AD8669ARZ-REEL [ADI]

Low Noise, Precision, 16 V, CMOS, Rail-to-Rail Operational Amplifiers; 低噪声,高精密, 16 V , CMOS ,轨至轨运算放大器
AD8669ARZ-REEL
型号: AD8669ARZ-REEL
厂家: ADI    ADI
描述:

Low Noise, Precision, 16 V, CMOS, Rail-to-Rail Operational Amplifiers
低噪声,高精密, 16 V , CMOS ,轨至轨运算放大器

运算放大器
文件: 总16页 (文件大小:697K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Noise, Precision, 16 V, CMOS,  
Rail-to-Rail Operational Amplifiers  
AD8663/AD8667/AD8669  
FEATURES  
PIN CONFIGURATIONS  
Low offset voltage: 175 μV maximum @ VSY = 5 V  
Low supply current: 275 ꢀA maximum per amplifier  
Single-supply operation: 5 V to 16 V  
Low noise: 23 nV/√Hz  
Low input bias current: 300 fA  
Unity-gain stable  
NC  
–IN  
+IN  
V–  
1
2
3
4
8
7
6
5
NC  
V+  
AD8663  
NC  
–IN  
+IN  
V–  
1
2
3
4
8
7
6
5
NC  
V+  
AD8663  
TOP VIEW  
OUT  
NC  
OUT  
NC  
(Not to Scale)  
NC = NO CONNECT  
NC = NO CONNECT  
Small packages available  
3 mm × 3 mm, 8-lead LFCSP  
8-lead MSOP  
Figure 1. 8-Lead SOIC (R-8)  
Figure 2. 8-Lead LFCSP (CP-8-2)  
Other packages  
8-lead SOIC  
14-lead SOIC  
14-lead TSSOP  
OUT A  
IN A  
+IN A  
V+  
1
2
3
4
5
6
7
14 OUT D  
13 IN D  
12 +IN D  
11 V–  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
AD8669
AD8667  
OUT B  
–IN B  
+IN B  
TOP VIEW  
TOP VIEW  
(Not to Scale)  
(Not to Scale)  
+IN B  
IN B  
OUT B  
10 +IN C  
APPLICATIONS  
9
8
IN C  
Sensor front ends  
OUT C  
Transimpedance amplifiers  
Electrometer applications  
Photodiode amplification  
Low power ADC drivers  
Medical diagnostic instruments  
pH and ORP meters and probes  
DAC or REF buffers  
Figure 3. 8-Lead MSOP (RM-8),  
8-Lead SOIC (R-8)  
Figure 4. 14-Lead SOIC (R-14),  
14-Lead TSSOP (RU-14)  
GENERAL DESCRIPTION  
The AD866x are rail-to-rail output amplifiers that use the  
Analog Devices, Inc., patented DigiTrim® trimming technique  
to achieve low offset voltage. The AD866x feature an extended  
operating range with supply voltages up to 16 V. They also  
feature low input bias current, low input offset voltage, and  
low current noise.  
frequency data converters. The low bias current drift is well-  
suited for precision I-to-V converters. The combination of  
precision offset, offset drift, and low noise also make the op  
amps ideal for gain, dc offset adjust, and active filter in both  
instrumentation and medical applications. These low power  
op amps can be used in IR thermometers, pH and ORP instru-  
ments, pressure transducer front ends, and other sensor signal  
conditioning circuits that are used in remote or wireless  
applications.  
The combination of low offset, very low input bias current, and  
a wide supply range makes these amplifiers useful in a wide variety  
of applications usually associated with higher priced JFET ampli-  
fiers. Systems using high impedance sensors, such as photodiodes,  
benefit from the combination of low input bias current, low  
noise, low offset, and wide bandwidth.  
The AD8663/AD8667/AD8669 are specified over the extended  
industrial temperature range of −40°C to +1±5°C. The single  
AD8663 is available in a narrow 8-lead SOIC package and a very  
thin, 8-lead LFCSP. The dual AD8667 is available in a narrow  
8-lead SOIC package and an 8-lead MSOP. The quad AD8669  
is available in a 14-lead SOIC and 14-lead small TSSOP.  
The ability to operate the device for single (5 V to 16 V) or dual  
supplies (±±.5 V to ±8 V) supports many applications. The rail-  
to-rail outputs provide increased dynamic range to drive low  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2007–2008 Analog Devices, Inc. All rights reserved.  
 
AD8663/AD8667/AD8669  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Absolute Maximum Ratings ............................................................5  
Thermal Resistance.......................................................................5  
ESD Caution...................................................................................5  
Typical Performance Characteristics ..............................................6  
Outline Dimensions....................................................................... 13  
Ordering Guide .......................................................................... 15  
Applications....................................................................................... 1  
Pin Configurations ........................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... ±  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 3  
REVISION HISTORY  
1/08—Rev. A to Rev. B  
Added TSSOP .....................................................................Universal  
Change to Table 4 ............................................................................. 5  
Changes to Figure 8 and Figure 9................................................... 6  
Changes to Figure ±3 and Figure ±6............................................... 9  
Updated Outline Dimensions....................................................... 13  
Changes to Ordering Guide .......................................................... 15  
10/07—Rev. 0 to Rev. A  
Added AD8667 and AD8669............................................Universal  
Changes to Features.......................................................................... 1  
Changes to General Description .................................................... 1  
Inserted Figure 3 and Figure 4........................................................ 1  
Changes to Table 1, Power Supply Section.................................... 3  
Changes to Table ±............................................................................ 4  
Reformatted Typical Performance Characteristics Section ........ 6  
Changes to Figure 5.......................................................................... 6  
Changes to Figure 13........................................................................ 7  
Changes to Figure 17 and Figure ±0............................................... 8  
Inserted Figure 35 Through Figure 39......................................... 11  
Inserted Figure 40 and Figure 41.................................................. 1±  
Updated Outline Dimensions....................................................... 13  
Changes to Ordering Guide .......................................................... 15  
7/07—Revision 0: Initial Version  
Rev. B | Page 2 of 16  
 
AD8663/AD8667/AD8669  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
VSY = 5.0 V, VCM = VSY/±, TA = ±5°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
30  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
IB  
VCM = VSY/2  
−40°C < TA < +125°C  
175  
450  
μV  
μV  
pA  
pA  
pA  
pA  
pA  
pA  
V
dB  
dB  
dB  
dB  
μV/°C  
Input Bias Current  
0.3  
−40°C < TA < +85°C  
−40°C < TA < +125°C  
45  
105  
Input Offset Current  
IOS  
0.2  
−40°C < TA < +85°C  
−40°C < TA < +125°C  
35  
65  
3.0  
Input Voltage Range  
Common-Mode Rejection Ratio  
0.2  
76  
76  
115  
106  
CMRR  
AVO  
VCM = 0.2 V to 3.0 V  
−40°C < TA < +125°C  
RL = 100 kΩ, VOUT = 0.5 V to 4.5 V  
RL = 2 kΩ, VOUT = 0.5 V to 4.5 V  
−40°C < TA < +125°C  
100  
100  
140  
114  
1.5  
Large Signal Voltage Gain  
Offset Voltage Drift  
OUTPUT CHARACTERISTICS  
Output Voltage High  
TCVOS  
VOH  
5
IL = 100 μA  
−40°C < TA < +125°C  
IL = 1 mA  
−40°C < TA < +125°C  
IL = 100 μA  
−40°C < TA < +125°C  
IL = 1 mA  
4.95  
4.90  
4.65  
4.60  
4.97  
4.80  
17  
V
V
V
V
mV  
mV  
mV  
mV  
mA  
Ω
Output Voltage High  
Output Voltage Low  
Output Voltage Low  
VOH  
VOL  
25  
35  
200  
250  
VOL  
150  
−40°C < TA < +125°C  
Short-Circuit Current  
Closed-Loop Output Impedance  
POWER SUPPLY  
ISC  
ZOUT  
7
120  
f = 100 kHz, AV = 1  
Power Supply Rejection Ratio  
PSRR  
ISY  
VSY = 5 V to 16 V  
−40°C < TA < +125°C  
VOUT = VSY/2  
95  
95  
105  
210  
dB  
dB  
ꢀA  
ꢀA  
Supply Current per Amplifier  
275  
325  
−40°C < TA < +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
Phase Margin  
SR  
GBP  
ΦM  
RL = 2 kΩ  
CL = 20 pF  
CL = 20 pF  
0.26  
520  
60  
V/μs  
kHz  
Degrees  
NOISE PERFORMANCE  
Peak-to-Peak Noise  
Voltage Noise Density  
en p-p  
en  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
f = 10 kHz  
2.5  
23  
21  
μV p-p  
nV/√Hz  
nV/√Hz  
pA/√Hz  
Current Noise Density  
in  
f = 1 kHz  
0.05  
Rev. B | Page 3 of 16  
 
AD8663/AD8667/AD8669  
VSY = 16.0 V, VCM = VSY/±, TA = ±5°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
40  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
IB  
VCM = VSY/2  
−40°C < TA < +125°C  
300  
500  
μV  
μV  
pA  
pA  
pA  
pA  
pA  
pA  
V
dB  
dB  
dB  
dB  
μV/°C  
Input Bias Current  
0.3  
−40°C < TA < +85°C  
−40°C < TA < +125°C  
45  
120  
Input Offset Current  
IOS  
0.2  
−40°C < TA < +85°C  
−40°C < TA < +125°C  
35  
65  
14.5  
Input Voltage Range  
Common-Mode Rejection Ratio  
0.2  
87  
87  
115  
106  
CMRR  
AVO  
VCM = 0.2 V to 14.5 V  
−40°C < TA < +125°C  
RL = 100 kΩ, VOUT = 0.5 V to 15.5 V  
RL = 2 kΩ, VOUT = 0.5 V to 15.5 V  
−40°C < TA < +125°C  
109  
109  
140  
111  
1.5  
Large Signal Voltage Gain  
Offset Voltage Drift  
OUTPUT CHARACTERISTICS  
Output Voltage High  
TCVOS  
VOH  
5
IL = 100 ꢀA  
−40°C < TA < +125°C  
IL = 1 mA  
−40°C < TA < +125°C  
IL = 100 ꢀA  
−40°C < TA < +125°C  
IL = 1 mA  
15.95  
15.90  
15.85  
15.80  
15.98  
15.92  
17  
V
V
V
V
mV  
mV  
mV  
mV  
mA  
Ω
Output Voltage High  
Output Voltage Low  
Output Voltage Low  
VOH  
VOL  
25  
35  
100  
125  
VOL  
70  
−40°C < TA < +125°C  
Short-Circuit Current  
Closed-Loop Output Impedance  
POWER SUPPLY  
ISC  
ZOUT  
50  
100  
f = 100 kHz, AV = 1  
Power Supply Rejection Ratio  
PSRR  
ISY  
VSY = 5 V to 16 V  
−40°C < TA < +125°C  
VOUT = VSY/2  
95  
95  
105  
230  
dB  
dB  
ꢀA  
ꢀA  
Supply Current per Amplifier  
285  
355  
−40°C < TA < +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
Phase Margin  
SR  
GBP  
ΦM  
RL = 2 kΩ  
CL = 20 pF  
CL = 20 pF  
0.3  
540  
64  
V/μs  
kHz  
Degrees  
NOISE PERFORMANCE  
Peak-to-Peak Noise  
Voltage Noise Density  
en p-p  
en  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
f = 10 kHz  
2.5  
23  
21  
μV p-p  
nV/√Hz  
nV/√Hz  
pA/√Hz  
Current Noise Density  
in  
f = 1 kHz  
0.05  
Rev. B | Page 4 of 16  
AD8663/AD8667/AD8669  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 3.  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Parameter  
Rating  
Supply Voltage  
18 V  
Input Voltage  
−0.1 V to VSY  
18 V  
Table 4. Thermal Resistance  
Package Type  
Differential Input Voltage  
Output Short-Circuit Duration to GND  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range  
Lead Temperature, Soldering (60 sec)  
θJA  
θJC  
43  
181  
45  
45  
35  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Indefinite  
−60°C to +150°C  
−40°C to +125°C  
−65°C to +150°C  
300°C  
8-Lead SOIC (R-8)  
121  
751  
145  
90  
8-Lead LFCSP (CP-8-2)  
8-Lead MSOP (RM-8)  
14-Lead SOIC (R-14)  
14-Lead TSSOP (RU-14)  
180  
1 Exposed pad soldered to application board.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
ESD CAUTION  
Rev. B | Page 5 of 16  
 
AD8663/AD8667/AD8669  
TYPICAL PERFORMANCE CHARACTERISTICS  
10000  
9000  
8000  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
1600  
V
= 5V  
SY  
V
= 16V  
SY  
–0.1V < V  
< +3.5V  
CM  
= 25°C  
–0.1V < V  
< +14V  
CM  
T = 25°C  
A
1400  
1200  
1000  
800  
600  
400  
200  
0
T
A
–250 –200 –150 –100 –50  
0
50 100 150 200 250  
–250 –200 –150 –100 –50  
0
50  
100 150 200 250  
V
(µV)  
V
(µV)  
OS  
OS  
Figure 8. Input Offset Voltage Distribution  
Figure 5. Input Offset Voltage Distribution  
40  
35  
30  
25  
20  
40  
35  
30  
V = ±8V  
SY  
–40°C < T < +125°C  
A
V
= ±2.5V  
SY  
–40°C < T < +125°C  
A
25  
20  
15  
10  
15  
10  
5
5
0
0
0
1
2
3
4
5
0
1
2
3
4
5
TCV  
(µV/°C)  
TCV (µV)  
OS  
OS  
Figure 9. Offset Voltage Drift Distribution  
Figure 6. Offset Voltage Drift Distribution  
300  
250  
200  
150  
500  
400  
V
T
= 5V  
SY  
= 25°C  
V
= 16V  
SY  
A
T = 25°C  
A
300  
200  
100  
50  
100  
0
0
–50  
–100  
–200  
–300  
–400  
–500  
–100  
–150  
–200  
–250  
–300  
0
2
4
6
8
10  
12  
14  
16  
0
0.5  
1.0  
1.5  
2.0  
2.5  
(V)  
3.0  
3.5  
4.0  
4.5  
5.0  
V
(V)  
V
CM  
CM  
Figure 7. Input Offset Voltage vs. Common-Mode Voltage  
Figure 10. Input Offset Voltage vs. Common-Mode Voltage  
Rev. B | Page 6 of 16  
 
AD8663/AD8667/AD8669  
100  
100  
80  
V
T
= 5V  
V
T
= 16V  
SY  
= 125°C  
SY  
= 125°C  
A
A
80  
60  
60  
40  
40  
20  
20  
0
0
0.5  
0.5  
1.0  
1.5  
2.0  
2.5  
(V)  
3.0  
3.5  
4.0  
4.5  
2.5  
4.5  
6.5  
8.5  
(V)  
10.5  
12.5  
14.5  
V
V
CM  
CM  
Figure 11. Input Bias Current vs. Common-Mode Voltage at 125°C  
Figure 14. Input Bias Current vs. Common-Mode Voltage at 125°C  
100  
100  
V
= 5V  
V
= 16V  
SY  
= 25°C  
SY  
T = 25°C  
A
T
A
90  
90  
80  
70  
80  
70  
60  
50  
40  
30  
20  
60  
50  
40  
30  
20  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 12. CMRR vs. Frequency, VSY = 5 V  
Figure 15. CMRR vs. Frequency, VSY = 16 V  
10000  
1000  
100  
10  
10000  
1000  
100  
10  
V
= 5V  
= 25°C  
V
= 16V  
SY  
SY  
T
T = 25°C  
A
A
V
– V  
OH  
SOURCING  
V
– V SOURCING  
OH  
SY  
SY  
V
SINKING  
OL  
V
SINKING  
OL  
1
1
0.1  
0.001  
0.1  
0.001  
0.01  
0.1  
LOAD CURRENT (mA)  
1
10  
0.01  
0.1  
1
10  
100  
LOAD CURRENT (mA)  
Figure 13. Output Swing Saturation Voltage vs. Load Current  
Figure 16. Output Swing Saturation Voltage vs. Load Current  
Rev. B | Page 7 of 16  
AD8663/AD8667/AD8669  
350  
140  
120  
100  
300  
V
– V @ 1mA  
OH  
SY  
V
– V  
@ 1mA  
SY  
OH  
250  
200  
150  
100  
80  
60  
40  
V
@ 1mA  
V
@ 1mA  
OL  
OL  
V
@ 100µA  
OL  
V
@ 100µA  
OL  
80  
50  
0
20  
0
V
– V  
@ 100µA  
V
– V @ 100µA  
OH  
SY  
OH  
SY  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
–40 –25 –10  
5
20  
35  
50  
65  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 17. Output Voltage Saturation vs. Temperature  
Figure 20. Output Voltage Saturation vs. Temperature  
120  
100  
80  
120  
100  
80  
PHASE  
PHASE  
60  
60  
40  
40  
C
= 0pF  
C = 0pF  
L
GAIN  
GAIN  
L
20  
20  
0
0
–20  
–40  
–60  
–80  
–20  
–40  
–60  
–80  
C
= 200pF  
C = 200pF  
L
L
V
T
= 16V  
= 25°C  
V
T
= 5V  
SY  
SY  
= 25°C  
A
A
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 18. Open-Loop Gain and Phase Shift vs. Frequency  
Figure 21. Open-Loop Gain and Phase Shift vs. Frequency  
60  
40  
60  
40  
V
= 5V  
= 25°C  
V
= 16V  
SY  
SY  
T
T = 25°C  
A
A
G = 100  
G = 10  
G = 1  
G = 100  
G = 10  
G = 1  
20  
20  
0
0
–20  
–40  
–20  
–40  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 19. Closed-Loop Gain vs. Frequency  
Figure 22. Closed-Loop Gain vs. Frequency, VSY = 16 V  
Rev. B | Page 8 of 16  
AD8663/AD8667/AD8669  
1000  
1000  
G = 100  
G = 10  
G = 100  
G = 10  
100  
10  
1
100  
10  
1
V
= 5V  
V
= 16V  
SY  
= 25°C  
SY  
T = 25°C  
A
T
A
G = 1  
G = 1  
0.1  
100  
0.1  
100  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 23. Closed-Loop Output Impedance vs. Frequency, VSY = 5 V  
Figure 26. Closed-Loop Output Impedance vs. Frequency, VSY = 16 V  
90  
90  
V
T
= 5V  
V
T
= 16V  
SY  
= 25°C  
SY  
= 25°C  
80  
70  
80  
70  
A
A
60  
50  
40  
30  
60  
50  
40  
30  
PSSR–  
PSSR+  
20  
10  
20  
10  
0
0
PSSR+  
100k  
PSSR–  
–10  
–10  
–20  
100  
–20  
100  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 24. PSRR vs. Frequency, VSY = 5 V  
Figure 27. PSRR vs. Frequency, VSY = 16 V  
80  
70  
80  
70  
V
T
= 16V  
V
T
= 5V  
SY  
= 25°C  
SY  
= 25°C  
A
A
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
OS–  
OS+  
OS+  
OS–  
10  
100  
1k  
10  
100  
CAPACITANCE (pF)  
1k  
CAPACITANCE (pF)  
Figure 25. Small-Signal Overshoot vs. Load Capacitance, VSY = 5 V  
Figure 28. Small-Signal Overshoot vs. Load Capacitance, VSY = 16 V  
Rev. B | Page 9 of 16  
AD8663/AD8667/AD8669  
V
= ±8V  
SY  
A
C
R
= 1  
= 200pF  
= 2k  
V
L
L
V
= ±2.5V  
SY  
A
C
R
= 1  
= 200pF  
= 2k  
V
L
L
TIME (10µs/DIV)  
TIME (20µs/DIV)  
Figure 29. Large Signal Transient Response, VSY  
=
2.5 V  
Figure 32. Large Signal Transient Response, VSY = 8 V  
V
= ±2.5V  
V
= ±8V  
SY  
SY  
A
C
R
= 1  
= 200pF  
= 10kΩ  
A
C
R
= 1  
= 200pF  
= 10kΩ  
V
L
L
V
L
L
TIME (2µs/DIV)  
TIME (2µs/DIV)  
Figure 30. Small Signal Transient Response, VSY  
=
2.5 V  
Figure 33. Small Signal Transient Response, VSY = 8 V  
300  
1200  
T
= +125°C  
A
T
= +125°C  
A
250  
200  
150  
100  
1000  
800  
600  
400  
T
= +85°C  
= +25°C  
A
T
= +85°C  
= +25°C  
T
A
A
T
A
T
= –40°C  
A
T
= –40°C  
A
50  
0
200  
0
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
16  
V
(V)  
V
(V)  
SY  
SY  
Figure 31. AD8663, Supply Current vs. Supply Voltage  
Figure 34. AD8669, Supply Current vs. Supply Voltage  
Rev. B | Page 10 of 16  
AD8663/AD8667/AD8669  
1000  
100  
10  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
V
= ±2.5V AND ±8V  
SY  
= 25°C  
+125°C  
+85°C  
T
A
+25°C  
–40°C  
1
0
0
2
4
6
8
10  
12  
14  
16  
1
10  
100  
1000  
10000  
V
(V)  
SY  
FREQUENCY (Hz)  
Figure 35. AD8667, Supply Current vs. Supply Voltage  
Figure 38. Voltage Noise Density  
0.15  
4.5  
4.0  
27  
0.15  
0.10  
0.05  
0
V
= ±2.5V  
= –100  
= 25°C  
V
A
T
= ±8V  
SY  
SY  
0.10  
0.05  
0
A
T
3.5  
= –100 22  
= 25°C  
V
V
A
3.0  
A
INPUT VOLTAGE  
INPUT VOLTAGE  
2.5  
17  
12  
7
2.0  
1.5  
1.0  
–0.05  
–0.10  
–0.15  
–0.20  
0.5  
–0.05  
–0.10  
–0.15  
–0.20  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
2
OUTPUT VOLTAGE  
–3  
–8  
OUTPUT VOLTAGE  
–0.25  
–0.25  
–13  
TIME (20µs/DIV)  
TIME (20µs/DIV)  
Figure 36. Positive Overload Recovery  
Figure 39. Positive Overload Recovery  
0.05  
0
7.0  
6.5  
0.05  
0
35  
30  
25  
20  
15  
10  
5
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
INPUT VOLTAGE  
V
= ±8V  
SY  
= –100  
= 25°C  
INPUT VOLTAGE  
V
= ±2.5V  
= –100  
= 25°C  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.30  
SY  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.30  
A
V
A
A
V
A
T
T
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
0
–0.5  
–1.0  
–0.35  
–0.35  
–5  
TIME (20µs/DIV)  
TIME (20µs/DIV)  
Figure 40. Negative Overload Recovery  
Figure 37. Negative Overload Recovery  
Rev. B | Page 11 of 16  
AD8663/AD8667/AD8669  
0
0
–20  
–40  
V
T
= ±2.5V  
20k  
V
T
= ±8V  
20kΩ  
SY  
= 25°C  
SY  
= 25°C  
A
–20  
A
2kΩ  
2kΩ  
–40  
–60  
–80  
–60  
–80  
–100  
–120  
–140  
–160  
–100  
–120  
–140  
–160  
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 41. Channel Separation vs. Frequency  
Figure 42. Channel Separation vs. Frequency  
Rev. B | Page 12 of 16  
AD8663/AD8667/AD8669  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 43. 8-Lead Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
3.25  
3.00 SQ  
2.75  
0.60 MAX  
0.50  
BSC  
0.60 MAX  
5
8
2.95  
2.75 SQ  
2.55  
1.60  
1.45  
1.30  
EXPOSED  
PAD  
TOP  
VIEW  
PIN 1  
INDICATOR  
(BOTTOM VIEW)  
4
1
PIN 1  
INDICATOR  
0.50  
0.40  
0.30  
1.89  
1.74  
1.59  
12° MAX  
0.70 MAX  
0.65TYP  
0.90 MAX  
0.85 NOM  
0.05 MAX  
0.01 NOM  
0.30  
0.23  
0.18  
SEATING  
PLANE  
0.20 REF  
Figure 44. 8-Lead Lead Frame Chip Scale Package [LFCSP_VD]  
3 mm × 3 mm Body, Very Thin, Dual Lead  
(CP-8-2)  
Dimensions shown in millimeters  
Rev. B | Page 13 of 16  
 
AD8663/AD8667/AD8669  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
0.65 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.00  
0.38  
0.22  
0.23  
0.08  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 45. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
8.75 (0.3445)  
8.55 (0.3366)  
8
7
14  
1
6.20 (0.2441)  
5.80 (0.2283)  
4.00 (0.1575)  
3.80 (0.1496)  
1.27 (0.0500)  
0.50 (0.0197)  
0.25 (0.0098)  
45°  
BSC  
1.75 (0.0689)  
1.35 (0.0531)  
0.25 (0.0098)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
1.27 (0.0500)  
0.40 (0.0157)  
0.51 (0.0201)  
0.31 (0.0122)  
0.25 (0.0098)  
0.17 (0.0067)  
COMPLIANT TO JEDEC STANDARDS MS-012-AB  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 46. 14-Lead Small Outline Package [SOIC_N]  
Narrow Body  
(R-14)  
Dimensions shown in millimeters and (inches)  
5.10  
5.00  
4.90  
14  
8
7
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
0.65  
BSC  
1.05  
1.00  
0.80  
0.20  
0.09  
1.20  
MAX  
0.75  
0.60  
0.45  
8°  
0°  
0.15  
0.05  
0.30  
0.19  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1  
Figure 47. 14-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-14)  
Dimensions shown in millimeters  
Rev. B | Page 14 of 16  
AD8663/AD8667/AD8669  
ORDERING GUIDE  
Model  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead LFCSP_VD  
8-Lead LFCSP_VD  
8-Lead LFCSP_VD  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead MSOP  
Package Option  
R-8  
R-8  
Branding  
AD8663ARZ1  
AD8663ARZ-REEL1  
AD8663ARZ-REEL71  
AD8663ACPZ-R21  
AD8663ACPZ-REEL1  
AD8663ACPZ-REEL71  
AD8667ARZ1  
AD8667ARZ-REEL1  
AD8667ARZ-REEL71  
AD8667ARMZ-R21  
AD8667ARMZ-REEL1  
AD8669ARZ1  
R-8  
CP-8-2  
CP-8-2  
CP-8-2  
R-8  
R-8  
R-8  
RM-8  
RM-8  
R-14  
R-14  
R-14  
A1U  
A1U  
A1U  
A1E  
A1E  
8-Lead MSOP  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead TSSOP  
14-Lead TSSOP  
AD8669ARZ-REEL1  
AD8669ARZ-REEL71  
AD8669ARUZ1  
RU-14  
RU-14  
AD8669ARUZ-REEL1  
1 Z = RoHS Compliant Part.  
Rev. B | Page 15 of 16  
 
 
AD8663/AD8667/AD8669  
NOTES  
©2007–2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06742-0-1/08(B)  
Rev. B | Page 16 of 16  

相关型号:

AD8669ARZ-REEL1

Low Noise, Precision, 16 V, CMOS, Rail-to-Rail Operational Amplifiers
ADI

AD8669ARZ-REEL7

Low Noise, Precision, 16 V, CMOS, Rail-to-Rail Operational Amplifiers
ADI

AD8669ARZ-REEL71

Low Noise, Precision, 16 V, CMOS, Rail-to-Rail Operational Amplifiers
ADI

AD8669ARZ1

Low Noise, Precision, 16 V, CMOS, Rail-to-Rail Operational Amplifiers
ADI

AD8671

Precision Very Low Noise Low Input Bias Current Operational Amplifiers
ADI

AD8671AR

Precision Very Low Noise Low Input Bias Current Operational Amplifiers
ADI

AD8671AR-REEL

Precision, Very Low Noise, Low Input Bias Current Operational Amplifiers
ADI

AD8671AR-REEL7

Precision, Very Low Noise, Low Input Bias Current Operational Amplifiers
ADI

AD8671ARM

Precision Very Low Noise Low Input Bias Current Operational Amplifiers
ADI

AD8671ARM-R2

Precision, Very Low Noise, Low Input Bias Current Operational Amplifiers
ADI

AD8671ARM-REEL

Precision, Very Low Noise, Low Input Bias Current Operational Amplifiers
ADI

AD8671ARM-REEL7

IC OP-AMP, 125 uV OFFSET-MAX, 10 MHz BAND WIDTH, PDSO8, MO-187AA, MSOP-8, Operational Amplifier
ADI