AD8631ARTZ-REEL7 [ADI]

IC OP-AMP, 4000 uV OFFSET-MAX, 5 MHz BAND WIDTH, PDSO5, SOT-23, 5 PIN, Operational Amplifier;
AD8631ARTZ-REEL7
型号: AD8631ARTZ-REEL7
厂家: ADI    ADI
描述:

IC OP-AMP, 4000 uV OFFSET-MAX, 5 MHz BAND WIDTH, PDSO5, SOT-23, 5 PIN, Operational Amplifier

放大器 光电二极管
文件: 总12页 (文件大小:154K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1.8 V, 5 MHz Rail-to-Rail  
Low Power Operational Amplifiers  
a
AD8631/AD8632  
PIN CONFIGURATIONS  
5-Lead SOT-23  
FEATURES  
Single Supply Operation: 1.8 V to 6 V  
Space-Saving SOT-23, SOIC Packaging  
Wide Bandwidth: 5 MHz @ 5 V, 4 MHz @ 1.8 V  
Low Offset Voltage: 4 mV Max, 0.8 mV typ  
Rail-to-Rail Input and Output Swing  
2 V/s Slew Rate @ 1.8 V  
(RT Suffix)  
AD8631  
OUT A  
V–  
1
2
5
4
V+  
+IN A  
3
–IN A  
Only 225 A Supply Current @ 1.8 V  
APPLICATIONS  
Portable Communications  
Portable Phones  
Sensor Interface  
8-Lead SOIC  
(R Suffix)  
Active Filters  
PCMCIA Cards  
1
8
7
6
5
OUT A  
V+  
IN A  
2
3
4
OUT B  
IN B  
+IN B  
ASIC Input Drivers  
Wearable Computers  
Battery-Powered Devices  
New Generation Phones  
Personal Digital Assistants  
AD8632  
+IN A  
V–  
8-Lead SOIC  
(RM Suffix)  
GENERAL DESCRIPTION  
The AD8631 brings precision and bandwidth to the SOT-23-5  
package at single supply voltages as low as 1.8 V and low supply  
current. The small package makes it possible to place the AD8631  
next to sensors, reducing external noise pickup.  
8
1
OUT A  
IN A  
+IN A  
V–  
V+  
OUT B  
IN B  
+IN B  
AD8632  
5
4
The AD8631 and AD8632 are rail-to-rail input and output bipolar  
amplifiers with a gain bandwidth of 4 MHz and typical voltage  
offset of 0.8 mV from a 1.8 V supply. The low supply current and  
the low supply voltage makes these parts ideal for battery-powered  
applications. The 3 V/µs slew rate makes the AD8631/AD8632 a  
good match for driving ASIC inputs, such as voice codecs.  
The AD8631/AD8632 is specified over the extended industrial  
(–40؇C to +125؇C) temperature range. The AD8631 single is  
available in 5-lead SOT-23 surface-mount packages. The dual  
AD8632 is available in 8-lead SOIC and µSOIC packages.  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 2000  
AD8631/AD8632–SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS (VS = 5 V, V– = 0 V, VCM = 2.5 V, TA = 25؇C unless otherwise noted)  
Parameter  
Symbol  
Conditions  
Min  
Typ Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
IB  
0.8  
4.0  
6
250  
500  
150  
550  
5
mV  
mV  
nA  
nA  
nA  
nA  
V
–40؇C TA +125؇C  
–40؇C TA +125؇C  
–40؇C TA +125؇C  
Input Bias Current  
Input Offset Current  
IOS  
Input Voltage Range  
VCM  
0
Common-Mode Rejection Ratio  
CMRR  
0 V VCM 5 V,  
63  
56  
70  
dB  
dB  
V/mV  
V/mV  
V/mV  
µV/؇C  
pA/؇C  
–40؇C TA +125؇C  
Large Signal Voltage Gain  
AVO  
RL = 10 k, 0.5 V < VOUT < 4.5 V  
RL = 100 k, 0.5 V < VOUT < 4.5 V  
RL = 100 k, –40؇C TA +125؇C  
25  
400  
100  
100  
Offset Voltage Drift  
Bias Current Drift  
VOS/T  
IB/T  
3.5  
400  
OUTPUT CHARACTERISTICS  
Output Voltage Swing High  
VOH  
VOL  
ISC  
IL = 100 µA  
–40؇C TA +125؇C  
IL = 1 mA  
4.965  
4.7  
V
V
Output Voltage Swing Low  
Short Circuit Current  
IL = 100 µA  
–40؇C TA +125؇C  
IL = 1 mA  
35  
200  
mV  
mV  
mA  
Short to Ground, Instantaneous  
10  
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = 2.2 V to 6 V,  
–40؇C TA +125؇C  
VOUT = 2.5 V  
75  
72  
90  
dB  
dB  
µA  
µA  
Supply Current/Amplifier  
300  
450  
650  
–40؇C TA +125؇C  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
Settling Time  
SR  
GBP  
TS  
1 V < VOUT < 4 V, RL = 10 kΩ  
3
5
860  
V/µs  
MHz  
ns  
0.1%  
Phase Margin  
φm  
53  
Degrees  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
Current Noise Density  
en p-p  
en  
in  
0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz  
0.8  
23  
1.7  
µV p-p  
nV/Hz  
pA/Hz  
Specifications subject to change without notice.  
–2–  
REV. 0  
AD8631/AD8632  
(V = 2.2 V, V– = 0 V, VCM = 1.1 V, TA = 25؇C unless otherwise noted)  
ELECTRICAL CHARACTERISTICS  
S
Parameter  
Symbol  
Conditions  
Min  
Typ Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
0.8  
4.0  
6
250  
mV  
mV  
nA  
–40؇C TA +125؇C  
Input Bias Current  
IB  
Input Offset Current  
IOS  
150  
nA  
Input Voltage Range  
Common-Mode Rejection Ratio  
VCM  
CMRR  
0
54  
47  
2.2  
V
dB  
dB  
V/mV  
0 V VCM 2.2 V,  
70  
–40؇C TA +125؇C  
RL = 10 k, 0.5 V < VOUT < 1.7 V  
RL = 100 kΩ  
Large Signal Voltage Gain  
AVO  
25  
200  
50  
V/mV  
OUTPUT CHARACTERISTICS  
Output Voltage Swing High  
VOH  
VOL  
IL = 100 µA  
IL = 750 µA  
IL = 100 µA  
IL = 750 µA  
2.165  
1.9  
V
V
mV  
mV  
Output Voltage Swing Low  
35  
200  
POWER SUPPLY  
Supply Current/Amplifier  
ISY  
VOUT = 1.1 V  
–40؇C TA +125؇C  
250  
350  
500  
µA  
µA  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
Phase Margin  
SR  
GBP  
φm  
RL = 10 kΩ  
2.5  
4.3  
50  
V/µs  
MHz  
Degrees  
NOISE PERFORMANCE  
Voltage Noise Density  
Current Noise Density  
en  
in  
f = 1 kHz  
f = 1 kHz  
23  
1.7  
nV/Hz  
pA/Hz  
Specifications subject to change without notice.  
REV. 0  
–3–  
AD8631/AD8632–SPECIFICATIONS  
(V = 1.8 V, V– = 0 V, VCM = 0.9 V, TA = 25؇C unless otherwise noted)  
ELECTRICAL CHARACTERISTICS  
S
Parameter  
Symbol  
Conditions  
Min  
Typ Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
0.8  
4.0  
6
250  
150  
1.8  
mV  
mV  
nA  
nA  
V
0؇C TA 125؇C  
Input Bias Current  
Input Offset Current  
Input Voltage Range  
IB  
IOS  
VCM  
0
Common-Mode Rejection Ratio  
CMRR  
0 V VCM 1.8 V,  
0؇C TA 125؇C  
49  
40  
65  
20  
200  
dB  
V/mV  
V/mV  
Large Signal Voltage Gain  
AVO  
RL = 10 k, 0.5 V < VOUT < 1.3 V  
RL = 100 k, 0.5 V < VOUT < 1.3 V  
OUTPUT CHARACTERISTICS  
Output Voltage Swing High  
VOH  
VOL  
IL = 100 µA  
IL = 750 µA  
IL = 100 µA  
IL = 750 µA  
1.765  
1.5  
V
V
mV  
mV  
Output Voltage Swing Low  
35  
200  
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = 1.7 V to 2.2 V,  
0؇C TA 125؇C  
VOUT = 0.9 V  
68  
65  
86  
dB  
dB  
µA  
µA  
Supply Current/Amplifier  
225  
325  
450  
0؇C TA 125؇C  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
SR  
GBP  
RL = 10 kΩ  
2
4
V/µs  
MHz  
Phase Margin  
φm  
49  
Degrees  
NOISE PERFORMANCE  
Voltage Noise Density  
Current Noise Density  
en  
in  
f = 1 kHz  
f = 1 kHz  
23  
1.7  
nV/Hz  
pA/Hz  
Specifications subject to change without notice.  
–4–  
REV. 0  
AD8631/AD8632  
ABSOLUTE MAXIMUM RATINGS1  
1
Package Type  
JA  
JC  
Unit  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V  
Input Voltage2 . . . . . . . . . . . . . . . . . . . . . . . . . . . GND to VS  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . 0.6 V  
Internal Power Dissipation  
5-Lead SOT-23 (RT)  
8-Lead SOIC (R)  
8-Lead µSOIC (RM)  
230  
158  
210  
146  
43  
45  
؇C/W  
؇C/W  
؇C/W  
SOT-23 (RT) . . . . . . . . . . . . See Thermal Resistance Chart  
SOIC (R) . . . . . . . . . . . . . . . See Thermal Resistance Chart  
µSOIC (RM) . . . . . . . . . . . . See Thermal Resistance Chart  
Output Short-Circuit Duration . . . . . . . . . . . . . . . . Indefinite  
Storage Temperature Range  
NOTE  
1θJA is specified for worst-case conditions, i.e., θJA is specified for device soldered  
in circuit board for SOT-23 and SOIC packages.  
R, RM, and RT Packages . . . . . . . . . . . . . –65؇C to +150؇C  
Operating Temperature Range  
AD8631, AD8632 . . . . . . . . . . . . . . . . . . –40؇C to +125؇C  
Junction Temperature Range  
R, RM, and RT Packages . . . . . . . . . . . . . –65؇C to +150؇C  
Lead Temperature Range (Soldering, 60 sec) . . . . . . . . 300؇C  
NOTES  
1Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational sections  
of this specification is not implied. Exposure to absolute maximum rating condi-  
tions for extended periods may affect device reliability.  
2For supply voltages less than 6 V the input voltage is limited to the supply voltage.  
ORDERING GUIDE  
Temperature  
Range  
Package  
Description  
Package  
Option  
Model  
Brand  
AD8631ART1 –40؇C to +125؇C  
5-Lead SOT-23 RT-5  
AEA  
AD8632AR  
–40؇C to +125؇C  
8-Lead SOIC  
8-Lead µSOIC  
SO-8  
RM-8  
AD8632ARM2 –40؇C to +125؇C  
AGA  
NOTES  
1Available in 3,000-piece reels only.  
2Available in 2,500-piece reels only.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD8631/AD8632 features proprietary ESD protection circuitry, permanent dam-  
age may occur on devices subjected to high energy electrostatic discharges. Therefore, proper  
ESD precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
120  
90  
60  
30  
0
350  
325  
V
= 5V  
= 2.5V  
= 25؇C  
S
V
T
= 25؇C  
CM  
A
A
T
COUNT = 1,133 OP AMPS  
300  
275  
250  
225  
200  
4  
3  
2  
1  
0
1
2
3
4
2
3
4
5
6
1
INPUT OFFSET VOLTAGE mV  
SUPPLY VOLTAGE V  
Figure 1. Input Offset Voltage Distribution  
Figure 2. Supply Current per Amplifier vs. Supply Voltage  
REV. 0  
–5–  
Typical Characteristics  
AD8631/AD8632  
40  
30  
500  
V
T
= 5V  
= 25؇C  
V
= 5V  
S
A
S
GAIN  
450  
20  
90  
400  
350  
300  
250  
200  
10  
PHASE  
45  
0
0
؊45  
؊90  
؊10  
؊20  
؊30  
؊40  
0
25  
50  
75  
100  
125  
100k  
1M  
10M  
100M  
؊25  
؊50  
FREQUENCY Hz  
TEMPERATURE ؇C  
Figure 3. Supply Current per Amplifier vs. Temperature  
Figure 6. Open-Loop Gain vs. Frequency  
150  
50  
40  
V
T
= ؎2.5V  
= 25؇C  
S
V
T
=
2.5V  
S
A
A
= 25؇C  
100  
50  
30  
20  
10  
0
0
؊50  
؊100  
؊150  
؊10  
؊20  
؊30  
؊40  
؊3  
؊2  
؊1  
0
1
2
3
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
COMMON-MODE VOLTAGE V  
FREQUENCY Hz  
Figure 4. Input Bias Current vs. Common-Mode Voltage  
Figure 7. Closed-Loop Gain vs. Frequency  
140  
0
T
= 25؇C  
V
T
= ؎2.5V  
= 25؇C  
A
S
A
120  
100  
80  
60  
40  
20  
0
20  
40  
60  
SOURCE  
80  
100  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
FREQUENCY Hz  
LOAD CURRENT A  
Figure 5. Output Voltage to Supply Rail vs. Load Current  
Figure 8. CMRR vs. Frequency  
–6–  
REV. 0  
AD8631/AD8632  
60  
50  
40  
30  
20  
10  
0
0
V
T
= ؎2.5V  
= 25؇C  
V
T
= 5V  
= 25؇C  
S
S
A
A
20  
؊PSRR  
40  
60  
؉PSRR  
A
= +10  
V
80  
A
= +1  
V
100  
120  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY Hz  
FREQUENCY Hz  
Figure 9. PSRR vs. Frequency  
Figure 12. Output Impedance vs. Frequency  
60  
50  
50  
V
V
R
= 5V  
S
V
T
=5V  
= 25؇C  
S
A
= 2.5V  
= 10k  
= 25؇C  
= ؎50mV  
= +1  
CM  
L
40  
30  
20  
10  
0
T
A
؊OS  
V
IN  
A
40  
30  
20  
V
+OS  
10  
0
100  
10  
10  
100  
FREQUENCY Hz  
1k  
10k  
CAPACITANCE pF  
Figure 10. Overshoot vs. Capacitance Load  
Figure 13. Voltage Noise Density vs. Frequency  
6
5
V
A
R
= 5V  
= +1  
= 10k  
= 25؇C  
= 15pF  
S
DISTORTION 3%  
V
T
= 5V  
= 25؇C  
S
A
V
L
5
4
3
2
4
T
A
C
L
3
2
1
0
1
0
1M  
10k  
100k  
FREQUENCY Hz  
10  
100  
FREQUENCY Hz  
1k  
10k  
Figure 11. Output Swing vs. Frequency  
Figure 14. Current Noise Density vs. Frequency  
REV. 0  
–7–  
AD8631/AD8632  
0
0
0
0
0
0
0
0
0
0
V
= ؎2.5V  
= 25؇C  
V
A
= ؎2.5V  
= +1  
= 25؇C  
= 33pF  
= 10k⍀  
S
S
T
A
V
T
A
C
R
L
L
0
0
0
0
0
0
0
TIME 1s/DIV  
TIME 250ns/DIV  
Figure 15. 0.1 Hz to 10 Hz Noise  
Figure 17. Small Signal Transient Response  
0
0
V
= ؎2.5V  
= 1  
= SINE WAVE  
= 25؇C  
V
A
= ؎2.5V  
= +1  
= 25؇C  
= 100pF  
= 10k⍀  
S
S
A
V
V
V
T
IN  
A
A
C
R
T
L
L
0
0
0
0
0
0
0
0
0
0
0
0
0
0
TIME 200s/DIV  
TIME 500ns/DIV  
Figure 16. No Phase Reversal  
Figure 18. Large Signal Transient Response  
THEORY OF OPERATION  
configuration. The output swing when sinking or sourcing 100 µA  
The AD863x is a rail-to-rail operational amplifier that can operate  
at supply voltages as low as 1.8 V. This family is fabricated using  
Analog Devices’ high-speed complementary bipolar process, also  
called XFCB. The process trench isolates each transistor to mini-  
mize parasitic capacitance, thereby allowing high-speed perfor-  
mance. Figure 19 shows a simplified schematic of the AD863x  
family.  
is 35 mV maximum from each rail.  
The input bias current characteristics depend on the common-  
mode voltage (see Figure 4). As the input voltage reaches about  
1 V below VCC, the PNP pair (Q3 and Q4) turns off.  
The 1 kinput resistor R1 and R2, together with the diodes D7  
and D8, protect the input pairs against avalanche damage.  
The AD863x family exhibits no phase reversal as the input signal  
exceeds the supply by more than 0.6 V. Excessive current can flow  
through the input pins via the ESD diodes D1-D2 or D3-D4, in the  
event their ~0.6 V thresholds are exceeded. Such fault currents must  
be limited to 5 mA or less by the use of external series resistance(s).  
The input stage consists of two parallel complementary differen-  
tial pair: one NPN pair (Q1 and Q2) and one PNP pair (Q3 and  
Q4). The voltage drops across R7, R8, R9, and R10 are kept low  
for rail-to-rail operation. The major gain stage of the op amp is a  
double-folded cascode consisting of transistors Q5, Q6, Q8, and  
Q9. The output stage, which also operates rail-to-rail, is driven by  
Q14. The transistors Q13 and Q10 act as level-shifters to give  
more headroom during 1.8 V operation.  
LOW VOLTAGE OPERATION  
Battery Voltage Discharge  
The AD8631 operates at supply voltages as low as 1.8 V. This  
amplifier is ideal for battery-powered applications since it can  
operate at the end of discharge voltage of most popular batteries.  
Table I lists the Nominal and End-of-Discharge Voltages of  
several typical batteries.  
As the voltage at the base of Q13 increases, Q18 starts to sink  
current. When the voltage at the base of Q13 decreases I8 flows  
through D16 and Q15 increasing the VBE of Q17, then Q20  
sources current.  
The output stage also furnishes gain, which depends on the load  
resistance, since the output transistors are in common emitter  
–8–  
REV. 0  
AD8631/AD8632  
V
V
CC  
CC  
R7  
R8  
R14  
Q19  
Q20  
Q6  
I1  
D1  
ESD  
R1  
Q7  
Q5  
I7  
I8  
D3  
ESD  
C4  
D9  
R3  
Q3  
R4  
Q4  
I3  
Q1  
Q2  
؊IN  
؉IN  
Q14  
R2  
D7  
D8  
Q11  
V
OUT  
R5  
R6  
Q10  
C3  
Q13  
C1  
Q8  
D4  
ESD  
Q9  
C2  
Q18  
D2  
ESD  
I2  
Q17  
R11  
D16  
R13  
D6  
Q15  
R12  
I4  
I5  
I6  
R9  
R10  
V
EE  
V
EE  
Figure 19. Simplified Schematic  
Table I. Typical Battery Life Voltage Range  
The rail-to-rail feature of the AD8631 can be observed over the  
supply voltage range, 1.8 V to 5 V. Traces are shown offset for  
clarity.  
Nominal  
End-of-Voltage  
Discharge (V)  
Battery  
Voltage (V)  
INPUT BIAS CONSIDERATION  
Lead-Acid  
Lithium  
NiMH  
NiCd  
Carbon-Zinc  
2
1.8  
1.7–2.4  
1
1
The input bias current (IB) is a non-ideal, real-life parameter that  
affects all op amps. IB can generate a somewhat significant offset  
voltage. This offset voltage is created by IB when flowing through  
the negative feedback resistor RF. If IB is 250 nA (worst case), and  
RF is 100 k, the corresponding generated offset voltage is 25 mV  
(VOS = IB RF).  
2.6–3.6  
1.2  
1.2  
1.5  
1.1  
RAIL-TO-RAIL INPUT AND OUTPUT  
Obviously the lower the RF the lower the generated voltage offset.  
Using a compensation resistor, RB, as shown in Figure 21, can  
minimize this effect. With the input bias current minimized we  
still need to be aware of the input offset current (IOS) which will  
generate a slight offset error. Figure 21 shows three different  
configurations to minimize IB-induced offset errors.  
The AD8631 features an extraordinary rail-to-rail input and  
output with supply voltages as low as 1.8 V. With the amplifier’s  
supply set to 1.8 V, the input can be set to 1.8 V p-p, allowing the  
output to swing to both rails without clipping. Figure 20 shows a  
scope picture of both input and output taken at unity gain, with a  
frequency of 1 kHz, at VS = 1.8 V and VIN = 1.8 V p-p.  
R
F
V
V
= 1.8V  
= 1.8V p-p  
S
IN  
R
I
V
I
V
OUT  
AD8631  
V
IN  
INVERTING CONFIGURATION  
R
F
R
= R R  
I F  
B
ԽԽ  
R
I
V
OUT  
V
OUT  
AD8631  
NONINVERTING CONFIGURATION  
V
I
R
= R  
R
F
B
IԽԽ  
R
= R  
S
F
TIME 200s/Div  
V
OUT  
AD8631  
Figure 20. Rail-to-Rail Input Output  
V
UNITY GAIN BUFFER  
I
R
S
Figure 21. Input Bias Cancellation Circuits  
REV. 0  
–9–  
AD8631/AD8632  
DRIVING CAPACITIVE LOADS  
Capacitive Load vs. Gain  
90kHz INPUT SIGNAL  
= 1  
A
V
Most amplifiers have difficulty driving capacitance due to degra-  
dation of phase margin caused by additional phase lag from the  
capacitive load. Higher capacitance at the output can increase the  
amount of overshoot and ringing in the amplifier’s step response  
and could even affect the stability of the device. The value of  
capacitive load that an amplifier can drive before oscillation varies  
with gain, supply voltage, input signal, temperature, among oth-  
ers. Unity gain is the most challenging configuration for driving  
capacitive load. However, the AD8631 offers reasonably good  
capacitive driving ability. Figure 22 shows the AD8631’s ability to  
drive capacitive loads at different gains before instability occurs.  
This graph is good for all VSY.  
C = 600pF  
TIME 2s/DIV  
1M  
Figure 24. Driving Capacitive Loads without Compensation  
UNSTABLE  
100k  
By connecting a series R–C from the output of the device to  
ground, known as the “snubber” network, this ringing and over-  
shoot can be significantly reduced. Figure 25 shows the network  
setup, and Figure 26 shows the improvement of the output  
response with the “snubber” network added.  
10k  
1k  
5V  
STABLE  
100  
V
AD8631  
OUT  
V
C
10  
IN  
R
L
X
1
2
3
4
5
6
7
8
9
10  
GAIN V/V  
C
X
Figure 22. Capacitive Load vs. Gain  
Figure 25. Snubber Network Compensation for Capacitive  
Loads  
In-the-Loop Compensation Technique for Driving  
Capacitive Loads  
When driving capacitance in low gain configuration, the in-the-loop  
compensation technique is recommended to avoid oscillation as is  
illustrated in Figure 23.  
90kHz INPUT SIGNAL  
V
C = 600pF  
A
= 1  
R
R
G
F
V
IN  
C
F
R
X
V
AD8631  
OUT  
C
L
R
R
F
O
G
R
=
WHERE R = OPEN-LOOP OUTPUT RESISTANCE  
O
X
R
R
+ R  
G
1
F
C
=
1 +  
C R  
L O  
TIME 2s/DIV  
F
[
[
R
A
F
CL  
Figure 26. Photo of a Square Wave with the Snubber  
Network Compensation  
Figure 23. In-the-Loop Compensation Technique for  
Driving Capacitive Loads  
The network operates in parallel with the load capacitor, CL,  
and provides compensation for the added phase lag. The actual  
values of the network resistor and capacitor have to be empirically  
determined. Table II shows some values of snubber network for  
large capacitance load.  
Snubber Network Compensation for Driving Capacitive Loads  
As load capacitance increases, the overshoot and settling time  
will increase and the unity gain bandwidth of the device will  
decrease. Figure 24 shows an example of the AD8631 in a non-  
inverting configuration driving a 10 kresistor and a 600 pF  
capacitor placed in parallel, with a square wave input set to a  
frequency of 90 kHz and unity gain.  
–10–  
REV. 0  
AD8631/AD8632  
Table II. Snubber Network Values for Large Capacitive Loads  
A MICROPOWER REFERENCE VOLTAGE GENERATOR  
Many single-supply circuits are configured with the circuit biased  
to one-half of the supply voltage. In these cases, a false-ground  
reference can be created by using a voltage divider buffered by an  
amplifier. Figure 28 shows the schematic for such a circuit.  
CLOAD  
Rx  
Cx  
600 pF  
1 nF  
10 nF  
300 Ω  
300 Ω  
90 Ω  
1 nF  
1 nF  
8 nF  
The two 1 Mresistors generate the reference voltages while  
drawing only 0.9 µA of current from a 1.8 V supply. A capacitor  
connected from the inverting terminal to the output of the op  
amp provides compensation to allow a bypass capacitor to be  
connected at the reference output. This bypass capacitor helps  
establish an ac ground for the reference output.  
TOTAL HARMONIC DISTORTION + NOISE  
The AD863x family offers a low total harmonic distortion, which  
makes this amplifier ideal for audio applications. Figure 27 shows  
a graph of THD + N, which is ~0.02% @ 1 kHz, for a 1.8 V supply.  
At unity gain in an inverting configuration the value of the Total  
Harmonic Distortion + Noise stays consistently low over all volt-  
ages supply ranges.  
1.8V TO 5V  
10k⍀  
0.022F  
10  
INVERTING  
A
= 1  
V
100⍀  
1
V
REF  
0.9V TO 2.5V  
1M⍀  
1M⍀  
AD8631  
1F  
1F  
0.1  
V
= 1.8V  
S
Figure 29. A Micropower Reference Voltage Generator  
0.01  
V
= 5V  
S
MICROPHONE PREAMPLIFIER  
The AD8631 is ideal to use as a microphone preamplifier.  
Figure 30 shows this implementation.  
0.001  
10  
100  
1k  
10k 20k  
FREQUENCY Hz  
R3  
220k⍀  
Figure 27. THD + N vs. Frequency Graph  
AD8632 Turn-On Time  
1.8V  
1.8V  
R1  
C1  
The low voltage, low power AD8632 features an extraordinary turn  
on time. This is about 500 ns for VSY = 5 V, which is impressive  
considering the low supply current (300 µA typical per amplifier).  
Figure 28 shows a scope picture of the AD8632 with both channels  
configured as followers. Channel A has an input signal of 2.5 V and  
channel B has the input signal at ground. The top waveform shows  
the supply voltage and the bottom waveform reflects the response  
of the amplifier at the output of Channel A.  
R2  
2.2k⍀  
0.1F  
22k⍀  
V
IN  
V
OUT  
AD8631  
ELECTRET  
MIC  
R3  
R2  
A
=
V
V
= 0.9V  
REF  
Figure 30. A Microphone Preamplifier  
0
R1 is used to bias an electret microphone and C1 blocks dc voltage  
from the amplifier. The magnitude of the gain of the amplifier is  
approximately R3/R2 when R2 10 R1. VREF should be equal to  
1/2 1.8 V for maximum voltage swing.  
V
A
= 5V  
= 1  
= 2.5V STEP  
S
0
V
V
IN  
Direct Access Arrangement for Telephone Line Interface  
Figure 31 illustrates a 1.8 V transmit/receive telephone line interface  
for 600 transmission systems. It allows full duplex transmission of  
signals on a transformer-coupled 600 line in a differential manner.  
Amplifier A1 provides gain that can be adjusted to meet the modem  
output drive requirements. Both A1 and A2 are configured to apply  
the largest possible signal on a single supply to the transformer.  
Amplifier A3 is configured as a difference amplifier for two reasons:  
(1) It prevents the transmit signal from interfering with the receive  
signal and (2) it extracts the receive signal from the transmission line  
for amplification by A4. A4’s gain can be adjusted in the same  
manner as A1’s to meet the modem’s input signal requirements.  
Standard resistor values permit the use of SIP (Single In-line  
Package) format resistor arrays. Couple this with the AD8631/  
0
0V  
0
0
0V  
0
0
TIME 200ns/DIV  
Figure 28. AD8632 Turn-On Time  
REV. 0  
–11–  
AD8631/AD8632  
AD8632’s 5-lead SOT-23, 8-lead µSOIC, and 8-lead SOIC  
SPICE Model  
footprint and this circuit offers a compact solution.  
The SPICE model for the AD8631 amplifier is available and  
can be downloaded from the Analog Devices’ web site at  
http://www.analog.com. The macro-model accurately simulates  
a number of AD8631 parameters, including offset voltage, input  
common-mode range, and rail-to-rail output swing. The output  
voltage versus output current characteristics of the macro-model  
is identical to the actual AD8631 performance, which is a critical  
feature with a rail-to-rail amplifier model. The model also accurately  
simulates many ac effects, such as gain-bandwidth product, phase  
margin, input voltage noise, CMRR and PSRR versus frequency,  
and transient response. Its high degree of model accuracy makes the  
AD8631 macro-model one of the most reliable and true-to-life  
models available for any amplifier.  
P1  
Tx GAIN  
ADJUST  
R2  
9.09k  
C1  
0.1F  
TRANSMIT  
TxA  
R1  
10k⍀  
TO TELEPHONE  
LINE  
2k⍀  
R3  
360⍀  
2
3
1
1:1  
A1  
R5  
10k⍀  
6.2V  
6.2V  
Z
O
600⍀  
+1.8V DC  
T1  
MIDCOM  
671-8005  
R6  
10k⍀  
6
5
R7  
10k⍀  
7
A2  
R8  
10k⍀  
10F  
R9  
10k⍀  
R10  
10k⍀  
P2  
Rx GAIN  
ADJUST  
R13  
10k14.3k⍀  
R14  
RECEIVE  
RxA  
2
3
R11  
10k⍀  
1
A3  
2k⍀  
6
C2  
0.1F  
R12  
10k⍀  
7
A4  
5
A1, A2 = 1/2 AD8632  
A3, A4 = 1/2 AD8632  
Figure 31. A Single-Supply Direct Access Arrangement  
for Modems  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
8-Lead Narrow Body SOIC  
(SO-8)  
8-Lead SOIC  
(RM-8)  
0.1968 (5.00)  
0.1890 (4.80)  
0.122 (3.10)  
0.114 (2.90)  
8
1
5
4
0.1574 (4.00)  
0.1497 (3.80)  
0.2440 (6.20)  
0.2284 (5.80)  
8
5
4
0.122 (3.10)  
0.114 (2.90)  
0.199 (5.05)  
0.187 (4.75)  
1
PIN 1  
0.0688 (1.75)  
0.0532 (1.35)  
0.0196 (0.50)  
0.0099 (0.25)  
؋
 45؇  
0.0098 (0.25)  
0.0040 (0.10)  
PIN 1  
0.0256 (0.65) BSC  
0.120 (3.05)  
0.112 (2.84)  
0.120 (3.05)  
0.112 (2.84)  
8؇  
0؇  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0138 (0.35)  
SEATING  
PLANE  
0.0098 (0.25)  
0.0075 (0.19)  
0.0500 (1.27)  
0.0160 (0.41)  
0.043 (1.09)  
0.037 (0.94)  
0.006 (0.15)  
0.002 (0.05)  
33؇  
0.018 (0.46)  
0.008 (0.20)  
27؇  
0.028 (0.71)  
0.016 (0.41)  
0.011 (0.28)  
0.003 (0.08)  
SEATING  
PLANE  
5-Lead SOT-23  
(RT-5)  
0.1181 (3.00)  
0.1102 (2.80)  
5
1
4
3
0.1181 (3.00)  
0.1024 (2.60)  
0.0669 (1.70)  
0.0590 (1.50)  
2
PIN 1  
0.0374 (0.95) BSC  
0.0748 (1.90)  
BSC  
0.0079 (0.20)  
0.0031 (0.08)  
0.0512 (1.30)  
0.0354 (0.90)  
0.0571 (1.45)  
0.0374 (0.95)  
10؇  
0؇  
SEATING  
PLANE  
0.0197 (0.50)  
0.0138 (0.35)  
0.0059 (0.15)  
0.0019 (0.05)  
0.0217 (0.55)  
0.0138 (0.35)  
–12–  
REV. 0  

相关型号:

AD8632

1.8 V, 5 MHz Rail-to-Rail Low Power Operational Amplifiers
ADI

AD8632AR

1.8 V, 5 MHz Rail-to-Rail Low Power Operational Amplifiers
ADI

AD8632AR

OP-AMP, 4000uV OFFSET-MAX, 5MHz BAND WIDTH, PDSO8, SOIC-8
ROCHESTER

AD8632AR-REEL7

OP-AMP, 4000uV OFFSET-MAX, 5MHz BAND WIDTH, PDSO8, SOIC-8
ROCHESTER

AD8632ARM

1.8 V, 5 MHz Rail-to-Rail Low Power Operational Amplifiers
ADI

AD8632ARM-R2

IC OP-AMP, 4000 uV OFFSET-MAX, 5 MHz BAND WIDTH, PDSO8, MICRO, SOIC-8, Operational Amplifier
ADI

AD8632ARM-REEL

OP-AMP, 4000uV OFFSET-MAX, 5MHz BAND WIDTH, PDSO8, MICRO, SOIC-8
ROCHESTER

AD8632ARM-REEL7

IC OP-AMP, 4000 uV OFFSET-MAX, 5 MHz BAND WIDTH, PDSO8, MICRO, SOIC-8, Operational Amplifier
ADI

AD8632ARMZ-R2

IC OP-AMP, 4000 uV OFFSET-MAX, 5 MHz BAND WIDTH, PDSO8, MICRO, SOIC-8, Operational Amplifier
ADI

AD8632ARMZ-REEL

OP-AMP, 4000uV OFFSET-MAX, 5MHz BAND WIDTH, PDSO8, MICRO, SOIC-8
ROCHESTER

AD8632ARZ

IC OP-AMP, 4000 uV OFFSET-MAX, 5 MHz BAND WIDTH, PDSO8, SOIC-8, Operational Amplifier
ADI

AD8632ARZ-REEL

IC OP-AMP, 4000 uV OFFSET-MAX, 5 MHz BAND WIDTH, PDSO8, SOIC-8, Operational Amplifier
ADI