AD8659ACPZ-RL [ADI]

22 mu A, RRIO, CMOS,18 V Operational Amplifiers; 22亩, RRIO , CMOS , 18 V运算放大器
AD8659ACPZ-RL
型号: AD8659ACPZ-RL
厂家: ADI    ADI
描述:

22 mu A, RRIO, CMOS,18 V Operational Amplifiers
22亩, RRIO , CMOS , 18 V运算放大器

运算放大器
文件: 总24页 (文件大小:719K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
22 µA, RRIO, CMOS,18 V  
Operational Amplifiers  
AD8657/AD8659  
Data Sheet  
FEATURES  
PIN CONNECTION DIAGRAMS  
Micropower at high voltage (18 V): 22 μA maximum  
Low offset voltage: 350 µV maximum  
Low input bias current: 20 pA maximum  
Gain bandwidth product: 230 kHz at AV = 100 typical  
Unity-gain crossover: 230 kHz  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
AD8657  
OUT B  
–IN B  
+IN B  
TOP VIEW  
(Not to Scale)  
Figure 1. AD8657 Pin Configuration, 8-Lead MSOP  
−3 dB closed-loop bandwidth: 305 kHz  
Single-supply operation: 2.7 V to 18 V  
Dual-supply operation: 1.35 V to 9 V  
Unity-gain stable  
OUT A 1  
–IN A 2  
+IN A 3  
V– 4  
8 V+  
AD8657  
TOP VIEW  
(Not to Scale)  
7 OUT B  
6 –IN B  
5 +IN B  
Excellent electromagnetic interference immunity  
NOTES  
APPLICATIONS  
1. CONNECT THE EXPOSED PAD TO V– OR  
LEAVE IT UNCONNECTED.  
Portable operating systems  
Current monitors  
Figure 2. AD8657 Pin Configuration, 8-Lead LFCSP  
4 mA to 20 mA loop drivers  
Buffer/level shifting  
Multipole filters  
Remote/wireless sensors  
Low power transimpedance amplifiers  
Note: For AD8659 pin connections and for more information  
about the pin connections for these products, see the Pin  
Configurations and Function Descriptions section.  
60  
50  
GENERAL DESCRIPTION  
The AD8657/AD8659 are dual and quad micropower, precision,  
rail-to-rail input/output amplifiers optimized for low power and  
wide operating supply voltage range applications.  
V
V
= 2.7V  
= 18V  
SY  
SY  
40  
30  
20  
10  
0
The AD8657/AD8659 operate from 2.7 V to 18 V with a typical  
quiescent supply current of 18 μA. The devices use the Analog  
Devices, Inc., patented DigiTrim® trimming technique, which  
achieves low offset voltage. The AD8657/AD8659 also have  
high immunity to electromagnetic interference.  
The combination of low supply current, low offset voltage, very  
low input bias current, wide supply range, and rail-to-rail input  
and output make the AD8657/AD8659 ideal for current  
monitoring in process and motor control applications. The  
combination of precision specifications makes these devices  
ideal for dc gain and buffering of sensor front ends or high  
impedance input sources in wireless or remote sensors or  
transmitters.  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
Figure 3. AD8657, Supply Current vs. Temperature  
Table 1. Precision Micropower Op Amps (<250 µA)  
Supply Voltage  
5 V  
12 V to 16 V 36 V  
Single  
AD8538  
AD8603  
ADA4051-1  
AD8539  
AD8607  
ADA4051-2  
AD8609  
OP196  
The AD8657/AD8659 are specified over the extended industrial  
temperature range (−40°C to +125°C). The AD8657 is available in  
an 8-lead MSOP package and an 8-lead LFCSP package; the  
AD8659 is available in a 14-lead SOIC package and 16-lead  
LFCSP package.  
Dual  
AD8657  
AD8659  
AD8622  
ADA4091-2  
ADA4096-2  
AD8624  
ADA4091-4  
ADA4096-4  
Quad  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 www.analog.com  
Fax: 781.461.3113 ©2011–2012 Analog Devices, Inc. All rights reserved.  
 
 
 
 
AD8657/AD8659  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Performance Characteristics ..............................................9  
Applications Information .............................................................. 19  
Input Stage................................................................................... 19  
Output Stage................................................................................ 20  
Rail to Rail................................................................................... 20  
Resistive Load ............................................................................. 20  
Comparator Operation—AD8657........................................... 21  
EMI Rejection Ratio .................................................................. 22  
Applications....................................................................................... 1  
General Description ......................................................................... 1  
Pin Connection Diagrams............................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics—18 V Operation ............................. 3  
Electrical Characteristics—10 V Operation ............................. 4  
Electrical Characteristics—2.7 V Operation ............................ 5  
Absolute Maximum Ratings............................................................ 6  
Thermal Resistance ...................................................................... 6  
ESD Caution.................................................................................. 6  
Pin Configurations and Function Descriptions ........................... 7  
4 mA to 20 mA Process Control Current Loop Transmitter—  
AD8657........................................................................................ 22  
Outline Dimensions....................................................................... 23  
Ordering Guide .......................................................................... 24  
REVISION HISTORY  
8/12—Rev. A to Rev. B  
Change to Comparator Operation—AD8657 Heading ............ 21  
Change to 4 mA to 20 mA Process Control Current Loop  
Transmitter—AD8657 Section Heading and Changed  
33 μA to 34 μA ................................................................................ 22  
Updated Outline Dimensions....................................................... 24  
Added Figure 81 and Figure 82 .................................................... 24  
Changes to Ordering Guide.......................................................... 24  
Added AD8659 ...................................................................Universal  
Changes to Features Section............................................................ 1  
Changes to Pin Connection Diagrams Section ............................ 1  
Added Figure 3, Renumbered Figures Sequentially..................... 1  
Changes to Table 1............................................................................ 1  
Reordered Table 2 and Table 4........................................................ 3  
Changes to Table 2............................................................................ 3  
Changes to Table 3 ............................................................................ 4  
Changes to Table 4............................................................................ 5  
Changes to Table 6............................................................................ 6  
Added Pin Configurations and Function Descriptions Section 7  
Added Figure 4 and Figure 5........................................................... 7  
Added Table 7, Renumbered Tables Sequentially ........................ 7  
Added Figure 6 and Figure 7........................................................... 8  
Added Table 8.................................................................................... 8  
Changes to Figure 10 and Figure 13............................................... 9  
Changes to Figure 14, Figure 15, Figure 17, and Figure 18....... 10  
Changes to Figure 28 and Figure 31............................................. 12  
Changes to Figure 32...................................................................... 13  
Changes to Figure 39...................................................................... 14  
Changes to Figure 63 and Figure 66............................................. 18  
Moved Figure 68 ............................................................................. 19  
Change to Inverting Op Amp Configuration Section Heading  
and Changes to Figure 70 .............................................................. 20  
Change to Noninverting Op Amp Configuration Heading and  
Changes to Figure 71...................................................................... 20  
3/11—Rev. 0 to Rev. A  
Added LFCSP Package Information ........................... Throughout  
Added Figure 2, Renumbered Subsequent Figures....................1  
Changes to Table 2, Introductory Text; Input Characteristics,  
Offset Voltage and Common-Mode Rejection Ratio Test  
Conditions/Comments; and Dynamic Performance, Phase  
Margin Values ....................................................................................3  
Changes to Table 3, Introductory Text; Input Characteristics,  
Offset Voltage and Common-Mode Rejection Ratio Test  
Conditions/Comments.....................................................................4  
Changes to Table 4, Introductory Text; Input Characteristics,  
Offset Voltage and Common-Mode Rejection Ratio Test  
Conditions/Comments.....................................................................5  
Changes to Thermal Resistance Section and Table 5 ...................6  
Updated Outline Dimensions....................................................... 21  
Changes to Ordering Guide.......................................................... 21  
1/11—Revision 0: Initial Version  
Rev. B | Page 2 of 24  
 
Data Sheet  
AD8657/AD8659  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS—18 V OPERATION  
VSY = 18 V, VCM = VSY/2 V, TA = 25°C, unless otherwise specified.  
Table 2.  
Parameter  
Symbol Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
VCM = 0 V to 18 V  
350  
1.8  
2
16  
20  
2.9  
40  
5.8  
18  
µV  
mV  
mV  
mV  
pA  
nA  
pA  
nA  
V
VCM = 0.3 V to 17.7 V, −40°C ≤ TA ≤ +85°C  
VCM = 0.3 V to 17.7 V, −40°C ≤ TA ≤ +125°C  
VCM = 0 V to 18 V, −40°C ≤ TA ≤ +125°C  
Input Bias Current  
IB  
5
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
Input Offset Current  
IOS  
Input Voltage Range  
0
Common-Mode Rejection Ratio  
CMRR  
AVO  
VCM = 0 V to 18 V  
94  
82  
80  
64  
115  
105  
110  
120  
dB  
dB  
dB  
dB  
dB  
dB  
μV/°C  
GΩ  
pF  
VCM = 0.3 V to 17.7 V, −40°C ≤ TA ≤ +85°C  
VCM = 0.3 V to 17.7 V, −40°C ≤ TA ≤ +125°C  
VCM = 0 V to 18 V, −40°C ≤ TA ≤ +125°C  
RL = 100 kΩ, VO = 0.5 V to 17.5 V  
−40°C ≤ TA ≤ +125°C  
Large Signal Voltage Gain  
Offset Voltage Drift  
Input Resistance  
Input Capacitance, Differential Mode  
Input Capacitance, Common Mode  
OUTPUT CHARACTERISTICS  
Output Voltage High  
Output Voltage Low  
Short-Circuit Current  
Closed-Loop Output Impedance  
POWER SUPPLY  
ΔVOS/ΔT  
RIN  
CINDM  
CINCM  
2
10  
11  
3.5  
pF  
VOH  
VOL  
ISC  
RL = 100 kΩ to VCM, −40°C ≤ TA ≤ +125°C  
RL = 100 kΩ to VCM, −40°C ≤ TA ≤ +125°C  
17.97  
V
30  
mV  
mA  
12  
15  
ZOUT  
f = 1 kHz, AV = 1  
Power Supply Rejection Ratio  
PSRR  
ISY  
VSY = 2.7 V to 18 V  
−40°C ≤ TA ≤ +125°C  
IO = 0 mA  
100  
90  
115  
18  
dB  
dB  
µA  
µA  
Supply Current per Amplifier  
22  
34  
−40°C ≤ TA ≤ +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time to 0.1%  
Unity-Gain Crossover  
Phase Margin  
Gain Bandwidth Product  
−3 dB Closed-Loop Bandwidth  
Channel Separation  
EMI Rejection Ratio of +IN x  
SR  
tS  
RL = 1 MΩ, CL = 10 pF, AV = 1  
80  
15  
V/ms  
µs  
VIN = 1 V step, RL = 100 kΩ, CL = 10 pF  
VIN = 10 mV p-p, RL = 1 MΩ, CL = 10 pF, AV = 1  
VIN = 10 mV p-p, RL = 1 MΩ, CL = 10 pF, AV = 1  
VIN = 10 mV p-p, RL = 1 MΩ, CL = 10 pF, AV = 100  
VIN = 10 mV p-p, RL = 1 MΩ, CL = 10 pF, AV = 1  
f = 10 kHz, RL = 1 MΩ  
UGC  
ΦM  
GBP  
f−3 dB  
CS  
230  
60  
230  
305  
95  
kHz  
Degrees  
kHz  
kHz  
dB  
EMIRR  
VIN = 100 mVPEAK; f = 400 MHz, 900 MHz,  
1800 MHz, 2400 MHz  
90  
dB  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
en p-p  
en  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
f = 10 kHz  
5
µV p-p  
nV/√Hz  
nV/√Hz  
pA/√Hz  
50  
45  
0.1  
Current Noise Density  
in  
f = 1 kHz  
Rev. B | Page 3 of 24  
 
 
 
AD8657/AD8659  
Data Sheet  
ELECTRICAL CHARACTERISTICS—10 V OPERATION  
VSY = 10 V, VCM = VSY/2 V, TA = 25°C, unless otherwise specified.  
Table 3.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
VCM = 0 V to 10 V  
350  
1.6  
2
16  
15  
2.6  
30  
5.2  
10  
µV  
mV  
mV  
mV  
pA  
nA  
pA  
nA  
V
VCM = 0.3 V to 9.7 V, −40°C ≤ TA ≤ +85°C  
VCM = 0.3 V to 9.7 V, −40°C ≤ TA ≤ +125°C  
VCM = 0 V to 10 V, −40°C ≤ TA ≤ +125°C  
Input Bias Current  
IB  
2
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
Input Offset Current  
IOS  
Input Voltage Range  
0
Common-Mode Rejection Ratio  
CMRR  
AVO  
VCM = 0 V to 10 V  
88  
76  
75  
59  
108  
100  
105  
120  
dB  
dB  
dB  
dB  
dB  
dB  
μV/°C  
GΩ  
pF  
VCM = 0.3 V to 9.7 V, −40°C ≤ TA ≤ +85°C  
VCM = 0.3 V to 9.7 V, −40°C ≤ TA ≤ +125°C  
VCM = 0 V to 10 V, −40°C ≤ TA ≤ +125°C  
RL = 100 kΩ, VO = 0.5 V to 9.5 V  
−40°C ≤ TA ≤ +125°C  
Large Signal Voltage Gain  
Offset Voltage Drift  
Input Resistance  
Input Capacitance, Differential Mode  
Input Capacitance, Common Mode  
OUTPUT CHARACTERISTICS  
Output Voltage High  
Output Voltage Low  
Short-Circuit Current  
Closed-Loop Output Impedance  
POWER SUPPLY  
ΔVOS/ΔT  
RIN  
CINDM  
CINCM  
2
10  
11  
3.5  
pF  
VOH  
VOL  
ISC  
RL = 100 kΩ to VCM, −40°C ≤ TA ≤ +125°C  
RL = 100 kΩ to VCM, −40°C ≤ TA ≤ +125°C  
9.98  
V
20  
mV  
mA  
11  
15  
ZOUT  
f = 1 kHz, AV = 1  
Power Supply Rejection Ratio  
PSRR  
ISY  
VSY = 2.7 V to 18 V  
−40°C ≤ TA ≤ +125°C  
IO = 0 mA  
100  
90  
115  
18  
dB  
dB  
µA  
µA  
Supply Current per Amplifier  
22  
34  
−40°C ≤ TA ≤ +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time to 0.1%  
Unity-Gain Crossover  
Phase Margin  
Gain Bandwidth Product  
−3 dB Closed-Loop Bandwidth  
Channel Separation  
EMI Rejection Ratio of +IN x  
SR  
ts  
RL = 1 MΩ, CL = 10 pF, AV = 1  
75  
15  
V/ms  
µs  
VIN = 1 V step, RL = 100 kΩ, CL = 10 pF  
VIN = 10 mV p-p, RL = 1 MΩ, CL = 10 pF, AV = 1  
VIN = 10 mV p-p, RL = 1 MΩ, CL = 10 pF, AV = 1  
VIN = 10 mV p-p, RL = 1 MΩ, CL = 10 pF, AV = 100  
VIN = 10 mV p-p, RL = 1 MΩ, CL = 10 pF, AV = 1  
f = 10 kHz, RL = 1 MΩ  
UGC  
ΦM  
GBP  
f−3 dB  
CS  
225  
60  
230  
300  
95  
kHz  
Degrees  
kHz  
kHz  
dB  
EMIRR  
VIN = 100 mVPEAK; f = 400 MHz, 900 MHz,  
1800 MHz, 2400 MHz  
90  
dB  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
en p-p  
en  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
f = 10 kHz  
5
µV p-p  
nV/√Hz  
nV/√Hz  
pA/√Hz  
50  
45  
0.1  
Current Noise Density  
in  
f = 1 kHz  
Rev. B | Page 4 of 24  
 
 
Data Sheet  
AD8657/AD8659  
ELECTRICAL CHARACTERISTICS—2.7 V OPERATION  
VSY = 2.7 V, VCM = VSY/2 V, TA = 25°C, unless otherwise specified.  
Table 4.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
VCM = 0 V to 2.7 V  
350  
1.2  
2.5  
16  
10  
2.6  
20  
µV  
mV  
mV  
mV  
pA  
nA  
pA  
nA  
V
VCM = 0.3 V to 2.4 V, −40°C ≤ TA ≤ +85°C  
VCM = 0.3 V to 2.4 V, −40°C ≤ TA ≤ +125°C  
VCM = 0 V to 2.7 V, −40°C ≤ TA ≤ +125°C  
Input Bias Current  
IB  
1
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
Input Offset Current  
IOS  
5.2  
2.7  
Input Voltage Range  
0
Common-Mode Rejection Ratio  
CMRR  
AVO  
VCM = 0 V to 2.7 V  
77  
69  
62  
47  
95  
90  
95  
dB  
dB  
dB  
dB  
dB  
dB  
μV/°C  
GΩ  
pF  
VCM = 0.3 V to 2.4 V, −40°C ≤ TA ≤ +85°C  
VCM = 0.3 V to 2.4 V, −40°C ≤ TA ≤ +125°C  
VCM = 0 V to 2.7 V, −40°C ≤ TA ≤ +125°C  
RL = 100 kΩ, VO = 0.5 V to 2.2 V  
−40°C ≤ TA ≤ +125°C  
Large Signal Voltage Gain  
105  
Offset Voltage Drift  
Input Resistance  
Input Capacitance, Differential Mode CINDM  
Input Capacitance, Common Mode  
OUTPUT CHARACTERISTICS  
Output Voltage High  
Output Voltage Low  
Short-Circuit Current  
Closed-Loop Output Impedance  
POWER SUPPLY  
ΔVOS/ΔT  
RIN  
2
10  
11  
3.5  
CINCM  
pF  
VOH  
VOL  
ISC  
RL = 100 kΩ to VCM, −40°C ≤ TA ≤ +125°C  
RL = 100 kΩ to VCM, −40°C ≤ TA ≤ +125°C  
2.69  
V
10  
mV  
mA  
4
20  
ZOUT  
f = 1 kHz, AV = 1  
Power Supply Rejection Ratio  
PSRR  
ISY  
VSY = 2.7 V to 18 V  
−40°C ≤ TA ≤ +125°C  
IO = 0 mA  
100  
90  
115  
18  
dB  
dB  
µA  
µA  
Supply Current per Amplifier  
22  
34  
−40°C ≤ TA ≤ +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time to 0.1%  
Unity-Gain Crossover  
Phase Margin  
Gain Bandwidth Product  
−3 dB Closed-Loop Bandwidth  
Channel Separation  
EMI Rejection Ratio of +IN x  
SR  
ts  
RL = 1 MΩ, CL = 10 pF, AV = 1  
50  
20  
V/ms  
µs  
VIN = 1 V step, RL = 100 kΩ, CL = 10 pF  
VIN = 10 mV p-p, RL = 1 MΩ, CL = 10 pF, AV = 1  
VIN = 10 mV p-p, RL = 1 MΩ, CL = 10 pF, AV = 1  
VIN = 10 mV p-p, RL = 1 MΩ, CL = 10 pF, AV = 100  
VIN = 10 mV p-p, RL = 1 MΩ, CL = 10 pF, AV = 1  
f = 10 kHz, RL = 1 MΩ  
UGC  
ΦM  
GBP  
f−3 dB  
CS  
190  
55  
200  
245  
95  
kHz  
Degrees  
kHz  
kHz  
dB  
EMIRR  
VIN = 100 mVPEAK; f = 400 MHz, 900 MHz,  
1800 MHz, 2400 MHz  
90  
dB  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
en p-p  
en  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
f = 10 kHz  
6
µV p-p  
nV/√Hz  
nV/√Hz  
pA/√Hz  
60  
56  
0.1  
Current Noise Density  
in  
f = 1 kHz  
Rev. B | Page 5 of 24  
 
 
AD8657/AD8659  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages using a  
standard 4-layer JEDEC board. The exposed pad (LFCSP  
packages only) is soldered to the board.  
Parameter  
Rating  
Supply Voltage  
Input Voltage  
Input Current1  
Differential Input Voltage  
Output Short-Circuit  
Duration to GND  
Temperature Ranges  
Storage  
Operating  
Junction  
Lead Temperature  
(Soldering, 60 sec)  
20.5 V  
(V−) − 300 mV to (V+) + 300 mV  
10 mA  
VSY  
Table 6. Thermal Resistance  
Indefinite  
Package Type  
θJA  
142  
75  
115  
52  
θJC  
45  
12  
36  
13  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
8-Lead MSOP (RM-8)  
8-Lead LFCSP (CP-8-11)  
14-Lead SOIC (R-14)  
16-Lead LFCSP (CP-16-20)  
−65°C to +150°C  
−40°C to +125°C  
−65°C to +150°C  
300°C  
ESD CAUTION  
1 The input pins have clamp diodes to the power supply pins. Limit the input  
current to 10 mA or less whenever input signals exceed the power supply  
rail by 0.3 V.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. B | Page 6 of 24  
 
 
 
Data Sheet  
AD8657/AD8659  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
OUT A 1  
–IN A 2  
+IN A 3  
V– 4  
8 V+  
AD8657  
OUT B  
–IN B  
+IN B  
AD8657  
TOP VIEW  
(Not to Scale)  
7 OUT B  
6 –IN B  
5 +IN B  
TOP VIEW  
(Not to Scale)  
NOTES  
1. CONNECT THE EXPOSED PAD TO V– OR  
LEAVE IT UNCONNECTED.  
Figure 4. AD8657 Pin Configuration, 8-Lead MSOP  
Figure 5. AD8657 Pin Configuration, 8-Lead LFCSP  
Table 7. Pin Function Descriptions, AD8657  
Pin No.1  
8-Lead MSOP 8-Lead LFCSP Mnemonic Description  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
OUT A  
−IN A  
+IN A  
V−  
+IN B  
−IN B  
OUT B  
V+  
Output Channel A.  
Negative Input Channel A.  
Positive Input Channel A.  
Negative Supply Voltage.  
Positive Input Channel B.  
Negative Input Channel B.  
Output Channel B.  
Positive Supply Voltage.  
Exposed Pad. For the AD8657 (8-lead LFCSP only), connect the exposed pad to V− or leave  
it unconnected.  
N/A  
EP2  
EPAD  
1 N/A means not applicable.  
2 The exposed pad is not shown in the pin configuration diagram.  
Rev. B | Page 7 of 24  
 
 
 
AD8657/AD8659  
Data Sheet  
OUT A  
–IN A  
+IN A  
V+  
1
2
3
4
5
6
7
14 OUT D  
13 –IN D  
12 +IN D  
11 V–  
–IN A  
+IN A  
V+  
1
2
3
4
12 –IN D  
11 +IN D  
10 V–  
AD8659  
TOP VIEW  
AD8659  
(Not to Scale)  
9
+IN C  
+IN B  
TOP VIEW  
(Not to Scale)  
+IN B  
–IN B  
OUT B  
10 +IN C  
9
8
–IN C  
OUT C  
NOTES  
1. NIC = NO INTERNAL CONNECTION.  
2. CONNECT THE EXPOSED PAD TO V– OR  
LEAVE IT UNCONNECTED.  
Figure 7. AD8659 Pin Configuration, 16-Lead LFCSP  
Figure 6. AD8659 Pin Configuration, 14-Lead SOIC_N  
Table 8. Pin Function Descriptions, AD8659  
Pin No.1  
14-Lead SOIC  
16-Lead LFCSP  
Mnemonic  
OUT A  
−IN A  
+IN A  
V−  
+IN B  
−IN B  
OUT B  
V+  
OUT C  
−IN C  
+IN C  
+IN D  
−IN D  
OUT D  
NIC  
Description  
1
2
3
11  
5
6
7
4
8
15  
1
2
10  
4
5
6
3
7
8
Output Channel A.  
Negative Input Channel A.  
Positive Input Channel A.  
Negative Supply Voltage.  
Positive Input Channel B.  
Negative Input Channel B.  
Output Channel B.  
Positive Supply Voltage.  
Output Channel C.  
9
Negative Input Channel C.  
Positive Input Channel C.  
Positive Input Channel D.  
Negative Input Channel D.  
Output Channel D.  
No Internal Connection.  
No Internal Connection.  
Exposed Pad. For the AD8659 (16-lead LFCSP only), connect the exposed pad to  
V− or leave it unconnected.  
10  
12  
13  
14  
N/A  
N/A  
N/A  
9
11  
12  
14  
13  
16  
EP2  
NIC  
EPAD2  
1 N/A means not applicable.  
2 The exposed pad is not shown in the pin configuration diagram.  
Rev. B | Page 8 of 24  
 
Data Sheet  
AD8657/AD8659  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, unless otherwise noted.  
160  
160  
140  
120  
100  
80  
V
V
= 2.7V  
= V /2  
SY  
V
V
= 18V  
= V /2  
SY  
SY  
SY  
140  
120  
100  
80  
CM  
CM  
60  
60  
40  
40  
20  
20  
0
0
V
(µV)  
V
(µV)  
OS  
OS  
Figure 8. Input Offset Voltage Distribution  
Figure 11. Input Offset Voltage Distribution  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
V
= 2.7V  
V
= 18V  
SY  
SY  
–40°C ≤ T ≤ +125°C  
–40°C ≤ T ≤ +125°C  
A
A
6
6
4
4
2
2
0
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
TCV (µV/°C)  
OS  
TCV (µV/°C)  
OS  
Figure 9. Input Offset Voltage Drift Distribution  
Figure 12. Input Offset Voltage Drift Distribution  
350  
250  
150  
50  
350  
250  
V
= 18V  
V
= 2.7V  
SY  
SY  
150  
50  
–50  
–150  
–250  
–50  
–150  
–250  
–350  
–350  
0
0.3  
0.6  
0.9  
1.2  
V
1.5  
(V)  
1.8  
2.1  
2.4  
2.7  
0
2
4
6
8
10  
(V)  
12  
14  
16  
18  
V
CM  
CM  
Figure 10. Input Offset Voltage vs. Common-Mode Voltage  
Figure 13. Input Offset Voltage vs. Common-Mode Voltage  
Rev. B | Page 9 of 24  
 
 
 
AD8657/AD8659  
Data Sheet  
3.0  
3.0  
2.5  
V
= 2.7V  
V
= 18V  
SY  
SY  
2.5  
2.0  
–40°C T +85°C  
–40°C < T < +85°C  
A
A
2.0  
1.5  
1.5  
1.0  
1.0  
0.5  
0.5  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
0
0.3  
0.6  
0.9  
1.2  
1.5  
(V)  
1.8  
2.1  
2.4  
2.7  
18  
0
2
4
6
8
10  
(V)  
12  
14  
16  
V
V
CM  
CM  
Figure 14. Input Offset Voltage vs. Common-Mode Voltage  
Figure 17. Input Offset Voltage vs. Common-Mode Voltage  
6
6
4
V
= 18V  
SY  
V
= 2.7V  
SY  
4
2
–40°C ≤ T ≤ +125°C  
A
–40°C ≤ T ≤ +125°C  
A
2
0
0
–2  
–4  
–6  
–2  
–4  
–6  
0
0.3  
0.6  
0.9  
1.2  
1.5  
(V)  
1.8  
2.1  
2.4  
2.7  
0
2
4
6
8
10  
(V)  
12  
14  
16  
18  
V
CM  
V
CM  
Figure 15. Input Offset Voltage vs. Common-Mode Voltage  
Figure 18. Input Offset Voltage vs. Common-Mode Voltage  
10000  
1000  
100  
10  
10000  
1000  
100  
10  
V
= 2.7V  
V
= 18V  
SY  
SY  
I +│  
I +│  
B
B
I –│  
I –│  
B
B
1
1
0.1  
0.1  
25  
50  
75  
100  
125  
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 16. Input Bias Current vs. Temperature  
Figure 19. Input Bias Current vs. Temperature  
Rev. B | Page 10 of 24  
 
 
 
 
Data Sheet  
AD8657/AD8659  
4
4
3
V
= 2.7V  
V
= 18V  
SY  
SY  
3
2
2
1
1
0
0
125°C  
85°C  
25°C  
125°C  
85°C  
25°C  
–1  
–2  
–3  
–4  
–1  
–2  
–3  
–4  
0
0.3  
0.6  
0.9  
1.2  
1.5  
(V)  
1.8  
2.1  
2.4  
2.7  
0
2
4
6
8
10  
(V)  
12  
14  
16  
18  
V
V
CM  
CM  
Figure 20. Input Bias Current vs. Common-Mode Voltage  
Figure 23. Input Bias Current vs. Common-Mode Voltage  
10  
1
10  
1
V
= 2.7V  
V
= 18V  
SY  
SY  
–40°C  
+25°C  
+85°C  
+125°C  
–40°C  
+25°C  
+85°C  
+125°C  
100m  
10m  
1m  
100m  
10m  
1m  
0.1m  
0.01m  
0.1m  
0.01m  
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
100  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 21. Output Voltage (VOH) to Supply Rail vs. Load Current  
Figure 24. Output Voltage (VOH) to Supply Rail vs. Load Current  
10  
10  
V
= 2.7V  
V
= 18V  
SY  
SY  
1
100m  
10m  
1
100m  
10m  
–40°C  
+25°C  
+85°C  
+125°C  
–40°C  
+25°C  
+85°C  
+125°C  
1m  
1m  
0.1m  
0.01m  
0.1m  
0.01m  
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
100  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 22. Output Voltage (VOL) to Supply Rail vs. Load Current  
Figure 25. Output Voltage (VOL) to Supply Rail vs. Load Current  
Rev. B | Page 11 of 24  
 
 
 
 
 
 
AD8657/AD8659  
Data Sheet  
2.700  
2.699  
2.698  
2.697  
2.696  
18.000  
17.995  
17.990  
17.985  
17.980  
17.975  
R = 1MΩ  
L
R
= 1MΩ  
L
R
= 100kΩ  
L
R
= 100kΩ  
L
V
= 2.7V  
V
= 18V  
–25  
SY  
SY  
2.695  
–50  
–50  
0
25  
50  
75  
100  
125  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 26. Output Voltage (VOH) vs. Temperature  
Figure 29. Output Voltage (VOH) vs. Temperature  
12  
10  
8
12  
10  
8
V
= 2.7V  
V
= 18V  
SY  
SY  
R
= 100kΩ  
L
6
6
4
4
R
= 100kΩ  
L
2
2
R
= 1MΩ  
L
R
= 1MΩ  
L
0
–50  
0
–50  
–25  
0
25  
50  
75  
100  
125  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 27. Output Voltage (VOL) vs. Temperature  
Figure 30. Output Voltage (VOL) vs. Temperature  
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
V
= 18V  
SY  
V
= 2.7V  
SY  
–40°C  
+25°C  
+85°C  
+125°C  
–40°C  
+25°C  
+85°C  
+125°C  
0
0
0
3
6
9
12  
15  
18  
0
0.3  
0.6  
0.9  
1.2  
1.5  
(V)  
1.8  
2.1  
2.4  
2.7  
V
(V)  
CM  
V
CM  
Figure 28. Supply Current vs. Common-Mode Voltage  
Figure 31. Supply Current vs. Common-Mode Voltage  
Rev. B | Page 12 of 24  
 
 
Data Sheet  
AD8657/AD8659  
60  
50  
40  
30  
20  
10  
0
40  
35  
30  
25  
20  
15  
10  
5
V
V
= 2.7V  
= 18V  
SY  
SY  
–40°C  
+25°C  
+85°C  
+125°C  
0
0
3
6
9
12  
15  
18  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
V
(V)  
SY  
Figure 35. Supply Current vs. Temperature  
Figure 32. Supply Current vs. Supply Voltage  
135  
90  
135  
90  
60  
40  
60  
40  
V
R
= 18V  
= 1MΩ  
SY  
V
R
= 2.7V  
= 1MΩ  
SY  
PHASE  
PHASE  
L
L
45  
45  
20  
20  
GAIN  
0
0
0
0
GAIN  
–45  
–90  
–135  
–45  
–90  
–135  
–20  
–40  
–60  
–20  
–40  
–60  
C
C
= 10pF  
C
C
= 10pF  
L
L
L
L
= 100pF  
= 100pF  
1k  
10k  
100k  
1M  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 36. Open-Loop Gain and Phase vs. Frequency  
Figure 33. Open-Loop Gain and Phase vs. Frequency  
60  
60  
40  
V
= 18V  
V
= 2.7V  
SY  
SY  
A
= 100  
A
= 100  
V
V
40  
20  
A
A
= 10  
= 1  
A
A
= 10  
= 1  
V
V
V
V
20  
0
0
–20  
–40  
–60  
–20  
–40  
–60  
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 37. Closed-Loop Gain vs. Frequency  
Figure 34. Closed-Loop Gain vs. Frequency  
Rev. B | Page 13 of 24  
AD8657/AD8659  
Data Sheet  
1000  
1000  
100  
10  
A
= 100  
A = 100  
V
V
A
= 10  
A = 10  
V
V
100  
10  
1
A
= 1  
A = 1  
V
V
V
= 2.7V  
V
= 18V  
SY  
SY  
1
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
Figure 38. Output Impedance vs. Frequency  
Figure 41. Output Impedance vs. Frequency  
140  
120  
100  
80  
140  
120  
100  
80  
V
V
= 18V  
SY  
V
V
= 2.7V  
SY  
= V /2  
= V /2  
CM  
SY  
CM  
SY  
60  
60  
40  
40  
20  
20  
0
100  
0
100  
1k  
10k  
100k  
1M  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 42. CMRR vs. Frequency  
Figure 39. CMRR vs. Frequency  
100  
80  
60  
40  
20  
0
100  
V
= 18V  
V
= 2.7V  
SY  
SY  
80  
60  
40  
20  
0
PSRR+  
PSRR–  
PSRR+  
PSRR–  
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 43. PSRR vs. Frequency  
Figure 40. PSRR vs. Frequency  
Rev. B | Page 14 of 24  
Data Sheet  
AD8657/AD8659  
70  
70  
60  
50  
40  
30  
20  
10  
0
V
V
R
= 2.7V  
= 10mV p-p  
= 1MΩ  
V
V
R
= 18V  
= 10mV p-p  
= 1MΩ  
SY  
IN  
SY  
IN  
OS+  
OS–  
OS+  
OS–  
60  
50  
40  
30  
20  
10  
0
L
L
10  
100  
CAPACITANCE (pF)  
1000  
10  
100  
CAPACITANCE (pF)  
1000  
Figure 44. Small Signal Overshoot vs. Load Capacitance  
Figure 47. Small Signal Overshoot vs. Load Capacitance  
V
= ±1.35V  
SY  
A
R
C
= 1  
= 1MΩ  
= 100pF  
V
L
L
V
= ±9V  
= 1  
= 1MΩ  
= 100pF  
SY  
A
R
C
V
L
L
TIME (100µs/DIV)  
TIME (100µs/DIV)  
Figure 45. Large Signal Transient Response  
Figure 48. Large Signal Transient Response  
V
= ±1.35V  
= 1  
= 1MΩ  
= 100pF  
SY  
V
= ±9V  
= 1  
= 1MΩ  
= 100pF  
SY  
A
R
C
V
L
L
A
R
C
V
L
L
TIME (100µs/DIV)  
TIME (100µs/DIV)  
Figure 46. Small Signal Transient Response  
Figure 49. Small Signal Transient Response  
Rev. B | Page 15 of 24  
AD8657/AD8659  
Data Sheet  
V
A
R
= ±9V  
= –10  
= 1MΩ  
SY  
0
–0.2  
–0.4  
V
L
INPUT  
INPUT  
0
–1  
–2  
V
A
R
= ±1.35  
= –10  
= 1MΩ  
SY  
V
L
2
1
0
10  
5
OUTPUT  
OUTPUT  
0
TIME (40µs/DIV)  
TIME (40µs/DIV)  
Figure 50. Positive Overload Recovery  
Figure 53. Positive Overload Recovery  
V
A
R
= ±9V  
= –10  
= 1MΩ  
SY  
0.4  
0.2  
0
2
1
0
V
L
INPUT  
INPUT  
OUTPUT  
OUTPUT  
0
0
V
A
R
= ±1.35V  
= –10  
= 1MΩ  
SY  
–1  
–2  
–5  
–10  
V
L
TIME (40µs/DIV)  
TIME (40µs/DIV)  
Figure 51. Negative Overload Recovery  
Figure 54. Negative Overload Recovery  
INPUT  
INPUT  
V
R
C
= 2.7V  
= 100kΩ  
= 10pF  
V
R
C
= 18V  
= 100kΩ  
= 10pF  
SY  
SY  
L
L
L
L
+5mV  
0
+5mV  
0
ERROR BAND  
ERROR BAND  
OUTPUT  
OUTPUT  
–5mV  
–5mV  
TIME (10µs/DIV)  
TIME (10µs/DIV)  
Figure 52. Positive Settling Time to 0.1%  
Figure 55. Positive Settling Time to 0.1%  
Rev. B | Page 16 of 24  
Data Sheet  
AD8657/AD8659  
V
R
C
= 2.7V  
= 100kΩ  
= 10pF  
V
R
C
=18V  
= 100kΩ  
= 10pF  
SY  
SY  
L
L
L
L
INPUT  
INPUT  
+5mV  
0
+5mV  
0
OUTPUT  
OUTPUT  
ERROR BAND  
ERROR BAND  
–5mV  
–5mV  
TIME (10µs/DIV)  
TIME (10µs/DIV)  
Figure 56. Negative Settling Time to 0.1%  
Figure 59. Negative Settling Time to 0.1%  
1000  
100  
10  
1000  
100  
10  
V
= 2.7V  
V
= 18V  
SY  
SY  
1
1
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 57. Voltage Noise Density vs. Frequency  
Figure 60. Voltage Noise Density vs. Frequency  
V
= 2.7V  
V
= 18V  
SY  
SY  
TIME (2s/DIV)  
TIME (2s/DIV)  
Figure 58. 0.1 Hz to 10 Hz Noise  
Figure 61. 0.1 Hz to 10 Hz Noise  
Rev. B | Page 17 of 24  
AD8657/AD8659  
Data Sheet  
20  
18  
16  
14  
12  
10  
8
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
V
R
A
= 18V  
= 17.9V  
= 1MΩ  
= 1  
V
V
R
= 2.7V  
= 2.6V  
= 1MΩ  
= 1  
SY  
IN  
SY  
IN  
L
V
L
V
A
6
4
2
0
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 65. Output Swing vs. Frequency  
Figure 62. Output Swing vs. Frequency  
100  
10  
10  
V
V
R
A
= 18V  
= 0.2V RMS  
= 1MΩ  
SY  
IN  
V
V
R
A
= 2.7V  
= 0.2V RMS  
= 1MΩ  
= 1  
SY  
IN  
L
V
= 1  
L
V
1
1
0.1  
0.1  
0.01  
0.01  
0.001  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 63. THD + N vs. Frequency  
Figure 66. THD + N vs. Frequency  
0
0
1MΩ  
1MΩ  
V
R
A
= 2.7V  
= 1MΩ  
= –100  
10kΩ  
V
R
A
= 18V  
= 1MΩ  
= –100  
SY  
SY  
10kΩ  
–20  
–20  
L
V
L
V
R
L
R
–40  
–60  
–40  
–60  
L
V
V
V
V
V
= 1V p-p  
= 5V p-p  
= 10V p-p  
= 15V p-p  
= 17V p-p  
IN  
IN  
IN  
IN  
IN  
V
V
V
= 0.5V p-p  
= 1.5V p-p  
= 2.6V p-p  
IN  
IN  
IN  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
Figure 64. Channel Separation vs. Frequency  
Figure 67. Channel Separation vs. Frequency  
Rev. B | Page 18 of 24  
Data Sheet  
AD8657/AD8659  
APPLICATIONS INFORMATION  
V+  
VB1  
I1  
M8  
M9  
M5  
M10  
M11  
M3  
M4  
+IN x  
–IN x  
M16  
M17  
R1  
R2  
D1  
D2  
VB2  
OUT x  
M1 M2  
M12  
M14  
M13  
M15  
M7  
M6  
V–  
Figure 68. Simplified Schematic  
The AD8657/AD8659 are low power, rail-to-rail input and output  
precision CMOS amplifiers that operate over a wide supply  
voltage range of 2.7 V to 18 V. The AD8657/AD8659 use the  
Analog Devices DigiTrim technique to achieve a higher degree  
of precision than is available from other CMOS amplifiers. The  
DigiTrim technique is a method of trimming the offset voltage  
of an amplifier after assembly. The advantage of post-package  
trimming is that it corrects any shifts in offset voltage caused by  
mechanical stresses of assembly.  
These changes are a result of the load transistors (M8, M9, M14,  
and M15) running out of headroom. As the load transistors are  
forced into the triode region of operation, the mismatch of their  
drain impedances contributes to the offset voltage of the amplifier.  
This problem is exacerbated at high temperatures due to the  
decrease in the threshold voltage of the input transistors (see  
Figure 14, Figure 15, Figure 17, and Figure 18 for typical perfor-  
mance data).  
Current Source I1 drives the PMOS transistor pair. As the input  
common-mode voltage approaches the upper rail, I1 is steered  
away from the PMOS differential pair through the M5 transistor.  
The bias voltage, VB1 (see Figure 68), controls the point where this  
transfer occurs. M5 diverts the tail current into a current mirror  
consisting of the M6 and M7 transistors. The output of the current  
mirror then drives the NMOS pair. Note that the activation of  
this current mirror causes a slight increase in supply current at  
high common-mode voltages (see Figure 28 and Figure 31 for  
more details).  
The AD8657/AD8659 also employ unique input and output  
stages to achieve a rail-to-rail input and output range with a  
very low supply current.  
INPUT STAGE  
Figure 68 shows the simplified schematic of the AD8657/AD8659.  
The input stage comprises two differential transistor pairs, an  
NMOS pair (M1, M2) and a PMOS pair (M3, M4). The input  
common-mode voltage determines which differential pair turns  
on and is more active than the other.  
The AD8657/AD8659 achieve their high performance by using  
low voltage MOS devices for their differential inputs. These low  
voltage MOS devices offer excellent noise and bandwidth per  
unit of current. Each differential input pair is protected by proprie-  
tary regulation circuitry (not shown in the simplified schematic).  
The regulation circuitry consists of a combination of active  
devices that maintain the proper voltages across the input pairs  
during normal operation and passive clamping devices that protect  
the amplifier during fast transients. However, these passive  
clamping devices begin to forward bias as the common-mode  
voltage approaches either power supply rail, thereby causing an  
increase in the input bias current (see Figure 20 and Figure 23).  
The PMOS differential pair is active when the input voltage  
approaches and reaches the lower supply rail. The NMOS pair  
is needed for input voltages up to and including the upper supply  
rail. This topology allows the amplifier to maintain a wide  
dynamic input voltage range and to maximize signal swing to  
both supply rails.  
For the majority of the input common-mode voltage range, the  
PMOS differential pair is active. Differential pairs commonly  
exhibit different offset voltages. The handoff from one pair to the  
other creates a step-like characteristic that is visible in the VOS vs.  
VCM graphs (see Figure 10 and Figure 13). This characteristic is  
inherent in all rail-to-rail amplifiers that use the dual differential  
pair topology. Therefore, always choose a common-mode voltage  
that does not include the region of handoff from one input  
differential pair to the other.  
The input devices are also protected from large differential  
input voltages by clamp diodes (D1 and D2). These diodes are  
buffered from the inputs with two 10 kΩ resistors (R1 and R2).  
The differential diodes turn on whenever the differential voltage  
exceeds approximately 600 mV; in this condition, the differential  
input resistance drops to 20 kΩ.  
Additional steps in the VOS vs. VCM curves are also visible as the  
input common-mode voltage approaches the power supply rails.  
Rev. B | Page 19 of 24  
 
 
 
AD8657/AD8659  
Data Sheet  
Inverting Op Amp Configuration  
OUTPUT STAGE  
Figure 70 shows the AD8657/AD8659 in an inverting configu-  
ration with a resistive load, RL, at the output. The actual load  
seen by the amplifier is the parallel combination of the feedback  
resistor, R2, and load, RL. For example, the combination of a feed-  
back resistor of 1 kΩ and a load of 1 MΩ results in an equivalent  
load resistance of 999 Ω at the output. Because the AD8657/  
AD8659 are incapable of driving such a heavy load, performance  
degrades greatly.  
The AD8657/AD8659 feature a complementary output stage  
consisting of the M16 and M17 transistors. These transistors are  
configured in Class AB topology and are biased by the voltage  
source, VB2. This topology allows the output voltage to go  
within millivolts of the supply rails, achieving a rail-to-rail output  
swing. The output voltage is limited by the output impedance of the  
transistors, which are low RON MOS devices. The output voltage  
swing is a function of the load current and can be estimated using  
the output voltage to the supply rail vs. load current diagrams (see  
Figure 21, Figure 22, Figure 24, and Figure 25).  
To avoid loading the output, use a larger feedback resistor, but  
consider the resistor thermal noise effect on the overall circuit.  
R2  
RAIL TO RAIL  
The AD8657/AD8659 feature rail-to-rail input and output with  
a supply voltage from 2.7 V to 18 V. Figure 69 shows the input  
and output waveforms of the AD8657/AD8659 configured as a  
unity-gain buffer with a supply voltage of 9 V and a resistive  
load of 1 MΩ. With an input voltage of 9 V, the AD8657/AD8659  
allow the output to swing very close to both rails. Additionally,  
they do not exhibit phase reversal.  
+V  
SY  
R1  
V
IN  
AD8657/  
AD8659  
V
OUT  
R
L
–V  
SY  
R
= R || R2  
L, EFF  
L
V
R
= ±9V  
= 1MΩ  
SY  
INPUT  
OUTPUT  
Figure 70. Inverting Op Amp Configuration  
L
Noninverting Op Amp Configuration  
Figure 71 shows the AD8657/AD8659 in a noninverting configu-  
ration with a resistive load, RL, at the output. The actual load seen  
by the amplifier is the parallel combination of R1 + R2 and RL.  
R2  
+V  
SY  
R1  
AD8657/  
AD8659  
V
OUT  
R
L
V
IN  
TIME (200µs/DIV)  
Figure 69. Rail-to-Rail Input and Output  
–V  
SY  
R
= R || (R1 + R2)  
L, EFF  
L
RESISTIVE LOAD  
Figure 71. Noninverting Op Amp Configuration  
The feedback resistor alters the load resistance that an amplifier  
sees. It is, therefore, important to be aware of the value of feed-  
back resistors chosen for use with the AD8657/AD8659. The  
amplifiers are capable of driving resistive loads down to 100 kΩ.  
The following two examples, inverting and noninverting  
configurations, show how the feedback resistor changes the  
actual load resistance seen at the output of the amplifier.  
Rev. B | Page 20 of 24  
 
 
 
 
 
 
Data Sheet  
AD8657/AD8659  
conduct whenever the differential input voltage exceeds approxi-  
mately 600 mV; however, these diodes also allow a current path  
from the input to the lower supply rail, thus resulting in an  
increase in the total supply current of the system. As shown in  
Figure 76, both configurations yield the same result. At 18 V of  
power supply, ISY+ remains at 36 μA per dual amplifier, but ISY−  
increases to 140 μA in magnitude per dual amplifier.  
COMPARATOR OPERATIONAD8657  
An op amp is designed to operate in a closed-loop configuration  
with feedback from its output to its inverting input. Figure 72  
shows the AD8657 configured as a voltage follower with an input  
voltage that is always kept at midpoint of the power supplies.  
The same configuration is applied to the unused channel. A1 and  
A2 indicate the placement of ammeters to measure supply current.  
ISY+ refers to the current flowing from the upper supply rail to  
the op amp, and ISY− refers to the current flowing from the op  
amp to the lower supply rail. As shown in Figure 73, as expected  
in normal operating condition, the total current flowing into the  
op amp is equivalent to the total current flowing out of the op amp,  
where, ISY+ = ISY− = 36 μA for the dual AD8657 at VSY = 18 V.  
+V  
SY  
A1  
I
+
SY  
100kΩ  
100kΩ  
AD8657  
V
OUT  
1/2  
+V  
SY  
A2  
I
SY  
A1  
I
+
SY  
–V  
SY  
100kΩ  
100kΩ  
AD8657  
Figure 74. Comparator A  
V
OUT  
1/2  
+V  
SY  
A2  
I
SY  
A1  
I
+
SY  
100kΩ  
–V  
SY  
AD8657  
V
OUT  
Figure 72. Voltage Follower  
1/2  
40  
35  
30  
25  
20  
15  
10  
5
100kΩ  
A2  
I
SY  
–V  
SY  
Figure 75. Comparator B  
160  
140  
120  
100  
80  
I
I
+
SY  
SY  
0
I
+
SY  
0
2
4
6
8
10  
(V)  
12  
14  
16  
18  
I
SY  
V
SY  
60  
Figure 73. Supply Current vs. Supply Voltage (Voltage Follower)  
40  
In contrast to op amps, comparators are designed to work in an  
open-loop configuration and to drive logic circuits. Although  
op amps are different from comparators, occasionally an unused  
section of a dual op amp is used as a comparator to save board  
space and cost; however, this is not recommended.  
20  
0
0
2
4
6
8
10  
(V)  
12  
14  
16  
18  
V
SY  
Figure 76. Supply Current vs. Supply Voltage (AD8657 as a Comparator)  
Figure 74 and Figure 75 show the AD8657 configured as a com-  
parator, with 100 kΩ resistors in series with the input pins. Any  
unused channels are configured as buffers with the input voltage  
kept at the midpoint of the power supplies. The AD8657/AD8659  
have input devices that are protected from large differential  
input voltages by Diode D1 and Diode D2 (refer to Figure 68).  
These diodes consist of substrate PNP bipolar transistors, and  
Note that 100 kΩ resistors are used in series with the input of  
the op amp. If smaller resistor values are used, the supply current of  
the system increases much more. For more details on op amps as  
comparators, refer to the AN-849 Application Note Using Op  
Amps as Comparators.  
Rev. B | Page 21 of 24  
 
 
 
 
 
 
AD8657/AD8659  
Data Sheet  
which the circuit must operate. Using the AD8657 is an excellent  
choice due to its low supply current of 34 μA per amplifier over  
temperature and supply voltage. The current transmitter controls  
the current flowing in the loop, where a zero-scale input signal  
is represented by 4 mA of current and a full-scale input signal  
is represented by 20 mA. The transmitter also floats from the  
control loop power supply, VDD, while signal ground is in the  
receiver. The loop current is measured at the load resistor, RL,  
at the receiver side.  
EMI REJECTION RATIO  
Circuit performance is often adversely affected by high frequency  
electromagnetic interference (EMI). In the event where signal  
strength is low and transmission lines are long, an op amp must  
accurately amplify the input signals. However, all op amp pins—  
the noninverting input, inverting input, positive supply, negative  
supply, and output pins—are susceptible to EMI signals. These  
high frequency signals are coupled into an op amp by various  
means such as conduction, near field radiation, or far field radi-  
ation. For example, wires and PCB traces can act as antennas and  
pick up high frequency EMI signals.  
At a zero-scale input, a current of VREF/RNULL flows through R.  
This creates a current flowing through the sense resistor, ISENSE  
determined by the following equation (see Figure 78 for details):  
SENSE, MIN = (VREF × R)/(RNULL × RSENSE  
,
Precision op amps, such as the AD8657 and AD8659, do not  
amplify EMI or RF signals because of their relatively low  
bandwidth. However, due to the nonlinearities of the input  
devices, op amps can rectify these out-of-band signals. When  
these high frequency signals are rectified, they appear as a dc  
offset at the output.  
I
)
With a full-scale input voltage, current flowing through Ris  
increased by the full-scale change in VIN/RSPAN. This creates an  
increase in the current flowing through the sense resistor.  
ISENSE, DELTA = (Full-Scale Change in VIN × R)/(RSPAN × RSENSE  
)
To describe the ability of the AD8657/AD8659 to perform as  
intended in the presence of an electromagnetic energy, the  
electromagnetic interference rejection ratio (EMIRR) of the  
noninverting pin is specified in Table 2, Table 3, and Table 4 of  
the Specifications section. A mathematical method of  
measuring EMIRR is defined as follows:  
Therefore  
ISENSE, MAX = ISENSE, MIN + ISENSE, DELTA  
When R>> RSENSE, the current through the load resistor at the  
receiver side is almost equivalent to ISENSE  
.
Figure 78 is designed for a full-scale input voltage of 5 V. At 0 V  
of input, loop current is 3.5 mA; and at a full scale of 5 V, the  
loop current is 21 mA. This allows software calibration to fine  
tune the current loop to the 4 mA to 20 mA range.  
EMIRR = 20 log (VIN_PEAKVOS)  
140  
120  
100  
80  
The AD8657 and ADR125 both consume only 160 µA quiescent  
current, making 3.34 mA current available to power additional  
signal conditioning circuitry or to power a bridge circuit.  
ADR125  
V
REF  
V
V
OUT  
IN  
GND  
R
NULL  
1MΩ  
1%  
C2  
C3  
C4  
C5  
60  
10µF 0.1µF  
0.1µF 10µF  
40  
V
V
= 100mV  
PEAK  
= 2.7V TO 18V  
IN  
R
SPAN  
SY  
200kΩ  
1/2  
AD8657  
1%  
V
Q1  
IN  
0V TO 5V  
20  
10M  
V
100M  
1G  
10G  
DD  
18V  
R4  
3.3kΩ  
R1  
68kΩ  
1%  
FREQUENCY (Hz)  
D1  
4mA  
TO  
20mA  
R3  
1.2kΩ  
Figure 77. EMIRR vs. Frequency  
C1  
390pF  
R
R2  
2kΩ  
1%  
L
4 mA TO 20 mA PROCESS CONTROL CURRENT  
LOOP TRANSMITTERAD8657  
100Ω  
R
SENSE  
100Ω  
1%  
The 2-wire current transmitters are often used in distributed  
control systems and process control applications to transmit  
analog signals between sensors and process controllers. Figure 78  
shows a 4 mA to 20 mA current loop transmitter.  
NOTES  
1. R1 + R2 = R´.  
Figure 78. 4 mA to 20 mA Current Loop Transmitter  
The transmitter powers directly from the control loop power  
supply, and the current in the loop carries signal from 4 mA to  
20 mA. Thus, 4 mA establishes the baseline current budget within  
Rev. B | Page 22 of 24  
 
 
 
Data Sheet  
AD8657/AD8659  
OUTLINE DIMENSIONS  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
IDENTIFIER  
0.65 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.80  
0.55  
0.40  
0.15  
0.05  
0.23  
0.09  
6°  
0°  
0.40  
0.25  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 79. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
2.44  
2.34  
2.24  
3.10  
3.00 SQ  
0.50 BSC  
2.90  
8
5
PIN 1 INDEX  
EXPOSED  
PAD  
1.70  
1.60  
1.50  
AREA  
0.50  
0.40  
0.30  
4
1
PIN 1  
INDICATOR  
(R 0.15)  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
SEATING  
PLANE  
0.30  
0.25  
0.20  
0.203 REF  
COMPLIANT TO JEDEC STANDARDS MO-229-WEED  
Figure 80. 8-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
3 mm × 3 mm Body, Very Very Thin, Dual Lead  
(CP-8-11)  
Dimensions shown in millimeters  
Rev. B | Page 23 of 24  
 
AD8657/AD8659  
Data Sheet  
8.75 (0.3445)  
8.55 (0.3366)  
8
7
14  
1
6.20 (0.2441)  
5.80 (0.2283)  
4.00 (0.1575)  
3.80 (0.1496)  
1.27 (0.0500)  
BSC  
0.50 (0.0197)  
0.25 (0.0098)  
45°  
1.75 (0.0689)  
1.35 (0.0531)  
0.25 (0.0098)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
1.27 (0.0500)  
0.40 (0.0157)  
0.51 (0.0201)  
0.31 (0.0122)  
0.25 (0.0098)  
0.17 (0.0067)  
COMPLIANT TO JEDEC STANDARDS MS-012-AB  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 81. 14-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-14)  
Dimensions shown in millimeters and (inches)  
4.10  
4.00 SQ  
3.90  
0.35  
0.30  
0.25  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
13  
16  
0.65  
BSC  
1
4
12  
EXPOSED  
PAD  
2.40  
2.35 SQ  
2.30  
9
8
5
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WGGC-3.  
Figure 82. 16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
4 mm × 4 mm Body, Very Very Thin Quad  
(CP-16-20)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
Package Option  
RM-8  
RM-8  
Branding  
A2N  
A2N  
A2N  
A2N  
AD8657ARMZ  
AD8657ARMZ-R7  
AD8657ARMZ-RL  
AD8657ACPZ-R7  
AD8657ACPZ-RL  
AD8659ARZ  
AD8659ARZ-R7  
AD8659ARZ-RL  
AD8659ACPZ-R7  
AD8659ACPZ-RL  
8-Lead Mini Small Outline Package [MSOP]  
8-Lead Mini Small Outline Package [MSOP]  
8-Lead Mini Small Outline Package [MSOP]  
8-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
8-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
14-Lead Standard Small Outline Package [SOIC_N]  
14-Lead Standard Small Outline Package [SOIC_N]  
14-Lead Standard Small Outline Package [SOIC_N]  
16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
RM-8  
CP-8-11  
CP-8-11  
R-14  
R-14  
R-14  
A2N  
CP-16-20  
CP-16-20  
1 Z = RoHS Compliant Part.  
©2011–2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08804-0-8/12(B)  
Rev. B | Page 24 of 24  
 
 

相关型号:

AD8659ARZ

22 mu A, RRIO, CMOS,18 V Operational Amplifiers
ADI

AD8659ARZ-R7

22 mu A, RRIO, CMOS,18 V Operational Amplifiers
ADI

AD8659ARZ-RL

22 mu A, RRIO, CMOS,18 V Operational Amplifiers
ADI

AD8661

16V Low Cost, High Performance CMOS Rail-to-Rail Operational Amplifiers
ADI

AD8661ACP

16V Low Cost, High Performance CMOS Rail-to-Rail Operational Amplifiers
ADI

AD8661ACPZ-R2

Low Noise, Precision 16 V CMOS, Rail-to-Rail Operational Amplifiers
ADI

AD8661ACPZ-REEL

Low Noise, Precision 16 V CMOS, Rail-to-Rail Operational Amplifiers
ADI

AD8661ACPZ-REEL7

Low Noise, Precision 16 V CMOS, Rail-to-Rail Operational Amplifiers
ADI

AD8661ARZ

16V Low Cost, High Performance CMOS Rail-to-Rail Operational Amplifiers
ADI

AD8661ARZ-REEL

Low Noise, Precision 16 V CMOS, Rail-to-Rail Operational Amplifiers
ADI

AD8661ARZ-REEL7

Low Noise, Precision 16 V CMOS, Rail-to-Rail Operational Amplifiers
ADI

AD8661_06

Low Noise, Precision 16 V CMOS, Rail-to-Rail Operational Amplifiers
ADI