AD8648ARUZ [ADI]

Low Cost, 24 MHz, Rail-to-Rail, Quad Amplifiers; 低成本, 24兆赫,轨到轨,四通道放大器
AD8648ARUZ
型号: AD8648ARUZ
厂家: ADI    ADI
描述:

Low Cost, 24 MHz, Rail-to-Rail, Quad Amplifiers
低成本, 24兆赫,轨到轨,四通道放大器

放大器 光电二极管
文件: 总12页 (文件大小:338K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Cost, 24 MHz, Rail-to-Rail,  
Quad Amplifiers  
AD8648  
FEATURES  
PIN CONFIGURATIONS  
Low offset voltage: 2.5 mV max  
Single-supply operation: 2.7 V to 5.5 V  
Low noise: 6 nV/√Hz  
Wide bandwidth: 24 MHz  
Slew rate: 12 V/μs  
1
2
3
4
5
6
7
OUT A  
–IN A  
+IN A  
V+  
14  
13  
OUT D  
–IN D  
AD8648  
TOP VIEW  
(Not to Scale)  
12 +IN D  
11  
V–  
+IN B  
–IN B  
OUT B  
10 +IN C  
High output current: 150 mA  
No phase reversal  
9
–IN C  
8
OUT C  
Low input bias current: 1 pA  
Low supply current: 2 mA max  
Unity-gain stable  
Figure 1. 14-Lead TSSOP (RU-14)  
OUT A  
IN A  
+IN A  
V+  
1
2
3
4
5
6
7
14 OUT D  
13 IN D  
12 +IN D  
11 V–  
APPLICATIONS  
Barcode scanners  
Battery-powered instrumentation  
Multipole filters  
AD8648  
TOP VIEW  
(Not to Scale)  
+IN B  
IN B  
OUT B  
10 +IN C  
9
8
IN C  
OUT C  
Sensors  
ASIC input or output amplifiers  
Audio  
Figure 2. 14-Lead SOIC (R-14)  
Photodiode amplification  
GENERAL DESCRIPTION  
The AD8648 is a quad, rail-to-rail, input and output, single-  
supply amplifier featuring low offset voltage, wide signal  
bandwidth, and low input voltage and current noise.  
Applications for the part include portable and low powered  
instrumentation, audio amplification for portable devices,  
portable phone headsets, bar code scanners, and multipole  
filters. The ability to swing rail to rail at both the input and  
output enables designers to buffer CMOS ADCs, DACs, ASICs,  
and other wide output swing devices in single-supply systems.  
The combination of 24 MHz bandwidth, low offset, low noise,  
and very low input bias current makes these amplifiers useful in  
a wide variety of applications. Filters, integrators, photodiode  
amplifiers, and high impedance sensors all benefit from the  
combination of performance features. AC applications benefit  
from the wide bandwidth and low distortion. The AD8648  
family offers high output drive capability, which is excellent for  
audio line drivers and other low impedance applications.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
AD8648  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Absolute Maximum Ratings ............................................................5  
Thermal Resistance.......................................................................5  
ESD Caution...................................................................................5  
Typical Performance Characteristics ..............................................6  
Outline Dimensions....................................................................... 12  
Ordering Guide .......................................................................... 12  
Applications....................................................................................... 1  
Pin Configurations ........................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
REVISION HISTORY  
1/06—Rev 0: Initial Version  
Rev. 0 | Page 2 of 12  
 
AD8648  
SPECIFICATIONS  
VDD = 5.0 V, VCM = VDD/2, TA = 25oC, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
VCM = 0 V to 5 V  
−40°C < TA < +125°C  
−40°C < TA < +125°C  
0.7  
2.5  
3.2  
7.5  
1
mV  
mV  
μV/°C  
pA  
Offset Voltage Drift  
Input Bias Current  
ΔVOS/ΔT  
IB  
2.0  
0.2  
−40°C < TA < +85°C  
−40°C < TA < +125°C  
50  
550  
0.5  
50  
250  
5
pA  
pA  
pA  
pA  
pA  
V
Input Offset Current  
IOS  
0.1  
−40°C < TA < +85°C  
−40°C < TA < +125°C  
Input Voltage Range  
VCM  
0
Common-Mode Rejection Ratio  
Large-Signal Voltage Gain  
Input Capacitance  
CMRR  
AVO  
CDIFF  
CCM  
VCM = 0 V to 5.0 V  
RL = 2 kΩ, VO = 0.5 V to 4.5 V  
67  
160  
84  
dB  
V/mV  
pF  
700  
2.5  
6.7  
pF  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
IOUT = 1 mA  
IOUT = 10 mA  
−40°C < TA < +125°C  
IOUT = 1 mA  
IOUT = 10 mA  
4.98  
4.87  
4.70  
4.99  
4.92  
V
V
V
mV  
mV  
mV  
mA  
Ω
Output Voltage Low  
VOL  
8.4  
78  
20  
145  
200  
−40°C < TA < +125°C  
Short-Circuit Output Current  
Closed-Loop Output Impedance  
POWER SUPPLY  
ISC  
ZOUT  
150  
At 1 MHz, AV = 1  
3
Power Supply Rejection Ratio  
Supply Current per Amplifier  
PSRR  
ISY  
VDD = 2.7 V to 5.5 V  
−40°C < TA < +125°C  
63  
80  
1.8  
dB  
mA  
mA  
2.0  
2.5  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time  
Gain Bandwidth Product  
Phase Margin  
SR  
ts  
GBP  
ΦM  
RL = 2 kΩ  
To 0.01%  
12  
0.5  
24  
74  
V/μs  
μs  
MHz  
Degrees  
NOISE PERFORMANCE  
Peak-to-Peak Noise  
Voltage Noise Density  
en p-p  
en  
0.1 Hz to 10 Hz  
f = 1 kHz  
f = 10 kHz  
f = 10 kHz  
f = 100 kHz  
2.4  
8
6
−115  
−110  
μV  
nV/√Hz  
nV/√Hz  
dB  
Channel Separation  
CS  
dB  
Rev. 0 | Page 3 of 12  
 
AD8648  
VDD = 2.7 V, VCM = VDD/2, TA = 25oC, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
VCM = 0 V to 2.7 V  
−40°C < TA < +125°C  
−40°C < TA < +125°C  
0.7  
2.5  
3.2  
7.0  
1
mV  
mV  
μV/°C  
pA  
Offset Voltage Drift  
Input Bias Current  
ΔVOS/ΔT  
IB  
1.8  
0.2  
−40°C < TA < +85°C  
−40°C < TA < +125°C  
50  
pA  
pA  
pA  
pA  
pA  
V
550  
0.5  
50  
250  
2.7  
Input Offset Current  
IOS  
0.1  
−40°C < TA < +85°C  
−40°C < TA < +125°C  
Input Voltage Range  
VCM  
0
Common-Mode Rejection Ratio  
Large-Signal Voltage Gain  
Input Capacitance  
CMRR  
AVO  
CDIFF  
CCM  
VCM = 0 V to 2.7 V  
RL = 2 kΩ, VO = 0.5 V to 2.2 V  
62  
60  
79  
dB  
V/mV  
pF  
130  
2.5  
7.8  
pF  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
VOL  
IOUT = 1 mA  
−40°C < TA < +125°C  
IOUT = 1 mA  
2.65  
2.60  
2.69  
11  
V
V
mV  
mV  
mA  
Ω
Output Voltage Low  
25  
30  
−40°C < TA < +125°C  
Short-Circuit Output Current  
Closed-Loop Output Impedance  
POWER SUPPLY  
ISC  
ZOUT  
50  
3
At 1 MHz, AV = 1  
Power Supply Rejection Ratio  
Supply Current per Amplifier  
PSRR  
ISY  
VDD = 2.7 V to 5.5 V  
−40°C < TA < +125°C  
63  
80  
1.7  
dB  
mA  
mA  
2.0  
2.5  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time  
Gain Bandwidth Product  
Phase Margin  
SR  
ts  
GBP  
ΦM  
RL = 2 kΩ  
To 0.01%  
12  
0.3  
22  
52  
V/μs  
μs  
MHz  
Degrees  
NOISE PERFORMANCE  
Peak-to-Peak Noise  
Voltage Noise Density  
en p-p  
en  
0.1 Hz to 10 Hz  
f = 1 kHz  
f = 10 kHz  
f = 10 kHz  
f = 100 kHz  
2.1  
8
6
−115  
−110  
μV  
nV/√Hz  
nV/√Hz  
dB  
Channel Separation  
CS  
dB  
Rev. 0 | Page 4 of 12  
AD8648  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
Parameter  
Supply Voltage  
Input Voltage  
Differential Input Voltage  
Output Short Circuit to GND  
Storage Temperature Range  
Operating Temperature Range  
Lead Temperature (Soldering, 60 sec)  
Junction Temperature  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rating  
6 V  
GND to VDD  
3 V  
Indefinite  
−65°C to +150°C  
−40°C to +125°C  
300°C  
THERMAL RESISTANCE  
150°C  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Table 4. Thermal Resistance  
Package Type  
θJA  
θJC  
36  
35  
Unit  
°C/W  
°C/W  
14-Lead SOIC (R)  
14-Lead TSSOP (RU)  
120  
180  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. 0 | Page 5 of 12  
 
AD8648  
TYPICAL PERFORMANCE CHARACTERISTICS  
1000  
100  
10  
140  
V
= 2.7V TO 5V  
V
V
= 5V  
DD  
DD  
= 2.5V  
T = 25°C  
1400 AMPLIFIERS  
CM  
120  
100  
80  
60  
40  
20  
0
1
0.1  
25  
45  
65  
85  
105  
125  
–2.0  
–1.5  
–1.0  
–0.5  
0
0.5  
1.0  
1.5  
2.0  
TEMPERATURE (°C)  
INPUT OFFSET VOLTAGE (mV)  
Figure 6. Input Bias Current vs. Temperature  
Figure 3. Input Offset Voltage Distribution  
1000  
100  
10  
30  
25  
20  
15  
10  
5
V
= 5V  
DD  
V
V
= 5V  
= 2.5V  
DD  
CM  
T = 25°C  
–40°C < T < +125°C  
A
V
– V  
OH  
DD  
SOURCING  
V
OL  
SINKING  
1
0.1  
0.001  
0
0.01  
0.1  
1
10  
100  
0
1
2
3
4
5
6
7
TCVOS (µV/°C)  
LOAD CURRENT (mA)  
Figure 7. Output Saturation Voltage vs. Load Current  
Figure 4. VOS Drift (TCVOS) Distribution  
25  
20  
15  
10  
5
2500  
2000  
1500  
1000  
500  
V
OUT  
= 5V  
DD  
V
= 5V  
DD  
= 25°C  
I
= 1mA  
T
A
V
– V  
OH  
DD  
SOURCING  
0
–500  
V
OL  
SINKING  
–1000  
–1500  
–2000  
–2500  
0
–40  
–20  
0
20  
40  
60  
80  
100  
120  
0
1
2
3
4
5
TEMPERATURE (°C)  
INPUT COMMON-MODE VOLTAGE (V)  
Figure 8. Output Saturation Voltage vs. Temperature  
Figure 5. Input Offset Voltage vs. Input Common-Mode Voltage  
Rev. 0 | Page 6 of 12  
 
AD8648  
100  
80  
60  
40  
20  
80  
60  
0
V
= 5V  
= 25°C  
V
R
C
= 5V  
DD  
DD  
T
A
= 1k  
L
L
= 10pF  
45  
90  
PHASE  
40  
20  
135  
180  
225  
270  
Ф
= 74°  
M
GAIN  
0
–20  
–40  
1k  
10k  
100k  
1M  
10M  
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
100M  
FREQUENCY (Hz)  
Figure 12. Common-Mode Rejection Ratio vs. Frequency  
Figure 9. Open-Loop Gain and Phase vs. Frequency  
100  
80  
60  
40  
20  
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
T
= 5V  
V
V
A
R
= 5V  
= 4.9V p-p  
= 1  
= 10k  
= 25°C  
PSRR+  
DD  
= 25°C  
DD  
IN  
A
V
L
T
A
PSRR–  
1k  
10k  
100k  
1M  
10M  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 10. Maximum Output Swing vs. Frequency  
Figure 13. Power Supply Rejection Ratio vs. Frequency  
1000  
100  
1000  
100  
10  
V
= 2.7V TO 5V  
DD  
= 25°C  
V
= 5V  
DD  
= 25°C  
T
A
T
A
A
= 100  
V
10  
A
= 10  
V
A
= 1  
V
1
1
10  
0.1  
1K  
100  
1k  
10k  
10K  
100K  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 14. Voltage Noise Density vs. Frequency  
Figure 11. Closed-Loop Output Impedance vs. Frequency  
Rev. 0 | Page 7 of 12  
AD8648  
0.1  
V
V
= 5V  
DD  
= 300mV rms  
IN  
V
= 2.7V TO 5V  
DD  
= 25°C  
BW = 80kHz  
= 100k  
T
A
R
L
0.01  
0.001  
0.0001  
20  
100  
1k  
10k 20k  
TIME (1s/DIV)  
FREQUENCY (Hz)  
Figure 15. 0.1 Hz to 10 Hz Voltage Noise  
Figure 18. THD + Noise vs. Frequency  
1
V
= 5V  
= 10k  
= 20pF  
= 1  
DD  
R
C
A
L
L
V
0.1  
0.01  
0.001  
V
A
= 5V  
DD  
= 1  
V
BW = 30kHz  
R
= 100k  
f =L 1kHz  
0.0001  
0.001  
0.01  
0.1  
1
TIME (40ns/DIV)  
OUTPUT AMPLITUDE (V rms)  
Figure 16. Small-Signal Transient Response  
Figure 19. THD + Noise vs. Output Amplitude  
70  
V
= 5V  
V
R
= 5V  
= 10k  
= 25°C  
DD  
DD  
R
C
A
= 100kΩ  
= 20pF  
= 1  
L
L
V
L
T
60  
50  
40  
30  
20  
10  
A
OS+  
OS–  
0
10  
100  
LOAD CAPACITANCE (pF)  
1000  
TIME (200ns/DIV)  
Figure 20. Small-Signal Overshoot vs. Load Capacitance  
Figure 17. Large-Signal Transient Response  
Rev. 0 | Page 8 of 12  
AD8648  
160  
140  
120  
100  
80  
1000  
100  
V
V
= 2.7V  
= 1.35V  
= 25°C  
DD  
CM  
V
= 2.7V  
DD  
= 25°C  
T
A
T
A
1400 AMPLIFIERS  
V
V  
OH  
DD  
SOURCING  
10  
1
V
OL  
SINKING  
60  
40  
20  
0
–2.0  
0.1  
0.001  
–1.5  
–1.0  
–0.5  
0
0.5  
1.0  
1.5  
2.0  
0.01  
0.1  
LOAD CURRENT (mA)  
1
10  
INPUT OFFSET VOLTAGE (mV)  
Figure 21. Input Offset Voltage Distribution  
Figure 24. Output Saturation Voltage vs. Load Current  
30  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
V
V
= 2.7V  
= 1.35V  
V
I
= 2.7V  
DD  
CM  
DD  
= 1mA  
LOAD  
–40°C < T < +125°C  
A
V
– V  
OH  
DD  
SOURCING  
V
OL  
SINKING  
0
0
–40  
0
1
2
3
4
5
6
7
8
–20  
0
20  
40  
60  
80  
100  
120  
TCV (µV/°C)  
OS  
TEMPERATURE (°C)  
Figure 25. Output Saturation Voltage vs. Temperature  
Figure 22. VOS Drift (TCVOS) Distribution  
80  
0
2500  
2000  
1500  
1000  
500  
V
R
C
= 2.7V  
= 1kΩ  
= 10pF  
V
= 2.7V  
DD  
DD  
= 25°C  
T
L
L
A
60  
40  
20  
45  
90  
Ф
= 52°  
M
135  
0
–500  
–1000  
–1500  
–2000  
–2500  
0
–20  
–40  
180  
225  
270  
10k  
100k  
1M  
10M  
100M  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
FREQUENCY (Hz)  
INPUT COMMON-MODE VOLTAGE (V)  
Figure 26. Open-Loop Gain and Phase vs. Frequency  
Figure 23. Input Offset Voltage vs. Input Common-Mode Voltage  
Rev. 0 | Page 9 of 12  
AD8648  
100  
80  
60  
40  
20  
0
3.0  
V
= 2.7V  
= 25°C  
DD  
V
V
A
R
= 2.7V  
= 2.6V p-p  
= 1  
= 10kΩ  
= 25°C  
DD  
IN  
PSRR+  
T
A
V
L
2.5  
2.0  
1.5  
T
A
PSRR–  
1.0  
0.5  
0
100k  
1k  
10k  
100k  
1M  
10M  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 27. Maximum Output Swing vs. Frequency  
Figure 30. Power Supply Rejection Ratio vs. Frequency  
1000  
100  
10  
V
T
= 2.7V  
= 25°C  
DD  
V
= 2.7V  
= 10k  
= 20pF  
= 1  
DD  
R
C
A
A
L
L
V
A
= 100  
V
A
= 10  
V
A
= 1  
V
1
0.1  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
TIME (40ns/DIV)  
Figure 28. Closed-Loop Output Impedance vs. Frequency  
Figure 31. Small-Signal Transient Response  
100  
80  
60  
40  
20  
V
= 2.7V  
= 25°C  
V
R
C
A
= 2.7V  
DD  
DD  
T
= 10kΩ  
= 20pF  
= 1  
A
L
L
V
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
TIME (1µs/DIV)  
Figure 29. Common-Mode Rejection Ratio vs. Frequency  
Figure 32. Large-Signal Transient Response  
Rev. 0 | Page 10 of 12  
AD8648  
50  
40  
30  
20  
10  
0
2.5  
2.0  
1.5  
1.0  
0.5  
0
T
= 25°C  
V
R
= 2.7V  
= 10kΩ  
= 25°C  
A
DD  
L
T
A
OS+  
OS–  
1
10  
100  
1000  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
LOAD CAPACITANCE (pF)  
SUPPLY VOLTAGE (V)  
Figure 33. Small-Signal Overshoot vs. Load Capacitance  
Figure 35. Supply Current per Amplifier vs. Supply Voltage  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= V /2  
DD  
OUT  
V
= 2.7V  
DD  
V
= 5.0V  
DD  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
Figure 34. Supply Current per Amplifier vs. Temperature  
Rev. 0 | Page 11 of 12  
AD8648  
OUTLINE DIMENSIONS  
5.10  
5.00  
4.90  
14  
8
7
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
0.65  
BSC  
1.05  
1.00  
0.80  
0.20  
0.09  
1.20  
MAX  
0.75  
0.60  
0.45  
8°  
0°  
0.15  
0.05  
0.30  
0.19  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1  
Figure 36. 14-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-14)  
Dimensions shown in millimeters  
8.75 (0.3445)  
8.55 (0.3366)  
8
7
14  
1
4.00 (0.1575)  
3.80 (0.1496)  
6.20 (0.2441)  
5.80 (0.2283)  
1.27 (0.0500)  
BSC  
0.50 (0.0197)  
0.25 (0.0098)  
1.75 (0.0689)  
1.35 (0.0531)  
× 45°  
0.25 (0.0098)  
0.10 (0.0039)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
SEATING  
PLANE  
1.27 (0.0500)  
0.40 (0.0157)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
COMPLIANT TO JEDEC STANDARDS MS-012-AB  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 37. 14-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body (R-14)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Model  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead TSSOP  
Package Option  
R-14  
AD8648ARZ1  
AD8648ARZ-REEL1  
AD8648ARZ-REEL71  
AD8648ARUZ1  
R-14  
R-14  
RU-14  
AD8648ARUZ-REEL1  
14-Lead TSSOP  
RU-14  
1 Z = Pb-free part.  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05890–0–1/06(0)  
Rev. 0 | Page 12 of 12  
 
 
 

相关型号:

AD8648ARUZ-REEL

Low Cost, 24 MHz, Rail-to-Rail, Quad Amplifiers
ADI

AD8648ARZ

Low Cost, 24 MHz, Rail-to-Rail, Quad Amplifiers
ADI

AD8648ARZ-REEL

Low Cost, 24 MHz, Rail-to-Rail, Quad Amplifiers
ADI

AD8648ARZ-REEL7

Low Cost, 24 MHz, Rail-to-Rail, Quad Amplifiers
ADI

AD8648WARUZ

24 MHz Rail-to-Rail Amplifiers with Shutdown Option
ADI

AD8648WARUZ-RL

24 MHz Rail-to-Rail Amplifiers with Shutdown Option
ADI

AD8648_15

24 MHz Rail-to-Rail Amplifiers
ADI

AD8651

50 MHz, Precision, Low Distortion, Low Noise CMOS Amplifiers
ADI

AD8651AR

50 MHz, Precision, Low Distortion, Low Noise CMOS Amplifiers
ADI

AD8651AR-REEL

50 MHz, Precision, Low Distortion, Low Noise CMOS Amplifiers
ADI

AD8651AR-REEL7

50 MHz, Precision, Low Distortion, Low Noise CMOS Amplifiers
ADI

AD8651ARM

50 MHz, Precision, Low Distortion, Low Noise CMOS Amplifiers
ADI