AD8646ARMZ [ADI]

24 MHz Rail-to-Rail Amplifiers with Shutdown Option; 24 MHz轨到轨放大器与关机选项
AD8646ARMZ
型号: AD8646ARMZ
厂家: ADI    ADI
描述:

24 MHz Rail-to-Rail Amplifiers with Shutdown Option
24 MHz轨到轨放大器与关机选项

放大器 光电二极管
文件: 总20页 (文件大小:392K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
24 MHz Rail-to-Rail Amplifiers  
with Shutdown Option  
AD8646/AD8647/AD8648  
FEATURES  
PIN CONFIGURATIONS  
Offset voltage: 2.5 mV maximum  
Single-supply operation: 2.7 V to 5.5 V  
Low noise: 8 nV/√Hz  
OUTA  
–INA  
+INA  
V–  
1
2
3
4
8
7
6
5
V+  
OUTB  
–INB  
+INB  
AD8646  
TOP VIEW  
(Not to Scale)  
Wide bandwidth: 24 MHz  
Slew rate: 11 V/μs  
Figure 1. 8-Lead SOIC and MSOP  
Short-circuit output current: 120 mA  
Qualified for automotive applications  
No phase reversal  
Low input bias current: 1 pA  
Low supply current per amplifier: 2 mA maximum  
Unity gain stable  
OUTA  
–INA  
+INA  
V–  
1
2
3
4
5
10 V+  
9
8
7
6
OUTB  
AD8647  
–INB  
+INB  
SDB  
TOP VIEW  
(Not to Scale)  
SDA  
Figure 2. 10-Lead MSOP  
APPLICATIONS  
1
2
3
4
5
6
7
OUTA  
–INA  
+INA  
V+  
14  
13  
OUTD  
–IND  
Battery-powered instruments  
Multipole filters  
ADC front ends  
Sensors  
Barcode scanners  
AD8648  
TOP VIEW  
(Not to Scale)  
12 +IND  
11  
V–  
+INB  
–INB  
OUTB  
10 +INC  
9
–INC  
ASIC input or output amplifiers  
Audio amplifiers  
8
OUTC  
Photodiode amplifiers  
Datapath/mux/switch control  
Figure 3. 14-Lead SOIC and TSSOP  
GENERAL DESCRIPTION  
The AD8646 and the AD8647 are the dual, and the AD8648 is  
the quad, rail-to-rail, input and output, single-supply amplifiers  
featuring low offset voltage, wide signal bandwidth, low input  
voltage, and low current noise. The AD8647 also has a low  
power shutdown function.  
AD8647/AD8648 offer high output drive capability, which is  
excellent for audio line drivers and other low impedance  
applications. The AD8646 and AD8648 are available for  
automotive applications (see the Ordering Guide).  
Applications include portable and low powered instrumenta-  
tion, audio amplification for portable devices, portable phone  
headsets, barcode scanners, and multipole filters. The ability to  
swing rail to rail at both the input and output enables designers  
to buffer CMOS ADCs, DACs, ASICs, and other wide output  
swing devices in single-supply systems.  
The combination of 24 MHz bandwidth, low offset, low noise,  
and very low input bias current makes these amplifiers useful in  
a wide variety of applications. Filters, integrators, photodiode  
amplifiers, and high impedance sensors all benefit from the  
combination of performance features. AC applications benefit  
from the wide bandwidth and low distortion. TheAD8646/  
Rev. D  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2006–2010 Analog Devices, Inc. All rights reserved.  
 
 
 
 
AD8646/AD8647/AD8648  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
ESD Caution...................................................................................6  
Typical Performance Characteristics ..............................................7  
Theory of Operation ...................................................................... 15  
Power-Down Operation............................................................ 15  
Multiplexing Operation............................................................. 15  
Outline Dimensions....................................................................... 16  
Ordering Guide .......................................................................... 18  
Applications....................................................................................... 1  
Pin Configurations ........................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 6  
Thermal Resistance ...................................................................... 6  
REVISION HISTORY  
4/10—Rev. C to Rev. D  
Revision History: AD8648  
Changes to Features Section and General Description Section. 1  
Updated Outline Dimensions....................................................... 16  
Changes to Ordering Guide Section............................................ 18  
10/07—Rev. A to Rev. B  
Combined with AD8646 ...................................................Universal  
Added AD8647 ...................................................................Universal  
Deleted Figure 7.................................................................................6  
Deleted Figure 11...............................................................................7  
Deleted Figure 16 and Figure 17 .....................................................8  
Deleted Figure 24...............................................................................9  
Deleted Figure 27, Figure 28, Figure 31, and Figure 32 ............ 10  
Revision History: AD8646/AD8647/AD8648  
2/09—Rev. B to Rev. C  
Change to Supply Current Shutdown Mode (AD8647 Only)  
Parameter, Table 1............................................................................. 3  
Change to Supply Current Shutdown Mode (AD8647 Only)  
Parameter, Table 2............................................................................. 5  
Added Figure 50; Renumbered Sequentially .............................. 15  
Updated Outline Dimensions....................................................... 16  
Changes to Ordering Guide .......................................................... 18  
6/07—Rev. 0 to Rev. A  
Changes to General Description .....................................................1  
Updated Outline Dimensions....................................................... 12  
Changes to Ordering Guide.......................................................... 12  
10/07—Revision B: Initial Combined Version  
1/06—Revision 0: Initial Version  
Revision History: AD8646  
10/07—Rev. 0 to Rev. B  
Combined with AD8648....................................................Universal  
Added AD8647 ...................................................................Universal  
Deleted Figure 4 and Figure 7......................................................... 7  
Deleted Figure 33............................................................................ 11  
8/07—Revision 0: Initial Version  
Rev. D | Page 2 of 20  
 
AD8646/AD8647/AD8648  
SPECIFICATIONS  
VSY = 5 V, VCM = VSY/2, TA = +25oC, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Conditions  
Min Typ  
Max Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
VCM = 0 V to 5 V  
−40°C < TA < +125°C  
−40°C < TA < +125°C  
0.6  
2.5  
3.2  
7.5  
1
50  
550  
0.5  
50  
250  
5
mV  
mV  
μV/°C  
pA  
pA  
pA  
pA  
pA  
pA  
V
Offset Voltage Drift  
Input Bias Current  
ΔVOS/ΔT  
IB  
1.8  
0.3  
−40°C < TA < +85°C  
−40°C < TA < +125°C  
Input Offset Current  
IOS  
0.1  
−40°C < TA < +85°C  
−40°C < TA < +125°C  
Input Voltage Range  
Common-Mode Rejection Ratio  
Large Signal Voltage Gain  
Input Capacitance  
VCM  
CMRR  
AVO  
0
67  
104  
VCM = 0 V to 5 V  
RL = 2 kΩ, VO = 0.5 V to 4.5 V  
84  
116  
dB  
dB  
Differential  
Common Mode  
CDIFF  
CCM  
2.5  
6.7  
pF  
pF  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
IOUT = 1 mA  
4.98 4.99  
4.90  
4.85 4.92  
4.70  
V
−40°C < TA < +125°C  
IOUT = 10 mA  
−40°C < TA < +125°C  
IOUT = 1 mA  
−40°C < TA < +125°C  
IOUT = 10 mA  
−40°C < TA < +125°C  
Short circuit  
V
V
V
mV  
mV  
mV  
mV  
mA  
Ω
Output Voltage Low  
VOL  
8.4  
20  
40  
145  
200  
78  
Output Current  
Closed-Loop Output Impedance  
POWER SUPPLY  
Isc  
ZOUT  
120  
At 1 MHz, AV = 1  
5
Power Supply Rejection Ratio  
Supply Current per Amplifier  
PSRR  
ISY  
VSY = 2.7 V to 5.5 V  
63  
80  
1.5  
dB  
2.0  
2.5  
mA  
mA  
nA  
−40°C < TA < +125°C  
Both amplifiers shut down,  
VIN_SDA and VIN_SDB = 0 V  
Supply Current Shutdown Mode  
(AD8647 Only)  
ISD  
10  
−40°C < TA < +125°C  
1
μA  
SHUTDOWN INPUTS (AD8647)  
Logic High Voltage (Enabled)  
Logic Low Voltage (Power-Down)  
Logic Input Current (Per Pin)  
Output Pin Leakage Current  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
Phase Margin  
Settling Time  
VINH  
VINL  
IIN  
−40°C < TA < +125°C  
−40°C < TA < +125°C  
−40°C < TA < +125°C  
−40°C < TA < +125°C (shutdown active)  
+2.0  
V
V
μA  
nA  
+0.8  
1
1
SR  
GBP  
Øm  
ts  
ton  
toff  
RL = 2 kΩ  
11  
24  
74  
0.5  
1
V/μs  
MHz  
Degrees  
μs  
μs  
μs  
To 0.1%  
Amplifier Turn-On Time (AD8647)  
Amplifier Turn-Off Time (AD8647)  
25°C, AV = 1, RL = 1 kΩ (see Figure 44)  
25°C, AV = 1, RL = 1 kΩ (see Figure 45)  
1
Rev. D | Page 3 of 20  
 
AD8646/AD8647/AD8648  
Parameter  
Symbol  
Conditions  
Min Typ  
Max Unit  
NOISE PERFORMANCE  
Peak-to-Peak Noise  
Voltage Noise Density  
en p-p  
en  
0.1 Hz to 10 Hz  
f = 1 kHz  
2.3  
8
μV  
nV/√Hz  
f = 10 kHz  
f = 10 kHz  
f = 100 kHz  
6
nV/√Hz  
dB  
dB  
Channel Separation  
CS  
−115  
−110  
Total Harmonic Distortion Plus Noise  
THD + N  
V p-p = 0.1 V, RL = 600 Ω, f = 25 kHz, TA = 25°C  
AV = +1  
AV = −10  
0.010  
0.021  
%
%
Rev. D | Page 4 of 20  
AD8646/AD8647/AD8648  
VSY = 2.7 V, VCM = VSY/2, TA = +25oC, unless otherwise noted.  
Table 2.  
Parameter  
Symbol Conditions  
Min Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
VCM = 0 V to 2.7 V  
−40°C < TA < +125°C  
0.6  
2.5  
3.2  
7.0  
1
mV  
mV  
μV/°C  
pA  
pA  
pA  
pA  
pA  
pA  
V
Offset Voltage Drift  
Input Bias Current  
ΔVOS/ΔT −40°C < TA < +125°C  
IB  
1.8  
0.2  
−40°C < TA < +85°C  
−40°C < TA < +125°C  
IOS  
−40°C < TA < +85°C  
−40°C < TA < +125°C  
VCM  
50  
550  
0.5  
50  
250  
2.7  
Input Offset Current  
0.1  
Input Voltage Range  
Common-Mode Rejection Ratio  
Large Signal Voltage Gain  
Input Capacitance  
0
62  
95  
CMRR  
AVO  
VCM = 0 V to 2.7 V  
RL = 2 kΩ, VO = 0.5 V to 2.2 V  
79  
102  
dB  
dB  
Differential  
Common Mode  
CDIFF  
CCM  
2.5  
7.8  
pF  
pF  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
VOL  
IOUT = 1 mA  
−40°C < TA < +125°C  
IOUT = 1 mA  
−40°C < TA < +125°C  
Short circuit  
At 1 MHz, AV = 1  
2.65 2.68  
2.60  
11  
V
V
mV  
mV  
mA  
Ω
Output Voltage Low  
25  
30  
Output Current  
Closed-Loop Output Impedance  
POWER SUPPLY  
Isc  
ZOUT  
63  
5
Power Supply Rejection Ratio  
Supply Current per Amplifier  
PSRR  
ISY  
VSY = 2.7 V to 5.5 V  
63  
80  
1.6  
dB  
2.0  
2.5  
mA  
mA  
nA  
−40°C < TA < +125°C  
Both amplifiers shut down,  
VIN_SDA and VIN_SDB = 0 V  
Supply Current Shutdown Mode  
(AD8647 Only)  
ISD  
10  
−40°C < TA < +125°C  
1
ꢀA  
SHUTDOWN INPUTS (AD8647)  
Logic High Voltage (Enabled)  
Logic Low Voltage (Power-Down)  
Logic Input Current (Per Pin)  
Output Pin Leakage Current  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
Phase Margin  
Settling Time  
VINH  
VINL  
IIN  
−40°C < TA < +125°C  
−40°C < TA < +125°C  
−40°C < TA < +125°C  
−40°C < TA < +125°C (shutdown active)  
+2.0  
V
V
ꢀA  
nA  
+0.8  
1
1
SR  
GBP  
RL = 2 kΩ  
11  
24  
53  
0.3  
1.2  
1
V/μs  
MHz  
Degrees  
μs  
μs  
μs  
Øm  
ts  
ton  
toff  
To 0.1%  
Amplifier Turn-On Time (AD8647)  
Amplifier Turn-Off Time (AD8647)  
NOISE PERFORMANCE  
Peak-to-Peak Noise  
25°C, AV = 1, RL = 1 kΩ (see Figure 41)  
25°C, AV = 1, RL = 1 kΩ (see Figure 42)  
en p-p  
en  
0.1 Hz to 10 Hz  
f = 1 kHz  
f = 10 kHz  
f = 10 kHz  
f = 100 kHz  
2.3  
8
6
−115  
−110  
μV  
Voltage Noise Density  
nV/√Hz  
nV/√Hz  
dB  
Channel Separation  
CS  
dB  
Rev. D | Page 5 of 20  
AD8646/AD8647/AD8648  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 3.  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Parameter  
Rating  
Supply Voltage  
6 V  
Input Voltage  
GND to VSY  
3 V  
Indefinite  
−65°C to +150°C  
−40°C to +125°C  
300°C  
Table 4. Thermal Resistance  
Differential Input Voltage  
Output Short Circuit to GND  
Storage Temperature Range  
Operating Temperature Range  
Lead Temperature (Soldering 60 sec)  
Junction Temperature  
Package Type  
8-Lead SOIC_N  
8-Lead MSOP  
θJA  
θJC  
43  
45  
44  
36  
35  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
125  
210  
200  
120  
180  
10-Lead MSOP  
14-Lead SOIC_N  
14-Lead TSSOP  
150°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
ESD CAUTION  
Rev. D | Page 6 of 20  
 
 
 
AD8646/AD8647/AD8648  
TYPICAL PERFORMANCE CHARACTERISTICS  
300  
200  
180  
160  
140  
120  
100  
80  
V
V
= 2.7V  
V
V
= 5V  
= 2.5V  
SY  
SY  
= 1.35V  
CM  
CM  
T
= 25°C  
T = 25°C  
A
A
250  
200  
150  
100  
50  
2244 AMPLIFIERS  
2244 AMPLIFIERS  
60  
40  
20  
0
0
–2.0  
–1.5  
–1.0  
–0.5  
0
0.5  
(mV)  
1.0  
1.5  
2.0  
–2.0  
–1.5  
–1.0  
–0.5  
0
0.5  
(mV)  
1.0  
1.5  
2.0  
V
V
OS  
OS  
Figure 4. Input Offset Voltage Distribution  
Figure 7. Input Offset Voltage Distribution  
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
V
= 2.7V  
V
= 5V  
SY  
SY  
–40°C < T < +125°C  
–40°C < T < +125°C  
A
A
0
0
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
8
TCV (µV/°C)  
OS  
TCV (µV/°C)  
OS  
Figure 5. VOS Drift (TCVOS) Distribution  
Figure 8. VOS Drift (TCVOS) Distribution  
2500  
2000  
1500  
1000  
500  
2500  
2000  
1500  
1000  
500  
V
T
= 2.7V  
= 25°C  
V
= 5V  
= 25°C  
SY  
SY  
A
T
A
0
0
–500  
–500  
–1000  
–1500  
–2000  
–2500  
–1000  
–1500  
–2000  
–2500  
0
1
2
3
4
5
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
INPUT COMMON-MODE VOLTAGE (V)  
INPUT COMMON-MODE VOLTAGE (V)  
Figure 6. Input Offset Voltage vs. Input Common-Mode Voltage  
Figure 9. Input Offset Voltage vs. Input Common-Mode Voltage  
Rev. D | Page 7 of 20  
 
AD8646/AD8647/AD8648  
10000  
10000  
1000  
100  
10  
V
= 2.7V  
V
= 5V  
SY  
= 25°C  
SY  
T = 25°C  
A
T
A
1000  
100  
10  
V
– V  
OH  
SY  
V
OL  
V
– V  
OH  
SY  
1
1
V
OL  
0.1  
0.1  
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
100  
1000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 10. Output Saturation Voltage vs. Load Current  
Figure 13. Output Saturation Voltage vs. Load Current  
25  
20  
15  
10  
5
120  
100  
80  
60  
40  
20  
0
V
= 2.7V  
V
= 5V  
SY  
SY  
= 1mA  
I
L
V
– V = 10mA  
OH  
SY  
V
– V  
OH  
SY  
V
= 10mA  
OL  
V
OL  
V
– V = 1mA  
OH  
SY  
V
= 1mA  
65  
OL  
0
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
–40 –25 –10  
5
20  
35  
50  
80  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 11. Output Saturation Voltage vs. Temperature  
Figure 14. Output Saturation Voltage vs. Temperature  
300  
250  
200  
150  
100  
50  
300  
250  
200  
150  
100  
50  
V
= 2.7V  
V
= 5V  
SY  
= 125°C  
SY  
T = 125°C  
A
T
A
0
0
0.50  
0.75  
1.00  
1.25  
1.50  
1.75  
2.00  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
COMMON-MODE VOLTAGE (V)  
COMMON-MODE VOLTAGE (V)  
Figure 12. Input Bias Current vs. Common-Mode Voltage  
Figure 15. Input Bias Current vs. Common-Mode Voltage  
Rev. D | Page 8 of 20  
AD8646/AD8647/AD8648  
80  
0
80  
60  
0
V
R
C
= 5V  
V
R
C
= 2.7V  
= 1kΩ  
= 10pF  
SY  
SY  
= 1k  
L
L
L
L
= 10pF  
45  
90  
60  
40  
20  
45  
PHASE  
40  
90  
Ф
= 52°  
M
20  
135  
180  
225  
270  
135  
Ф
= 74°  
M
GAIN  
0
0
–20  
–40  
180  
225  
270  
–20  
–40  
10k  
100k  
1M  
10M  
100M  
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
100M  
FREQUENCY (Hz)  
Figure 16. Open-Loop Gain and Phase vs. Frequency  
Figure 19. Open-Loop Gain and Phase vs. Frequency  
60  
40  
60  
40  
V
= 2.7V  
V
= 5V  
SY  
= 25°C  
SY  
T = 25°C  
A
T
A
A
A
= 100  
= 10  
A
A
= 100  
= 10  
V
V
V
V
20  
20  
A
= 1  
A
= 1  
V
V
0
0
–20  
–40  
–60  
–20  
–40  
–60  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 17. Closed-Loop Gain vs. Frequency  
Figure 20. Closed-Loop Gain vs. Frequency  
250  
200  
150  
100  
50  
120  
100  
80  
60  
40  
20  
0
V
= 2.7V  
= 25°C  
V
= 5V  
SY  
SY  
T
T = 25°C  
A
A
A
= 1  
V
A
= 1  
V
A
= 10  
V
A
= 100  
V
A
= 10  
V
A
= 100  
V
0
1
10  
100  
1k  
10k  
100k  
1M  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 18. ZOUT vs. Frequency  
Figure 21. ZOUT vs. Frequency  
Rev. D | Page 9 of 20  
AD8646/AD8647/AD8648  
100  
100  
80  
60  
40  
20  
0
V
= 2.7V  
V
= 5V  
= 25°C  
SY  
= 25°C  
SY  
T
T
A
A
80  
60  
40  
20  
0
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 22. CMRR vs. Frequency  
Figure 25. CMRR vs. Frequency  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
V
= 2.7V  
V
T
= 5V  
= 25°C  
SY  
= 25°C  
SY  
PSRR+  
PSRR+  
T
A
A
PSRR–  
PSRR–  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 26. PSRR vs. Frequency  
Figure 23. PSRR vs. Frequency  
70  
60  
50  
40  
30  
20  
10  
0
V
R
= 5V  
= 10kΩ  
= 25°C  
V
T
= ±1.35V  
SY  
SY  
= 25°C  
L
A
T
60  
50  
40  
30  
20  
10  
0
A
–OS  
+OS  
OS+  
OS–  
10  
100  
1000  
1
10  
100  
1000  
C
(pF)  
C
(pF)  
LOAD  
LOAD  
Figure 24. Overshoot vs. Load Capacitance  
Figure 27. Overshoot vs. Load Capacitance  
Rev. D | Page 10 of 20  
AD8646/AD8647/AD8648  
V
= 2.7V, V  
CM  
= 1.35V, V = 100mV p-p,  
IN  
V
= 5V, V  
CM  
= 2.5V, V = 100mV p-p,  
IN  
SY  
= 25°C, R = 10k, C = 100pF  
SY  
T = 25°C, R = 10k, C = 100pF  
A
T
A
L
L
L
L
(200ns/DIV)  
(200ns/DIV)  
Figure 28. Small-Signal Transient Response  
Figure 31. Small-Signal Transient Response  
V
= 2.7V, V = 2V p-p,  
IN  
V
= 5V, V = 4V p-p,  
IN  
SY  
= 25°C, R = 10k, C = 100pF  
SY  
T = 25°C, R = 10k, C = 100pF  
A
T
A
L
L
L
L
(200ns/DIV)  
(200ns/DIV)  
Figure 29. Large-Signal Transient Response  
Figure 32. Large-Signal Transient Response  
0.08  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
V
= ±2.5V  
= 600Ω  
= 1  
V
= ±2.5V  
= 600Ω  
= –10  
SY  
SY  
R
A
R
A
L
V
A
L
V
A
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
T
= 25°C  
T
= 25°C  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 30. THD + Noise vs. Frequency  
Figure 33. THD + Noise vs. Frequency  
Rev. D | Page 11 of 20  
AD8646/AD8647/AD8648  
1
V
= 2.7V TO 5V  
SY  
= 25°C  
T
A
0.1  
0.01  
0.001  
V
A
= 5V  
SY  
= 1  
V
BW = 30kHz  
R
= 100kΩ  
L
f = 1kHz  
0.0001  
0.001  
0.01  
0.1  
1
TIME (1s/DIV)  
OUTPUT AMPLITUDE (V rms)  
Figure 34. 0.1 Hz to 10 Hz Voltage Noise  
Figure 37. THD + Noise vs. Output Amplitude  
1000  
100  
1000  
100  
10  
V
= 5V  
V
= 2.7V TO 5V  
SY  
SY  
= 25°C  
T
A
10  
1
0.1  
25  
1
10  
100  
1k  
10k  
45  
65  
80  
105  
125  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 35. Voltage Noise Density vs. Frequency  
Figure 38. Input Bias Current vs. Temperature  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
T
= 25°C  
V
V
A
R
= 5V  
= 4.9V  
= 1  
= 10kΩ  
= 25°C  
A
SY  
IN  
V
L
T
A
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
100  
1k  
10k  
FREQUENCY (kHz)  
SUPPLY VOLTAGE (V)  
Figure 36. Supply Current per Amplifier vs. Supply Voltage  
Figure 39. Maximum Output Swing vs. Frequency  
Rev. D | Page 12 of 20  
AD8646/AD8647/AD8648  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0
–20  
V
= 5V  
= 2k  
= –100  
= 25°C  
SY  
R1  
V
= V /2  
SY  
OUT  
CS (dB) = 20 log (VOUT/100 = VIN  
V+  
)
20  
R
A
L
V
A
V–  
U2  
R2  
T
200Ω  
3
6
7
U1  
5
V+  
V–  
+
V–  
V+  
VIN  
2
–40  
R3  
2kΩ  
0
0
0
V–  
V+  
0
V
= 2.7V  
SY  
–60  
V
= 5V  
SY  
–80  
V
= 2V p-p  
IN  
–100  
V
= 0.5V p-p  
IN  
–120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
1k  
10k  
FREQUENCY (Hz)  
100k  
TEMPERATURE (°C)  
Figure 40. Supply Current per Amplifier vs. Temperature  
Figure 43. Channel Separation  
V
= 5V  
= 1kΩ  
= 1  
SY  
SHUTDOWN PIN  
SHUTDOWN PIN  
R
A
L
V
A
V
R
A
= 2.7V  
= 1kΩ  
= 1  
SY  
T
= 25°C  
L
V
A
T
= 25°C  
AMPLIFIER OUTPUT  
AMPLIFIER OUTPUT  
TIME (200ns/DIV)  
TIME (200ns/DIV)  
Figure 41. Turn-On Time  
Figure 44. Turn-On Time  
V
= 2.7V  
SY  
V
= 5V  
= 1kΩ  
= 1  
SY  
R
A
T
= 1kΩ  
= 1  
R
A
T
L
V
L
V
= 25°C  
= 25°C  
A
A
SHUTDOWN PIN  
SHUTDOWN PIN  
AMPLIFIER OUTPUT  
AMPLIFIER OUTPUT  
TIME (200ns/DIV)  
TIME (200ns/DIV)  
Figure 45. Turn-Off Time  
Figure 42. Turn-Off Time  
Rev. D | Page 13 of 20  
 
 
 
 
AD8646/AD8647/AD8648  
100  
100  
10  
V
= 2.7V  
V
= 5V  
SY  
SY  
10  
1
1
0.1  
0.01  
0.1  
0.01  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 46. Supply Current with Op-Amp Shutdown vs. Temperature  
Figure 47. Supply Current with Op-Amp Shutdown vs. Temperature  
Rev. D | Page 14 of 20  
AD8646/AD8647/AD8648  
THEORY OF OPERATION  
POWER-DOWN OPERATION  
The shutdown function of the AD8647 is referenced to the  
negative supply voltage of the operational amplifier. A logic  
level high (> 2.0 V) enables the device, while a logic level low  
(< 0.8 V) disables the device and places the output in a high  
impedance condition. Several outputs can be wire-ORed, thus  
eliminating a multiplexer. The logic input is a high impedance  
CMOS input. If dual or split supplies are used, the logic signals  
must be properly referred to the negative supply voltage.  
2V  
1V  
0V  
5V  
0V  
MULTIPLEXING OPERATION  
Because each op amp has a separate logic input enable pin, the  
outputs can be connected together if it can be guaranteed that  
only one op amp is active at any time. By connecting the op amps  
as shown in Figure 48, a multiplexer can be eliminated. With  
the reasonably short turn-on and turn-off times, low frequency  
signal paths can be smoothly selected. The turn-off time is  
slightly faster than the turn-on time so, even when using  
sections from two different packages, the overlap is less than  
300 nanoseconds.  
TIME (200µs/DIV)  
Figure 49. Switching Waveforms  
80  
70  
60  
50  
40  
30  
20  
10  
0
1/2  
AD8647  
8
9
7
6
5kHz  
5V  
V
= 5V  
SY  
1/2  
AD8647  
V
= 2.7V  
0.9  
SY  
2
3
10  
1
–10  
0
0.1  
0.2  
0.3  
V
0.4  
0.5  
0.6  
0.7  
(V)  
0.8  
1.0  
5
AND V  
IN_SDA  
IN_SDB  
4
13kHz  
2kHz  
Figure 50. Supply Current Shutdown Mode, AD8647  
1
2
Figure 48. AD8647 Output Switching  
Rev. D | Page 15 of 20  
 
 
 
 
AD8646/AD8647/AD8648  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 51. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
IDENTIFIER  
0.65 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.80  
0.55  
0.40  
0.15  
0.05  
0.23  
0.09  
6°  
0°  
0.40  
0.25  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 52. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
Rev. D | Page 16 of 20  
 
AD8646/AD8647/AD8648  
3.10  
3.00  
2.90  
10  
1
6
5
5.15  
4.90  
4.65  
3.10  
3.00  
2.90  
PIN 1  
IDENTIFIER  
0.50 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.70  
0.55  
0.40  
0.15  
0.05  
0.23  
0.13  
6°  
0°  
0.30  
0.15  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-BA  
Figure 53. 10-Lead Mini Small Outline Package [MSOP]  
(RM-10)  
Dimensions shown in millimeters  
5.10  
5.00  
4.90  
14  
8
4.50  
4.40  
4.30  
6.40  
BSC  
1
7
PIN 1  
0.65 BSC  
1.05  
1.00  
0.80  
1.20  
MAX  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.15  
0.05  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.30  
0.19  
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1  
Figure 54. 14-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-14)  
Dimensions shown in millimeters  
Rev. D | Page 17 of 20  
AD8646/AD8647/AD8648  
8.75 (0.3445)  
8.55 (0.3366)  
8
7
14  
1
6.20 (0.2441)  
5.80 (0.2283)  
4.00 (0.1575)  
3.80 (0.1496)  
1.27 (0.0500)  
BSC  
0.50 (0.0197)  
0.25 (0.0098)  
45°  
1.75 (0.0689)  
1.35 (0.0531)  
0.25 (0.0098)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
1.27 (0.0500)  
0.40 (0.0157)  
0.51 (0.0201)  
0.31 (0.0122)  
0.25 (0.0098)  
0.17 (0.0067)  
COMPLIANT TO JEDEC STANDARDS MS-012-AB  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 55. 14-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-14)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Model1, 2  
AD8646ARZ  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead MSOP  
Package Option  
R-8  
R-8  
Branding  
AD8646ARZ-REEL  
AD8646ARZ-REEL7  
AD8646ARMZ  
AD8646ARMZ-REEL  
AD8646WARZ-RL  
AD8646WARZ-R7  
AD8646WARMZ-RL  
AD8646WARMZ-R7  
AD8647ARMZ  
AD8647ARMZ-REEL  
AD8648ARZ  
AD8648ARZ-REEL  
AD8648ARZ-REEL7  
AD8648ARUZ  
R-8  
RM-8  
RM-8  
R-8  
A1V  
A1V  
8-Lead MSOP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead MSOP  
R-8  
RM-8  
RM-8  
RM-10  
RM-10  
R-14  
R-14  
R-14  
RU-14  
RU-14  
RU-14  
RU-14  
A1V  
A1V  
A1W  
A1W  
8-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
AD8648ARUZ-REEL  
AD8648WARUZ  
AD8648WARUZ-RL  
1 Z = RoHS Compliant Part  
2 W = Qualified for Automotive Applications.  
Rev. D | Page 18 of 20  
 
 
AD8646/AD8647/AD8648  
NOTES  
Rev. D | Page 19 of 20  
AD8646/AD8647/AD8648  
NOTES  
©2006–2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06527-0-4/10(D)  
Rev. D | Page 20 of 20  

相关型号:

AD8646ARMZ-R2

24 MHz Rail-to-Rail Dual Amplifier
ADI

AD8646ARMZ-REEL

24 MHz Rail-to-Rail Dual Amplifier
ADI

AD8646ARZ

24 MHz Rail-to-Rail Dual Amplifier
ADI

AD8646ARZ-REEL

24 MHz Rail-to-Rail Dual Amplifier
ADI

AD8646ARZ-REEL7

24 MHz Rail-to-Rail Dual Amplifier
ADI

AD8646WARMZ-R7

24 MHz Rail-to-Rail Amplifiers with Shutdown Option
ADI

AD8646WARMZ-RL

24 MHz Rail-to-Rail Amplifiers with Shutdown Option
ADI

AD8646WARZ-R7

24 MHz Rail-to-Rail Amplifiers with Shutdown Option
ADI

AD8646WARZ-RL

24 MHz Rail-to-Rail Amplifiers with Shutdown Option
ADI

AD8646_10

24 MHz Rail-to-Rail Amplifiers with Shutdown Option
ADI

AD8646_15

24 MHz Rail-to-Rail Amplifiers
ADI

AD8647

24 MHz Rail-to-Rail Amplifiers with Shutdown Option
ADI