AD8667_07 [ADI]

16 V, 250 レA, Dual Precision, CMOS, Rail-to-Rail Output Operational Amplifier; 16 V , 250レA双精密CMOS轨到轨输出运算放大器
AD8667_07
型号: AD8667_07
厂家: ADI    ADI
描述:

16 V, 250 レA, Dual Precision, CMOS, Rail-to-Rail Output Operational Amplifier
16 V , 250レA双精密CMOS轨到轨输出运算放大器

运算放大器
文件: 总16页 (文件大小:848K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
16 V, 250 μA, Dual Precision, CMOS,  
Rail-to-Rail Output Operational Amplifier  
AD8667  
FEATURES  
PIN CONFIGURATION  
Lower power at high voltage: 180 μA typical  
Low offset voltage: 100 μV  
Voltage noise  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
AD8667  
OUT B  
–IN B  
+IN B  
TOP VIEW  
(Not to Scale)  
21 nV/√Hz at 10 kHz  
23 nV/√Hz at 1 kHz  
Figure 1. 8-Lead MSOP, 8-Lead SOIC  
Low input bias current: 300 fA  
Single-supply operation: 5 V to 16 V  
Dual-supply operation: 2.5 V to 8 V  
Output drive: 10 mA  
Unity gain stable  
APPLICATIONS  
Medical equipment  
Physiological measurement  
Precision references  
Buffer/level shifting  
Portable operated systems  
High density power budget systems  
Multipole filters  
Sensors  
Photodiode amplification  
ADC drivers  
GENERAL DESCRIPTION  
ideal for a wide variety of low power applications. Systems  
utilizing dc-to-low frequency measurements or high impedance  
sensors, such as photodiodes, benefit from the low input bias  
current, low noise, low offset, and low drive current. The wide  
operating voltage range matches todays high performance  
ADCs and DACs. Medical monitoring equipment can take  
advantage of the low voltage noise, high input impedance, low  
voltage, and low current noise.  
The AD8667 is a dual, rail-to-rail output, single-supply/dual-supply  
amplifier that uses Analog Devices, Inc. patented DigiTrim®  
trimming technique to achieve low offset voltage, 300 μV over  
the common-mode range. The AD8667 features an extended  
operating range with supply voltages up to 16 V for low power  
operation with an ISY of <325 μA per amplifier over temperature.  
The device is designed for low noise at higher voltages: 21 nV/√Hz  
at 10 kHz and 23 nV/√Hz at 1 kHz. It also features a low input  
bias current of 300 fA and a 10 mA output drive.  
The AD8667 is specified over the extended industrial  
temperature range of −40°C to +125°C.  
The combination of low supply currents, low offsets, very low  
input bias currents, and wide supply range makes the AD8667  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2007 Analog Devices, Inc. All rights reserved.  
 
AD8667  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Absolute Maximum Ratings ............................................................5  
Thermal Resistance.......................................................................5  
ESD Caution...................................................................................5  
Typical Performance Characteristics ..............................................6  
Outline Dimensions....................................................................... 13  
Ordering Guide .......................................................................... 13  
Applications....................................................................................... 1  
Pin Configuration............................................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 3  
REVISION HISTORY  
5/07—Revision 0: Initial Version  
Rev. 0 | Page 2 of 16  
 
AD8667  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
VS = 5.0 V, VCM = VS/2, TA = 25°C unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
VCM = 2.5 V  
−40°C < TA < +125°C  
VCM = 0 V to 3.5 V  
−40°C < TA < +85°C  
VCM = 0.2 V to 3.5 V, −40°C < TA < +125°C  
100  
350  
300  
450  
450  
μV  
μV  
μV  
μV  
μV  
pA  
pA  
pA  
pA  
pA  
pA  
V
70  
100  
100  
0.3  
Input Bias Current  
IB  
−40°C < TA < +85°C  
−40°C < TA < +125°C  
20  
150  
Input Offset Current  
IOS  
0.2  
−40°C < TA < +85°C  
−40°C < TA < +125°C  
−40°C < TA < +85°C  
−40°C < TA < +125°C  
15  
50  
3.5  
3.5  
Input Voltage Range  
IVR  
0
0.2  
80  
80  
106  
V
Common-Mode Rejection Ratio  
CMRR  
VCM = 0 V to 3.5 V  
90  
90  
115  
1.3  
dB  
dB  
dB  
μV/°C  
VCM = 0.2 V to 3.5 V, −40°C < TA < +125°C  
RL = 2 kΩ, VO = 0.5 V to 4.5 V  
−40°C < TA < +125°C  
Large Signal Voltage Gain  
Offset Voltage Drift  
AVO  
ΔVOS/ΔT  
5
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
VOL  
IL = 1 mA  
−40°C < TA < +125°C  
IL = 1 mA  
4.65  
4.6  
4.8  
4.7  
150  
200  
6
V
V
mV  
mV  
mA  
Ω
Output Voltage Low  
200  
250  
−40°C < TA < +125°C  
Short-Circuit Current  
Closed-Loop Output Impedance  
POWER SUPPLY  
Power Supply Rejection Ratio  
Supply Current/Amplifier  
ISC  
ZOUT  
f = 100 kHz, AV = 1  
VS = 5 V to 16 V  
120  
PSRR  
ISY  
95  
105  
180  
dB  
μA  
μA  
275  
325  
−40°C < TA < +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time  
SR  
tS  
RL = 2 kΩ  
To 0.1%, 0 V to 2 V step, AV = 10  
0.2  
12  
V/μs  
μs  
Gain Bandwidth Product  
Phase Margin  
GBP  
ΦM  
600  
60  
kHz  
Degrees  
NOISE PERFORMANCE  
Peak-to-Peak Noise  
Voltage Noise Density  
en p-p  
en  
f = 0.1 Hz to 10 Hz  
f = 10 kHz  
f = 1 kHz  
3
μV p-p  
nV/√Hz  
nV/√Hz  
pA/√Hz  
21  
23  
0.05  
Current Noise Density  
in  
f = 1 kHz  
Rev. 0 | Page 3 of 16  
 
AD8667  
VS = 16 V, VCM = VS/2, TA = 25°C unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
40  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
VCM = 8 V  
−40°C < TA < +125°C  
VCM = 0 V to 14.5 V  
−40°C < TA < +85°C  
VCM = 0.2 V to 14.5 V, −40°C < TA < +125°C  
300  
350  
300  
450  
450  
μV  
μV  
μV  
μV  
μV  
pA  
pA  
pA  
pA  
pA  
pA  
V
70  
Input Bias Current  
IB  
0.3  
0.2  
−40°C < TA < +85°C  
−40°C < TA < +125°C  
30  
250  
Input Offset Current  
IOS  
−40°C < TA < +85°C  
−40°C < TA < +125°C  
−40°C < TA < +85°C  
−40°C < TA < +125°C  
VCM = 0 V to 14.5 V  
VCM = 0.2 V to 14.5 V, −40°C < TA < +125°C  
RL = 2 kΩ, VO = 0.5 V to 15.5 V  
25  
150  
14.5  
14.5  
Input Voltage Range  
IVR  
0
0.2  
90  
90  
112  
V
Common-Mode Rejection Ratio  
CMRR  
100  
100  
124  
1.2  
dB  
dB  
dB  
μV/°C  
Large Signal Voltage Gain  
Offset Voltage Drift  
AVO  
ΔVOS/ΔT  
5
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
IL = 1 mA  
IL = 10 mA  
15.8  
14.8  
15.9  
15.1  
V
V
IL = 10 mA, −40°C < TA < +125°C  
IL = 1 mA  
IL = 10 mA  
14.65 14.8  
V
Output Voltage Low  
VOL  
80  
100  
720  
900  
mV  
mV  
mV  
mA  
Ω
600  
800  
50  
IL = 10 mA, −40°C < TA < +125°C  
Short-Circuit Current  
Closed-Loop Output Impedance  
POWER SUPPLY  
ISC  
ZOUT  
f = 100 kHz, AV = 1  
100  
Power Supply Rejection Ratio  
Supply Current/Amplifier  
PSRR  
ISY  
VS = 5 V to 16 V, −40°C < TA < +125°C  
−40°C < TA < +125°C  
95  
105  
230  
dB  
μA  
μA  
285  
325  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time  
SR  
tS  
RL = 2 kΩ  
To 0.1%, 0 V to 2 V step  
0.3  
12  
V/μs  
μs  
Gain Bandwidth Product  
Phase Margin  
GBP  
ΦM  
600  
60  
kHz  
Degrees  
NOISE PERFORMANCE  
Peak-to-Peak Noise  
Voltage Noise Density  
en p-p  
en  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
f = 10 kHz  
3
μV p-p  
nV/√Hz  
nV/√Hz  
pA/√Hz  
23  
21  
0.05  
Current Noise Density  
in  
f = 1 kHz  
Rev. 0 | Page 4 of 16  
AD8667  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Parameter  
Rating  
Supply Voltage  
18 V  
Input Voltage  
−0.1 V to VS  
18 V  
Indefinite  
−60°C to +150°C  
300°C  
Table 4. Thermal Resistance  
Differential Input Voltage  
Output Short-Circuit Duration to GND  
Storage Temperature Range  
Lead Temperature (Soldering, 60 sec)  
Operating Temperature Range  
Junction Temperature Range  
Package Type  
8-Lead MSOP  
8-Lead SOIC  
θJA  
θJC  
45  
43  
Unit  
°C/W  
°C/W  
145  
125  
−40°C to +125°C  
−65°C to +150°C  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 5 of 16  
 
AD8667  
TYPICAL PERFORMANCE CHARACTERISTICS  
Specifications at VSY  
=
8 V, unless otherwise noted.  
1600  
100  
10  
1
V
= ±8V  
S
0V < V  
< 14.5V  
CM  
= 25°C  
1400  
1200  
1000  
800  
600  
400  
200  
0
T
A
±8V  
±2.5V  
0.1  
0
25  
50  
75  
100  
125  
–250 –200 –150 –100 –50  
0
50  
100 150 200 250  
TEMPERATURE (°C)  
V
(µV)  
OS  
Figure 5. Input Bias Current vs. Temperature  
Figure 2. Input Offset Voltage Distribution  
40  
35  
30  
10000  
1000  
100  
10  
V
= ±8V  
S
V
T
= 5V  
= 25°C  
S
–40°C < T < +125°C  
A
A
25  
20  
SOURCE  
SINK  
15  
10  
5
1
0
0.1  
0.001  
0.01  
0.1  
1
10  
0
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8  
LOAD CURRENT (mA)  
TCV (µV/°C)  
OS  
Figure 3. Input Offset Voltage Drift Distribution  
Figure 6. Output Swing Saturation Voltage vs. Load Current  
10000  
1000  
100  
10  
300  
250  
200  
150  
100  
50  
V
T
= 16V  
= 25°C  
V
= 16V  
S
S
0V < V  
CM  
< 14.5V  
A
T
= 25°C  
A
SOURCE  
SINK  
0
–50  
–100  
–150  
–200  
1
–250  
–300  
0.1  
0.001  
0.01  
0.1  
1
10  
100  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
LOAD CURRENT (mA)  
V
(V)  
CM  
Figure 4. Input Offset Voltage vs. Common-Mode Voltage  
Figure 7. Output Swing Saturation Voltage vs. Load Current  
Rev. 0 | Page 6 of 16  
 
AD8667  
1200  
1000  
800  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
V
= ±8V  
SY  
V
– V @ 10mA V = 16V  
OH S  
DD  
V
@ 10mA V = 16V  
S
OL  
600  
V
– V @ 1mA V = 16V  
OH S  
DD  
V
– V  
@ 1mA V = 5V  
400  
DD  
OH S  
V
@ 1mA V = 5V  
OL  
S
A = 100  
V
A
= 10  
A = 1  
V
V
200  
0
V
@ 1mA V = 16V  
OL  
S
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
1k  
10k  
100k  
1M  
10M  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 8. Output Saturation Voltage vs. Temperature  
Figure 11. Closed-Loop Output Impedance vs. Frequency  
120  
100  
80  
150  
V
T
= 16V  
= 125°C  
S
A
V
= ±8V  
S
100  
50  
0
60  
–50  
40  
–100  
–150  
20  
100  
0
2
4
6
8
10  
12  
14  
16  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
V
(V)  
CM  
Figure 9. Input Bias Current vs. Common Mode Voltage at 125°C  
Figure 12. CMRR vs. Frequency  
90  
100  
90  
80  
70  
60  
50  
135  
PSRR–  
PSRR+/PSRR– CHA  
V
= 16V  
SY  
70  
50  
90  
45  
0
V
= ±8V  
S
PHASE  
30  
10  
GAIN  
–10  
40  
30  
–45  
–30  
–50  
–70  
–90  
PSRR+  
20  
10  
0
–90  
–135  
10M  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 10. Open-Loop Gain and Phase Shift vs. Frequency  
Figure 13. PSRR vs. Frequency  
Rev. 0 | Page 7 of 16  
AD8667  
60  
V
= ±8V  
V
= ±8V  
SY  
SY  
R
= 10k  
A
C
R
= 1  
= 200pF  
= 10k  
L
V
L
L
50  
40  
30  
20  
10  
0
OS+  
OS–  
TIME (2µs/DIV)  
10  
100  
500  
CAPACITANCE (pF)  
Figure 17. Small Signal Transient Response  
Figure 14. Small Signal Overshoot vs. Load Capacitance  
600  
500  
400  
300  
200  
100  
V
= ±8V  
= 1  
= 200pF  
= 2kΩ  
SY  
A
C
R
V
L
L
16V  
5V  
0
TIME (20µs/DIV)  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
Figure 18. Large Signal Transient Response  
Figure 15. Supply Current vs. Temperature  
27  
0.15  
0.10  
0.05  
0
2.0  
1.5  
V
= ±8V  
V
A
= ±8V  
SY  
SY  
= –100 22  
V
INPUT VOLTAGE  
17  
12  
7
1.0  
0.5  
–0.05  
–0.10  
–0.15  
–0.20  
0
2
–0.5  
–1.0  
–1.5  
–2.0  
–3  
–8  
OUTPUT VOLTAGE  
–0.25  
–13  
0
1
2
3
4
5
6
7
8
9
10  
TIME (20µs/DIV)  
TIME (1s/DIV)  
Figure 19. Positive Overload Recovery  
Figure 16. 0.1 Hz to 10 Hz Input Voltage Noise  
Rev. 0 | Page 8 of 16  
AD8667  
0.05  
0
35  
30  
25  
20  
15  
10  
5
10k  
1k  
V
= ±8V  
SY  
INPUT VOLTAGE  
V
A
= ±8V  
= –100  
SY  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.30  
V
A
= 100  
A
= 10  
A = 1  
V
V
V
100  
10  
OUTPUT VOLTAGE  
0
1
100  
–0.35  
–5  
1k  
10k  
FREQUENCY (Hz)  
100k  
1M  
TIME (20µs/DIV)  
Figure 20. Negative Overload Recovery  
Figure 23. Closed-Loop Output Impedance vs. Frequency  
1000  
0
–20  
–40  
20k  
V
= ±8V  
V
= ±8V  
SY  
SY  
2kΩ  
–60  
–80  
100  
–100  
–120  
–140  
–160  
10  
1
10  
100  
1000  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 21. Voltage Noise Density vs. Frequency  
Figure 24. Channel Separation vs. Frequency  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
+125°C  
+85°C  
+25°C  
–40°C  
V
= 0V TO ±8V, –40°C < T < +125°C  
A
S
0
0
2
4
6
8
10  
12  
14  
16  
V
(V)  
SY  
Figure 22. Supply Current vs. Supply Voltage  
Rev. 0 | Page 9 of 16  
AD8667  
Specifications at VSY = 2.5 V, unless otherwise noted.  
120  
100  
80  
1600  
135  
90  
45  
0
V
V
= ±2.5V  
= +5V  
S
V
= ±2.5V  
SY  
SY  
1400  
1200  
1000  
800  
600  
400  
200  
0
–0.1V < V  
< +3.5V  
CM  
= 25°C  
T
A
60  
40  
20  
0
–20  
–45  
–40  
–60  
–80  
–90  
–100  
–120  
–135  
10M  
1k  
10k  
100k  
1M  
–250 –200 –150 –100 –50  
0
50  
100 150 200 250  
FREQUENCY (Hz)  
V
(µV)  
OS  
Figure 25. Input Offset Voltage Distribution  
Figure 28. Open-Loop Gain and Phase Shift vs. Frequency  
40  
35  
30  
60  
40  
V
= ±2.5V  
SY  
V
= ±2.5V  
SY  
–40°C < T < 125°C  
A
A
= 100  
= 10  
V
A
V
25  
20  
20  
A
= 1  
V
0
15  
10  
5
–20  
–40  
0
100  
1k  
10k  
100k  
1M  
10M  
0
1
2
3
4
5
FREQUENCY (Hz)  
TCV (µV)  
OS  
Figure 29. Closed-Loop Gain vs. Frequency  
Figure 26. Input Offset Voltage Drift Distribution  
150  
100  
50  
10k  
1k  
V
= ±2.5V  
V
= ±2.5V  
SY  
SY  
0V < V  
< +3.5V  
CM  
T
= 25°C  
A
0
A
= 100  
A
= 10  
A = 1  
V
V
V
100  
10  
–50  
–100  
–150  
–200  
1
100  
0
0.5  
1.0  
1.5  
V
2.0  
(V)  
2.5  
3.0  
3.5  
1k  
10k  
FREQUENCY (Hz)  
100k  
1M  
CM  
Figure 30. Closed-Loop Output Impedance vs. Frequency  
Figure 27. Input Offset Voltage vs. Common-Mode Voltage  
Rev. 0 | Page 10 of 16  
AD8667  
2.0  
1.5  
140  
V
= ±2.5V  
SY  
V
= ±2.5V  
SY  
120  
100  
80  
1.0  
0.5  
0
60  
–0.5  
–1.0  
–1.5  
–2.0  
40  
20  
0
0
1
2
3
4
5
6
7
8
9
10  
100  
1k  
10k  
100k  
1M  
10M  
TIME (1s/DIV)  
FREQUENCY (Hz)  
Figure 34. 0.1 Hz to 10 Hz Input Voltage Noise  
Figure 31. CMRR vs. Frequency  
100  
90  
80  
70  
60  
50  
V
= ±2.5V  
= 1  
= 200pF  
= 10k  
SY  
V
= ±2.5V  
SY  
A
C
R
V
L
L
40  
30  
PSRR+  
20  
10  
0
PSRR–  
TIME (2µs/DIV)  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 32. PSRR vs. Frequency  
Figure 35. Small Signal Transient Response  
80  
70  
60  
50  
40  
30  
20  
V
R
= ±2.5V  
= 10kΩ  
SY  
L
V
= ±2.5V  
= 1  
= 200pF  
= 2kΩ  
SY  
A
C
R
V
L
L
OS–  
OS+  
10  
0
TIME (10µs/DIV)  
10  
100  
500  
CAPACITANCE (pF)  
Figure 36. Large Signal Transient Response  
Figure 33. Small Signal Overshoot vs. Load Capacitance  
Rev. 0 | Page 11 of 16  
AD8667  
1000  
0.15  
0.10  
0.05  
0
4.5  
4.0  
V
= ±2.5V  
SY  
V
A
= ±2.5V  
= –100  
SY  
3.5  
V
3.0  
INPUT VOLTAGE  
2.5  
2.0  
100  
10  
1.5  
1.0  
–0.05  
–0.10  
–0.15  
–0.20  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
OUTPUT VOLTAGE  
0
–0.25  
1
10  
100  
1k  
TIME (20µs/DIV)  
FREQUENCY (Hz)  
Figure 37. Positive Overload Recovery  
Figure 39. Voltage Noise Density vs. Frequency  
0
–20  
–40  
0.05  
0
7.0  
6.5  
V
= ±2.5V  
20kΩ  
SY  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2kΩ  
INPUT VOLTAGE  
V
A
= ±2.5V  
= –100  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.30  
SY  
V
–60  
–80  
–100  
–120  
–140  
–160  
OUTPUT VOLTAGE  
–0.5  
–1.0  
–0.35  
100  
1k  
10k  
100k  
TIME (20µs/DIV)  
FREQUENCY (Hz)  
Figure 38. Negative Overload Recovery  
Figure 40. Channel Separation vs. Frequency  
Rev. 0 | Page 12 of 16  
AD8667  
OUTLINE DIMENSIONS  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
0.65 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.00  
0.38  
0.22  
0.23  
0.08  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 41. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 42. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Model  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
Package Option  
Branding  
A1E  
A1E  
AD8667ARMZ-R21  
AD8667ARMZ-REEL1  
AD8667ARZ1  
AD8667ARZ-REEL1  
AD8667ARZ-REEL71  
8-Lead Mini Small Outline Package [MSOP]  
8-Lead Mini Small Outline Package [MSOP]  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N]  
RM-8  
RM-8  
R-8  
R-8  
R-8  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 13 of 16  
 
AD8667  
NOTES  
Rev. 0 | Page 14 of 16  
AD8667  
NOTES  
Rev. 0 | Page 15 of 16  
AD8667  
NOTES  
©2007 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06276-0-5/07(0)  
Rev. 0 | Page 16 of 16  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY