AD8698 [ADI]

Dual Precision, Rail-to-Rail Output Operational Amplifier; 双路精密,轨到轨输出运算放大器
AD8698
型号: AD8698
厂家: ADI    ADI
描述:

Dual Precision, Rail-to-Rail Output Operational Amplifier
双路精密,轨到轨输出运算放大器

运算放大器
文件: 总20页 (文件大小:309K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual Precision, Rail-to-Rail Output  
Operational Amplifier  
AD8698  
FEATURES  
CONNECTION DIAGRAMS  
Low offset voltage: 100 µV max  
Low offset voltage drift: 2 µV/°C max  
Low input bias current: 700 pA max  
Low noise: 8 nV/Hz  
High common-mode rejection: 118 dB min  
Wide operating temperature: 40°C to +85°C  
No phase reversal  
8-Lead SOIC  
(R-8)  
8-Lead MSOP  
(RM-8)  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
V+  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
AD8698  
AD8698  
7
6
5
OUT B  
–IN B  
+IN B  
OUT B  
–IN B  
+IN B  
TOP VIEW  
TOP VIEW  
(Not to Scale)  
(Not to Scale)  
Figure 1.  
APPLICATIONS  
Photodiode amplifier  
Sensors and controls  
Multipole filters  
Integrator  
GENERAL DESCRIPTION  
The AD8698 is a high precision, rail-to-rail output, low noise,  
low input bias current operational amplifier. Offset voltage is a  
respectable 100 µV max and drift over temperature is below  
2 µV/°C, eliminating the need for manual offset trimming. The  
AD8698 is ideal for high impedance sensors, minimizing offset  
errors due to input bias and offset currents.  
The rail-to-rail output maximizes dynamic range in a variety of  
applications, such as photodiode amplifiers, DAC I/V  
amplifiers, filters, and ADC input amplifiers.  
The AD8698 dual amplifiers are offered in 8-lead MSOP and  
narrow 8-lead SOIC packages. The MSOP version is available  
in tape and reel only.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
AD8698  
TABLE OF CONTENTS  
Specifications .................................................................................... 3  
Instrumentation Amplifier ....................................................... 15  
Composite Amplifier................................................................. 15  
Low Noise Applications ............................................................ 16  
Driving ADCs............................................................................. 16  
Using the AD8698 in Active Filter Designs ........................... 16  
Outline Dimensions....................................................................... 17  
Ordering Guide .......................................................................... 17  
Absolute Maximum Ratings ........................................................... 5  
Thermal Resistance...................................................................... 5  
ESD Caution.................................................................................. 5  
Typical Performance Characteristics............................................. 6  
Applications .................................................................................... 14  
Input Overvoltage Protection................................................... 14  
Driving Capacitive Loads.......................................................... 14  
REVISION HISTORY  
4/04—Revision 0: Initial Version  
Rev. 0 | Page 2 of 20  
AD8698  
SPECIFICATIONS  
VS = 15 V, VCM = 0 V (@TA = 25oC, unless otherwise noted.)  
Table 1.  
Parameter  
Symbol Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
20  
100  
300  
2
µV  
µV  
40°C < TA < +85°C  
40°C < TA < +85°C  
Offset Voltage Drift  
Input Bias Current  
0.6  
µV/°C  
pA  
pA  
pA  
pA  
V
VOS/T  
IB  
700  
1500  
700  
1500  
13.5  
40°C < TA < +85°C  
Input Offset Current  
IOS  
40°C < TA < +85°C  
40°C < TA < +85°C  
VCM = 13.5 V  
Input Voltage Range  
IVR  
13.5V  
118  
Common-Mode Rejection Ratio  
Large Signal Voltage Gain  
Input Capacitance  
CMRR  
AVO  
132  
1450  
6.5  
dB  
900  
V/mV  
pF  
RL = 2 k, VO = 13.5 V  
CDIFF  
CCM  
4.6  
pF  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
(Ref. to GND)  
(Ref. to GND)  
VOH  
VOH  
VOL  
VOL  
14.85  
14.6  
14.93  
14.8  
V
V
V
V
IL = 1 mA, 40°C < TA < +85°C  
IL = 5 mA, 40°C < TA < +85°C  
IL = 1 mA, 40°C < TA < +85°C  
IL = 5 mA, 40°C < TA < +85°C  
14.93  
14.82  
14.6  
14.5  
POWER SUPPLY  
Power Supply Rejection Ratio  
Supply Current  
PSRR  
ISY  
2.5 V < VS < 15 V  
VO = 0 V  
114  
2.5  
132  
2.8  
dB  
mA  
mA  
V
3.2  
3.8  
15  
40°C < TA < +85°C  
40°C < TA < +85°C  
Supply Voltage  
VS  
DYNAMIC PERFORMANCE  
Slew Rate  
SR  
0.4  
1
V/µs  
RL = 2 kΩ  
Gain Bandwidth Product  
Phase Margin  
GBP  
ØO  
MHz  
60  
Degrees  
NOISE PERFORMANCE  
Input Noise Voltage  
Input Voltage Noise Density  
Input Voltage Noise Density  
Current Noise Density  
en p-p  
en  
0.1 Hz < f < 10 Hz  
f = 10 Hz  
0.6  
15  
8
µV p-p  
nV/Hz  
nV/Hz  
pA/Hz  
en  
f = 1 kHz  
in  
f = 1 kHz  
0.2  
Rev. 0 | Page 3 of 20  
AD8698  
VS = 2.5 V, VCM = 0 V (@TA = 25oC, unless otherwise noted.)  
Table 2.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
20  
100  
µV  
300  
2
µV  
40°C < TA < +85°C  
40°C < TA < +85°C  
Offset Voltage Drift  
Input Bias Current  
µV/°C  
pA  
pA  
pA  
pA  
V
VOS/T  
IB  
700  
1500  
700  
1500  
+1.5  
40°C < TA < +85°C  
Input Offset Current  
IOS  
40°C < TA < +85°C  
40°C < TA < +85°C  
VCM = 13.5 V  
Input Voltage Range  
IVR  
1.5  
105  
600  
Common-Mode Rejection Ratio  
Large Signal Voltage Gain  
Input Capacitance  
CMRR  
AVO  
120  
1200  
6.4  
dB  
V/mV  
pF  
RL = 2 k, VO = 13.5 V  
CDIFF  
CCM  
4.6  
pF  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
(Ref. to GND)  
(Ref. to GND)  
VOH  
VOH  
VOL  
VOL  
2.35  
2.1  
2.44  
V
V
V
V
IL = 1 mA, 40°C < TA < +85°C  
IL = 5 mA, 40°C < TA < +85°C  
IL = 1 mA, 40°C < TA < +85°C  
IL = 5 mA, TA = 25°C  
2.29  
2.43  
2.15  
2.2  
1.9  
1.6  
IL= 5mA, 40°C<TA<+85°C  
POWER SUPPLY  
Power Supply Rejection Ratio  
Supply Current  
PSRR  
ISY  
2.5 V < VS < 15 V  
VO = 0 V  
114  
2.5  
132  
2.3  
dB  
mA  
mA  
V
2.8  
3.3  
15  
40°C < TA < +85°C  
40°C < TA < +85°C  
Supply Voltage  
Vs  
DYNAMIC PERFORMANCE  
Slew Rate  
SR  
0.4  
1
V/µs  
RL = 2 kΩ  
Gain Bandwidth Product  
Phase Margin  
GBP  
Øo  
MHz  
60  
Degrees  
NOISE PERFORMANCE  
Input Noise Voltage  
Input Voltage Noise Density  
Input Voltage Noise Density  
Current Noise Density  
en p-p  
en  
0.1 Hz < f < 10Hz  
f = 10 Hz  
0.6  
15  
8
µV p-p  
nV/Hz  
nV/Hz  
pA/Hz  
en  
f =1 kHz  
in  
f = 1 kHz  
0.2  
Rev. 0 | Page 4 of 20  
AD8698  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 3.  
θJA is specified for the worst-case conditions, i.e., θJA is specified  
for devices soldered in circuit boards for surface-mount  
packages.  
Parameter  
Rating  
15 V  
VS  
Supply Voltage  
Input Voltage  
Differential Input Voltage  
VS  
Table 4. Thermal Resistance  
Package Type  
Output Short-Circuit Duration  
to Gnd  
Indefinite  
Unit  
θJA  
210  
158  
θJC  
45  
43  
Storage Temperature Range  
R, RM Packages  
Operating Temperature Range  
65°C to +150°C  
MSOP-8 (RM)  
SOIC-8 (R)  
°C/W  
°C/W  
40°C to +85°C  
65°C to +150°C  
Junction Temperature Range  
R, RM Packages  
Lead Temperature Range  
(Soldering, 60 Sec)  
+300°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 1000 V readily accumulate on the  
human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. 0 | Page 5 of 20  
AD8698  
TYPICAL PERFORMANCE CHARACTERISTICS  
100  
80  
225  
180  
135  
90  
80  
V
= ±15V  
V
= ±15V  
S
S
70  
60  
50  
40  
30  
20  
10  
0
60  
40  
45  
20  
0
0
–45  
–20  
–40  
–90  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
TCV (µV/°C)  
OS  
Figure 2. Input Offset Voltage Drift Distribution  
Figure 5. Open-Loop Gain and Phase vs. Frequency  
80  
70  
60  
50  
40  
30  
20  
10  
0
50  
40  
V
= ±15V  
V
= ±15V  
S
S
A
= 100  
= 10  
= 1  
V
30  
20  
A
V
10  
0
A
V
–10  
–20  
–100 –80 –60 –40 –20  
0
20  
(µV)  
40  
60  
80 100  
1k  
10k  
100k  
1M  
10M  
V
FREQUENCY (Hz)  
OS  
Figure 3. Offset Voltage Distribution  
Figure 6. Closed-Loop Gain vs. Frequency  
70  
60  
50  
40  
30  
20  
10  
0
60  
45  
30  
15  
V
= ±15V  
V
S
= ±15V  
S
A
= 100  
V
A
= 10  
V
A
V
= 1  
0
10  
–400 –320 –240 –160 –80  
0
80 160 240 320 400  
(pA)  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
I
B
Figure 4. Input Bias Distribution  
Figure 7. Output Impedance vs. Frequency  
Rev. 0 | Page 6 of 20  
AD8698  
V
V
C
= ±15V  
= 4V p-p  
= 1nF  
S
IN  
0
L
V
V
IN  
–200  
15  
OUT  
V
= ±15V  
= 200mV p-p  
= –100  
S
0
V
IN  
A
V
TIME (100µs/DIV)  
TIME (10µs/DIV)  
Figure 8. Large Signal Transient Response  
Figure 11. Positive Overvoltage Recovery  
V
= ±15V  
= 200mV p-p  
= 1nF  
V
V
A
= ±15V  
S
S
V
= 200mV  
IN  
IN  
200  
C
= –100  
L
V
V
IN  
0
0
–15  
V
OUT  
TIME (100µs/DIV)  
TIME (400µs/DIV)  
Figure 9. Small Signal Transient Response  
Figure 12. Negative Overvoltage Recovery  
50  
120  
100  
80  
60  
40  
20  
0
V
V
A
= ±15V  
= 200mV  
= 1  
V
= ±15V  
S
IN  
V
S
30  
20  
10  
0
0
500  
1000  
1500  
2000  
2500  
3000  
1k  
10k  
100k  
1M  
10M  
CAPACITIVE LOAD (pF)  
FREQUENCY (Hz)  
Figure 10. Overshoot vs. Load Capacitance  
Figure 13. CMRR vs. Frequency  
Rev. 0 | Page 7 of 20  
AD8698  
100  
80  
60  
40  
20  
100  
10  
1
V
= ±15V  
S
V
= ±15V  
S
+PSRR  
–PSRR  
0
10  
0.1  
0.1  
100  
1k  
10k  
100k  
1M  
1
10  
100  
1k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 17. Current Noise Density vs. Frequency  
Figure 14. PSRR vs. Frequency  
20  
10  
–I  
SC  
V
S
= ±15V  
V = ±15V  
S
0
–10  
–20  
–30  
–40  
+I  
SC  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
TIME (1s/DIV)  
Figure 18. Short-Circuit Current vs. Temperature  
Figure 15. Input Voltage Noise  
14.96  
14.95  
14.94  
14.93  
14.92  
14.91  
14.90  
14.89  
14.88  
14.87  
100  
V
= ±15V  
S
V
= ±15V  
= 1mA  
S
I
L
10  
V
OH  
–V  
OL  
1
0.1  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
1
10  
100  
1k  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 16. Voltage Noise Density vs. Frequency  
Figure 19. Output Swing vs. Temperature  
Rev. 0 | Page 8 of 20  
AD8698  
14.90  
14.85  
14.80  
14.75  
14.70  
14.65  
14.60  
140  
138  
136  
134  
132  
130  
V
= ±15V  
= 5mA  
V = ±15V  
S
S
I
L
V
OH  
–V  
OL  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
100  
100  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
100  
20  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 20. Output Voltage Swing vs. Temperature  
Figure 23. PSRR vs. Temperature  
30  
20  
100  
50  
V
= ±15V  
S
V
= ±15V  
S
10  
0
0
–10  
–20  
–30  
–50  
–100  
–60  
–40  
–20  
0
20  
40  
60  
80  
–60  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 21. Offset Voltage vs. Temperature  
Figure 24. Input Bias Current vs. Temperature  
155  
150  
145  
140  
135  
130  
125  
120  
6
5
4
3
2
1
0
V
= ±15V  
S
V
= ±15V  
S
V
OL  
V
OH  
15  
–60  
–40  
–20  
0
20  
40  
60  
80  
0
5
10  
LOAD CURRENT (mA)  
TEMPERATURE (°C)  
Figure 22. CMRR vs. Temperature  
Figure 25. Output Voltage Swing from Rails vs. Load Current  
Rev. 0 | Page 9 of 20  
AD8698  
3.5  
100  
80  
225  
180  
135  
90  
V
= ±2.5V  
S
V
= ±15V  
S
3.0  
2.5  
2.0  
1.5  
60  
40  
45  
20  
0
0
–45  
–90  
–20  
–40  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
TEMPERATURE (°C)  
Figure 26. Supply Current vs. Temperature  
Figure 29. Open-Loop Gain and Phase vs. Frequency  
0
–20  
60  
45  
30  
15  
0
V
= ±15V  
V = ±2.5V  
S
S
–40  
–60  
A
= 10  
–80  
V
A
= 100  
V
–100  
–120  
–140  
A
= 1  
V
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 27. Channel Separation  
Figure 30. Output Impedance vs. Frequency  
70  
60  
50  
40  
30  
20  
10  
0
V
= ±2.5V  
S
V
V
C
= ±2.5V  
S
= 2V p-p  
= 1nF  
IN  
L
0
–100 –80 –60 –40 –20  
0
20  
V)  
40  
60  
80 100  
V
(µ  
OS  
TIME (100µs/DIV)  
Figure 28. Offset Voltage Distribution  
Figure 31. Large Signal Transient Response  
Rev. 0 | Page 10 of 20  
AD8698  
V
V
A
= ±2.5V  
S
V
V
C
= ±2.5V  
= 200mV p-p  
= 1nF  
S
= 200mV p-p  
= –100  
IN  
200  
IN  
V
L
V
IN  
0
0
–2.5  
V
OUT  
TIME (100  
µ
s/DIV)  
TIME (4µs/DIV)  
Figure 32. Small Signal Transient Response  
Figure 35. Negative Overvoltage Recovery  
50  
40  
30  
20  
10  
0
120  
100  
80  
60  
40  
20  
0
V
V
A
= ±2.5V  
= 200mV  
= 1  
V
= ±2.5V  
S
IN  
V
S
0
500  
1000  
1500  
2000  
2500  
3000  
1k  
10k  
100k  
1M  
10M  
CAPACITIVE LOAD (pF)  
FREQUENCY (Hz)  
Figure 33. Overshoot vs. Load Capacitance  
Figure 36. CMRR vs. Frequency  
100  
80  
60  
40  
20  
0
V
= ±2.5V  
S
0
V
IN  
–200  
2.5  
+PSRR  
–PSRR  
V
OUT  
0
V
V
= ±2.5V  
= 200mV p-p  
= –100  
S
IN  
A
V
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
TIME (4µs/DIV)  
Figure 37. PSRR vs. Frequency  
Figure 34. Positive Overvoltage Recovery  
Rev. 0 | Page 11 of 20  
AD8698  
20  
30  
20  
–I  
SC  
V
= ±2.5V  
S
V
= ±2.5V  
S
10  
10  
0
0
–10  
–20  
–10  
–20  
–30  
+I  
SC  
–30  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
100  
100  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
100  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 38. Short-Circuit Current vs. Temperature  
Figure 41. Offset Voltage vs. Temperature  
134  
132  
130  
128  
126  
124  
2.46  
2.45  
2.44  
2.43  
2.42  
2.41  
2.40  
2.39  
V
= ±2.5V  
= 1mA  
S
V
= ±2.5V  
S
I
L
V
OH  
–V  
OL  
2.38  
–60  
–40  
–20  
0
20  
40  
60  
80  
–60  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 39. Output Swing vs. Temperature  
Figure 42. CMRR vs. Temperature  
2.5  
2.3  
2.1  
1.9  
1.7  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
V
= ±2.5V  
= 5mA  
S
V
= ±2.5V  
S
I
L
V
OH  
–V  
OL  
1.5  
–60  
–40  
–20  
0
20  
40  
60  
80  
–60  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 43. Input Bias Current vs. Temperature  
Figure 40. Output Voltage Swing vs. Temperature  
Rev. 0 | Page 12 of 20  
AD8698  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2500  
2000  
1500  
1000  
500  
V
= ±2.5V  
S
V
OL  
V
OH  
0
0
5
10  
15  
20  
25  
30  
35  
0
5
10  
LOAD CURRENT (mA)  
15  
20  
SUPPLY VOLTAGE (V)  
Figure 47. Supply Current vs. Supply Voltage  
Figure 44. Output Voltage Swing from Rails vs. Load Current  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
–20  
V
= ±2.5V  
S
V
= ±2.5V  
S
–40  
–60  
–80  
–100  
–120  
–140  
0
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
1k  
10k  
100k  
1M  
10M  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 45. Supply Current vs. Temperature  
Figure 48. Channel Separation  
V
V
= ±5V  
S
= 11.4V p-p  
IN  
TIME (400µs/DIV)  
Figure 46. No Phase Reversal  
Rev. 0 | Page 13 of 20  
AD8698  
V
= ±15V  
= 68nF  
= 30Ω  
= 5nF  
= 1  
S
APPLICATIONS  
INPUT OVERVOLTAGE PROTECTION  
C
R
C
A
L
S
S
V
The AD8698 has internal protective circuitry which allows  
voltages at either input to exceed the supply voltage. However,  
if voltages applied at either input exceed the supply voltage by  
more than 2 V, it is recommended to use a resistor in series  
with the inputs to limit the input current and prevent damaging  
the device.  
The value of the resistor can be calculated from the following  
formula:  
VIN VS  
5mA  
TIME (10µs/DIV)  
RS +500  
Figure 50. Compensated Capacitive Load Drive with Snubber  
DRIVING CAPACITIVE LOADS  
The snubber network consists of a simple RC network  
whose values are determined empirically.  
The AD8698 is stable even when driving heavy capacitive  
loads in any configuration. Although the AD8698 will safely  
drive capacitive loads well over 10 nF, it is recommended to  
use external compensation should the amplifier be subjected  
to driving a load exceeding 50 nF. This is particularly  
important in positive unity gain configurations, the worst  
case for stability. Figure 49 shows the output of the AD8698  
with a 68 nF load in response to a 400 mV signal at its  
positive input; the overshoot is less than 25% without any  
external compensation. Using a simple “snubber” network  
reduces the overshoot to less than 10% as shown in  
Figure 50.  
V–  
V+  
R
S
C
L
+
C
S
400mV  
Figure 51. Snubber Network  
Table 5 provides a few starting values for optimum  
compensation.  
Table 5. Compensation Values  
V
C
A
= ±15V  
= 68nF  
= 1  
S
L
V
CL (nF)  
CS (nF)  
RS ()  
20  
47  
7
5
3
68  
30  
100  
50  
The use of the snubber network does not recover the loss of  
bandwidth incurred by the load capacitance. The AD8698  
maintains a unity gain bandwidth of 1 MHz with load  
capacitances of up to 1 nF.  
TIME (10µs/DIV)  
Figure 49. Heavy Capacitive Load Drive without Compensation  
Rev. 0 | Page 14 of 20  
 
 
 
AD8698  
10M  
1M  
R1  
1kΩ  
R2  
10kΩ  
V1  
V+  
V–  
R3  
9kΩ  
1/2 AD8698  
R4  
2kΩ  
V+  
V–  
100k  
10k  
1k  
OP184  
R5  
10kΩ  
R3  
9kΩ  
V–  
V+  
R1  
9.8kΩ  
R7  
V2  
400Ω  
1/2 AD8698  
1
10  
100  
LOAD CAPACITANCE (nF)  
Figure 53. Three Op Amp In-Amp  
Figure 52. Unity Gain Bandwidth vs. Load Capacitance  
COMPOSITE AMPLIFIER  
Figure 52 shows the unity gain bandwidth as a function of load  
capacitance.  
The dc accuracy of the AD8698 and the ac performance of the  
OP184 are combined in the circuit shown in Figure 54. The  
composite amplifier provides a higher bandwidth, a lower offset  
voltage, and a higher loop, thereby reducing the gain error  
substantially.  
INSTRUMENTATION AMPLIFIER  
Instrumentation amplifiers are used in applications requiring  
precision, accuracy, and high CMRR. One popular application  
is signal conditioning in process control, test automation, and  
measurement instrumentation, where the amplifier is used to  
amplify small signals.  
The circuit shown exhibits a total output rms noise of less than  
500 µV, corresponding to less than 3 mV of peak-to-peak noise  
over approximately a 3 MHz bandwidth. Cf is used to minimize  
peaking.  
The triple op amp implementation uses the AD8698 at the  
front end with the OP184 for optimum accuracy.  
The circuit has an inverting gain of 10. In applications with  
higher closed-loop gains, Cf is necessary to maintain a  
sufficient phase margin and ensure stability. This results in a  
narrower closed-loop bandwidth.  
The circuit in Figure 53 enjoys a high overall gain, excellent dc  
performance, high CMRR, as well as the benefit of an output  
that swings to the supplies.  
R2  
10kΩ  
The CMRR of the in-amp will be limited by the choice of  
resistor tolerance. R5 is an optional potentiometer that can be  
used to calibrate the circuit for maximum gain. R7 can be  
trimmed for optimum CMRR.  
R1  
1kΩ  
Cf  
20pF  
V
IN  
V–  
V+  
The output voltage is given by:  
V–  
V+  
OP184  
2R3 R2  
1/2 AD8698  
⎞⎛  
⎟⎜  
⎠⎝  
VO =VIN 1+  
R4  
R1  
Figure 54. Composite Amplifier Circuit  
Rev. 0 | Page 15 of 20  
 
 
 
AD8698  
If a higher gain is desired, the corner frequency should be  
chosen accordingly. For example, if the amplifier is configured  
with a gain of 10, the corner frequency of the filter should not  
be more than 10 kHz.  
LOW NOISE APPLICATIONS  
In some applications, it is critical to minimize the noise, and  
although the AD8698 has a low noise of typically 8 nV/Hz at  
1 kHz, paralleling the two amplifiers within the same package  
reduces the total noise referred to the input to approximately  
5.5 nV/Hz. This simple technique is depicted in Figure 55.  
An example of an active filter is the Sallen Key. This topology  
gives the user the flexibility of implementing a low-pass or a  
high-pass filter by simply interchanging the resistors and the  
capacitors.  
V
IN  
V+  
V–  
R3  
100Ω  
In the high-pass filter of Figure 56, the damping factor Q is set  
to 1/2 for a maximally flat response (Butterworth).  
R1  
1kΩ  
R2  
10kΩ  
The gain is unity and the bandwidth is 10 kHz with the values  
shown.  
V
OUT  
C1  
R1  
1nF  
11kΩ  
V–  
V+  
V
IN  
R5  
100Ω  
C2  
1nF  
R3  
1kΩ  
V+  
V–  
R4  
10kΩ  
R2  
22kΩ  
Figure 55. Paralleling Amplifiers  
DRIVING ADCs  
Figure 56. Two Pole High-Pass Filter  
The AD8698 can drive extremely heavy capacitive loads  
C1  
2nF  
R1  
11kΩ  
without any compensation. Sometimes capacitors are placed at  
the output of the amplifier to absorb transient currents while  
the op amp is interfaced with the ADC. Most op amps need a  
small resistor with the output to isolate the load capacitance.  
V
IN  
R2  
11kΩ  
V+  
This results in a loss of bandwidth and slows the amplifier  
down substantially. However, the AD8698 maintains a unity  
gain bandwidth of 1 MHz with loads of up to 1 nF, as shown in  
Figure 52.  
V–  
C2  
1nF  
Figure 57. Two Pole Low-Pass Filter  
USING THE AD8698 IN ACTIVE FILTER DESIGNS  
The circuit of Figure 57 has a bandwidth of 10 kHz and a  
maximally flat response. In this case, the damping factor is  
controlled by the ratio of the capacitors and the gain is unity.  
The AD8698 is recommended for unity gain filter designs with  
a corner frequency of up to 100 kHz, one tenth of the op amp’s  
unity gain bandwidth.  
Rev. 0 | Page 16 of 20  
 
 
 
AD8698  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
1.27 (0.0500)  
BSC  
0.50 (0.0196)  
0.25 (0.0099)  
× 45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0.51 (0.0201)  
0.31 (0.0122)  
0° 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.40 (0.0157)  
COMPLIANT TO JEDEC STANDARDS MS-012AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
Figure 58. 8-Lead Small Outline IC [SOIC] (R-8)—Dimensions shown in millimeters  
3.00  
BSC  
8
5
4
4.90  
BSC  
3.00  
BSC  
PIN 1  
0.65 BSC  
1.10 MAX  
0.15  
0.00  
0.80  
0.60  
0.40  
8°  
0°  
0.38  
0.22  
0.23  
0.08  
COPLANARITY  
0.10  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-187AA  
Figure 59. 8-Lead Small Outline IC [SOIC] (RM-8)—Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Package  
Package Description  
Package Option  
Branding  
AD8698ARM-R2  
AD8698ARM-REEL  
AD8698AR  
AD8698AR-REEL  
AD8698AR-REEL7  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
MSOP  
MSOP  
SOIC  
SOIC  
SOIC  
RM-8  
RM-8  
R-8  
R-8  
R-8  
A02  
A02  
Rev. 0 | Page 17 of 20  
AD8698  
NOTES  
Rev. 0 | Page 18 of 20  
AD8698  
NOTES  
Rev. 0 | Page 19 of 20  
AD8698  
NOTES  
©
2004 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D04807-0-4/04(0)  
Rev. 0 | Page 20 of 20  

相关型号:

AD8698AR

Dual Precision, Rail-to-Rail Output Operational Amplifier
ADI

AD8698AR

DUAL OP-AMP, 300 uV OFFSET-MAX, 1 MHz BAND WIDTH, PDSO8, MS-012AA, SOIC-8
ROCHESTER

AD8698AR-REEL

Dual Precision, Rail-to-Rail Output Operational Amplifier
ADI

AD8698AR-REEL7

Dual Precision, Rail-to-Rail Output Operational Amplifier
ADI

AD8698ARM-R2

Dual Precision, Rail-to-Rail Output Operational Amplifier
ADI

AD8698ARM-R2

DUAL OP-AMP, 300 uV OFFSET-MAX, 1 MHz BAND WIDTH, PDSO8, MO-187AA, MSOP-8
ROCHESTER

AD8698ARM-REEL

Dual Precision, Rail-to-Rail Output Operational Amplifier
ADI

AD8698ARM-REEL

DUAL OP-AMP, 300 uV OFFSET-MAX, 1 MHz BAND WIDTH, PDSO8, MO-187AA, MSOP-8
ROCHESTER

AD8698ARMZ

IC,OP-AMP,DUAL,BIPOLAR,TSSOP,8PIN,PLASTIC
ADI

AD8698ARMZ-R2

IC DUAL OP-AMP, 300 uV OFFSET-MAX, 1 MHz BAND WIDTH, PDSO8, MO-187AA, MSOP-8, Operational Amplifier
ADI

AD8698ARMZ-R2

DUAL OP-AMP, 300 uV OFFSET-MAX, 1 MHz BAND WIDTH, PDSO8, MO-187AA, MSOP-8
ROCHESTER

AD8698ARMZ-REEL

暂无描述
ADI