  
+5.2  
Input Offset Current  
IOS  
0.1  
–40°C < TA < +85°C  
–40°C < TA < +125°C  
Input Voltage Range  
Common-Mode Rejection Ratio  
IVR  
CMRR  
–0.3  
85  
80  
0 V < VCM < 5 V  
–40°C < TA < +125°C  
RL = 10 kΩ, 0.5 V <VO < 4.5 V  
100  
dB  
dB  
Large Signal Voltage Gain  
AD8603  
AD8607/AD8609  
Input Capacitance  
AVO  
400  
250  
1000  
450  
1.9  
V/mV  
V/mV  
pF  
CDIFF  
CCM  
2.5  
pF  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
IL = 1 mA  
–40°C to +125°C  
IL = 10 mA  
–40°C to +125°C  
IL = 1 mA  
–40°C to +125°C  
IL = 10 mA  
4.95  
4.9  
4.65  
4.50  
4.97  
4.97  
16  
V
V
V
V
mV  
mV  
mV  
mV  
mA  
Output Voltage Low  
VOL  
30  
50  
250  
330  
160  
–40°C to +125°C  
Output Current  
Closed-Loop Output Impedance  
POWER SUPPLY  
IOUT  
ZOUT  
80  
36  
f = 10 kHz, AV = 1  
Power Supply Rejection Ratio  
Supply Current/Amplifier  
PSRR  
ISY  
1.8 V < VS < 5 V  
VO = 0 V  
–40°C <TA < +125°C  
80  
100  
40  
dB  
µA  
µA  
50  
60  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time 0.1%  
Gain Bandwidth Product  
SR  
tS  
GBP  
RL = 10 kΩ  
G= 1, 2 V Step  
RL = 100 kΩ  
RL = 10 kΩ  
RL = 10 kΩ, RL = 100 kΩ  
0.1  
23  
400  
316  
70  
V/µs  
µs  
kHz  
kHz  
Degrees  
Phase Margin  
ØO  
NOISE PERFORMANCE  
Peak-to-Peak Noise  
Voltage Noise Density  
en p-p  
en  
0.1 Hz to 10 Hz  
f = 1 kHz  
f = 10 kHz  
f = 1 kHz  
f = 10 kHz  
f = 100 kHz  
2.3  
25  
22  
0.05  
–115  
–110  
3.5  
µV  
nV/√Hz  
nV/√Hz  
pA/√Hz  
dB  
Current Noise Density  
Channel Separation  
in  
Cs  
dB  
Rev. A | Page 3 of 16  
 
AD8603/AD8607/AD8609  
Table 2. Electrical Characteristics @ VS = 1.8 V, VCM = VS/2, TA = 25°C, unless otherwise noted  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
VS = 3.3 V @ VCM = 0.5 V and 2.8 V  
–0.3 V < VCM < +1.8 V  
–40°C < TA < +85°C, –0.3 V < VCM < +1.8 V  
–40°C < TA < +125°C, –0.3 V < VCM < +1.7 V  
–40°C < TA < +125°C  
12  
40  
50  
µV  
µV  
µV  
µV  
µV/°C  
pA  
pA  
pA  
pA  
pA  
pA  
V
300  
500  
700  
4.5  
1
Offset Voltage Drift  
Input Bias Current  
∆VOS/∆T  
IB  
1
0.2  
–40°C < TA < +85°C  
–40°C < TA < +125°C  
50  
500  
0.5  
50  
250  
+1.8  
Input Offset Current  
IOS  
0.1  
98  
–40°C < TA < +85°C  
–40°C < TA < +125°C  
Input Voltage Range  
Common-Mode Rejection Ratio  
IVR  
CMRR  
–0.3  
80  
70  
0 V < VCM < 1.8 V  
–40°C < TA < +85°C  
dB  
dB  
Large Signal Voltage Gain  
AD8603  
AD8607/AD8609  
Input Capacitance  
AVO  
RL = 10 kΩ, 0.5 V <VO < 4.5 V  
150  
100  
3000  
2000  
2.1  
V/mV  
V/mV  
pF  
CDIFF  
CCM  
3.8  
pF  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
VOL  
IL = 1 mA  
–40°C to +125°C  
IL = 1 mA  
1.65  
1.6  
1.72  
38  
V
V
mV  
mV  
mA  
Output Voltage Low  
60  
80  
–40°C to +125°C  
Output Current  
Closed-Loop Output Impedance  
POWER SUPPLY  
IOUT  
ZOUT  
7
36  
f = 10 kHz, AV = 1  
Power Supply Rejection Ratio  
Supply Current/Amplifier  
PSRR  
ISY  
1.8 V < VS < 5 V  
VO = 0 V  
–40°C < TA < +85°C  
80  
100  
40  
dB  
µA  
µA  
50  
60  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time 0.1%  
Gain Bandwidth Product  
SR  
tS  
GBP  
RL = 10 kΩ  
G= 1, 1 V Step  
RL = 100 kΩ  
RL = 10 kΩ  
RL = 10 kΩ, RL = 100 kΩ  
0.1  
9.2  
385  
316  
70  
V/µs  
µs  
kHz  
kHz  
Degrees  
Phase Margin  
ØO  
NOISE PERFORMANCE  
Peak-to-Peak Noise  
Voltage Noise Density  
en p-p  
en  
0.1 Hz to 10 Hz  
f = 1 kHz  
f = 10 kHz  
f = 1 kHz  
2.3  
25  
22  
3.5  
µV  
nV/√Hz  
nV/√Hz  
pA/√Hz  
Current Noise Density  
Channel Separation  
in  
0.05  
Cs  
f = 10 kHz  
f = 100 kHz  
–115  
–110  
dB  
dB  
Rev. A | Page 4 of 16  
AD8603/AD8607/AD8609  
ABSOLUTE MAXIMUM RATINGS  
Table 3. AD8603/AD8607/AD8609 Stress Ratings1, 2  
Table 4. Package Characteristics  
3
Parameter  
Rating  
Package Type  
θJA  
θJC  
61  
45  
43  
36  
35  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Supply Voltage  
Input Voltage  
6 V  
GND to VS  
6 V  
5-Lead TSOT-23 (UJ)  
8-Lead MSOP (RM)  
8-Lead SOIC (R)  
14-Lead SOIC (R)  
14-Lead TSSOP (RU)  
207  
210  
158  
120  
180  
Differential Input Voltage  
Output Short-Circuit Duration to GND  
Storage Temperature Range  
All Packages  
Lead Temperature Range (Soldering, 60 Sec)  
Operating Temperature Range  
Junction Temperature Range  
All Packages  
Indefinite  
–65°C to +150°C  
300°C  
–40°C to +125°C  
1 Stresses above those listed under Absolute Maximum Ratings may cause  
permanent damage to the device. This is a stress rating only; functional  
operation of the device at these or any other conditions above those listed  
in the operational sections of this specification is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device  
reliability.  
–65°C to +150°C  
2 Absolute maximum ratings apply at 25°C, unless otherwise noted.  
3 θJA is specified for the worst-case conditions, i.e., θJA is specified for device  
soldered in circuit board for surface-mount packages.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although these parts feature  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. A | Page 5 of 16  
 
 
 
 
AD8603/AD8607/AD8609  
TYPICAL PERFORMANCE CHARACTERISTICS  
2600  
300  
250  
200  
150  
100  
50  
V
= 3.3V  
= 25°C  
V
= 5V  
S
A
S
A
2400  
2200  
2000  
1800  
1600  
1400  
T
T
= 25°C  
= 0V to 5V  
V
CM  
0
1200  
1000  
–50  
–100  
–150  
800  
600  
400  
–200  
–250  
–300  
200  
0
–270 –210 –150 –90 –30  
V
0
OS  
30  
(µV)  
90  
150 210 270  
0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3  
((VV))  
V
CM  
Figure 6. Input Offset Voltage Distribution  
Figure 9. Input Offset Voltage vs. Common-Mode Voltage  
30  
25  
20  
15  
10  
5
400  
350  
300  
V
= ±2.5V  
S
V = ±2.5V  
S
T
= –40°C TO +125°C  
A
V
= 0V  
CM  
250  
200  
150  
100  
50  
0
0
0
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8  
0
25  
50  
75  
100  
125  
TCVOS (µV/°C)  
TEMPERATURE (°C)  
Figure 7. Input Offset Voltage Drift Distribution  
Figure 10. Input Bias vs. Temperature  
300  
250  
200  
150  
100  
50  
1000  
100  
10  
V
= 5V  
S
A
V
= 5V  
S
A
T
= 25°C  
T
= 25°C  
0
SINK  
SOURCE  
–50  
1
0.1  
–100  
–150  
–200  
–250  
–300  
0.01  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
(V)  
3.0  
3.5  
4.0  
4.5  
5.0  
10  
0.001  
0.01  
0.1  
LOAD CURRENT (mA)  
1
V
CM  
Figure 11. Output Voltage to Supply Rail vs. Load Current  
Figure 8. Input Offset Voltage vs. Common-Mode Voltage  
Rev. A | Page 6 of 16  
 
AD8603/AD8607/AD8609  
350  
1925  
1750  
1575  
1400  
1225  
V
T
= 5V  
S
= 25°C  
A
V
= ±2.5V, ±0.9V  
300  
250  
200  
S
V
– V @ 10mA LOAD  
OH  
DD  
V
@ 10mA LOAD  
OL  
1050  
875  
A = 100  
150  
100  
50  
700  
A = 10  
A = 1  
525  
350  
175  
V
– V @ 1mA LOAD  
OH  
DD  
V
@ 1mA LOAD  
95 110 125  
OL  
80  
0
–40 –25 –10  
5
20  
35  
50  
65  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
TEMPERATURE (°C)  
Figure 12. Output Voltage Swing vs. Temperature  
Figure 15. Output Impedance vs. Frequency  
140  
120  
100  
80  
100  
80  
225  
180  
V
= ±2.5V  
= 100kΩ  
= 20pF  
S
L
L
R
C
V
S
= ±2.5V  
φ = 70.9°  
60  
40  
20  
135  
90  
45  
60  
0
–20  
–40  
–60  
–80  
0
40  
20  
0
–45  
–90  
–135  
–180  
–20  
–40  
–60  
–100  
–225  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
Figure 13. Open-Loop Gain and Phase vs. Frequency  
Figure 16. Common-Mode Rejection Ratio vs. Frequency  
5.0  
4.5  
4.0  
3.5  
3.0  
140  
120  
100  
V
V
= 5V  
S
V
= ±2.5V  
S
= 4.9V p-p  
IN  
T = 25°C  
A
= 1  
V
80  
60  
40  
20  
2.5  
2.0  
1.5  
0
–20  
1.0  
0.5  
0.0  
–40  
–60  
0.01  
0.1  
1
10  
100  
10  
100  
1k  
10k  
100k  
FREQUENCY (kHz)  
FREQUENCY (Hz)  
Figure 14. Closed-Loop Output Voltage Swing vs. Frequency  
Figure 17. PSRR vs. Frequency  
Rev. A | Page 7 of 16  
AD8603/AD8607/AD8609  
60  
V
= 5V  
S
V
= 5V, 1.8V  
S
50  
40  
30  
OS–  
20  
10  
0
OS+  
10  
100  
LOAD CAPACITANCE (pF)  
1000  
TIME (1s/DIV)  
Figure 18. Small Signal Overshoot vs. Load Capacitance  
Figure 21. 0.1 Hz to 10 Hz Input Voltage Noise  
60  
55  
50  
V
= 5V  
S
V
= ±2.5V  
S
R
C
A
= 10kΩ  
L
L
V
= 200pF  
= 1  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TIME (4µs/DIV)  
TEMPERATURE (°C)  
Figure 19. Supply Current vs. Temperature  
Figure 22. Small Signal Transient  
100  
90  
V
= 5V  
S
R
C
A
= 10kΩ  
T
= 25°C  
L
L
V
A
= 200pF  
= 1  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
1.0  
2.0  
3.0  
4.0  
5.0  
TIME (20µs/DIV)  
SUPPLY VOLTAGE (V)  
Figure 23. Large Signal Transient  
Figure 20. Supply Current vs. Supply Voltage  
Rev. A | Page 8 of 16  
AD8603/AD8607/AD8609  
176  
154  
132  
110  
88  
V
= ±2.5V  
= 10k  
= 100  
S
V
= ±2.5V  
S
R
A
L
V
IN  
+2.5V  
V
= 50mV  
0V  
0V  
66  
44  
22  
–50mV  
0
0
1
2
3
4
5
6
7
8
9
10  
FREQUENCY (kHz)  
µs/DIV))  
TIME (40µs/DIV))  
Figure 27. Voltage Noise Density vs. Frequency  
Figure 24. Negative Overload Recovery  
800  
750  
700  
650  
600  
550  
500  
450  
400  
350  
300  
V
= ±2.5V  
= 10k  
= 100  
S
R
A
L
V
= 1.8V  
= 25°C  
S
A
V
IN  
T
+2.5V  
V
= 50mV  
V
= 0V to 1.8V  
CM  
0V  
0V  
250  
200  
150  
100  
–50mV  
50  
0
–300 –240 –180 –120 –60  
0
60  
120 180 240 300  
TIME (4µs/DIV)  
V
(µV)  
OS  
Figure 25. Positive Overload Recovery  
Figure 28. VOS Distribution  
168  
144  
120  
96  
300  
250  
200  
150  
100  
50  
V
= ±2.5V  
S
V
= 1.8V  
= 25°C  
S
A
T
72  
0
–50  
48  
–100  
–150  
24  
–200  
–250  
–300  
0
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
FREQUENCY (kHz)  
0.0  
0.3  
0.6  
0.9  
VV ((VV))  
1.2  
1.5  
1.8  
CCMM  
Figure 26. Voltage Noise Density vs. Frequency  
Figure 29. Input Offset Voltage vs. Common-Mode Voltage  
Rev. A | Page 9 of 16  
AD8603/AD8607/AD8609  
1000  
100  
80  
225  
180  
V
= ±0.9V  
= 100kΩ  
= 20pF  
S
L
L
V
= 1.8V  
= 25°C  
S
A
R
C
T
100  
10  
φ = 70°  
60  
40  
20  
135  
90  
45  
SOURCE  
SINK  
0
–20  
–40  
–60  
–80  
0
1
0.1  
–45  
–90  
–135  
–180  
0.01  
–100  
–225  
10  
0.001  
0.01  
0.1  
LOAD CURRENT (mA)  
1
1
10  
100  
1M  
10M  
FREQUENCY (Hz)  
Figure 30. Output Voltage to Supply Rail vs. Load Current  
Figure 33. Open-Loop Gain and Phase vs. Frequency  
100  
140  
120  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 1.8V  
V
= 1.8V  
S
S
100  
80  
V
– V @ 1mA LOAD  
OH  
DD  
60  
40  
20  
V
@ 1mA LOAD  
OL  
0
–20  
–40  
–60  
–10  
–40 –25  
5
20  
35  
50  
65 80  
95 110 125  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
TEMPERATURE (°C)  
Figure 34. Common-Mode Rejection Ratio vs. Frequency  
Figure 31. Output Voltage Swing vs. Temperature  
1.8  
60  
50  
40  
30  
V
= 1.8V  
= 25°C  
= 1  
S
A
V = 1.8V  
S
T
V
= 1.7V p–p  
IN  
1.5  
1.2  
A
V
T= 25°C  
= 1  
A
V
0.9  
0.6  
OS–  
20  
10  
0
OS+  
0.3  
0.0  
0.01  
0.1  
1
10  
100  
10  
100  
LOAD CAPACITANCE (pF)  
1000  
FREQUENCY (kHz)  
Figure 35. Closed-Loop Output Voltage Swing vs. Frequency  
Figure 32. Small Signal Overshoot vs. Load Capacitance  
Rev. A | Page 10 of 16  
AD8603/AD8607/AD8609  
176  
154  
132  
110  
88  
V
= ±0.9V  
S
V
= 1.8V  
= 10k  
= 200pF  
= 1  
S
R
C
A
L
L
V
66  
44  
22  
0
0
1
2
3
4
5
6
7
8
9
10  
FREQUENCY (kHz)  
TIME (4µs/DIV)  
Figure 39. Voltage Noise Density  
Figure 36. Small Signal Transient  
0
V
= ±2.5V, ±0.9V  
S
V
= 1.8V  
= 10k  
= 200pF  
= 1  
S
–20  
R
C
A
L
L
V
–40  
–60  
–80  
–100  
–120  
–140  
100  
1k  
10k  
100k  
1M  
TIME (20µs/DIV)  
FREQUENCY (Hz)  
Figure 37. Large Signal Transient  
Figure 40. Channel Separation  
168  
140  
112  
84  
V
= ±0.9V  
S
56  
28  
0
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
FREQUENCY (kHz)  
Figure 38. Voltage Noise Density  
Rev. A | Page 11 of 16  
AD8603/AD8607/AD8609  
APPLICATIONS  
NO PHASE REVERSAL  
The AD8603/AD8607/AD8609 do not exhibit phase inversion  
even when the input voltage exceeds the maximum input  
common-mode voltage. Phase reversal can cause permanent  
damage to the amplifier, resulting in system lockups. The  
AD8603/AD8607/AD8609 can handle voltages of up to 1 V  
over the supply.  
The use of the snubber circuit is usually recommended for unity  
gain configurations. Higher gain configurations help improve  
the stability of the circuit. Figure 44 shows the same output  
response with the snubber in place.  
V
V
C
= ±0.9V  
= 100mV  
= 2nF  
S
IN  
L
L
R
= 10kΩ  
V
V
A
= ±2.5V  
= 6V p-p  
= 1  
S
V
IN  
IN  
V
L
R
= 10kΩ  
V
OUT  
Figure 42. Output Response to a 2 nF Capacitive Load, without Snubber  
V
EE  
TIME (4µs/DIV)  
Figure 41. No Phase Response  
V
V+  
R
S
150Ω  
C
L
INPUT OVERVOLTAGE PROTECTION  
200mV  
+
V
CC  
C
S
47pF  
If a voltage 1 V higher than the supplies is applied at either  
input, the use of a limiting series resistor is recommended. If  
both inputs are used, each one should be protected with a series  
resistor.  
Figure 43. Snubber Network  
V
V
C
R
R
C
= ±0.9V  
= 100mV  
= 2nF  
= 10kΩ  
= 150Ω  
= 470pF  
SY  
IN  
To ensure good protection, the current should be limited to a  
maximum of 5 mA. The value of the limiting resistor can be  
determined from the equation  
L
L
S
S
(VIN VS)/(RS + 200 Ω) 5 mA  
DRIVING CAPACITIVE LOADS  
The AD8603/AD8607/AD8609 are capable of driving large  
capacitive loads without oscillating. Figure 42 shows the output  
of the AD8603/AD8607/AD8609 in response to a 100 mV input  
signal, with a 2 nF capacitive load.  
Figure 44. Output Response to a 2 nF Capacitive Load, with Snubber  
Although it is configured in positive unity gain (the worst case),  
the AD8603 shows less than 20% overshoot. Simple additional  
circuitry can eliminate ringing and overshoot.  
Optimum values for RS and CS are determined empirically;  
Table 5 lists a few starting values.  
One technique is the snubber network, which consists of a  
series RC and a resistive load (see Figure 43). With the snubber  
in place, the AD8603/AD8607/AD8609 are capable of driving  
capacitive loads of 2 nF with no ringing and less than 3%  
overshoot.  
Table 5. Optimum Values for the Snubber Network  
CL (pF)  
RS (Ω)  
CS (pF)  
100~500  
1500  
500  
100  
680  
330  
1600~2000  
400  
100  
Rev. A | Page 12 of 16  
 
 
 
 
 
AD8603/AD8607/AD8609  
R1  
R2  
PROXIMITY SENSORS  
1k  
99kΩ  
V
EE  
Proximity sensors can be capacitive or inductive and are used in  
a variety of applications. One of the most common applications  
is liquid level sensing in tanks. This is particularly popular in  
pharmaceutical environments where a tank must know when to  
stop filling or mixing a given liquid. In aerospace applications,  
these sensors detect the level of oxygen used to propel engines.  
Whether in a combustible environment or not, capacitive  
sensors generally use low voltage. The precision and low voltage  
of the AD8603/AD8607/AD8609 make the parts an excellent  
choice for such applications.  
V
CC  
V+  
U5  
V
AD8603  
AD8541  
V+  
V–  
V
V
CC  
IN  
V
EE  
R4  
R3  
1kΩ  
99kΩ  
Figure 45. High Gain Composite Amplifier  
R2  
100k  
COMPOSITE AMPLIFIERS  
V
EE  
AD8603  
V
A composite amplifier can provide a very high gain in  
applications where high closed-loop dc gains are needed. The  
high gain achieved by the composite amplifier comes at the  
expense of a loss in phase margin. Placing a small capacitor, CF,  
in the feedback in parallel with R2 (Figure 45) improves the  
phase margin. Picking CF = 50 pF yields a phase margin of  
about 45° for the values shown in Figure 45.  
V
CC  
R1  
R3  
1kΩ  
V+  
R4  
V+  
1kΩ  
V
IN  
V
100Ω  
AD8541  
C2  
V
CC  
V
C3  
EE  
A composite amplifier can be used to optimize dc and ac  
characteristics. Figure 46 shows an example using the AD8603  
and the AD8541. This circuit offers many advantages. The  
bandwidth is increased substantially, and the input offset  
voltage and noise of the AD8541 become insignificant since  
they are divided by the high gain of the AD8603.  
Figure 46. Low Power Composite Amplifier  
The circuit of Figure 46 offers a high bandwidth (nearly double  
that of the AD8603), a high output current, and a very low  
power consumption of less than 100 µA.  
Rev. A | Page 13 of 16  
 
 
 
AD8603/AD8607/AD8609  
BATTERY-POWERED APPLICATIONS  
network at the output to reduce the noise. The signal bandwidth  
can be calculated by ½πR2C2 and the closed-loop bandwidth is  
the intersection point of the open-loop gain and the noise gain.  
The AD8603/AD8607/AD8609 are ideal for battery-powered  
applications. The parts are tested at 5 V, 3.3 V, 2.7 V, and 1.8 V  
and are suitable for various applications whether in single or  
dual supply.  
The circuit shown in Figure 47 has a closed-loop bandwidth of  
58 kHz and a signal bandwidth of 16 Hz. Increasing C2 to 50 pF  
yields a closed-loop bandwidth of 65 kHz, but only 3.2 Hz of  
signal bandwidth can be achieved.  
In addition to their low offset voltage and low input bias, the  
AD8603/AD8607/AD8609 have a very low supply current of  
40 µA, making the parts an excellent choice for portable  
electronics. The TSOT package allows the AD8603 to be used  
on smaller board spaces.  
C2 10pF  
R2 1000M  
V
CC  
PHOTODIODES  
Photodiodes have a wide range of applications from bar code  
scanners to precision light meters and CAT scanners. The very  
low noise and low input bias current of the AD8603/AD8607/  
AD8609 make the parts very attractive amplifiers for I-V  
conversion applications.  
AD8603  
Figure 47 shows a simple photodiode circuit. The feedback  
capacitor helps the circuit maintain stability. The signal  
bandwidth can be increased at the expense of an increase in the  
total noise; a low-pass filter can be implemented by a simple RC  
V
EE  
Figure 47. Photodiode Circuit  
Rev. A | Page 14 of 16  
 
 
AD8603/AD8607/AD8609  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
1.27 (0.0500)  
BSC  
0.50 (0.0196)  
0.25 (0.0099)  
× 45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0.51 (0.0201)  
0.31 (0.0122)  
0° 1.27 (0.0500)  
0.40 (0.0157)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
Figure 48. 8-Lead Standard Small Outline Package (SOIC) [R-8]  
Dimensions shown in millimeters and (inches)  
2.90 BSC  
5
1
4
3
2.80 BSC  
1.60 BSC  
2
PIN 1  
0.95 BSC  
1.90  
BSC  
0.90  
0.87  
0.84  
1.00 MAX  
8°  
4°  
0.10 MAX  
0.60  
0.45  
0.30  
0.50  
0.30  
SEATING  
PLANE  
0.20  
0.08  
COMPLIANT TO JEDEC STANDARDS MO-193AB  
Figure 49. 5-Lead Thin Small Outline Transistor Package [TSOT]  
(UJ-5)  
Dimensions in millimeters  
3.00  
BSC  
8
5
4
4.90  
BSC  
3.00  
BSC  
PIN 1  
0.65 BSC  
1.10 MAX  
0.15  
0.00  
0.80  
0.60  
0.40  
8°  
0°  
0.38  
0.22  
0.23  
0.08  
COPLANARITY  
SEATING  
PLANE  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187AA  
Figure 50. 8-Lead MSOP Package (RM-8)  
Dimensions in millimeters  
Rev. A | Page 15 of 16  
 
AD8603/AD8607/AD8609  
8.75 (0.3445)  
8.55 (0.3366)  
14  
1
8
7
4.00 (0.1575)  
3.80 (0.1496)  
6.20 (0.2441)  
5.80 (0.2283)  
1.27 (0.0500)  
BSC  
0.50 (0.0197)  
0.25 (0.0098)  
1.75 (0.0689)  
1.35 (0.0531)  
× 45°  
0.25 (0.0098)  
0.10 (0.0039)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
SEATING  
1.27 (0.0500)  
0.40 (0.0157)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012AB  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
Figure 51. 14-Lead Standard Small Outline Package (SOIC) [R-14]  
Dimensions shown in millimeters and (inches)  
5.10  
5.00  
4.90  
14  
8
7
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
0.65  
BSC  
1.05  
1.00  
0.80  
0.20  
0.09  
1.20  
0.75  
0.60  
0.45  
MAX  
8°  
0°  
0.15  
0.05  
0.30  
0.19  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153AB-1  
Figure 52. 14-Lead Thin Shrink Small Outline Package (TSSOP) [RU-14]  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
Package Description  
5-Lead TSOT-23  
5-Lead TSOT-23  
5-Lead TSOT-23  
8-Lead MSOP  
8-Lead MSOP  
8-Lead SOIC  
Package Option  
UJ-5  
UJ-5  
Branding  
BFA  
BFA  
BFA  
A00  
AD8603AUJ-R2  
AD8603AUJ-REEL  
AD8603AUJ-REEL7  
AD8607ARM-R2  
AD8607ARM-REEL  
AD8607AR  
AD8607AR-REEL  
AD8607AR-REEL7  
AD8609AR  
UJ-5  
RM-8  
RM-8  
R-8  
R-8  
R-8  
R-14  
R-14  
R-14  
RU-14  
RU-14  
A00  
8-Lead SOIC  
8-Lead SOIC  
14-Lead SOIC  
14-Lead SOIC  
14-Lead SOIC  
14-Lead TSSOP  
14-Lead TSSOP  
AD8609AR-REEL  
AD8609AR-REEL7  
AD8609ARU  
AR8609ARU-REEL  
©
2003 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C04356–0–10/03(A)  
Rev. A | Page 16 of 16  
 

相关型号:

AD8607AR-REEL7

Precision Micropower Low Noise CMOS Rail-Rail Input/Output Operational Amplifiers
ADI

AD8607ARM

AD8607ARM
ADI

AD8607ARM-R2

Precision Micropower Low Noise CMOS Rail-Rail Input/Output Operational Amplifiers
ADI

AD8607ARM-REEL

Precision Micropower Low Noise CMOS Rail-Rail Input/Output Operational Amplifiers
ADI

AD8607ARMZ-R2

Precision Micropower, Low Noise CMOS Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8607ARMZ-R21

Precision Micropower, Low Noise CMOS, Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8607ARMZ-REEL

Precision Micropower, Low Noise CMOS Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8607ARMZ-REEL1

Precision Micropower, Low Noise CMOS, Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8607ARZ

Precision Micropower, Low Noise CMOS Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8607ARZ-REEL

Precision Micropower, Low Noise CMOS Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8607ARZ-REEL1

Precision Micropower, Low Noise CMOS, Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8607ARZ-REEL7

Precision Micropower, Low Noise CMOS Rail-to-Rail Input/Output Operational Amplifiers
ADI