AD8628WARZ-R7 [ADI]

Zero-Drift, Single-Supply, Rail-to-Rail Input/Output Operational Amplifier; 零漂移,单电源,轨到轨输入/输出运算放大器
AD8628WARZ-R7
型号: AD8628WARZ-R7
厂家: ADI    ADI
描述:

Zero-Drift, Single-Supply, Rail-to-Rail Input/Output Operational Amplifier
零漂移,单电源,轨到轨输入/输出运算放大器

运算放大器 放大器电路 光电二极管 斩波器 PC
文件: 总24页 (文件大小:449K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Zero-Drift, Single-Supply, Rail-to-Rail  
Input/Output Operational Amplifier  
AD8628/AD8629/AD8630  
FEATURES  
PIN CONFIGURATIONS  
Lowest auto-zero amplifier noise  
Low offset voltage: 1 μV  
Input offset drift: 0.002 μV/°C  
Rail-to-rail input and output swing  
5 V single-supply operation  
High gain, CMRR, and PSRR: 130 dB  
Very low input bias current: 100 pA maximum  
Low supply current: 1.0 mA  
OUT  
V–  
1
2
3
5
V+  
AD8628  
TOP VIEW  
(Not to Scale)  
+IN  
4
–IN  
Figure 1. 5-Lead TSOT (UJ-5) and 5-Lead SOT-23 (RJ-5)  
NC  
–IN  
+IN  
V–  
1
2
3
4
8
7
6
5
NC  
V+  
Overload recovery time: 50 μs  
No external components required  
Qualified for automotive applications  
AD8628  
OUT  
NC  
TOP VIEW  
(Not to Scale)  
NC = NO CONNECT  
Figure 2. 8-Lead SOIC_N (R-8)  
APPLICATIONS  
Automotive sensors  
Pressure and position sensors  
Strain gage amplifiers  
Medical instrumentation  
Thermocouple amplifiers  
Precision current sensing  
Photodiode amplifiers  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
AD8629  
OUT B  
–IN B  
+IN B  
TOP VIEW  
(Not to Scale)  
Figure 3. 8-Lead SOIC_N (R-8) and 8-Lead MSOP (RM-8)  
1
2
3
4
5
6
7
14 OUT D  
13 –IN D  
12 +IN D  
11 V–  
OUT A  
–IN A  
+IN A  
V+  
GENERAL DESCRIPTION  
This amplifier has ultralow offset, drift, and bias current.  
The AD8628/AD8629/AD8630 are wide bandwidth auto-zero  
amplifiers featuring rail-to-rail input and output swing and low  
noise. Operation is fully specified from 2.7 V to 5 V single supply  
(±±.35 V to ±2.5 V dual supply).  
AD8630  
TOP VIEW  
(Not to Scale)  
+IN B  
–IN B  
OUT B  
10  
+IN C  
9
8
–IN C  
OUT C  
Figure 4. 14-Lead SOIC_N (R-14) and 14-Lead TSSOP (RU-14)  
The AD8628/AD8629/AD8630 provide benefits previously  
found only in expensive auto-zeroing or chopper-stabilized  
amplifiers. Using Analog Devices, Inc., topology, these zero-  
drift amplifiers combine low cost with high accuracy and low  
noise. No external capacitor is required. In addition, the AD8628/  
AD8629/AD8630 greatly reduce the digital switching noise  
found in most chopper-stabilized amplifiers.  
The AD8628/AD8629/AD8630 are specified for the extended  
industrial temperature range (−40°C to +±25°C). The AD8628  
is available in tiny 5-lead TSOT, 5-lead SOT-23, and 8-lead  
narrow SOIC plastic packages. The AD8629 is available in the  
standard 8-lead narrow SOIC and MSOP plastic packages. The  
AD8630 quad amplifier is available in ±4-lead narrow SOIC and  
±4-lead TSSOP plastic packages. See the Ordering Guide for  
automotive grades.  
With an offset voltage of only ± μV, drift of less than 0.005 ꢀV/°C,  
and noise of only 0.5 μV p-p (0 Hz to ±0 Hz), the AD8628/  
AD8629/AD8630 are suited for applications where error  
sources cannot be tolerated. Position and pressure sensors,  
medical equipment, and strain gage amplifiers benefit greatly  
from nearly zero drift over their operating temperature range.  
Many systems can take advantage of the rail-to-rail input and  
output swings provided by the AD8628/AD8629/AD8630 to  
reduce input biasing complexity and maximize SNR.  
Rev. I  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2002–2011 Analog Devices, Inc. All rights reserved.  
 
AD8628/AD8629/AD8630  
TABLE OF CONTENTS  
Features .............................................................................................. ±  
±/f Noise....................................................................................... ±4  
Peak-to-Peak Noise.................................................................... ±5  
Noise Behavior with First-Order, Low-Pass Filter................. ±5  
Total Integrated Input-Referred Noise for First-Order Filter±5  
Input Overvoltage Protection................................................... ±6  
Output Phase Reversal............................................................... ±6  
Overload Recovery Time .......................................................... ±6  
Infrared Sensors.......................................................................... ±7  
Precision Current Shunt Sensor ............................................... ±8  
Output Amplifier for High Precision DACs........................... ±8  
Outline Dimensions....................................................................... ±9  
Ordering Guide .......................................................................... 2±  
Applications....................................................................................... ±  
General Description......................................................................... ±  
Pin Configurations ........................................................................... ±  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics—VS = 5.0 V....................................... 3  
Electrical Characteristics—VS = 2.7 V....................................... 4  
Absolute Maximum Ratings............................................................ 5  
Thermal Characteristics .............................................................. 5  
ESD Caution.................................................................................. 5  
Typical Performance Characteristics ............................................. 6  
Functional Description.................................................................. ±4  
REVISION HISTORY  
4/11—Rev. H to Rev. I  
Updated Outline Dimensions....................................................... ±9  
Changes to Ordering Guide .......................................................... 2±  
Added Figure 5 and Figure 6............................................................±  
Changes to Caption in Figure 8 and Figure 9................................7  
Changes to Caption in Figure ±4.....................................................8  
Changes to Figure ±7.........................................................................8  
Changes to Figure 23 and Figure 24................................................9  
Changes to Figure 25 and Figure 26............................................. ±0  
Changes to Figure 3±...................................................................... ±±  
Changes to Figure 40, Figure 4±, Figure 42................................. ±2  
Changes to Figure 43 and Figure 44............................................. ±3  
Changes to Figure 5±...................................................................... ±5  
Updated Outline Dimensions....................................................... 20  
Changes to Ordering Guide.......................................................... 20  
4/10—Rev. G to Rev. H  
Change to Features List.................................................................... ±  
Change to General Description Section........................................ ±  
Changes to Table 3............................................................................ 5  
Updated Outline Dimensions Section......................................... ±9  
Changes to Ordering Guide .......................................................... 2±  
6/08—Rev. F to Rev. G  
Changes to Features Section............................................................ ±  
Changes to Table 5 and Figure 42 Caption ................................. ±2  
Changes to ±/f Noise Section and Figure 49 ............................... ±4  
Changes to Figure 5± Caption and Figure 55 ............................. ±5  
Changes to Figure 57 Caption and Figure 58 Caption .............. ±6  
Changes to Figure 60 Caption and Figure 6± Caption .............. ±7  
Changes to Figure 64...................................................................... ±8  
10/04—Rev. B to Rev. C  
Updated Formatting...........................................................Universal  
Added AD8629 ...................................................................Universal  
Added SOIC and MSOP Pin Configurations ................................±  
Added Figure 48 ............................................................................. ±3  
Changes to Figure 62...................................................................... ±7  
Added MSOP Package ................................................................... ±9  
Changes to Ordering Guide.......................................................... 22  
2/08—Rev. E to Rev. F  
Renamed TSOT-23 to TSOT ............................................Universal  
Deleted Figure 4 and Figure 6......................................................... ±  
Changes to Figure 3 and Figure 4 Captions .................................. ±  
Changes to Table ±............................................................................ 3  
Changes to Table 2............................................................................ 4  
Changes to Table 4............................................................................ 5  
Updated Outline Dimensions....................................................... ±9  
Changes to Ordering Guide .......................................................... 20  
10/03—Rev. A to Rev. B  
Changes to General Description .....................................................±  
Changes to Absolute Maximum Ratings........................................4  
Changes to Ordering Guide.............................................................4  
Added TSOT-23 Package .............................................................. ±5  
6/03—Rev. 0 to Rev. A  
Changes to Specifications.................................................................3  
Changes to Ordering Guide.............................................................4  
Change to Functional Description............................................... ±0  
Updated Outline Dimensions....................................................... ±5  
5/05—Rev. D to Rev. E  
Changes to Ordering Guide .......................................................... 22  
1/05—Rev. C to Rev. D  
Added AD8630 ...................................................................Universal  
10/02—Revision 0: Initial Version  
Rev. I | Page 2 of 24  
 
AD8628/AD8629/AD8630  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS—VS = 5.0 V  
VS = 5.0 V, VCM = 2.5 V, TA = 25°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
IB  
1
5
10  
μV  
μV  
−40°C ≤ TA ≤ +125°C  
Input Bias Current  
AD8628/AD8629  
AD8630  
30  
100  
100  
300  
1.5  
200  
250  
5
pA  
pA  
nA  
pA  
pA  
V
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
Input Offset Current  
IOS  
50  
Input Voltage Range  
0
Common-Mode Rejection Ratio  
CMRR  
AVO  
VCM = 0 V to 5 V  
120  
115  
125  
120  
140  
130  
145  
135  
0.002  
dB  
dB  
dB  
dB  
μV/°C  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ, VO = 0.3 V to 4.7 V  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
Large Signal Voltage Gain  
Offset Voltage Drift  
OUTPUT CHARACTERISTICS  
Output Voltage High  
∆VOS/∆T  
VOH  
0.02  
RL = 100 kΩ to ground  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to ground  
−40°C ≤ TA ≤ +125°C  
RL = 100 kΩ to V+  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to V+  
−40°C ≤ TA ≤ +125°C  
4.99  
4.99  
4.95  
4.95  
4.996  
4.995  
4.98  
4.97  
1
2
10  
15  
50  
V
V
V
V
mV  
mV  
mV  
mV  
mA  
mA  
mA  
mA  
Output Voltage Low  
VOL  
5
5
20  
20  
Short-Circuit Limit  
Output Current  
ISC  
IO  
25  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
40  
30  
15  
POWER SUPPLY  
Power Supply Rejection Ratio  
Supply Current per Amplifier  
PSRR  
ISY  
VS = 2.7 V to 5.5 V, −40°C ≤ TA ≤ +125°C  
VO = VS/2  
−40°C ≤ TA ≤ +125°C  
115  
130  
0.85  
1.0  
dB  
mA  
mA  
1.1  
1.2  
INPUT CAPACITANCE  
Differential  
Common Mode  
CIN  
1.5  
8.0  
pF  
pF  
DYNAMIC PERFORMANCE  
Slew Rate  
Overload Recovery Time  
Gain Bandwidth Product  
NOISE PERFORMANCE  
Voltage Noise  
SR  
RL = 10 kΩ  
1.0  
0.05  
2.5  
V/μs  
ms  
MHz  
GBP  
en p-p  
0.1 Hz to 10 Hz  
0.1 Hz to 1.0 Hz  
f = 1 kHz  
0.5  
0.16  
22  
μV p-p  
μV p-p  
nV/√Hz  
fA/√Hz  
Voltage Noise Density  
Current Noise Density  
en  
in  
f = 10 Hz  
5
Rev. I | Page 3 of 24  
 
AD8628/AD8629/AD8630  
ELECTRICAL CHARACTERISTICS—VS = 2.7 V  
VS = 2.7 V, VCM = ±.35 V, VO = ±.4 V, TA = 25°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
IB  
1
5
10  
μV  
μV  
−40°C ≤ TA ≤ +125°C  
Input Bias Current  
AD8628/AD8629  
AD8630  
30  
100  
300  
1.5  
200  
250  
2.7  
pA  
pA  
nA  
pA  
pA  
V
100  
1.0  
50  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
Input Offset Current  
IOS  
Input Voltage Range  
0
Common-Mode Rejection Ratio  
CMRR  
AVO  
VCM = 0 V to 2.7 V  
115  
110  
110  
105  
130  
120  
140  
130  
0.002  
dB  
dB  
dB  
dB  
μV/°C  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ, VO = 0.3 V to 2.4 V  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
Large Signal Voltage Gain  
Offset Voltage Drift  
OUTPUT CHARACTERISTICS  
Output Voltage High  
∆VOS/∆T  
VOH  
0.02  
RL = 100 kΩ to ground  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to ground  
−40°C ≤ TA ≤ +125°C  
RL = 100 kΩ to V+  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to V+  
−40°C ≤ TA ≤ +125°C  
2.68  
2.68  
2.67  
2.67  
2.695  
2.695  
2.68  
2.675  
1
2
10  
15  
15  
V
V
V
V
mV  
mV  
mV  
mV  
mA  
mA  
mA  
mA  
Output Voltage Low  
VOL  
5
5
20  
20  
Short-Circuit Limit  
Output Current  
ISC  
IO  
10  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
10  
10  
5
POWER SUPPLY  
Power Supply Rejection Ratio  
Supply Current per Amplifier  
PSRR  
ISY  
VS = 2.7 V to 5.5 V, −40°C ≤ TA ≤ +125°C  
VO = VS/2  
−40°C ≤ TA ≤ +125°C  
115  
130  
0.75  
0.9  
dB  
mA  
mA  
1.0  
1.2  
INPUT CAPACITANCE  
Differential  
Common Mode  
CIN  
1.5  
8.0  
pF  
pF  
DYNAMIC PERFORMANCE  
Slew Rate  
Overload Recovery Time  
Gain Bandwidth Product  
NOISE PERFORMANCE  
Voltage Noise  
SR  
RL = 10 kΩ  
1
0.05  
2
V/μs  
ms  
MHz  
GBP  
en p-p  
en  
in  
0.1 Hz to 10 Hz  
f = 1 kHz  
f = 10 Hz  
0.5  
22  
5
μV p-p  
nV/√Hz  
fA/√Hz  
Voltage Noise Density  
Current Noise Density  
Rev. I | Page 4 of 24  
 
AD8628/AD8629/AD8630  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
Parameter  
Rating  
THERMAL CHARACTERISTICS  
Supply Voltage  
Input Voltage  
6 V  
θJA is specified for worst-case conditions, that is, θJA is specified  
for the device soldered in a circuit board for surface-mount  
packages. This was measured using a standard two-layer board.  
GND – 0.3 V to VS + 0.3 V  
5.0 V  
Indefinite  
−65°C to +150°C  
−40°C to +125°C  
−65°C to +150°C  
300°C  
Differential Input Voltage1  
Output Short-Circuit Duration to GND  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range  
Lead Temperature (Soldering, 60 sec)  
ESD AD8628  
Table 4.  
Package Type  
θJA  
θJC  
61  
146  
43  
44  
43  
23  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
5-Lead TSOT (UJ-5)  
5-Lead SOT-23 (RJ-5)  
8-Lead SOIC_N (R-8)  
8-Lead MSOP (RM-8)  
14-Lead SOIC_N (R-14)  
14-Lead TSSOP (RU-14)  
207  
230  
158  
190  
105  
148  
HBM 8-Lead SOIC  
7000V  
1500V  
1000V  
200V  
FICDM 8-Lead SOIC  
FICDM 5-Lead TSOT  
MM 8-Lead SOIC  
ESD AD8629  
ESD CAUTION  
HBM 8-Lead SOIC  
FICDM 8-Lead SOIC  
ESD AD8630  
4000V  
1000V  
HBM 14-Lead SOIC  
5000V  
1500V  
1500V  
200V  
FICDM 14-Lead SOIC  
FICDM 14-Lead TSSOP  
MM 14-Lead SOIC  
1 Differential input voltage is limited to 5 V or the supply voltage, whichever  
is less.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. I | Page 5 of 24  
 
 
AD8628/AD8629/AD8630  
TYPICAL PERFORMANCE CHARACTERISTICS  
180  
100  
V
T
= 2.7V  
= 25°C  
V
= 5V  
S
= 2.5V  
S
A
90  
80  
70  
60  
50  
40  
30  
160  
140  
120  
100  
80  
V
CM  
= 25°C  
T
A
60  
40  
20  
10  
20  
0
0
–2.5  
–2.5  
–1.5  
–0.5  
0.5  
1.5  
2.5  
–1.5  
–0.5  
0.5  
1.5  
2.5  
10  
10  
INPUT OFFSET VOLTAGE (µV)  
INPUT OFFSET VOLTAGE (µV)  
Figure 5. Input Offset Voltage Distribution  
Figure 8. Input Offset Voltage Distribution  
60  
50  
40  
30  
20  
7
V
= 5V  
S
V
T
= 5V  
S
A
+85°C  
= –40°C TO +125°C  
6
5
4
3
2
+25°C  
–40°C  
10  
0
1
0
0
1
2
3
4
5
6
0
2
4
6
8
INPUT COMMON-MODE VOLTAGE (V)  
TCVOS (nV/°C)  
Figure 6. AD8628 Input Bias Current vs. Input Common-Mode Voltage  
Figure 9. Input Offset Voltage Drift  
1500  
1k  
V
= 5V  
S
A
V
= 5V  
S
150°C  
125°C  
T
= 25°C  
1000  
500  
0
100  
10  
1
SOURCE  
SINK  
–500  
0.1  
–1000  
–1500  
0.01  
0.0001  
0
1
2
3
4
5
6
0.001  
0.01  
0.1  
1
INPUT COMMON-MODE VOLTAGE (V)  
LOAD CURRENT (mA)  
Figure 7. AD8628 Input Bias Current vs. Input Common-Mode Voltage  
Figure 10. Output Voltage to Supply Rail vs. Load Current  
Rev. I | Page 6 of 24  
 
AD8628/AD8629/AD8630  
1k  
1000  
800  
600  
400  
T
= 25°C  
V
= 2.7V  
A
S
100  
10  
SOURCE  
SINK  
1
0.1  
200  
0
0.01  
0.0001  
0.001  
0.01  
0.1  
1
10  
175  
200  
0
1
2
3
4
5
6
LOAD CURRENT (mA)  
SUPPLY VOLTAGE (V)  
Figure 11. Output Voltage to Supply Rail vs. Load Current  
Figure 14. Supply Current vs. Supply Voltage  
1500  
1150  
900  
V
C
R
= 2.7V  
= 20pF  
= ∞  
S
V
V
= 5V  
= 2.5V  
S
60  
40  
20  
0
L
CM  
= –40°C TO +150°C  
L
T
A
Ф
= 45°  
M
GAIN  
0
45  
PHASE  
90  
135  
180  
225  
450  
100  
0
–20  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
TEMPERATURE (°C)  
Figure 12. AD8628 Input Bias Current vs. Temperature  
Figure 15. Open-Loop Gain and Phase vs. Frequency  
1250  
1000  
750  
70  
T
= 25°C  
V
= 5V  
= 20pF  
= ∞  
A
S
60  
50  
40  
30  
20  
10  
0
C
R
L
L
5V  
Φ
= 52.1°  
M
GAIN  
0
2.7V  
45  
PHASE  
90  
500  
135  
180  
225  
250  
0
–10  
–20  
–30  
–50  
0
50  
100  
150  
10k  
100k  
1M  
10M  
TEMPERATURE (°  
C
)
FREQUENCY (Hz)  
Figure 13. Supply Current vs. Temperature  
Figure 16. Open-Loop Gain and Phase vs. Frequency  
Rev. I | Page 7 of 24  
AD8628/AD8629/AD8630  
70  
60  
50  
300  
270  
240  
210  
180  
150  
120  
90  
V
= 5V  
S
V
C
R
= 2.7V  
= 20pF  
= 2k  
S
L
L
A
= 100  
= 10  
= 1  
V
40  
30  
20  
10  
0
A
V
A
V
A
= 10  
–10  
–20  
–30  
60  
30  
0
V
A
= 100  
10k  
V
A
= 1  
V
1k  
10k  
100k  
1M  
10M  
100  
1k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 17. Closed-Loop Gain vs. Frequency  
Figure 20. Output Impedance vs. Frequency  
70  
60  
50  
40  
30  
20  
10  
0
V
C
R
= 5V  
= 20pF  
= 2k  
S
L
L
A
A
= 100  
= 10  
V
V
= ±1.35V  
= 300pF  
=  
S
C
R
A
L
L
V
V
0V  
= 1  
A
= 1  
V
–10  
–20  
–30  
1k  
10k  
100k  
1M  
10M  
TIME (4µs/DIV)  
FREQUENCY (Hz)  
Figure 21. Large Signal Transient Response  
Figure 18. Closed-Loop Gain vs. Frequency  
300  
V
= 2.7V  
S
270  
240  
210  
180  
150  
120  
90  
V
= ±2.5V  
= 300pF  
= ∞  
S
C
R
A
L
L
V
0V  
= 1  
A
= 10  
60  
30  
0
V
A
= 100  
10k  
V
A
= 1  
V
100  
1k  
100k  
FREQUENCY (Hz)  
1M  
10M  
100M  
TIME (5µs/DIV)  
Figure 22. Large Signal Transient Response  
Figure 19. Output Impedance vs. Frequency  
Rev. I | Page 8 of 24  
AD8628/AD8629/AD8630  
80  
70  
60  
50  
40  
V
= ±2.5V  
= 2k  
= 25°C  
V
= ±1.35V  
= 50pF  
= ∞  
S
S
R
T
C
R
A
L
L
L
V
A
= 1  
0V  
30  
20  
OS–  
OS+  
10  
0
1
10  
100  
1k  
TIME (4µs/DIV)  
CAPACITIVE LOAD (pF)  
Figure 23. Small Signal Transient Response  
Figure 26. Small Signal Overshoot vs. Load Capacitance  
V
= ±2.5V  
= –50  
= 10kΩ  
= 0pF  
S
V
= ±2.5V  
= 50pF  
= ∞  
S
A
R
C
V
L
L
C
R
A
L
L
V
V
IN  
= 1  
CH1 = 50mV/DIV  
CH2 = 1V/DIV  
0V  
0V  
0V  
V
OUT  
TIME (4µs/DIV)  
TIME (2µs/DIV)  
Figure 24. Small Signal Transient Response  
Figure 27. Positive Overvoltage Recovery  
100  
90  
80  
70  
60  
50  
40  
30  
V
R
= ±1.35V  
= 2kΩ  
= 25°C  
S
L
0V  
T
A
V
= ±2.5V  
= –50  
= 10kΩ  
= 0pF  
S
A
R
C
V
L
L
V
IN  
CH1 = 50mV/DIV  
CH2 = 1V/DIV  
OS–  
V
OUT  
OS+  
20  
10  
0
0V  
1
10  
100  
1k  
TIME (10µs/DIV)  
CAPACITIVE LOAD (pF)  
Figure 25. Small Signal Overshoot vs. Load Capacitance  
Figure 28. Negative Overvoltage Recovery  
Rev. I | Page 9 of 24  
AD8628/AD8629/AD8630  
140  
120  
100  
80  
V
V
C
R
A
= ±2.5V  
V
= ±1.35V  
S
S
= 1kHz @ ±3V p-p  
= 0pF  
IN  
L
L
V
= 10kΩ  
= 1  
60  
+PSRR  
0V  
40  
20  
–PSRR  
0
–20  
–40  
–60  
100  
1k  
10k  
100k  
1M  
10M  
TIME (200µs/DIV)  
FREQUENCY (Hz)  
Figure 29. No Phase Reversal  
Figure 32. PSRR vs. Frequency  
140  
120  
100  
80  
140  
120  
100  
80  
V = ±2.5V  
S
V
= 2.7V  
S
60  
60  
+PSRR  
40  
40  
–PSRR  
20  
20  
0
0
–20  
–40  
–60  
–20  
–40  
–60  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 30. CMRR vs. Frequency  
Figure 33. PSRR vs. Frequency  
140  
120  
100  
80  
3.0  
2.5  
2.0  
1.5  
1.0  
V
= 5V  
V
R
= 2.7V  
S
S
= 10kΩ  
= 25°C  
= 1  
L
T
A
A
V
60  
40  
20  
0
–20  
–40  
–60  
0.5  
0
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 31. CMRR vs. Frequency  
Figure 34. Maximum Output Swing vs. Frequency  
Rev. I | Page 10 of 24  
AD8628/AD8629/AD8630  
5.5  
5.0  
120  
105  
90  
V
R
= 5V  
S
V
= 2.7V  
S
= 10kΩ  
= 25°C  
= 1  
L
NOISE AT 1kHz = 21.3nV  
T
A
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
A
V
75  
60  
45  
30  
15  
0
0.5  
0
100  
1k  
10k  
100k  
1M  
10  
10  
0
0.5  
1.0  
1.5  
2.0  
2.5  
FREQUENCY (Hz)  
FREQUENCY (kHz)  
Figure 35. Maximum Output Swing vs. Frequency  
Figure 38. Voltage Noise Density at 2.7 V from 0 Hz to 2.5 kHz  
0.60  
0.45  
0.30  
0.15  
120  
V
= 2.7V  
S
V
= 2.7V  
S
NOISE AT 10kHz = 42.4nV  
105  
90  
75  
0
60  
45  
–0.15  
–0.30  
–0.45  
–0.60  
30  
15  
0
0
1
2
3
4
5
6
7
8
9
0
5
10  
15  
20  
25  
TIME (µs)  
FREQUENCY (kHz)  
Figure 36. 0.1 Hz to 10 Hz Noise  
Figure 39. Voltage Noise Density at 2.7 V from 0 Hz to 25 kHz  
0.60  
0.45  
0.30  
0.15  
120  
V
= 5V  
S
V
= 5V  
S
NOISE AT 1kHz = 22.1nV  
105  
90  
75  
0
60  
45  
–0.15  
–0.30  
–0.45  
–0.60  
30  
15  
0
0
1
2
3
4
5
6
7
8
9
0
0.5  
1.0  
1.5  
2.0  
2.5  
TIME (µs)  
FREQUENCY (kHz)  
Figure 37. 0.1 Hz to 10 Hz Noise  
Figure 40. Voltage Noise Density at 5 V from 0 Hz to 2.5 kHz  
Rev. I | Page 11 of 24  
AD8628/AD8629/AD8630  
120  
150  
V
T
= 2.7V  
= –40°C TO +150°C  
S
A
V
= 5V  
S
NOISE AT 10kHz = 36.4nV  
105  
90  
100  
50  
0
75  
60  
45  
I
SC  
I
+
SC  
30  
15  
0
–50  
–100  
0
5
10  
15  
20  
25  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
175  
175  
175  
FREQUENCY (kHz)  
TEMPERATURE (°C)  
Figure 41. Voltage Noise Density at 5 V from 0 Hz to 25 kHz  
Figure 44. Output Short-Circuit Current vs. Temperature  
120  
150  
V
T
= 5V  
S
A
V
= 5V  
S
= –40°C TO +150°C  
105  
90  
100  
50  
0
I
SC  
75  
60  
45  
30  
15  
0
–50  
I
+
SC  
–100  
0
5
10  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
FREQUENCY (kHz)  
TEMPERATURE (°C)  
Figure 42. Voltage Noise Density at 5 V from 0 Hz to 10 kHz  
Figure 45. Output Short-Circuit Current vs. Temperature  
150  
1k  
100  
10  
V
= 5V  
S
140  
130  
V
– V @ 1k  
OH  
CC  
V
T
= 2.7V TO 5V  
= –40°C TO +125°C  
S
120  
110  
V
– V @ 1kΩ  
EE  
A
OL  
V
– V @ 10kΩ  
OH  
CC  
100  
90  
V
– V @ 10kΩ  
EE  
OL  
V
– V @ 100kΩ  
OH  
CC  
80  
1
V
– V @ 100kΩ  
EE  
OL  
70  
60  
50  
0.1  
–50  
–50  
–25  
0
25  
50  
75  
100  
125  
–25  
0
25  
50  
75  
100  
125  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 43. Power Supply Rejection vs. Temperature  
Figure 46. Output-to-Rail Voltage vs. Temperature  
Rev. I | Page 12 of 24  
AD8628/AD8629/AD8630  
1k  
100  
10  
140  
V
= 2.7V  
S
V
= ±2.5V  
S
120  
100  
80  
V
– V @ 1kΩ  
OH  
CC  
V
– V @ 1kΩ  
EE  
OL  
V
– V @ 10kΩ  
OH  
CC  
R1  
10k  
V
– V @ 10kΩ  
EE  
OL  
60  
+2.5V  
V+  
R2  
100Ω  
V
– V @ 100kΩ  
CC  
OH  
V–  
B
40  
+
V
IN  
28mV p-p  
1
A
V
– V @ 100kΩ  
EE  
OL  
V
OUT  
V–  
V+  
20  
0
–2.5V  
0.1  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
175  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
TEMPERATURE (°C)  
Figure 47. Output-to-Rail Voltage vs. Temperature  
Figure 48. AD8629/AD8630 Channel Separation vs. Frequency  
Rev. I | Page 13 of 24  
AD8628/AD8629/AD8630  
FUNCTIONAL DESCRIPTION  
The AD8628/AD8629/AD8630 are single-supply, ultrahigh  
precision rail-to-rail input and output operational amplifiers.  
The typical offset voltage of less than ± μV allows these amplifiers  
to be easily configured for high gains without risk of excessive  
output voltage errors. The extremely small temperature drift  
of 2 nV/°C ensures a minimum offset voltage error over their  
entire temperature range of −40°C to +±25°C, making these  
amplifiers ideal for a variety of sensitive measurement applica-  
tions in harsh operating environments.  
1/f NOISE  
±/f noise, also known as pink noise, is a major contributor to  
errors in dc-coupled measurements. This ±/f noise error term  
can be in the range of several μV or more, and, when amplified  
with the closed-loop gain of the circuit, can show up as a large  
output offset. For example, when an amplifier with a 5 μV p-p  
±/f noise is configured for a gain of ±000, its output has 5 mV of  
error due to the ±/f noise. However, the AD8628/AD8629/AD8630  
eliminate ±/f noise internally, thereby greatly reducing output errors.  
The AD8628/AD8629/AD8630 achieve a high degree of precision  
through a patented combination of auto-zeroing and chopping.  
This unique topology allows the AD8628/AD8629/AD8630 to  
maintain their low offset voltage over a wide temperature range  
and over their operating lifetime. The AD8628/AD8629/AD8630  
also optimize the noise and bandwidth over previous generations  
of auto-zero amplifiers, offering the lowest voltage noise of any  
auto-zero amplifier by more than 50%.  
The internal elimination of ±/f noise is accomplished as follows.  
±/f noise appears as a slowly varying offset to the AD8628/AD8629/  
AD8630 inputs. Auto-zeroing corrects any dc or low frequency  
offset. Therefore, the ±/f noise component is essentially removed,  
leaving the AD8628/AD8629/AD8630 free of ±/f noise.  
One advantage that the AD8628/AD8629/AD8630 bring to  
system applications over competitive auto-zero amplifiers is their  
very low noise. The comparison shown in Figure 49 indicates  
an input-referred noise density of ±9.4 nV/√Hz at ± kHz for  
the AD8628, which is much better than the Competitor A  
and Competitor B. The noise is flat from dc to ±.5 kHz, slowly  
increasing up to 20 kHz. The lower noise at low frequency is  
desirable where auto-zero amplifiers are widely used.  
120  
Previous designs used either auto-zeroing or chopping to add  
precision to the specifications of an amplifier. Auto-zeroing  
results in low noise energy at the auto-zeroing frequency, at the  
expense of higher low frequency noise due to aliasing of wideband  
noise into the auto-zeroed frequency band. Chopping results in  
lower low frequency noise at the expense of larger noise energy  
at the chopping frequency. The AD8628/AD8629/AD8630  
family uses both auto-zeroing and chopping in a patented ping-  
pong arrangement to obtain lower low frequency noise together  
with lower energy at the chopping and auto-zeroing frequencies,  
maximizing the signal-to-noise ratio for the majority of  
applications without the need for additional filtering. The  
relatively high clock frequency of ±5 kHz simplifies filter  
requirements for a wide, useful noise-free bandwidth.  
COMPETITOR A  
105  
(89.7nV/Hz)  
90  
75  
60  
45  
30  
COMPETITOR B  
(31.1nV/Hz)  
The AD8628 is among the few auto-zero amplifiers offered in  
the 5-lead TSOT package. This provides a significant improvement  
over the ac parameters of the previous auto-zero amplifiers. The  
AD8628/AD8629/AD8630 have low noise over a relatively wide  
bandwidth (0 Hz to ±0 kHz) and can be used where the highest  
dc precision is required. In systems with signal bandwidths of  
from 5 kHz to ±0 kHz, the AD8628/AD8629/AD8630 provide  
true ±6-bit accuracy, making them the best choice for very high  
resolution systems.  
15  
0
AD8628  
(19.4nV/Hz)  
MK AT 1kHz FOR ALL 3 GRAPHS  
10 12  
0
2
4
6
8
FREQUENCY (kHz)  
Figure 49. Noise Spectral Density of AD8628 vs. Competition  
Rev. I | Page 14 of 24  
 
 
AD8628/AD8629/AD8630  
50  
45  
40  
35  
30  
25  
20  
15  
PEAK-TO-PEAK NOISE  
Because of the ping-pong action between auto-zeroing and  
chopping, the peak-to-peak noise of the AD8628/AD8629/  
AD8630 is much lower than the competition. Figure 50 and  
Figure 5± show this comparison.  
e
p-p = 0.5µV  
n
BW = 0.1Hz TO 10Hz  
10  
5
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
FREQUENCY (kHz)  
Figure 53. Simulation Transfer Function of the Test Circuit in Figure 52  
50  
45  
40  
35  
30  
25  
20  
15  
TIME (1s/DIV)  
Figure 50. AD8628 Peak-to-Peak Noise  
e
p-p = 2.3µV  
n
BW = 0.1Hz TO 10Hz  
10  
5
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
FREQUENCY (kHz)  
Figure 54. Actual Transfer Function of the Test Circuit in Figure 52  
The measured noise spectrum of the test circuit charted in  
Figure 54 shows that noise between 5 kHz and 45 kHz is  
successfully rolled off by the first-order filter.  
TOTAL INTEGRATED INPUT-REFERRED NOISE FOR  
FIRST-ORDER FILTER  
TIME (1s/DIV)  
Figure 51. Competitor A Peak-to-Peak Noise  
For a first-order filter, the total integrated noise from the  
NOISE BEHAVIOR WITH FIRST-ORDER, LOW-PASS  
FILTER  
AD8628 is lower than the noise of Competitor A.  
10  
The AD8628 was simulated as a low-pass filter (see Figure 53)  
and then configured as shown in Figure 52. The behavior of the  
AD8628 matches the simulated data. It was verified that noise is  
rolled off by first-order filtering. Figure 53 and Figure 54 show  
the difference between the simulated and actual transfer functions  
of the circuit shown in Figure 52.  
COMPETITOR A  
AD8551  
AD8628  
1
IN  
OUT  
100k  
1kΩ  
470pF  
0.1  
10  
100  
1k  
10k  
3dB FILTER BANDWIDTH (Hz)  
Figure 52. First-Order Low-Pass Filter Test Circuit,  
×101 Gain and 3 kHz Corner Frequency  
Figure 55. RMS Noise vs. 3 dB Filter Bandwidth in Hz  
Rev. I | Page 15 of 24  
 
 
 
 
 
 
AD8628/AD8629/AD8630  
INPUT OVERVOLTAGE PROTECTION  
CH1 = 50mV/DIV  
CH2 = 1V/DIV  
V
IN  
A
= –50  
Although the AD8628/AD8629/AD8630 are rail-to-rail input  
amplifiers, care should be taken to ensure that the potential  
difference between the inputs does not exceed the supply voltage.  
Under normal negative feedback operating conditions, the  
amplifier corrects its output to ensure that the two inputs are at  
the same voltage. However, if either input exceeds either supply  
rail by more than 0.3 V, large currents begin to flow through the  
ESD protection diodes in the amplifier.  
V
0V  
0V  
These diodes are connected between the inputs and each supply  
rail to protect the input transistors against an electrostatic discharge  
event, and they are normally reverse-biased. However, if the input  
voltage exceeds the supply voltage, these ESD diodes can become  
forward-biased. Without current limiting, excessive amounts  
of current could flow through these diodes, causing permanent  
damage to the device. If inputs are subject to overvoltage,  
appropriate series resistors should be inserted to limit the diode  
current to less than 5 mA maximum.  
V
OUT  
TIME (500µs/DIV)  
Figure 56. Positive Input Overload Recovery for the AD8628  
CH1 = 50mV/DIV  
CH2 = 1V/DIV  
V
IN  
A
= –50  
V
OUTPUT PHASE REVERSAL  
0V  
0V  
Output phase reversal occurs in some amplifiers when the input  
common-mode voltage range is exceeded. As common-mode  
voltage is moved outside the common-mode range, the outputs of  
these amplifiers can suddenly jump in the opposite direction to  
the supply rail. This is the result of the differential input pair  
shutting down, causing a radical shifting of internal voltages  
that results in the erratic output behavior.  
V
OUT  
The AD8628/AD8629/AD8630 amplifiers have been carefully  
designed to prevent any output phase reversal, provided that  
both inputs are maintained within the supply voltages. If one or  
both inputs could exceed either supply voltage, a resistor should  
be placed in series with the input to limit the current to less than  
5 mA. This ensures that the output does not reverse its phase.  
TIME (500µs/DIV)  
Figure 57. Positive Input Overload Recovery for Competitor A  
CH1 = 50mV/DIV  
CH2 = 1V/DIV  
V
IN  
A
= –50  
V
OVERLOAD RECOVERY TIME  
Many auto-zero amplifiers are plagued by a long overload recovery  
time, often in ms, due to the complicated settling behavior of  
the internal nulling loops after saturation of the outputs. The  
AD8628/AD8629/AD8630 have been designed so that internal  
settling occurs within two clock cycles after output saturation  
occurs. This results in a much shorter recovery time, less  
than ±0 μs, when compared to other auto-zero amplifiers. The  
wide bandwidth of the AD8628/AD8629/AD8630 enhances  
performance when the parts are used to drive loads that inject  
transients into the outputs. This is a common situation when an  
amplifier is used to drive the input of switched capacitor ADCs.  
0V  
0V  
V
OUT  
TIME (500µs/DIV)  
Figure 58. Positive Input Overload Recovery for Competitor B  
Rev. I | Page 16 of 24  
 
 
AD8628/AD8629/AD8630  
The results shown in Figure 56 to Figure 6± are summarized in  
Table 5.  
0V  
CH1 = 50mV/DIV  
CH2 = 1V/DIV  
Table 5. Overload Recovery Time  
A
= –50  
V
Positive Overload  
Recovery (μs)  
Negative Overload  
Recovery (μs)  
V
IN  
Model  
AD8628  
6
9
Competitor A  
Competitor B  
650  
40,000  
25,000  
35,000  
V
OUT  
0V  
INFRARED SENSORS  
Infrared (IR) sensors, particularly thermopiles, are increasingly  
being used in temperature measurement for applications as wide  
ranging as automotive climate control, human ear thermometers,  
home insulation analysis, and automotive repair diagnostics.  
The relatively small output signal of the sensor demands high  
gain with very low offset voltage and drift to avoid dc errors.  
TIME (500µs/DIV)  
Figure 59. Negative Input Overload Recovery for the AD8628  
0V  
CH1 = 50mV/DIV  
CH2 = 1V/DIV  
If interstage ac coupling is used, as in Figure 62, low offset and  
drift prevent the output of the input amplifier from drifting close to  
saturation. The low input bias currents generate minimal errors  
from the output impedance of the sensor. As with pressure sensors,  
the very low amplifier drift with time and temperature eliminate  
additional errors once the temperature measurement is calibrated.  
The low ±/f noise improves SNR for dc measurements taken  
over periods often exceeding one-fifth of a second.  
A
= –50  
V
V
IN  
OUT  
V
0V  
Figure 62 shows a circuit that can amplify ac signals from ±00 μV to  
300 μV up to the ± V to 3 V levels, with a gain of ±0,000 for  
accurate analog-to-digital conversion.  
10kΩ  
100kΩ  
TIME (500µs/DIV)  
100Ω  
100kΩ  
Figure 60. Negative Input Overload Recovery for Competitor A  
5V  
5V  
100µV TO 300µV  
10µF  
1/2 AD8629  
IR  
0V  
1/2 AD8629  
DETECTOR  
10kΩ  
CH1 = 50mV/DIV  
CH2 = 1V/DIV  
f
1.6Hz  
C
A
= –50  
V
TO BIAS  
VOLTAGE  
V
IN  
Figure 62. AD8629 Used as Preamplifier for Thermopile  
V
OUT  
0V  
TIME (500µs/DIV)  
Figure 61. Negative Input Overload Recovery for Competitor B  
Rev. I | Page 17 of 24  
 
 
 
 
AD8628/AD8629/AD8630  
PRECISION CURRENT SHUNT SENSOR  
OUTPUT AMPLIFIER FOR HIGH PRECISION DACS  
A precision current shunt sensor benefits from the unique  
attributes of auto-zero amplifiers when used in a differencing  
configuration, as shown in Figure 63. Current shunt sensors are  
used in precision current sources for feedback control systems.  
They are also used in a variety of other applications, including  
battery fuel gauging, laser diode power measurement and control,  
torque feedback controls in electric power steering, and precision  
power metering.  
The AD8628/AD8629/AD8360 are used as output amplifiers for  
a ±6-bit high precision DAC in a unipolar configuration. In this  
case, the selected op amp needs to have a very low offset voltage  
(the DAC LSB is 38 μV when operated with a 2.5 V reference)  
to eliminate the need for output offset trims. The input bias  
current (typically a few tens of picoamperes) must also be very  
low because it generates an additional zero code error when  
multiplied by the DAC output impedance (approximately 6 kΩ).  
Rail-to-rail input and output provide full-scale output with very  
little error. The output impedance of the DAC is constant and  
code independent, but the high input impedance of the AD8628/  
AD8629/AD8630 minimizes gain errors. The wide bandwidth  
of the amplifiers also serves well in this case. The amplifiers,  
with settling time of ± μs, add another time constant to the  
system, increasing the settling time of the output. The settling  
time of the AD554± is ± μs. The combined settling time is  
approximately ±.4 μs, as can be derived from the following  
equation:  
R
0.1  
S
R
SUPPLY  
L
I
100kΩ  
100Ω  
e = 1000 R  
100mV/mA  
I
S
C
5V  
AD8628  
100kΩ  
100Ω  
C
2
2
tS  
(TOTAL  
)
=
(
tS DAC  
)
+
(
tS AD8628  
)
Figure 63. Low-Side Current Sensing  
In such applications, it is desirable to use a shunt with very low  
resistance to minimize the series voltage drop; this minimizes  
wasted power and allows the measurement of high currents  
while saving power. A typical shunt might be 0.± Ω. At measured  
current values of ± A, the output signal of the shunt is hundreds  
of millivolts, or even volts, and amplifier error sources are not  
critical. However, at low measured current values in the ± mA  
range, the ±00 μV output voltage of the shunt demands a very  
low offset voltage and drift to maintain absolute accuracy. Low  
input bias currents are also needed, so that injected bias current  
does not become a significant percentage of the measured current.  
High open-loop gain, CMRR, and PSRR help to maintain the  
overall circuit accuracy. As long as the rate of change of the  
current is not too fast, an auto-zero amplifier can be used with  
excellent results.  
5V  
2.5V  
10µF  
0.1µF  
0.1µF  
SERIAL  
V
REF(REFF*) REFS*  
AD5541/AD5542  
DD  
INTERFACE  
CS  
AD8628  
DIN  
UNIPOLAR  
OUTPUT  
V
OUT  
SCLK  
LDAC*  
DGND  
AGND  
*AD5542 ONLY  
Figure 64. AD8628 Used as an Output Amplifier  
Rev. I | Page 18 of 24  
 
 
AD8628/AD8629/AD8630  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
2.90 BSC  
5
1
4
3
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
2.80 BSC  
4.00 (0.1574)  
3.80 (0.1497)  
1.60 BSC  
2
0.95 BSC  
0.50 (0.0196)  
45°  
1.27 (0.0500)  
BSC  
1.75 (0.0688)  
0.25 (0.0099)  
1.90  
BSC  
*
0.90 MAX  
0.70 MIN  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
*
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.00 MAX  
0.20  
0.08  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
8°  
4°  
0°  
0.10 MAX  
0.50  
0.30  
0.60  
0.45  
0.30  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
*
COMPLIANT TO JEDEC STANDARDS MO-193-AB WITH  
THE EXCEPTION OF PACKAGE HEIGHT AND THICKNESS.  
Figure 65. 5-Lead Thin Small Outline Transistor Package [TSOT]  
Figure 67. 8-Lead Standard Small Outline Package [SOIC_N]  
(UJ-5)  
Narrow Body  
(R-8)  
Dimensions shown in millimeters  
Dimensions shown in millimeters and (inches)  
3.00  
2.90  
2.80  
3.20  
3.00  
2.80  
5
1
4
3
3.00  
2.80  
2.60  
1.70  
1.60  
1.50  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
2
0.95 BSC  
PIN 1  
IDENTIFIER  
1.90  
BSC  
1.30  
0.65 BSC  
1.15  
0.90  
0.95  
0.85  
0.75  
15° MAX  
0.20 MAX  
0.08 MIN  
1.45 MAX  
0.95 MIN  
1.10 MAX  
0.55  
0.45  
0.35  
0.15 MAX  
0.05 MIN  
10°  
5°  
0°  
0.80  
0.55  
0.40  
SEATING  
PLANE  
0.20  
BSC  
0.15  
0.05  
COPLANARITY  
0.23  
0.09  
0.50 MAX  
0.35 MIN  
6°  
0°  
0.40  
0.25  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-178-AA  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 66. 5-Lead Small Outline Transistor Package [SOT-23]  
Figure 68. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
(RJ-5)  
Dimensions shown in millimeters  
Dimensions shown in millimeters  
Rev. I | Page 19 of 24  
 
AD8628/AD8629/AD8630  
5.10  
5.00  
4.90  
8.75 (0.3445)  
8.55 (0.3366)  
14  
8
7
8
7
14  
1
6.20 (0.2441)  
5.80 (0.2283)  
4.00 (0.1575)  
3.80 (0.1496)  
4.50  
4.40  
4.30  
6.40  
BSC  
1
1.27 (0.0500)  
0.50 (0.0197)  
0.25 (0.0098)  
45°  
BSC  
1.75 (0.0689)  
1.35 (0.0531)  
PIN 1  
0.25 (0.0098)  
0.10 (0.0039)  
8°  
0°  
0.65 BSC  
COPLANARITY  
0.10  
SEATING  
PLANE  
1.27 (0.0500)  
0.40 (0.0157)  
1.05  
1.00  
0.80  
0.51 (0.0201)  
0.31 (0.0122)  
0.25 (0.0098)  
0.17 (0.0067)  
1.20  
MAX  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.15  
0.05  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MS-012-AB  
SEATING  
PLANE  
0.30  
0.19  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1  
Figure 69. 14-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body (R-14)  
Figure 70. 14-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-14)  
Dimensions shown in millimeters and (inches)  
Dimensions shown in millimeters  
Rev. I | Page 20 of 24  
AD8628/AD8629/AD8630  
ORDERING GUIDE  
Model1, 2  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
Package Option  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
R-8  
R-8  
R-8  
RJ-5  
RJ-5  
R-8  
R-8  
RJ-5  
RJ-5  
UJ-5  
UJ-5  
R-8  
R-8  
R-8  
Branding  
AYB  
AYB  
A0L  
A0L  
AD8628AUJ-REEL  
AD8628AUJ-REEL7  
AD8628AUJZ-R2  
AD8628AUJZ-REEL  
AD8628AUJZ-REEL7  
AD8628ARZ  
AD8628ARZ-REEL  
AD8628ARZ-REEL7  
AD8628ARTZ-R2  
AD8628ARTZ-REEL7  
AD8628WARZ-RL  
AD8628WARZ-R7  
AD8628WARTZ-RL  
AD8628WARTZ-R7  
AD8628WAUJZ-RL  
AD8628WAUJZ-R7  
AD8629ARZ  
AD8629ARZ-REEL  
AD8629ARZ-REEL7  
AD8629ARMZ  
AD8629ARMZ-REEL  
AD8629WARZ-RL  
AD8629WARZ-R7  
AD8630ARUZ  
5-Lead TSOT  
A0L  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
5-Lead SOT-23  
5-Lead SOT-23  
8-Lead SOIC_N  
8-Lead SOIC_N  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead TSOT  
A0L  
A0L  
A0L  
A0L  
A0L  
A0L  
A0L  
A0L  
5-Lead TSOT  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead MSOP  
8-Lead MSOP  
8-Lead SOIC_N  
8-Lead SOIC_N  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
RM-8  
RM-8  
R-8  
A06  
A06  
R-8  
RU-14  
RU-14  
R-14  
R-14  
R-14  
R-14  
R-14  
AD8630ARUZ-REEL  
AD8630ARZ  
AD8630ARZ-REEL  
AD8630ARZ-REEL7  
AD8630WARZ-RL  
AD8630WARZ-R7  
1 Z = RoHS Compliant Part.  
2 W = Qualified for Automotive Applications.  
AUTOMOTIVE PRODUCTS  
The AD8628W/AD8629W/AD8630W models are available with controlled manufacturing to support the quality and reliability  
requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial  
models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade products  
shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product  
ordering information and to obtain the specific Automotive Reliability reports for these models.  
Rev. I | Page 21 of 24  
 
 
 
AD8628/AD8629/AD8630  
NOTES  
Rev. I | Page 22 of 24  
AD8628/AD8629/AD8630  
NOTES  
Rev. I | Page 23 of 24  
AD8628/AD8629/AD8630  
NOTES  
©2002–2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D02735-0-4/11(I)  
Rev. I | Page 24 of 24  
 
 

相关型号:

AD8628WARZ-RL

Zero-Drift, Single-Supply, Rail-to-Rail Input/Output Operational Amplifier
ADI

AD8628WAUJZ-R7

Zero-Drift, Single-Supply, Rail-to-Rail Input/Output Operational Amplifier
ADI

AD8628WAUJZ-RL

Zero-Drift, Single-Supply, Rail-to-Rail Input/Output Operational Amplifier
ADI

AD8628_05

Zero-Drift, Single-Supply, Rail-to-Rail Input/Output Operational Amplifier
ADI

AD8628_08

Zero-Drift, Single-Supply, Rail-to-Rail Input/Output Operational Amplifier
ADI

AD8628_15

Zero-Drift, Single-Supply, Rail-to-Rail
ADI

AD8629

Zero-Drift, Single-Supply, Rail-to-Rail Input/Output Operational Amplifier
ADI

AD8629ARMZ

Zero-Drift, Single-Supply, Rail-to-Rail Input/Output Operational Amplifier
ADI

AD8629ARMZ-R2

Zero-Drift, Single-Supply, Rail-to-Rail Input/Output Operational Amplifier
ADI

AD8629ARMZ-REEL

Zero-Drift, Single-Supply, Rail-to-Rail Input/Output Operational Amplifier
ADI

AD8629ARMZ-REEL

DUAL OP-AMP, 10 uV OFFSET-MAX, 2.5 MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, PLASTIC, MO-187AA, MSOP-8
ROCHESTER

AD8629ARZ

Zero-Drift, Single-Supply, Rail-to-Rail Input/Output Operational Amplifier
ADI