AD8626 [ADI]

Precision Low Power Single-Supply JFET Amplifier; 精密低功耗单电源JFET放大器
AD8626
型号: AD8626
厂家: ADI    ADI
描述:

Precision Low Power Single-Supply JFET Amplifier
精密低功耗单电源JFET放大器

放大器
文件: 总20页 (文件大小:540K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision Low Power  
Single-Supply JFET Amplifier  
AD8627/AD8626/AD8625  
FEATURES  
PIN CONFIGURATIONS  
SC70 package  
Very low IB: 1 pA max  
8-Lead SOIC  
(R-8 Suffix)  
5-Lead SC70  
(KS Suffix)  
OUT A  
V–  
1
2
3
5
4
V+  
Single-supply operation: 5 V to 26 V  
Dual-supply operation: 2.5 V to 13 V  
Rail-to-rail output  
Low supply current: 630 µA/amp typ  
Low offset voltage: 500 µV max  
Unity gain stable  
NC  
–IN  
+IN  
V–  
1
2
3
4
8
7
6
5
NC  
V+  
AD8627  
AD8627  
+IN  
–IN  
OUT  
NC  
NC = NO CONNECT  
No phase reversal  
8-Lead SOIC  
(R-8 Suffix)  
8-Lead MSOP  
(RM-Suffix)  
APPLICATIONS  
Photodiode amplifiers  
ATE  
OUT A  
–IN A  
+IN A  
V–  
1
8
V+  
OUT A  
–IN A  
+IN A  
V–  
1
8
V+  
OUT B  
–IN B  
+IN B  
AD8626  
2
3
4
7
6
5
OUT B  
–IN B  
+IN B  
AD8626  
4
5
Line-powered/battery-powered instrumentation  
Industrial controls  
Automotive sensors  
Precision filters  
Audio  
14-Lead SOIC  
(R-Suffix)  
14-Lead TSSOP  
(RU-Suffix)  
OUT A  
–IN A  
+IN A  
V+  
+IN B  
–IN B  
OUT B  
1
14  
OUT D  
–IN D  
+IN D  
V–  
+IN C  
–IN C  
OUT C  
OUT A  
–IN A  
+IN A  
V+  
1
2
3
4
5
6
7
14 OUT D  
13 –IN D  
12 +IN D  
11 V–  
GENERAL DESCRIPTION  
AD8625  
The AD862x is a precision JFET input amplifier. It features  
true single-supply operation, low power consumption, and  
rail-to-rail output. The outputs remain stable with capacitive  
loads of over 500 pF; the supply current is less than 630 µA/amp.  
Applications for the AD862x include photodiode transimpedance  
amplification, ATE reference level drivers, battery management,  
both line powered and portable instrumentation, and remote  
sensor signal conditioning including automotive sensors.  
AD8625  
+IN B  
–IN B  
OUT B  
10 +IN C  
7
8
9
8
–IN C  
OUT C  
Figure 1.  
The AD862xs ability to swing nearly rail-to-rail at the input  
and rail-to-rail at the output enables it to be used to buffer  
CMOS DACs, ASICs, and other wide output swing devices in  
single-supply systems.  
The 5 MHz bandwidth and low offset are ideal for precision  
filters.  
The AD862x is fully specified over the industrial temperature  
range. (–40° to +85°) The AD8627 is available in both 5-lead  
SC70 and 8-lead SOIC surface-mount packages. The SC70  
packaged parts are available in tape and reel only. The AD8626  
is available in an MSOP package.  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
AD8627/AD8626/AD8625  
TABLE OF CONTENTS  
AD8627/AD8626/AD8625–Specifications ................................... 3  
Electrical Characteristics............................................................. 3  
Electrical Characteristics............................................................. 4  
Absolute Maximum Ratings............................................................ 5  
Minimizing Input Current ........................................................ 15  
Photodiode Preamplifier Application...................................... 15  
Output Amplifier for Digital-to-Analog Converters............. 15  
Eight-Pole Sallen Key Low-Pass Filter..................................... 16  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 19  
Typical Performance Characteristics–  
AD8627/AD8626/AD8625.............................................................. 6  
Applications..................................................................................... 13  
REVISION HISTORY  
1/04—Data sheet changed from Rev. A to Rev. B  
Change to General Description ......................................................... 1  
Change to Figure 10 ............................................................................ 7  
Change to Figure13 ............................................................................. 7  
Change to Figure 37 ..........................................................................11  
Changes to Figure 38.........................................................................12  
Change to Output Amplifier for DACs section.............................15  
Updated Outline Dimensions..........................................................19  
10/03—Data sheet changed from Rev. 0 to Rev. A  
Addition of two new parts……………………………………. Universal  
Change to General Description………………………………………. ...1  
Changes to Pin Configurations………………….......................................1  
Change to Specifications table…………………………………………. .3  
Changes to Figure 31…………………………….......................................10  
Changes to Figure 32……………………………....................................... 11  
Changes to Figure 38…………………………….......................................12  
Changes to Figure 46…………………………….......................................16  
Changes to Figure 47……………………………....................................... 16  
Changes to Figure 49……………………………....................................... 17  
Updated Outline Dimensions…………………………………………..18  
Changes to Ordering Guide…………………........................................ .. 19  
Rev. B | Page 2 of 20  
AD8627/AD8626/AD8625  
AD8627/AD8626/AD8625–SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
Table 1. @VS = 5 V, VCM = 1.5 V, TA = 25°C, unless otherwise noted.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
0.05  
0.25  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
IB  
0.5  
1.2  
1
60  
0.5  
25  
3
mV  
mV  
pA  
pA  
pA  
−40°C < TA < +85°C  
–40°C < TA < +85°C  
–40°C < TA < +85°C  
Input Bias Current  
Input Offset Current  
IOS  
pA  
V
Input Voltage Range  
0
Common-Mode Rejection Ratio  
Large Signal Voltage Gain  
Offset Voltage Drift  
CMRR  
AVO  
∆VOS/∆T  
VCM = 0 V to 2.5 V  
RL = 10 kΩ, VO = 0.5 V to 4.5 V  
–40°C < TA < +85°C  
66  
100  
87  
230  
2.5  
dB  
V/mV  
µV/°C  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
VOL  
IOUT  
4.92  
4.90  
V
V
V
V
IL = 2 mA, –40°C < TA < +85°C  
IL = 2 mA, –40°C < TA < +85°C  
Output Voltage Low  
0.075  
0.08  
Output Current  
10  
mA  
POWER SUPPLY  
Power Supply Rejection Ratio  
Supply Current/Amplifier  
PSRR  
ISY  
VS = 5 V to 26 V  
80  
104  
630  
dB  
µA  
µA  
785  
800  
–40°C < TA < +85°C  
DYNAMIC PERFORMANCE  
Slew Rate  
SR  
5
V/µs  
Gain Bandwidth Product  
Phase Margin  
GBP  
ØM  
5
60  
MHz  
Degrees  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
Current Noise Density  
Channel Separation  
en p-p  
en  
in  
0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz  
1.9  
17.5  
0.4  
µV p-p  
nV/√Hz  
fA/√Hz  
dB  
Cs  
f = 1 kHz  
104  
Rev. B | Page 3 of 20  
 
AD8627/AD8626/AD8625  
ELECTRICAL CHARACTERISTICS  
Table 2. @VS = 13 V; VCM = 0 V; TA = 25°C, unless otherwise noted.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
0.35  
0.25  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
IB  
0.75  
1.35  
1
60  
0.5  
25  
mV  
mV  
pA  
pA  
pA  
–40°C < TA < +85°C  
–40°C < TA < +85°C  
–40°C < TA < +85°C  
Input Bias Current  
Input Offset Current  
IOS  
pA  
Input Voltage Range  
–13  
76  
150  
+11  
V
dB  
V/mV  
µV/°C  
Common-Mode Rejection Ratio  
Large Signal Voltage Gain  
Offset Voltage Drift  
CMRR  
AVO  
∆VOS/∆T  
VCM = –13 V to +10 V  
RL = 10 kΩ, VO = –11 V to +11 V  
–40°C < TA < +85°C  
105  
310  
2.5  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
VOH  
VOL  
VOL  
IOUT  
+12.92  
+12.91  
V
V
V
V
IL = 2 mA, –40°C < TA < +85°C  
IL = 2 mA, –40°C < TA < +85°C  
Output Voltage Low  
–12.92  
–12.91  
Output Current  
15  
mA  
POWER SUPPLY  
Power Supply Rejection Ratio  
Supply Current/Amplifier  
PSRR  
ISY  
VS = 2.5 V to 13 V  
–40°C < TA < +85°C  
80  
104  
710  
dB  
µA  
µA  
850  
900  
DYNAMIC PERFORMANCE  
Slew Rate  
SR  
5
V/µs  
Gain Bandwidth Product  
Phase Margin  
GBP  
ØM  
5
60  
MHz  
Degrees  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
Current Noise Density  
Channel Separation  
en p-p  
en  
in  
0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz  
2.5  
16  
0.5  
105  
µV p-p  
nV/√Hz  
fA/√Hz  
dB  
Cs  
f = 1 kHz  
Rev. B | Page 4 of 20  
 
AD8627/AD8626/AD8625  
ABSOLUTE MAXIMUM RATINGS  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to  
absolute maximum rating conditions for extended periods may  
affect device reliability. Absolute maximum ratings apply at  
25°C, unless otherwise noted.  
Table 3. Stress Ratings  
Parameter  
Rating  
Supply Voltage  
27 V  
Input Voltage  
VS– to VS+  
Differential Input Voltage  
Output Short Circuit Duration  
Storage Temperature Range, R Package  
Operating Temperature Range  
Junction Temperature Range, R Package  
Supply Voltage  
Indefinite  
–65°C to + 125°C  
–40°C to + 85°C  
–65°C to 150°C  
Lead Temperature Range (Soldering, 60 sec) 300°C  
Table 4.  
1
Package Type  
θJA  
θJC  
126  
45  
43  
36  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
5-Lead SC70 (KS)  
8-Lead MSOP (RM)  
8-Lead SOIC (R)  
14-Lead SOIC (R)  
14-Lead TSSOP (RU)  
376  
210  
158  
120  
180  
35  
1 θJA is specified for worst case conditions when devices are soldered in circuit  
boards for surface-mount packages.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. B | Page 5 of 20  
 
 
AD8627/AD8626/AD8625  
TYPICAL PERFORMANCE CHARACTERISTICS–AD8627/AD8626/AD8625  
16  
14  
12  
10  
8
25  
20  
15  
10  
5
V
T
=
±12V  
V
= +3.5V/–1.5V  
SY  
= 25  
SY  
°
C
A
6
4
2
0
0
–600  
–400  
–200  
VOLTAGE (  
0
1
2
3
4
5
6
7
8
9
10  
0
200  
400  
600  
OFFSET VOLTAGE (  
µ
V/  
°
C)  
µV)  
Figure 5. Offset Voltage Drift  
Figure 2. Input Offset Voltage  
50  
40  
12  
10  
8
V
= ±13V  
SY  
= 25°C  
V
= ±13V  
SY  
T
A
30  
20  
10  
0
6
–10  
–20  
–30  
–40  
–50  
4
2
0
0
1
2
3
4
5
6
7
8
9
10  
–15.0–12.5–10.0 –7.5 –5.0 –2.5  
0
2.5 5.0 7.5 10.0 12.5 15.0  
(V)  
V
OFFSET VOLTAGE (µV/°C)  
CM  
Figure 6. Input Bias Current vs. VCM  
Figure 3. Offset Voltage Drift  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
–0.7  
–0.8  
–0.9  
18  
16  
14  
12  
10  
8
V
= +3.5V/–1.5V  
SY  
V
T
= ±13V  
SY  
= 25  
°
C
A
6
4
2
0
–400  
–300  
–200  
–100  
VOLTAGE (  
0
100  
200  
300  
–15.0–12.5–10.0 –7.5 –5.0 –2.5  
0
2.5 5.0 7.5 10.0 12.5 15.0  
µV)  
V
(V)  
CM  
Figure 4. Input Offset Voltage  
Figure 7. Input Bias Current vs. VCM  
Rev. B | Page 6 of 20  
 
AD8627/AD8626/AD8625  
100  
10  
1
500  
400  
V
= 5V  
V
V
=
= 0V  
±
13V  
SY  
SY  
CM  
300  
200  
100  
0
–100  
–200  
–300  
–400  
–500  
0.1  
–50  
–25  
0
25  
50  
75  
C)  
100  
125  
150  
–1  
0
1
2
3
4
TEMPERATURE (  
°
V
(V)  
CM  
Figure 8. Input Bias Current vs. Temperature  
Figure 11. Input Offset Voltage vs. VCM  
10M  
1M  
2.0  
1.5  
V
= +5V OR ±5V  
SY  
1.0  
0.5  
V
= ±13V  
SY  
0
V
= +5V  
SY  
–0.5  
–1.0  
–1.5  
–2.0  
100k  
10k  
0.1  
1
10  
100  
–5  
–4  
–3  
–2  
–1  
0
1
2
3
5
5
LOAD RESISTANCE (k  
)
V
(V)  
CM  
Figure 9. Input Bias Current vs. VCM  
Figure 12. Open-Loop Gain vs. Load Resistance  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1000  
100  
10  
V
= ±13V  
SY  
a
d
b
c
e
a. V  
b. V  
=
=
±
13V, V  
=
=
±11V, R = 10k  
L
SY  
O
±
13V, V  
±11V, R = 2kΩ  
L
SY  
O
c. V = +5V, V = +0.5V/+4.5V, R = 2k  
d. V = +5V, V = +0.5V/+4.5V, R = 10k  
e. V = +5V, V = +0.5V/+4.5V, R = 600  
SY  
O
L
SY  
O
L
SY  
O
L
–100  
1
–40  
–15 –12  
–9  
–6  
–3  
0
3
6
9
12  
15  
25  
95  
125  
V
(V)  
TEMPERATURE (°C)  
CM  
Figure 10. Input Offset Voltage vs. VCM  
Figure 13. Open-Loop Gain vs. Temperature  
Rev. B | Page 7 of 20  
 
AD8627/AD8626/AD8625  
600  
10k  
1k  
100  
10  
1
V
= ±13V  
SY  
V
= ±13V  
SY  
500  
400  
300  
200  
100  
0
R
= 10kΩ  
L
R
= 100kΩ  
L
V
R
= 600Ω  
OL  
L
–100  
–200  
–300  
–400  
V
OH  
–15  
–10  
–5  
0
5
10  
15  
0.001  
0.01  
0.1  
1
10  
100  
OUTPUT VOLTAGE (V)  
LOAD CURRENT (mA)  
Figure 14. Input Error Voltage vs. Output Voltage for Resistive Loads  
Figure 17. Output Saturation Voltage vs. Load Current  
250  
10k  
1k  
100  
10  
1
V
= ±5V  
R
= 1kΩ  
SY  
L
V
= 5V  
SY  
200  
150  
100  
50  
POS RAIL  
= 10k  
R
R = 100kΩ  
L
L
0
R
= 10k  
L
–50  
–100  
–150  
–200  
–250  
R
= 1kΩ  
L
V
OL  
NEG RAIL  
V
OH  
0
50  
100  
150  
200  
250  
300  
0.001  
0.01  
0.1  
1
10  
100  
OUTPUT VOLTAGE FROM SUPPLY RAILS (mV)  
LOAD CURRENT (mA)  
Figure 15. Input Error Voltage vs. Output Voltage within 300 mV of  
Supply Rails  
Figure 18. Output Saturation Voltage vs. Load Current  
800  
700  
70  
60  
315  
270  
225  
180  
135  
90  
V
R
C
=
= 2k  
= 40pF  
±
13V  
SY  
L
L
+125°C  
50  
600  
500  
400  
300  
200  
100  
0
–55  
°
C
40  
+25°C  
GAIN  
30  
20  
PHASE  
10  
45  
0
–0  
–10  
–20  
–30  
–45  
–90  
–135  
0
4
8
12  
16  
20  
24  
28  
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
50M  
TOTAL SUPPLY VOLTAGE (V)  
Figure 16. Quiescent Current vs. Supply Voltage at Different Temperatures  
Figure 19. Open-Loop Gain and Phase Margin vs. Frequency  
Rev. B | Page 8 of 20  
 
 
 
AD8627/AD8626/AD8625  
70  
60  
140  
120  
100  
80  
315  
270  
225  
180  
135  
90  
V
R
C
= 5V  
V
= ±13V  
SY  
SY  
= 2kΩ  
L
L
= 40pF  
50  
40  
GAIN  
30  
60  
20  
40  
PHASE  
10  
20  
45  
0
0
–0  
–10  
–20  
–30  
–20  
–40  
–60  
–45  
–90  
–135  
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
50M  
1k  
10k  
100k  
1M  
10M  
10M  
10M  
FREQUENCY (Hz)  
Figure 20. Open Loop Gain and Phase Margin vs. Frequency  
Figure 23. CMRR vs. Frequency  
70  
140  
120  
100  
80  
V
R
C
=
= 2k  
= 40pF  
±
13V  
V
= 5V  
SY  
SY  
60  
50  
40  
30  
20  
10  
0
L
L
G = 100  
G = 10  
G = 1  
60  
40  
20  
0
–10  
–20  
–30  
–20  
–40  
–60  
1k  
10k  
100k  
1M  
10M  
50M  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 21. Closed-Loop Gain vs. Frequency  
Figure 24. CMRR vs. Frequency  
70  
60  
140  
120  
100  
80  
V
= ±13V  
V
R
C
= 5V  
SY  
SY  
= 2k  
= 40pF  
L
L
50  
40  
G = 100  
G = 10  
G = 1  
+PSRR  
30  
60  
20  
40  
–PSRR  
10  
20  
0
0
–10  
–20  
–30  
–20  
–40  
–60  
1k  
10k  
100k  
1M  
10M  
50M  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 22. Closed-Loop Gain vs. Frequency  
Figure 25. PSRR vs. Frequency  
Rev. B | Page 9 of 20  
AD8627/AD8626/AD8625  
140  
V
= ±13V  
INPUT  
SY  
V
= 5V  
SY  
120  
100  
80  
60  
40  
OUTPUT  
+PSRR  
20  
–PSRR  
0
–20  
–40  
–60  
TIME (400µs/DIV)  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
Figure 26. PSRR vs. Frequency  
Figure 29. No Phase Reversal  
300  
270  
240  
210  
180  
150  
120  
90  
15  
10  
5
V
= ±13V  
SY  
TS + (1%)  
TS + (0.1%)  
0
TS – (0.1%)  
TS – (1%)  
–5  
–10  
–15  
G = 10  
G = 1  
60  
G = 100  
30  
0
1k  
10k  
100k  
1M  
10M  
100M  
0
0.5  
1.0  
1.5  
2.0  
2.5  
FREQUENCY (Hz)  
SETTLING TIME (  
µ
s)  
Figure 27. Output Impedance vs. Frequency  
Figure 30. Output Swing and Error vs. Settling Time  
300  
270  
240  
210  
180  
150  
120  
90  
70  
60  
50  
40  
30  
20  
10  
0
V
R
V
A
=
±
13V  
V
= 5V  
S
SY  
= 10k  
L
= 100mV p-p  
= +1  
IN  
V
OS–  
OS+  
G = 10  
G = 1  
60  
G = 100  
10k  
30  
0
1k  
100k  
1M  
10M  
100M  
10  
100  
CAPACITANCE (pF)  
1k  
FREQUENCY (Hz)  
Figure 28. Output Impedance vs. Frequency  
Figure 31. Small Signal Overshoot vs. Load Capacitance  
Rev. B | Page 10 of 20  
 
AD8627/AD8626/AD8625  
70  
60  
50  
40  
30  
20  
10  
0
56  
49  
42  
35  
28  
21  
14  
7
V
R
=
±
2.5V  
V
= ±13V  
S
SY  
= 10k  
= 100mV p-p  
= +1  
L
V
IN  
A
V
19.7nV/ Hz  
OS+  
OS–  
0
0
1
2
3
4
5
6
7
8
9
10  
10  
100  
CAPACITANCE (pF)  
1k  
FREQUENCY (kHz)  
Figure 35. Voltage Noise Density  
Figure 32. Small Signal Overshoot vs. Load Capacitance  
56  
49  
42  
35  
28  
21  
14  
7
V
=
±
3V  
SY  
A
V
= 5V  
SY  
= 100,000V/V  
VO  
16.7nV/ Hz  
0
0
TIME (1s/DIV)  
0
1
2
3
4
5
6
7
8
9
10  
FREQUENCY (kHz)  
Figure 33. 0.1 Hz to 10 Hz Noise  
Figure 36. Voltage Noise Density  
–40  
–50  
V
SY  
=
±
2.5V  
A
= 100,000V/V  
VO  
–60  
–70  
V
=
±
5V, V = 9V p-p  
SY  
IN  
0
–80  
V
=
±
13V, V = 18V p-p  
SY  
IN  
–90  
V
=
±
2.5V, V = 4.5V p-p  
SY  
IN  
–100  
–110  
10  
100  
1k  
10k  
100k  
TIME (1s/DIV)  
FREQUENCY (Hz)  
Figure 37. Total Harmonic Distortion + Noise vs. Frequency  
Figure 34. 0.1 Hz to 10 Hz Noise  
Rev. B | Page 11 of 20  
 
AD8627/AD8626/AD8625  
20k  
2k  
2k  
2kΩ  
V
IN  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
V
V
V
= 9V p-p  
IN  
IN  
IN  
= 4.5V p-p  
= 18V p-p  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
Figure 38. Channel Separation  
Rev. B | Page 12 of 20  
AD8627/AD8626/AD8625  
APPLICATIONS  
The AD862x is one of the smallest and most economical  
JFETs offered. It has true single-supply capability and has  
an input voltage range that extends below the negative rail,  
allowing the part to accommodate input signals below ground.  
The rail-to-rail output of the AD862x provides the maximum  
dynamic range in many applications. To provide a low offset,  
low noise, high impedance input stage, the AD862x uses  
n-channel JFETs The input common-mode voltage extends  
from 0.2 V below –VS to 2 V below +VS. Driving the input of the  
amplifier, configured in unity gain buffer, closer than 2 V to the  
positive rail causes an increase in common-mode voltage error,  
as illustrated in Figure 15, and a loss of amplifier bandwidth.  
This loss of bandwidth causes the rounding of the output  
waveforms shown in Figure 39 and Figure 40, which have inputs  
that are 1 V and 0 V from +VS, respectively.  
V
= 5V  
SY  
INPUT  
OUTPUT  
TIME (2µs/DIV)  
Figure 39. Unity Gain Follower Response to 0 V to 4 V Step  
The AD862x will not experience phase reversal with input  
signals close to the positive rail, as shown in Figure 29. For input  
voltages greater than +VSY, a resistor in series with the AD862xs  
noninverting input prevents phase reversal at the expense of  
greater input voltage noise. This current limiting resistor should  
also be used if there is a possibility of the input voltage  
V
= 5V  
SY  
INPUT  
exceeding the positive supply by more than 300 mV, or if an  
input voltage is applied to the AD862x when VSY = 0. Either of  
these conditions will damage the amplifier if the condition  
exists for more than 10 seconds. A 100 kΩ resistor allows the  
amplifier to withstand up to 10 V of continuous overvoltage,  
while increasing the input voltage noise by a negligible amount.  
OUTPUT  
TIME (2µs/DIV)  
Figure 40. Unity Gain Follower Response to 0 V to 5 V Step  
Rev. B | Page 13 of 20  
 
 
 
AD8627/AD8626/AD8625  
The AD862x can safely withstand input voltages 15 V below  
20kΩ  
VSY if the total voltage between the positive supply and the input  
terminal is less than 26 V. Figure 41 through Figure 43 show the  
AD862x in different configurations accommodating signals  
close to the negative rail. The amplifier input stage typically  
maintains picoamp-level input currents across that input  
voltage range.  
+5V  
10k  
0V  
–10mV  
–30mV  
V
= 5V  
SY  
20k  
+5V  
10kΩ  
0V  
–2.5V  
V
= 5V, 0V  
SY  
TIME (2µs/DIV)  
Figure 43. Gain of Two Inverter Response to 20 mV Step,  
Centered 20 mV below Ground  
The AD862x is designed for 16 nV/√Hz wideband input voltage  
noise and maintains low noise performance to low frequencies,  
as shown in Figure 35. This noise performance, along with the  
AD862xs low input current and current noise, means that the  
AD862x contributes negligible noise for applications with large  
source resistances.  
TIME (2µs/DIV)  
Figure 41. Gain of Two Inverter Response to 2.5 V Step,  
Centered –1.25 V below Ground  
The AD862x has a unique bipolar rail-to-rail output stage that  
swings within 5 mV of the rail when up to 2 mA of current is  
drawn. At larger loads, the drop-out voltage increases as shown  
in Figure 17 and Figure 18. The AD862xs wide bandwidth and  
fast slew rate allows it to be used with faster signals than previous  
single-supply JFETs. Figure 44 shows the response of AD862x,  
configured in unity gain, to a VIN of 20 V p-p at 50 kHz. The  
FPBW of the part is close to 100 kHz.  
60mV  
5V  
20mV  
0V  
600  
V
R
=
±
13V  
SY  
= 600  
L
V
R
= 5V  
SY  
= 600  
L
TIME (2µs/DIV)  
TIME (5µs/DIV)  
Figure 42. Unity Gain Follower Response to 40 mV Step,  
Centered 40 mV above Ground  
Figure 44. Unity Gain Follower Response to 20 V, 50 kHz Input Signal  
Rev. B | Page 14 of 20  
 
 
 
AD8627/AD8626/AD8625  
MINIMIZING INPUT CURRENT  
The resulting output voltage error, VE, is equal to  
The AD862x is guaranteed to 1 pA max input current with a  
13 V supply voltage at room temperature. Careful attention to  
how the amplifier is used will maintain or possibly better this  
performance. The amplifiers operating temperature should be  
kept as low as possible. Like other JFET input amplifiers, the  
AD862xs input current doubles for every 10°C rise in junction  
temperature, as illustrated in Figure 8. On-chip power dissipation  
raises the device operating temperature, causing an increase in  
input current. Reducing supply voltage to cut power dissipation  
reduces the AD862xs input current. Heavy output loads can  
also increase chip temperature; maintaining a minimum load  
resistance of 1 kΩ is recommended.  
Rf  
VOS + Rf(IB )  
VE = 1+  
RD  
A shunt resistance on the order of 100 MΩ is typical for a small  
photodiode. Resistance RD is a junction resistance that typically  
drops by a factor of two for every 10°C rise in temperature. In  
the AD862x, both the offset voltage and drift are low, which  
helps minimize these errors. With IB values of 1 pA and VOS of  
50 mV, VE for Figure 45 is very negligible. Also, the circuit in  
Figure 45 results in an SNR value of 95 dB for a signal bandwidth  
of 30 kHz.  
C
5pF  
F
The AD862x is designed for mounting on PC boards.  
Maintaining picoampere resolution in those environments  
requires a lot of care. Both the board and the amplifiers  
package have finite resistance. Voltage differences between the  
input pins and other pins as well as PC board metal traces may  
cause parasitic currents larger than the AD862xs input current,  
unless special precautions are taken. For proper board layout  
to ensure the best result, refer to the ADI website for proper  
layout seminar material. Two common methods of minimizing  
parasitic leakages that should be used are guarding of the input  
lines and maintaining adequate insulation resistance.  
R
PHOTODIODE  
1.5MFΩ  
V
OS  
OUTPUT  
C4  
15pF  
R
I
I
B
D
B
AD8627  
100M  
Figure 45. A Photodiode Model Showing DC Error  
OUTPUT AMPLIFIER FOR DIGITAL-TO-ANALOG  
CONVERTERS  
Contaminants such as solder flux on the board’s surface and the  
amplifiers package can greatly reduce the insulation resistance  
between the input pin and traces with supply or signal voltages.  
Both the package and the board must be kept clean and dry.  
Many system designers use amplifiers as buffers on the output  
of amplifiers to increase the DACs output driving capability.  
The high resolution current output DACs need high precision  
amplifiers on their output as current to voltage converters (I/V).  
Additionally, many DACs operate with a single supply of 5 V. In  
a single-supply application, selection of a suitable op amp may  
be more difficult because the output swing of the amplifier does  
not usually include the negative rail, in this case AGND. This  
can result in some degradation of the DACs specified perform-  
ance unless the application does not use codes near zero. The  
selected op amp needs to have very low offset voltage—for a  
14-bit DAC, the DAC LSB is 300 µV with a 5 V reference—to  
eliminate the need for output offset trims. Input bias current  
should also be very low because the bias current multiplied by  
the DAC output impedance (about 10 kΩ in some cases) adds  
to the zero code error. Rail-to-rail input and output performance  
is desired. For fast settling, the slew rate of the op amp should  
not impede the settling time of the DAC. Output impedance of  
the DAC is constant and code independent, but in order to  
minimize gain errors, the input impedance of the output  
amplifier should be as high as possible. The AD862x, with very  
high input impedance, IB of 1 pA, and fast slew rate, is an ideal  
amplifier for these types of applications. A typical configuration  
with a popular DAC is shown in Figure 46. In these situations,  
the amplifier adds another time constant to the system, increasing  
the settling time of the output. The AD862x, with 5 MHz of BW,  
helps in achieving a faster effective settling time of the combined  
DAC and amplifier.  
PHOTODIODE PREAMPLIFIER APPLICATION  
The low input current and offset voltage levels of the AD862x,  
together with its low voltage noise, make this amplifier an  
excellent choice for preamplifiers used in sensitive photodiode  
applications. In a typical photovoltaic preamp circuit, shown in  
Figure 45, the output of the amplifier is equal to  
VOUT = −ID(Rf) = −Rp(P)Rf  
where:  
ID = photodiode signal current (A)  
Rp = photodiode sensitivity (A/W)  
Rf = value of the feedback resistor, in Ω  
P = light power incident to photodiode surface, in W  
The amplifiers input current, IB, contributes an output voltage  
error proportional to the value of the feedback resistor. The  
offset voltage error, VOS, causes a small current error due to the  
photodiode’s finite shunt resistance, RD.  
Rev. B | Page 15 of 20  
 
 
AD8627/AD8626/AD8625  
2.5V  
5V  
10µF  
EIGHT-POLE SALLEN KEY LOW-PASS FILTER  
0.1µF  
0.1µF  
The AD862xs high input impedance and dc precision make it a  
great selection for active filters. Due to the very low bias current  
of the AD862x, high value resistors can be used to construct low  
frequency filters. The AD862xs picoamp-level input currents  
contribute minimal dc errors. Figure 49 shows an example, a  
10 Hz, 8-pole Sallen Key filter constructed using the AD862x.  
Different numbers of the AD862x can be used depending on  
the desired response, which is shown in Figure 48. The high  
value used for R1 minimizes interaction with signal source  
resistance. Pole placement in this version of the filter minimizes  
the Q associated with the lower pole section of the filter. This  
eliminates any peaking of the noise contribution of resistors in  
the preceding sections, minimizing the inherent output voltage  
noise of the filter.  
5V  
SERIAL  
INTERFACE  
V
V
*
V
*
REFS  
DD  
REFF  
CS  
AD8627  
DIN  
UNIPOLAR  
OUTPUT  
OUT  
AD5551/AD5552  
SCLK  
LDAC*  
DGND  
AGND  
*AD5552 ONLY  
Figure 46. Unipolar Output  
In applications with full 4-quadrant multiplying capability or a  
bipolar output swing, the circuit in Figure 47 can be used. In  
this circuit, the first and second amplifiers provide a total gain  
of 2, which increases the output voltage span to 20 V. Biasing the  
external amplifier with a 10 V offset from the reference voltage  
results in a full 4-quadrant multiplying circuit.  
1.2  
V4  
V2  
10k  
V3  
0.8  
10k  
+13V  
V1  
10V  
VREF  
ADR01  
1/2  
V
OUT  
AD8626  
5kΩ  
0.4  
–10V < V  
< +10V  
OUT  
–13V  
V
V
X
R X  
FB  
DD  
REF  
0
0.1  
1
10  
100  
1k  
ONE CHANNEL  
AD5544  
FREQUENCY (Hz)  
1/2  
AD8626  
Figure 48. Frequency Response Output at Different Stages  
of the Low-Pass Filter  
V
A
F
A X  
GND  
SS  
GND  
DIGITAL INTERFACE CONNECTIONS  
OMITTED FOR CLARITY  
Figure 47. 4-Quadrant Multiplying Application Circuit  
Rev. B | Page 16 of 20  
 
 
 
AD8627/AD8626/AD8625  
C1  
100  
µ
F
R1  
162.3k  
V
V3  
DD  
U1  
R2  
162.3k  
V
C3  
100  
IN  
4
R10  
191.4k  
3
2
µ
F
V1  
1
D
1/4  
R5  
191.4kΩ  
C2  
R11  
286.5kΩ  
AD8625  
11  
U2  
C5  
100  
96.19µ  
F
µ
F
V
V2  
EE  
D
1/4  
AD8625  
R3  
25k  
C4  
69.14µF  
R7  
286.5k  
C7  
100µF  
R12  
815.8k  
U3  
D
V3  
R4  
R9  
25k  
815.8kΩ  
U4  
1/4  
AD8625  
C6  
30.86  
µF  
V4  
D
1/4  
AD8625  
C8  
3.805µF  
R6  
25k  
D
R8  
25kΩ  
Figure 49. 10 Hz, 8-Pole Sallen Key Low-Pass Filter  
Rev. B | Page 17 of 20  
AD8627/AD8626/AD8625  
OUTLINE DIMENSIONS  
8.75 (0.3445)  
8.55 (0.3366)  
2.00 BSC  
14  
1
8
7
5
1
4
3
4.00 (0.1575)  
3.80 (0.1496)  
6.20 (0.2441)  
5.80 (0.2283)  
1.25 BSC  
2.10 BSC  
2
PIN 1  
1.27 (0.0500)  
BSC  
0.50 (0.0197)  
0.25 (0.0098)  
0.65 BSC  
1.10 MAX  
1.75 (0.0689)  
1.35 (0.0531)  
× 45°  
1.00  
0.90  
0.70  
0.25 (0.0098)  
0.10 (0.0039)  
0.22  
0.08  
8°  
0°  
0.46  
0.36  
0.26  
0.51 (0.0201)  
0.31 (0.0122)  
SEATING  
1.27 (0.0500)  
0.40 (0.0157)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
8°  
4°  
0°  
PLANE  
0.30  
0.15  
0.10 M  
AX  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012AB  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
0.10 COPLANARITY  
COMPLIANT TO JEDEC STANDARDS MO-203AA  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
Figure 50. 5-Lead Plastic Surface-Mount Package [SC70]  
(KS-5)  
Figure 53. 14-Lead Standard Small Outline Package [SOIC]  
Narrow Body (R-14)  
Dimensions shown in millimeters  
Dimensions shown in millimeters and (inches)  
5.00 (0.1968)  
4.80 (0.1890)  
5.10  
5.00  
4.90  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
14  
8
7
4.50  
4.40  
4.30  
1.27 (0.0500)  
BSC  
0.50 (0.0196)  
0.25 (0.0099)  
6.40  
BSC  
× 45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
1
0.10 (0.0040)  
8°  
0.51 (0.0201)  
0.31 (0.0122)  
PIN 1  
0° 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.40 (0.0157)  
0.65  
BSC  
1.05  
1.00  
0.80  
0.20  
0.09  
1.20  
MAX  
COMPLIANT TO JEDEC STANDARDS MS-012AA  
0.75  
0.60  
0.45  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
8°  
0°  
0.15  
0.05  
0.30  
0.19  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153AB-1  
Figure 51. 8-Lead Standard Small Outline Package [SOIC]  
Narrow Body (R-8)  
Figure 54. 14-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-14)  
Dimensions shown in millimeters  
3.00  
BSC  
8
5
4
4.90  
BSC  
3.00  
BSC  
PIN 1  
0.65 BSC  
1.10 MAX  
0.15  
0.00  
0.80  
0.60  
0.40  
8°  
0°  
0.38  
0.22  
0.23  
0.08  
COPLANARITY  
0.10  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-187AA  
Figure 52. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
Rev. B | Page 18 of 20  
 
AD8627/AD8626/AD8625  
ORDERING GUIDE  
Model  
Temperature Range  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
Package Description  
Package Option  
Branding  
B9A  
B9A  
AD8627AKS-REEL  
AD8627AKS-REEL7  
AD8627AKS-R2  
AD8627AR  
AD8627AR-REEL  
AD8627AR-REEL7  
AD8626ARM-REEL  
AD8626ARM-R2  
AD8626AR  
AD8626AR-REEL  
AD8626AR-REEL7  
AD8625ARU  
AD8625ARU-REEL  
AD8625AR  
5-Lead SC70  
5-Lead SC70  
5-Lead SC70  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead MSOP  
8-Lead MSOP  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead SOIC  
14-Lead SOIC  
14-Lead SOIC  
KS-5  
KS-5  
KS-5  
R-8  
R-8  
R-8  
RM-8  
RM-8  
R-8  
R-8  
R-8  
RU-14  
RU-14  
R-14  
R-14  
R-14  
B9A  
BJA  
BJA  
AD8625AR-REEL  
AD8625AR-REEL7  
Rev. B | Page 19 of 20  
 
AD8627/AD8626/AD8625  
NOTES  
©
2004 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C03023-0-1/04(B)  
Rev. B | Page 20 of 20  

相关型号:

AD8626AR

Precision Low Power Single-Supply JFET Amplifier
ADI

AD8626AR-REEL

Precision Low Power Single-Supply JFET Amplifier
ADI

AD8626AR-REEL7

Precision Low Power Single-Supply JFET Amplifier
ADI

AD8626ARM-R2

Precision Low Power Single-Supply JFET Amplifier
ADI

AD8626ARM-REEL

Precision Low Power Single-Supply JFET Amplifier
ADI

AD8626ARMZ

Precision Low Power Single-Supply JFET Amplifiers
ADI

AD8626ARMZ-REEL

Precision Low Power Single-Supply JFET Amplifiers
ADI

AD8626ARZ

Precision Low Power Single-Supply JFET Amplifiers
ADI

AD8626ARZ-REEL

Precision Low Power Single-Supply JFET Amplifiers
ADI

AD8626ARZ-REEL7

Precision Low Power Single-Supply JFET Amplifiers
ADI

AD8626_15

Single-Supply JFET Amplifiers
ADI

AD8627

Precision Low Power Single-Supply JFET Amplifier
ADI