AD8655_15 [ADI]

Precision CMOS Amplifier;
AD8655_15
型号: AD8655_15
厂家: ADI    ADI
描述:

Precision CMOS Amplifier

文件: 总20页 (文件大小:392K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Noise,  
Precision CMOS Amplifier  
Data Sheet  
AD8655/AD8656  
FEATURES  
PIN CONFIGURATIONS  
Low noise: 2.7 nV/Hz at f = 10 kHz  
Low offset voltage: 250 µV max over VCM  
Offset voltage drift: 0.4 µV/°C typ and 2.3 µV/°C max  
Bandwidth: 28 MHz  
NC  
–IN  
+IN  
V–  
1
2
3
4
8
7
6
5
NC  
V+  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
AD8655  
AD8656  
OUT B  
–IN B  
+IN B  
TOP VIEW  
TOP VIEW  
(Not to Scale)  
OUT  
NC  
(Not to Scale)  
Rail-to-rail input/output  
NC = NO CONNECT  
Unity gain stable  
2.7 V to 5.5 V operation  
−40°C to +125°C operation  
Figure 2. AD8656  
8-Lead MSOP (RM-8)  
8-Lead SOIC (R-8)  
Figure 1. AD8655  
8-Lead MSOP (RM-8)  
8-Lead SOIC (R-8)  
Qualified for automotive applications  
APPLICATIONS  
ADC and DAC buffers  
Audio  
Industrial controls  
Precision filters  
Digital scales  
Automotive collision avoidance  
PLL filters  
GENERAL DESCRIPTION  
The AD8655/AD8656 are the industrys lowest noise, precision  
CMOS amplifiers. They leverage the Analog Devices DigiTrim®  
technology to achieve high dc accuracy.  
The high precision performance of the AD8655/AD8656 improves  
the resolution and dynamic range in low voltage applications.  
Audio applications, such as microphone pre-amps and audio  
mixing consoles, benefit from the low noise, low distortion, and  
high output current capability of the AD8655/AD8656 to reduce  
system level noise performance and maintain audio fidelity. The  
high precision and rail-to-rail input and output of the AD8655/  
AD8656 benefit data acquisition, process controls, and PLL  
filter applications.  
The AD8655/AD8656 provide low noise (2.7 nV/√Hz at 10 kHz),  
low THD + N (0.0007%), and high precision performance  
(250 µV max over VCM) to low voltage applications. The ability  
to swing rail-to-rail at the input and output enables designers  
to buffer analog-to-digital converters (ADCs) and other wide  
dynamic range devices in single-supply systems.  
The AD8655/AD8656 are fully specified over the −40°C to  
+125°C temperature range. The AD8655/AD8656 are available  
in Pb-free, 8-lead MSOP and SOIC packages. The AD8655/  
AD8656 are both available for automotive applications.  
Rev. E  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2005–2013 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
AD8655/AD8656  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Input Overvoltage Protection................................................... 16  
Input Capacitance ...................................................................... 16  
Driving Capacitive Loads.......................................................... 16  
Layout, Grounding, and Bypassing Considerations .................. 18  
Power Supply Bypassing............................................................ 18  
Grounding................................................................................... 18  
Leakage Currents........................................................................ 18  
Outline Dimensions....................................................................... 19  
Ordering Guide............................................................................... 19  
Automotive Products................................................................. 19  
Applications....................................................................................... 1  
Pin Configurations ........................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Typical Performance Characteristics ............................................. 6  
Theory of Operation ...................................................................... 15  
Applications Information .............................................................. 16  
REVISION HISTORY  
10/13—Rev. D to Rev. E  
6/05—Rev. 0 to Rev. A  
Changes to Figure 1 Caption and Figure 2 Caption .................... 1  
Deleted Figure 3 and Figure 4; Renumbered Sequentially ......... 1  
Change to General Description Section........................................ 1  
Change to Figure 4 ........................................................................... 6  
Change to Figure 32 ....................................................................... 10  
Changes to Ordering Guide .......................................................... 19  
Changes to Automotive Products Section................................... 19  
Added AD8656 ...................................................................Universal  
Added Figure 2 and Figure 4 ...........................................................1  
Changes to Specifications.................................................................3  
Changed Caption of Figure 12 and Added Figure 13...................7  
Replaced Figure 16............................................................................7  
Changed Caption of Figure 37 and Added Figure 38................ 11  
Replaced Figure 47......................................................................... 13  
Added Figure 55 ............................................................................. 14  
Changes to Ordering Guide.......................................................... 18  
6/13—Rev. C to Rev. D  
Change to Figure 57 ....................................................................... 16  
4/05—Revision 0: Initial Version  
5/13—Rev. B to Rev. C  
Change to Figure 57 ....................................................................... 16  
9/11—Rev. A to Rev. B  
Changes to Features Section............................................................ 1  
Updated Outline Dimensions ....................................................... 19  
Changes to Ordering Guide .......................................................... 19  
Added Automotive Products Section .......................................... 19  
Rev. E | Page 2 of 20  
 
Data Sheet  
AD8655/AD8656  
SPECIFICATIONS  
VS = 5.0 V, VCM = VS/2, TA = 25°C, unless otherwise specified.  
Table 1.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
VCM = 0 V to 5 V  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
50  
250  
550  
2.3  
10  
500  
10  
µV  
µV  
µV/°C  
pA  
pA  
pA  
pA  
V
Offset Voltage Drift  
Input Bias Current  
ΔVOS/ΔT  
IB  
0.4  
1
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA≤ +125°C  
Input Offset Current  
IOS  
500  
5
Input Voltage Range  
0
Common-Mode Rejection Ratio  
Large Signal Voltage Gain  
CMRR  
AVO  
VCM = 0 V to 5 V  
VO = 0.2 V to 4.8 V, RL = 10 kΩ, VCM = 0 V  
−40°C ≤ TA ≤ +125°C  
85  
100  
95  
100  
110  
dB  
dB  
dB  
OUTPUT CHARACTERISTICS  
Output Voltage High  
Output Voltage Low  
Output Current  
VOH  
VOL  
IOUT  
IL = 1 mA; −40°C ≤ TA ≤ +125°C  
IL = 1 mA; −40°C ≤ TA ≤ +125°C  
VOUT = 0.5 V  
4.97  
4.991  
8
220  
V
mV  
mA  
30  
POWER SUPPLY  
Power Supply Rejection Ratio  
Supply Current/Amplifier  
PSRR  
ISY  
VS = 2.7 V to 5.0 V  
VO = 0 V  
−40°C ≤ TA ≤ +125°C  
88  
105  
3.7  
dB  
mA  
mA  
4.5  
5.3  
INPUT CAPACITANCE  
Differential  
Common-Mode  
CIN  
9.3  
16.7  
pF  
pF  
NOISE PERFORMANCE  
Input Voltage Noise Density  
en  
f = 1 kHz  
4
nV/Hz  
nV/Hz  
%
f = 10 kHz  
2.7  
Total Harmonic Distortion + Noise  
FREQUENCY RESPONSE  
Gain Bandwidth Product  
Slew Rate  
Settling Time  
Phase Margin  
THD + N  
G = 1, RL = 1 kΩ, f = 1 kHz, VIN = 2 V p-p  
0.0007  
GBP  
SR  
ts  
28  
11  
370  
69  
MHz  
V/µs  
ns  
RL = 10 kΩ  
To 0.1%, VIN = 0 V to 2 V step, G = +1  
CL = 0 pF  
degrees  
Rev. E | Page 3 of 20  
 
AD8655/AD8656  
Data Sheet  
VS = 2.7 V, VCM = VS/2, TA = 25°C, unless otherwise specified.  
Table 2.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
VCM = 0 V to 2.7 V  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
44  
250  
550  
2.0  
10  
500  
10  
µV  
µV  
µV/°C  
pA  
pA  
pA  
pA  
V
Offset Voltage Drift  
Input Bias Current  
ΔVOS/ΔT  
IB  
0.4  
1
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
Input Offset Current  
IOS  
500  
2.7  
Input Voltage Range  
0
Common-Mode Rejection Ratio  
Large Signal Voltage Gain  
CMRR  
AVO  
VCM = 0 V to 2.7 V  
VO = 0.2 V to 2.5 V, RL = 10 kΩ, VCM = 0 V  
−40°C ≤ TA ≤ +125°C  
80  
98  
90  
98  
dB  
dB  
dB  
OUTPUT CHARACTERISTICS  
Output Voltage High  
Output Voltage Low  
Output Current  
VOH  
VOL  
IOUT  
IL = 1 mA; −40°C ≤ TA ≤ +125°C  
IL = 1 mA; −40°C ≤ TA ≤ +125°C  
VOUT = 0.5 V  
2.67  
2.688  
10  
75  
V
mV  
mA  
30  
POWER SUPPLY  
Power Supply Rejection Ratio  
Supply Current/Amplifier  
PSRR  
ISY  
VS = 2.7 V to 5.0 V  
VO = 0 V  
−40°C ≤ TA ≤ +125°C  
88  
105  
3.7  
dB  
mA  
mA  
4.5  
5.3  
INPUT CAPACITANCE  
Differential  
Common-Mode  
CIN  
9.3  
16.7  
pF  
pF  
NOISE PERFORMANCE  
Input Voltage Noise Density  
en  
f = 1 kHz  
4.0  
nV/Hz  
nV/Hz  
%
f = 10 kHz  
2.7  
Total Harmonic Distortion + Noise  
FREQUENCY RESPONSE  
Gain Bandwidth Product  
Slew Rate  
Settling Time  
Phase Margin  
THD + N  
G = 1, RL = 1kΩ, f = 1 kHz, VIN = 2 V p-p  
0.0007  
GBP  
SR  
ts  
27  
MHz  
V/µs  
ns  
RL = 10 kΩ  
To 0.1%, VIN = 0 to 1 V step, G = +1  
CL = 0 pF  
8.5  
370  
54  
degrees  
Rev. E | Page 4 of 20  
Data Sheet  
AD8655/AD8656  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
Table 4.  
1
Package Type  
8-Lead MSOP (RM)  
8-Lead SOIC (R)  
θJA  
θJC  
45  
43  
Unit  
°C/W  
°C/W  
Parameter  
Rating  
210  
158  
Supply Voltage  
Input Voltage  
Differential Input Voltage  
Output Short-Circuit Duration  
to GND  
6 V  
VSS − 0.3 V to VDD + 0.3 V  
6 V  
Indefinite  
1 θJA is specified for worst-case conditions; that is, θJA is specified for a device  
soldered in the circuit board for surface-mount packages.  
Electrostatic Discharge (HBM)  
Storage Temperature Range  
R, RM Packages  
3.0 kV  
−65°C to +150°C  
ESD CAUTION  
Junction Temperature Range  
R, RM Packages  
Lead Temperature  
(Soldering, 10 sec)  
−65°C to +150°C  
260°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. E | Page 5 of 20  
 
 
AD8655/AD8656  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
60  
20  
10  
V
S
= ±2.5V  
V
S
= ±2.5V  
50  
40  
30  
20  
0
–10  
10  
0
–20  
–30  
–150  
–100  
–50  
0
50  
100  
150  
0
1
2
3
4
5
6
V
(µV)  
OS  
COMMON-MODE VOLTAGE (V)  
Figure 3. Input Offset Voltage Distribution  
Figure 6. Input Offset Voltage vs. Common-Mode Voltage  
250  
200  
250  
200  
150  
100  
V
V
= ±2.5V  
S
V
= ±2.5V  
S
= 0V  
CM  
150  
100  
50  
0
–50  
–100  
–150  
–200  
–250  
+3σ  
50  
0
TYPICAL  
–3σ  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
0
20  
40  
60  
80  
100  
120  
140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 7. Input Bias Current vs. Temperature  
Figure 4. Input Offset Voltage vs. Temperature  
60  
50  
40  
30  
20  
4.0  
3.5  
3.0  
V
S
= ±2.5V  
V
= ±2.5V  
S
2.5  
2.0  
1.5  
1.0  
0.5  
0
10  
0
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
0
1
2
3
4
5
6
|TCV | (µV/°C)  
SUPPLY VOLTAGE (V)  
OS  
Figure 8. Supply Current vs. Supply Voltage  
Figure 5. |TCVOS | Distribution  
Rev. E | Page 6 of 20  
 
Data Sheet  
AD8655/AD8656  
4.5  
4.996  
4.994  
4.992  
4.990  
V
= ±2.5V  
V
= ±2.5V  
S
S
LOAD CURRENT = 1mA  
4.0  
3.5  
3.0  
4.988  
4.986  
4.984  
4.982  
2.5  
2.0  
–50  
0
50  
100  
150  
–50  
0
50  
TEMPERATURE (°C)  
100  
150  
TEMPERATURE (°C)  
Figure 12. Output Voltage Swing High vs. Temperature  
Figure 9. Supply Current vs. Temperature  
12  
10  
8
2500  
2000  
1500  
1000  
LOAD CURRENT = 1mA  
V
= ±2.5V  
S
V
= ±2.5V  
S
V
OH  
6
V
OL  
4
2
500  
0
–50  
0
50  
100  
150  
0
50  
100  
150  
200  
250  
TEMPERATURE (°C)  
CURRENT LOAD (mA)  
Figure 13. Output Voltage Swing Low vs. Temperature  
Figure 10. AD8655 Output Voltage to Supply Rail vs. Current Load  
120  
100  
10000  
V
V
R
C
= ±2.5V  
= 28mV  
= 1MΩ  
= 47pF  
V
= ±2.5V  
S
S
IN  
L
L
1000  
100  
10  
80  
60  
40  
20  
0
V
OL  
V
OH  
1
100  
1k  
10k  
100k  
1M  
10M  
0.1  
1
10  
100  
1000  
FREQUENCY (Hz)  
CURRENT LOAD (mA)  
Figure 11. AD8656 Output Swing vs. Current Load  
Figure 14. CMRR vs. Frequency  
Rev. E | Page 7 of 20  
AD8655/AD8656  
Data Sheet  
100  
10  
1
110.00  
107.00  
104.00  
101.00  
98.00  
V
V
= ±2.5V  
S
V
= ±2.5V  
S
= 0V  
CM  
95.00  
92.00  
–50  
0
50  
100  
150  
1
10  
100  
1k  
10k  
100k  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 15. Large Signal CMRR vs. Temperature  
Figure 18. Voltage Noise Density vs. Frequency  
100  
80  
+PSRR  
V
= ±2.5V  
S
V
V
R
C
= ±2.5V  
= 50mV  
= 1M  
S
Vn (p-p) = 1.23µV  
IN  
L
L
–PSRR  
= 47pF  
60  
1
40  
20  
0
1s/DIV  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
Figure 16. Small Signal PSSR vs. Frequency  
Figure 19. Low Frequency Noise (0.1 Hz to 10 Hz).  
110.00  
108.00  
106.00  
104.00  
102.00  
100.00  
T
V
V
IN  
V
C
= ±2.5V  
= 50pF  
S
V
= ±2.5V  
S
L
GAIN = +1  
OUT  
2
20µs/DIV  
–50  
0
50  
100  
150  
TEMPERATURE (°C)  
Figure 17. Large Signal PSSR vs. Temperature  
Figure 20. No Phase Reversal  
Rev. E | Page 8 of 20  
Data Sheet  
AD8655/AD8656  
–45  
6
5
4
3
2
120  
100  
80  
V
V
= ±2.5V  
= 5V  
V
C
= ±2.5V  
S
S
= 11.5pF  
IN  
LOAD  
PHASE MARGIN = 69°  
G = +1  
–90  
60  
40  
20  
–135  
–180  
–225  
0
–20  
–40  
1
0
10k  
100k  
1M  
10M  
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
100M  
FREQUENCY (Hz)  
Figure 21. Open-Loop Gain and Phase vs. Frequency  
Figure 24. Maximum Output Swing vs. Frequency  
140.00  
130.00  
120.00  
110.00  
T
V
C
= ±2.5V  
= 100pF  
S
V
R
= ±2.5V  
= 10kΩ  
S
L
L
GAIN = +1  
V = 4V  
IN  
2
100.00  
90.00  
TIME (10µs/DIV)  
–50  
0
50  
100  
150  
TEMPERATURE (°C)  
Figure 22. Large Signal Open-Loop Gain vs. Temperature  
Figure 25. Large Signal Response  
50  
40  
30  
20  
T
V
R
C
= ±2.5V  
= 1M  
= 47pF  
V
C
= ±2.5V  
= 100pF  
S
S
L
L
L
G = +1  
2
10  
0
–10  
–20  
1k  
10k  
100k  
1M  
10M  
100M  
TIME (1µs/DIV)  
FREQUENCY (Hz)  
Figure 23. Closed-Loop Gain vs. Frequency  
Figure 26. Small Signal Response  
Rev. E | Page 9 of 20  
AD8655/AD8656  
Data Sheet  
30  
100  
10  
V
= ±2.5V  
S
V
V
= ±2.5V  
= 200mV  
S
IN  
25  
20  
15  
10  
G = +1  
G = +100  
G = +10  
–OS  
1
+OS  
5
0
0.1  
100  
0
50  
100  
150  
200  
250  
300  
350  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
CAPACITANCE (pF)  
Figure 27. Small Signal Overshoot vs. Load Capacitance  
Figure 30. Output Impedance vs. Frequency  
80  
70  
60  
T
V
= ±1.35V  
300mV  
S
V
IN  
1
2
0V  
0V  
50  
40  
V
OUT  
V
V
= ±2.5V  
= 300mV  
S
30  
20  
10  
0
IN  
GAIN = –10  
RECOVERY TIME = 240ns  
–2.5V  
400ns/DIV  
–150 –125 –100 –75 –50 –25  
V
0
25 50 75 100 125 150  
(µV)  
OS  
Figure 28. Negative Overload Recovery Time  
Figure 31. Input Offset Voltage Distribution  
250  
200  
T
V
V
= ±1.35V  
S
1
0V  
= 0V  
CM  
V
IN  
150  
100  
50  
V
V
= ±2.5V  
= 300mV  
S
IN  
–300mV  
2.5V  
GAIN = –10  
RECOVERY TIME = 240ns  
0
V
OUT  
–50  
–100  
–150  
–200  
–250  
2
+3σ  
0V  
TYPICAL  
–3σ  
400ns/DIV  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
TEMPERATURE (°C)  
Figure 29. Positive Overload Recovery Time  
Figure 32. Input Offset Voltage vs. Temperature  
Rev. E | Page 10 of 20  
Data Sheet  
AD8655/AD8656  
10000  
1000  
100  
10  
80  
70  
60  
V
= ±1.35V  
V
= ±1.35V  
S
S
50  
40  
30  
20  
10  
0
V
OL  
V
OH  
1
0.1  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1
10  
100  
|TCV | (µV/°C)  
CURRENT LOAD (mA)  
OS  
Figure 33. |TCVOS| Distribution  
Figure 36. AD8656 Output Swing vs. Current Load  
4.5  
4.0  
3.5  
3.0  
2.698  
2.694  
2.690  
2.686  
2.682  
V
= ±1.35V  
S
V
= ±1.35V  
S
LOAD CURRENT = 1mA  
2.5  
2.0  
2.678  
2.674  
–50  
0
50  
TEMPERATURE (°C)  
100  
150  
–50  
0
50  
100  
150  
TEMPERATURE (°C)  
Figure 37. Output Voltage Swing High vs. Temperature  
Figure 34. Supply Current vs. Temperature  
14  
12  
10  
8
1400  
V
= ±1.35V  
S
V
= ±1.35V  
S
LOAD CURRENT = 1mA  
1200  
1000  
800  
V
OH  
600  
400  
200  
0
6
V
OL  
4
2
–50  
0
50  
TEMPERATURE (°C)  
100  
150  
0
20  
40  
60  
80  
100  
120  
LOAD CURRENT (mA)  
Figure 38. Output Voltage Swing Low vs. Temperature  
Figure 35. AD8655 Output Voltage to Supply Rail vs. Load Current  
Rev. E | Page 11 of 20  
AD8655/AD8656  
Data Sheet  
35  
30  
25  
20  
15  
10  
5
T
V
= ±1.35V  
S
V
V
= ±1.35V  
= 200mV  
G = +1  
C
S
= 50pF  
IN  
L
V
IN  
–OS  
V
OUT  
2
+OS  
0
20µs/DIV  
0
50  
100  
150  
200  
250  
300  
350  
CAPACITANCE (pF)  
Figure 42. Small Signal Overshoot vs. Load Capacitance  
Figure 39. No Phase Reversal  
T
T
V
C
= ±1.35V  
= 50pF  
S
200mV  
L
GAIN = +1  
V
IN  
0V  
1
2
2
0V  
V
OUT  
–1.35V  
V
V
= ±1.35V  
= 200mV  
S
IN  
GAIN = –10  
RECOVERY TIME = 180ns  
400ns/DIV  
TIME (10µs/DIV)  
Figure 43. Negative Overload Recovery Time  
Figure 40. Large Signal Response  
T
T
V
C
= ±1.35V  
= 100pF  
S
1
0V  
L
V
IN  
GAIN = +1  
V
V
= ±1.35V  
= 200mV  
S
–200mV  
IN  
GAIN = –10  
RECOVERY TIME = 200ns  
2
1.35V  
V
OUT  
0V  
2
TIME (1µs/DIV)  
400ns/DIV  
Figure 41. Small Signal Response  
Figure 44. Positive Overload Recovery Time  
Rev. E | Page 12 of 20  
Data Sheet  
AD8655/AD8656  
120  
120  
100  
–45  
V
C
= ±1.35V  
V
V
R
C
= ±1.35V  
= 28mV  
= 1MΩ  
S
S
= 11.5pF  
LOAD  
IN  
100  
PHASE MARGIN = 54°  
L
L
= 47pF  
–90  
80  
60  
40  
80  
60  
40  
20  
–135  
–180  
–225  
20  
0
–20  
–40  
0
100  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 45. CMRR vs. Frequency  
Figure 48. Open-Loop Gain and Phase vs. Frequency  
102.00  
98.00  
94.00  
90.00  
130.00  
120.00  
110.00  
V
= ±1.35V  
V
R
= ±1.35V  
= 10k  
S
S
L
100.00  
90.00  
80.00  
86.00  
–50  
0
50  
100  
150  
–50  
0
50  
100  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 46. Large Signal CMRR vs. Temperature  
Figure 49. Large Signal Open-Loop Gain vs. Temperature  
50  
40  
100  
80  
V
V
R
C
= ±1.35V  
= 50mV  
= 1MΩ  
V
R
C
= ±1.35V  
= 1MΩ  
= 47pF  
S
S
IN  
L
L
+PSRR  
L
L
= 47pF  
–PSRR  
30  
60  
20  
10  
40  
0
20  
0
–10  
–20  
100  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 47. Small Signal PSSR vs. Frequency  
Figure 50. Closed-Loop Gain vs. Frequency  
Rev. E | Page 13 of 20  
AD8655/AD8656  
Data Sheet  
0
–20  
3.0  
V
V
= ±2.5V  
= 50mV  
S
R1  
IN  
10k  
+2.5V  
V+  
R2  
100Ω  
2.5  
V–  
V
V
= 1.35V  
= 2.7V  
+
S
VIN  
50mV p-p  
A
B
VOUT  
V–  
–2.5V  
IN  
–40  
V+  
2.0  
1.5  
1.0  
G = +1  
NO LOAD  
–60  
–80  
–100  
0.5  
0
–120  
–140  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
Figure 53. Channel Separation vs. Frequency  
Figure 51. Maximum Output Swing vs. Frequency  
1000  
100  
10  
V
= ±1.35V  
S
G = +100  
G = +10  
G = +1  
1
0.1  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
Figure 52. Output Impedance vs. Frequency  
Rev. E | Page 14 of 20  
Data Sheet  
AD8655/AD8656  
THEORY OF OPERATION  
The AD8655/AD8656 amplifiers are voltage feedback, rail-to-rail  
input and output precision CMOS amplifiers, which operate  
from 2.7 V to 5.0 V of power supply voltage. These amplifiers  
use the Analog Devices DigiTrim technology to achieve a higher  
degree of precision than is available from most CMOS amplifiers.  
DigiTrim technology, used in a number of Analog Devices  
amplifiers, is a method of trimming the offset voltage of the  
amplifier after it is packaged. The advantage of post-package  
trimming is that it corrects any offset voltages caused by the  
mechanical stresses of assembly.  
The AD8655/AD8656 can be used in any precision op amp  
application. The amplifier does not exhibit phase reversal for  
common-mode voltages within the power supply. The AD8655/  
AD8656 are great choices for high resolution data acquisition  
systems with voltage noise of 2.7 nV/√Hz and THD + Noise of  
–103 dB for a 2 V p-p signal at 10 kHz. Their low noise, sub-pA  
input bias current, precision offset, and high speed make them  
superb preamps for fast filter applications. The speed and output  
drive capability of the AD8655/AD8656 also make them useful  
in video applications.  
The AD8655/AD8656 are available in standard op amp pinouts,  
making DigiTrim completely transparent to the user. The input  
stage of the amplifiers is a true rail-to-rail architecture, allowing  
the input common-mode voltage range of the amplifiers to  
extend to both positive and negative supply rails. The open-  
loop gain of the AD8655/AD8656 with a load of 10 kΩ is  
typically 110 dB.  
Rev. E | Page 15 of 20  
 
AD8655/AD8656  
Data Sheet  
APPLICATIONS INFORMATION  
One simple technique for compensation is a snubber that  
INPUT OVERVOLTAGE PROTECTION  
consists of a simple RC network. With this circuit in place,  
output swing is maintained, and the amplifier is stable at all  
gains. Figure 55 shows the implementation of a snubber, which  
reduces overshoot by more than 30% and eliminates ringing.  
Using a snubber does not recover the loss of bandwidth  
incurred from a heavy capacitive load.  
The internal protective circuitry of the AD8655/AD8656 allows  
voltages exceeding the supply to be applied at the input. It is  
recommended, however, not to apply voltages that exceed the  
supplies by more than 0.3 V at either input of the amplifier. If a  
higher input voltage is applied, series resistors should be used to  
limit the current flowing into the inputs. The input current  
should be limited to less than 5 mA.  
V
A
C
= ±2.5V  
= 1  
S
V
L
= 500pF  
The extremely low input bias current allows the use of larger  
resistors, which allows the user to apply higher voltages at the  
inputs. The use of these resistors adds thermal noise, which  
contributes to the overall output voltage noise of the amplifier.  
For example, a 10 kΩ resistor has less than 12.6 nV/√Hz of  
thermal noise and less than 10 nV of error voltage at room  
temperature.  
INPUT CAPACITANCE  
Along with bypassing and ground, high speed amplifiers can be  
sensitive to parasitic capacitance between the inputs and ground.  
For circuits with resistive feedback network, the total capacitance,  
whether it is the source capacitance, stray capacitance on the  
input pin, or the input capacitance of the amplifier, causes a  
breakpoint in the noise gain of the circuit. As a result, a  
capacitor must be added in parallel with the gain resistor to  
obtain stability. The noise gain is a function of frequency and  
peaks at the higher frequencies, assuming the feedback capaci-  
tor is selected to make the second-order system critically damped.  
A few picofarads of capacitance at the input reduce the input  
impedance at high frequencies, which increases the amplifiers  
gain, causing peaking in the frequency response or oscillations.  
With the AD8655/AD8656, additional input damping is required  
for stability with capacitive loads greater than 200 pF with  
direct input to output feedback. See the Driving Capacitive  
Loads section.  
TIME (2µs/DIV)  
Figure 54. Driving Heavy Capacitive Loads Without Compensation  
V
CC  
–IN  
+IN  
+
200Ω  
500pF  
+
500pF  
V
EE  
200mV  
Figure 55. Snubber Network  
V
= ±2.5V  
= 1  
= 200  
= 500pF  
= 500pF  
S
A
R
C
C
V
S
S
L
DRIVING CAPACITIVE LOADS  
Although the AD8655/AD8656 can drive capacitive loads up to  
500 pF without oscillating, a large amount of ringing is present  
when operating the part with input frequencies above 100 kHz.  
This is especially true when the amplifiers are configured in  
positive unity gain (worst case). When such large capacitive  
loads are required, the use of external compensation is highly  
recommended. This reduces the overshoot and minimizes  
ringing, which, in turn, improves the stability of the AD8655/  
AD8656 when driving large capacitive loads.  
TIME (10µs/DIV)  
Figure 56. Driving Heavy Capacitive Loads Using a Snubber Network  
Rev. E | Page 16 of 20  
 
 
 
 
 
Data Sheet  
AD8655/AD8656  
1.0  
0.5  
THD Readings vs. Common-Mode Voltage  
SWEEP 1:  
SWEEP 2:  
Total harmonic distortion of the AD8655/AD8656 is well below  
0.0007% with a load of 1 kΩ. This distortion is a function of the  
circuit configuration, the voltage applied, and the layout, in  
addition to other factors.  
V
R
= 2V p-p  
= 10k  
V
R
= 2V p-p  
= 1kΩ  
IN  
IN  
0.2  
0.1  
L
L
0.05  
0.02  
0.01  
+2.5V  
0.005  
V
OUT  
0.002  
0.001  
AD8655  
R
+
SWEEP 2  
SWEEP 1  
L
0.0005  
–2.5V  
V
IN  
0.0002  
0.0001  
20  
50  
100 200 500  
1k 2k 5k  
Hz  
10k 20k 50k 80k  
Figure 57. THD + N Test Circuit  
Figure 58. THD + Noise vs. Frequency  
Rev. E | Page 17 of 20  
AD8655/AD8656  
Data Sheet  
LAYOUT, GROUNDING, AND BYPASSING CONSIDERATIONS  
LEAKAGE CURRENTS  
POWER SUPPLY BYPASSING  
Poor PC board layout, contaminants, and the board insulator  
material can create leakage currents that are much larger than  
the input bias current of the AD8655/AD8656. Any voltage  
differential between the inputs and nearby traces creates leakage  
currents through the PC board insulator, for example, 1 V/100  
GΩ = 10 pA. Similarly, any contaminants on the board can  
create significant leakage (skin oils are a common problem).  
Power supply pins can act as inputs for noise, so care must be  
taken to apply a noise-free, stable dc voltage. The purpose of  
bypass capacitors is to create low impedances from the supply  
to ground at all frequencies, thereby shunting or filtering most  
of the noise. Bypassing schemes are designed to minimize the  
supply impedance at all frequencies with a parallel combination  
of capacitors with values of 0.1 µF and 4.7 µF. Chip capacitors  
of 0.1 µF (X7R or NPO) are critical and should be as close as  
possible to the amplifier package. The 4.7 µF tantalum capacitor  
is less critical for high frequency bypassing, and, in most cases,  
only one is needed per board at the supply inputs.  
To significantly reduce leakage, put a guard ring (shield) around  
the inputs and input leads that are driven to the same voltage  
potential as the inputs. This ensures there is no voltage potential  
between the inputs and the surrounding area to create any  
leakage currents. To be effective, the guard ring must be driven  
by a relatively low impedance source and should completely  
surround the input leads on all sides, above and below, by using  
a multilayer board.  
GROUNDING  
A ground plane layer is important for densely packed PC  
boards to minimize parasitic inductances. This minimizes  
voltage drops with changes in current. However, an under-  
standing of where the current flows in a circuit is critical to  
implementing effective high speed circuit design. The length  
of the current path is directly proportional to the magnitude  
of parasitic inductances, and, therefore, the high frequency  
impedance of the path. Large changes in currents in an  
inductive ground return create unwanted voltage noise.  
The charge absorption of the insulator material itself can also  
cause leakage currents. Minimizing the amount of material  
between the input leads and the guard ring helps to reduce the  
absorption. Also, using low absorption materials, such as  
Teflon® or ceramic, may be necessary in some instances.  
The length of the high frequency bypass capacitor leads is  
critical, and, therefore, surface-mount capacitors are recom-  
mended. A parasitic inductance in the bypass ground trace  
works against the low impedance created by the bypass  
capacitor. Because load currents flow from the supplies, the  
ground for the load impedance should be at the same physical  
location as the bypass capacitor grounds. For larger value  
capacitors intended to be effective at lower frequencies, the  
current return path distance is less critical.  
Rev. E | Page 18 of 20  
 
 
 
 
Data Sheet  
AD8655/AD8656  
OUTLINE DIMENSIONS  
3.20  
3.00  
2.80  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
PIN 1  
IDENTIFIER  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.65 BSC  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
0.95  
0.85  
0.75  
15° MAX  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
1.10 MAX  
SEATING  
PLANE  
0.80  
0.55  
0.40  
0.15  
0.05  
0.23  
0.09  
6°  
0°  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
0.40  
0.25  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 60. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Figure 59. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body (R-8)  
Dimensions shown in millimeters  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Model1, 2  
Temperature Range Package Description  
Package Option  
Branding  
AD8655ARZ  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
R-8  
R-8  
R-8  
RM-8  
RM-8  
RM-8  
R-8  
R-8  
R-8  
AD8655ARZ-REEL  
AD8655ARZ-REEL7  
AD8655ARMZ-REEL  
AD8655ARMZ  
AD8655WARMZ-RL  
AD8656ARZ  
AD8656ARZ-REEL  
AD8656ARZ-REEL7  
AD8656ARMZ  
AD8656ARMZ-REEL  
AD8656WARMZ-REEL  
A0D  
A0D  
A0D  
RM-8  
RM-8  
RM-8  
A0S  
A0S  
A0S  
1 Z = RoHS Compliant Part.  
2 W = Qualified for Automotive Applications.  
AUTOMOTIVE PRODUCTS  
The AD8655W model and the AD8656W model are available with controlled manufacturing to support the quality and reliability  
requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial  
models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade products  
shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product  
ordering information and to obtain the specific Automotive Reliability reports for this model.  
Rev. E | Page 19 of 20  
 
 
 
 
AD8655/AD8656  
NOTES  
Data Sheet  
©2005–2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05304-0-10/13(E)  
Rev. E | Page 20 of 20  

相关型号:

AD8656

Low Noise, Precision CMOS Amplifier
ADI

AD8656ARMZ

Low Noise, Precision CMOS Amplifier
ADI

AD8656ARMZ-R2

Low Noise, Precision CMOS Amplifier
ADI

AD8656ARMZ-REEL

Low Noise, Precision CMOS Amplifier
ADI

AD8656ARZ

Low Noise, Precision CMOS Amplifier
ADI

AD8656ARZ-REEL

Low Noise, Precision CMOS Amplifier
ADI

AD8656ARZ-REEL7

Low Noise, Precision CMOS Amplifier
ADI

AD8656WARMZ-REEL

Low Noise, Precision CMOS Amplifier
ADI

AD8656_15

Precision CMOS Amplifier
ADI

AD8657

22 μA, RRIO, CMOS, 18 V
ADI

AD8657ACPZ-R7

22 mu A, RRIO, CMOS,18 V Operational Amplifiers
ADI

AD8657ACPZ-RL

22 mu A, RRIO, CMOS,18 V Operational Amplifiers
ADI