AD9026AD [ADI]

IC 1-CH 12-BIT FLASH METHOD ADC, PARALLEL ACCESS, CDIP28, 0.600 INCH, HERMETIC SEALED, CERAMIC, DIP-28, Analog to Digital Converter;
AD9026AD
型号: AD9026AD
厂家: ADI    ADI
描述:

IC 1-CH 12-BIT FLASH METHOD ADC, PARALLEL ACCESS, CDIP28, 0.600 INCH, HERMETIC SEALED, CERAMIC, DIP-28, Analog to Digital Converter

CD 转换器
文件: 总16页 (文件大小:507K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Speed 12-Bit  
Monolithic A/D Converters  
a
AD9026/AD9027  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
25.6 MSPS and 31 MSPS Grades  
On-Chip T/H and Reference  
1.65 Watt Power Dissipation  
75 dBc Spurious-Free Dynamic Range  
TTL and ECL Logic Versions  
AD9026/AD9027  
5-BIT  
ANALOG  
INPUT  
T/H  
12  
DIGITAL  
ERROR  
CORRECTION  
ADC  
DAC  
**  
DIGITAL  
OUTPUTS  
5-BIT  
ADC  
ENCODE  
+5V  
APPLICATIONS  
16  
T/H  
*ENCODE  
DAC  
–5.2V  
GND  
Cellular Base Stations  
Communications Receivers  
Radar Receivers  
+2V  
REF  
4-BIT  
8
T/H  
ADC  
Spectrum Analyzers  
Electro-optics  
Medical Imaging  
**AD9026 DIGITAL OUTPUTS: TTL  
AD9027 DIGITAL OUTPUTS: ECL  
*AD9027 ONLY  
PRODUCT DESCRIPTION  
PRODUCT HIGHLIGHTS  
The AD9026 and AD9027 are high speed, high performance,  
monolithic 12-bit analog-to-digital converters. All necessary  
functions, including track-and-hold (T/H) and reference are  
included on chip to provide complete conversion solutions. The  
AD9026 features TTL logic for digital inputs and outputs; the  
AD9027 uses ECL logic including differential ECL encode.  
Both the TTL and ECL converters are available at 25.6 Msps  
(A grade) and 31 Msps (B grade) production tested encode  
rates.  
1. At 31 Msps (B grade devices) conversion rate, the converters  
can digitize 15 MHz of spectrum.  
2. On-chip T/H provides > 70 dB spurious-free dynamic range  
over entire Nyquist band.  
3. On-chip reference sets a 2.048 V p-p input voltage range  
centered at 0 V.  
4. AD9026 outputs connect directly to TTL logic; no ECL-to-  
TTL chips required.  
The on-chip T/H has a 150 MHz input bandwidth and is de-  
signed to provide good dynamic performance for input frequen-  
cies above Nyquist. This feature is necessary for IF-to-digital  
conversion applications in which the A/D converter is used in  
an undersampling mode. In addition, wide spurious-free dy-  
namic range over the entire Nyquist bandwidth makes the  
AD9026 and AD9027 well suited for multichannel transceiver  
applications; both 31 Msps converters can digitize bandwidths  
up to 15 MHz.  
5. AD9027 ECL outputs offer lowest noise alternative for sys-  
tem designs that prefer reduced output voltage swings.  
The AD9026 and AD9027 are built on a trench isolated bipolar  
process and use an innovative multipass architecture (see Func-  
tional Block Diagram). Both parts are packaged in a 28-pin  
ceramic DIP; the custom cofired ceramic package forms a multi-  
layer substrate to which internal bypass capacitors and the ADC  
die are attached. Both the AD9026 and the AD9027 are speci-  
fied to operate over the industrial (–25°C to +85°C measured  
at case) temperature range.  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood. MA 02062-9106, U.S.A.  
Tel: 617/329-4700  
Fax: 617/326-8703  
AD9026/AD9027–SPECIFICATIONS  
(+V = +5 V, –V = –5.2 V unless otherwise noted)  
DC SPECIFICATIONS  
S
S
Test  
AD9026AD/BD  
AD9027AD/BD  
Parameter  
Temp  
Level  
Min  
Typ  
Max  
Min  
Typ  
Max  
Units  
RESOLUTION  
12  
12  
Bits  
DC ACCURACY  
No Missing Codes  
Offset Error  
Full  
+25°C  
Full  
+25°C  
Full  
+25°C  
VI  
I
VI  
I
VI  
V
Guaranteed  
Guaranteed  
5
25  
5
25  
mV  
15  
0.5  
0.5  
0.7  
35  
15  
0.5  
0.5  
0.7  
35  
mV  
Gain Error  
5.0  
5.5  
5.0  
5.5  
% FS  
% FS  
LSB rms  
Thermal Noise1  
ANALOG INPUT  
Input Voltage Range  
Input Resistance  
±1.024  
300  
7
±1.024  
300  
7
V
Full  
IV  
V
225  
2
375  
225  
375  
Input Capacitance  
+25°C  
pF  
ENCODE INPUT  
Logic Compatibility  
Logic “1” Voltage  
Logic “0” Voltage  
Logic “1” Current  
Logic “0” Current  
Input Capacitance  
TTL  
ECL  
Full  
VI  
VI  
VI  
VI  
V
–1.1  
V
V
µA  
µA  
pF  
Full  
0.8  
20  
20  
–1.5  
10  
10  
Full  
7
7
4
3
3
4
Full  
+25°C  
DIGITAL OUTPUTS2  
Logic Compatibility  
Logic “1” Voltage  
Logic “0” Voltage  
Output Coding  
TTL  
ECL  
Full  
Full  
VI  
VI  
2.4  
–1.1  
V
V
0.5  
–1.5  
Offset Binary  
Offset Binary  
POWER SUPPLY  
+VS Supply Voltage  
+VS Supply Current  
–VS Supply Voltage  
–VS Supply Current  
Power Dissipation3  
Power Supply  
Full  
Full  
Full  
Full  
Full  
VI  
VI  
VI  
I
4.75  
–5.45  
5.0  
5.25  
142  
–4.95  
248  
2.0  
4.75  
–5.45  
5.0  
5.25  
130  
–4.95  
260  
2.0  
V
mA  
V
mA  
W
120  
–5.2  
205  
1.65  
110  
–5.2  
215  
1.65  
VI  
Rejection Ratio (PSRR)4  
Full  
VI  
20  
55  
20  
55  
mV/V  
NOTES  
1ANALOG INPUT is connected to ground.  
2AD9026AD/BD: outputs sourcing 1 mA when VOH is measured and sinking 2 mA when VOL is measured. AD9027 outputs are terminated with 2 kresistors to –VS.  
3Does not include power dissipated in termination resistors.  
4+VS and –VS varied independently ±5% from nominal; PSRR in specification table is either PSRR (+VS) or PSRR (–VS), whichever is worse.  
Specifications subject to change without notice.  
SWITCHING SPECIFICATIONS  
(+VS = +5 V; –VS = –5.2 V; Encode = 25.6 MSPS for A Grade Parts; Encode = 31.0 MSPS for B Grade Parts unless otherwise noted)  
Test  
AD9026AD  
AD9026BD  
AD9027AD  
AD9027BD  
Parameter (Conditions)  
Temp Level Min Typ Max  
Min Typ Max Min Typ  
Max Min Typ Max  
Units  
Maximum Conversion Rate  
Minimum Conversion Rate  
Aperture Delay (tA)  
Aperture Uncertainty (Jitter) +25°C  
ENCODE Pulse Width High +25°C IV  
ENCODE Pulse Width Low +25°C IV  
Full  
+25°C  
+25°C  
VI  
V
V
25.6  
31  
25.6  
31  
4
MSPS  
MSPS  
ns  
ps rms  
ns  
ns  
ns  
4
3
2
4
3
2
4
3
2
3
2
V
14  
14  
13  
14  
14  
13  
14  
14  
10  
14  
14  
10  
Output Delay (tOD  
)
Full  
IV  
23  
23  
18  
18  
Specifications subject to change without notice.  
–2–  
REV. 0  
AD9026/AD9027  
(+V = +5 V; –V = –5.2 V; Encode = 25.6 MSPS (50% duty cycle) for A Grade Parts; Encode = 31.0 MSPS  
(50% duty cycle) for B Grade Parts unless otherwise noted)  
AC SPECIFICATIONS  
S
S
Test  
AD9026AD  
AD9026BD  
Min Typ Max  
AD9027AD  
Min Typ Max  
AD9027BD  
Min Typ Max Units  
Parameter (Conditions)  
Temp Level Min Typ Max  
AC ACCURACY  
Differential Nonlinearity  
+25°C I  
0.25 0.75  
1.0  
1.2 2.5  
1.25 3.0  
0.4  
1.2  
0.75  
1.0  
0.25 0.75  
1.0  
1.2 2.5  
1.25 3.0  
0.4 0.75 LSB  
1.0 LSB  
1.2 2.5 LSB  
1.25 3.0 LSB  
Full  
VI  
Integral Nonlinearity  
+25°C I  
2.5  
Full  
VI  
1.25 3.0  
ANALOG INPUT BANDWIDTH +25°C  
V
V
V
150  
10  
150  
10  
150  
10  
150  
10  
MHz  
ns  
TRANSIENT RESPONSE  
+25°C  
+25°C  
OVERVOLTAGE RECOVERY  
10  
10  
10  
10  
ns  
SFDR1  
Analog Input @ 1.2 MHz  
+25°C  
Full  
+25°C  
Full  
+25°C  
Full  
I
VI  
I
VI  
I
VI  
70  
68  
70  
68  
70  
68  
77  
75  
76  
74  
75  
73  
70  
68  
70  
68  
65  
63  
77  
75  
75  
73  
72  
70  
70  
68  
70  
68  
70  
68  
77  
75  
76  
74  
75  
73  
70  
68  
70  
68  
70  
68  
77  
75  
76  
74  
74  
72  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
9.6 MHz  
13.4 MHz  
SINAD2  
Analog Input @ 1.2 MHz  
+25°C  
Full  
+25°C  
Full  
+25°C  
Full  
I
VI  
I
VI  
I
VI  
61  
60  
60  
59  
59  
58  
65  
64  
64  
63  
63  
62  
60  
59  
59  
58  
57  
56  
63  
62  
62  
61  
61  
60  
62  
61  
61  
60  
61  
60  
65  
64  
65  
64  
64  
63  
61  
60  
60  
59  
60  
59  
65  
64  
64  
63  
64  
63  
dB  
dB  
dB  
dB  
dB  
dB  
9.6 MHz  
13.4 MHz  
SNR3  
Analog Input @ 1.2 MHz  
+25°C  
Full  
+25°C  
Full  
+25°C  
Full  
I
VI  
I
VI  
I
VI  
62  
61  
61  
60  
60  
59  
65  
64  
64  
63  
63  
62  
61  
60  
60  
59  
59  
58  
64  
63  
63  
62  
62  
61  
63  
62  
62  
61  
62  
61  
65  
64  
65  
64  
65  
64  
62  
61  
61  
60  
61  
60  
65  
64  
65  
64  
65  
64  
dB  
dB  
dB  
dB  
dB  
dB  
9.6 MHz  
13.4 MHz  
Two-Tone IMD Rejection4  
F1 = 8.1 MHz; F2 = 9.6 MHz +25°C  
I
I
75  
68  
83  
75  
75  
68  
83  
75  
75  
68  
85  
75  
75  
68  
85  
75  
dBc  
dBc  
Two-Tone SFDR5  
F1 = 8.1 MHz; F2 = 9.6 MHz +25°C  
NOTES  
1Analog Input signal power at –1 dBFS; spurious-free dynamic range (SFDR) is the ratio of the signal level to worst spur, usually limited by harmonics.  
2Analog Input signal power at –1 dBFS; signal-to-noise and distortion (SINAD) is the ratio of signal level to total noise + harmonics.  
3Analog Input signal power at –1 dBFS; signal-to-noise ratio (SNR) is the ratio of signal level to total noise (first five harmonics removed).  
4Both input tones at –7 dBFS; two tone intermodulation distortion (IMD) rejection is the ratio of either tone to the worst 3rd order intermod product.  
5Both input tones at –7 dBFS; two tone spurious-free dynamic range (SFDR) is the ratio of either tone to the worst spurious signal.  
Specifications subject to change without notice.  
1
WAFER TEST LIMITS  
(+VS = +5 V, –VS = –5.2 V unless otherwise noted)  
AD9026CHIPS  
Typ  
AD9027CHIPS  
Typ  
Parameter  
Min  
Max  
Min  
Max  
Units  
POWER SUPPLY  
+VS Supply Current  
–VS Supply Current  
100  
160  
140  
246  
90  
180  
128  
258  
mA  
mA  
ENCODE INPUT  
Logic “1” Current  
Logic “0” Current  
20  
20  
10  
10  
µA  
µA  
ANALOG INPUT  
Input Resistance  
225  
375  
225  
375  
DC ACCURACY  
Offset Error  
–20  
20  
–20  
20  
mV  
Gain Error  
–4.5  
4.5  
–4.5  
4.5  
% FS  
No Missing Codes  
Differential Nonlinearity  
Guaranteed  
Guaranteed  
–0.65  
0.65  
–0.65  
0.65  
LSB  
NOTES  
1Electrical test is performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed  
for standard product dice.  
2Die substrate is connected to –VS.  
REV. 0  
–3–  
AD9026/AD9027  
ABSOLUTE MAXIMUM RATINGS1  
DIE PHOTO/ PAD LABELS  
Parameter  
Min  
Max Units  
ELECTRICAL  
+VS  
–VS  
Analog Input  
0
–6  
–1.5  
+6  
0
+1.5  
V
V
V
GROUND  
D11 (MSB)  
D10  
Digital Inputs  
+V  
S
AD9026 (TTL Logic)  
AD9027 (ECL Logic)  
Digital Output Current  
AD9026 (TTL Logic)  
AD9027 (ECL Logic)  
0
–VS  
+VS  
0
V
V
GROUND  
ENCODE  
D9  
D8  
12  
12  
mA  
mA  
ENVIRONMENTAL2  
Operating Temperature Range (Case) –25  
Maximum Junction Temperature  
Lead Temperature (Soldering, 10 sec)  
Storage Temperature Range (Ambient) –65  
D7  
D6  
+85 °C  
+175 °C  
+300 °C  
+150 °C  
GROUND  
ENCODE  
D5  
D4  
D0 (LSB)  
NOTES  
1Absolute maximum ratings are limiting values to be applied individually, and  
beyond which the serviceability of the circuit may be impaired. Functional  
operability is not necessarily implied. Exposure to absolute maximum rating  
conditions for an extended period of time may affect device reliability.  
2Typical thermal impedances for “D” package (custom ceramic 28-pin DIP):  
θJC = 14oC/W; θJA = 34oC/W  
AD9026/AD9027 CUSTOM PACKAGE  
EXPLANATION OF TEST LEVELS  
Test Level  
CUSTOM 28-PIN COFIRED CERAMIC  
MULTILAYER DUAL INLINE PACKAGE.  
(TOP LAYER METALLIZATION SHOWN)  
I. 100% Production Tested.  
II. 100% production tested at +25oC, and sample tested at  
specified temperatures. AC testing done on sample basis.  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
GND  
C1  
–V  
S
III. Sample Tested Only.  
3
IV. Parameter is guaranteed by design and characterization  
testing.  
+V  
S
4
C2  
5
–V  
S
V. Parameter is a typical value only.  
VI. All devices are 100% production tested at +25oC; sample  
tested at temperature extremes.  
6
7
U1  
8
DIE LAYOUT AND MECHANICAL INFORMATION  
9
Die Dimensions . . . . . . . . . . . . . . . . . 205 × 228 × 21 (±1) mils  
Pad Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 × 4 mils  
Metalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Aluminum  
Backing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . None  
Substrate Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –VS  
Transistor Count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4,336  
Passivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Oxynitride  
Die Attach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Silver Filled  
Bond Wire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gold  
10  
11  
12  
13  
14  
C4 C3  
C5  
+V  
–V  
S
GND  
S
NOTES:  
C1 & C4 ARE –V SUPPLY DECOUPLING CAPS.  
S
C2 & C5 ARE +V SUPPLY DECOUPLING CAPS.  
S
C3 IS A BYPASS CAP FOR INTERNAL DAC REFERENCE.  
U1 SUBSTRATE IS TIED TO –V  
.
S
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD9026/AD9027 features ESD protection circuitry, permanent damage may occur  
on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions  
are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–4–  
REV. 0  
AD9026/AD9027  
PIN DESIGNATIONS  
PIN DESCRIPTIONS  
Pin  
No.  
D3  
D2  
1
2
28  
D3  
D2  
1
2
28  
GND  
GND  
Name  
Function  
27 –V  
27 –V  
S
S
D1  
3
26 +V  
D1  
3
26 +V  
S
S
1–3  
4
D3–D1  
D0 (LSB)  
NC  
Digital Output Bits.  
D0 (LSB)  
4
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
D0 (LSB)  
ENCODE  
NC  
4
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
D4  
D4  
Digital Output Bit (Least Significant Bit).  
No connection internally on AD9026.  
5
5
NC  
D5  
D5  
5*  
6
6
+V  
S
D6  
D6  
AD9026  
AD9027  
GND  
ENCODE  
GND  
7
GND  
7
D7  
D7  
ENCODE Complement of encode clock input on  
TOP VIEW  
TOP VIEW  
8
8
D8  
ENCODE  
GND  
D8  
AD9027.  
(Not to Scale)  
(Not to Scale)  
9
9
D9  
D9  
6*  
+VS  
+5 V power supply on AD9026.  
No connection internally on the AD9027.  
Ground.  
+V  
S
10  
11  
12  
10  
11  
12  
+V  
S
D10  
D10  
NC  
GND  
AIN  
GND  
AIN  
D11 (MSB)  
BYPASS  
GND  
D11 (MSB)  
BYPASS  
GND  
7
8
GND  
–V 13  
–V 13  
S
ENCODE Encode Clock Input. Conversion initiated  
on rising edge of clock.  
S
+V  
14  
15 –V  
+V 14  
S
15 –V  
S
S
S
9
GND  
+VS  
Ground.  
NC = NO CONNECT  
NC = NO CONNECT  
BYPASS (PIN 17) SHOULD BE CONNECTED TO –V (PIN 15) THROUGH 0.1µF CAP  
S
10  
11  
12  
13  
14  
15  
16  
17  
18  
+5 V power supply.  
Ground.  
GND  
AIN  
ORDERING GUIDE  
Temperature  
Analog Input.  
–VS  
–5.2 V power supply.  
+5 V power supply.  
–5.2 V power supply.  
Ground.  
+VS  
Model  
Range  
Package Description  
–VS  
AD9026AD  
–25°C to +85°C  
(Case)  
28-Pin 600 mil Hermetic  
Ceramic DIP (DH-28)  
28-Pin 600 mil Hermetic  
Ceramic DIP (DH-28)  
Unpackaged Die  
GND  
BYPASS  
Connect to –VS through 0.1 µF capacitor.  
AD9026BD  
–25°C to +85°C  
(Case)  
D11 (MSB) Digital Output Bit (Most Significant Bit).  
AD9026CHIPS  
AD9026/PCB-T  
19–25 D10–D4  
Digital output bits.  
+5 V power supply.  
–5.2 V power supply.  
Ground.  
Evaluation Board with  
AD9026BD  
26  
27  
28  
+VS  
–VS  
AD9027AD  
AD9027BD  
–25°C to +85°C  
(Case)  
–25°C to +85°C  
(Case)  
28-Pin 600 mil Hermetic  
Ceramic DIP (DH-28)  
28-Pin 600 mil Hermetic  
Ceramic DIP (DH-28)  
Unpackaged Die  
Evaluation Board with  
AD9027BD  
GND  
*Pin descriptions for the AD9026 and AD9027 are identical with the exception  
of Pins 5 and 6.  
AD9027CHIPS  
AD9027/PCB-E  
AD9026 Basic Hook-Up  
AD9027 Basic Hook-Up  
TTL  
OUTPUTS  
ECL  
OUTPUTS  
D0 (LSB)  
D0 (LSB)  
D3  
D3  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
AD9026  
AD9027  
–5.2V  
+5V  
2
–5.2V  
+5V  
2
3
3
4
4
NC  
5
ENCODE  
NC  
5
D4  
+5V  
D4  
6
6
DIFFERENTIAL  
ECL  
7
7
ENCODE  
TTL LOGIC LEVELS  
8
8
ENCODE  
9
9
D11 (MSB)  
D11 (MSB)  
+5V  
10  
11  
12  
13  
14  
+5V  
10  
11  
12  
13  
14  
ANALOG  
ANALOG  
INPUT 2.048 V  
INPUT 2.048 V  
PP  
PP  
–5.2V  
–5.2V  
–5.2V  
+5V  
–5.2V  
+5V  
1. ALL DECOUPLING/BYPASS CAPACITORS ARE 0.1µF  
2. NC = NOT CONNECTED  
1. ALL DECOUPLING/BYPASS CAPACITORS ARE 0.1µF  
2. NC = NOT CONNECTED  
3. TERMINATE ECL OUTPUTS WITH 2kto –5.2V  
REV. 0  
–5–  
AD9026/AD9027  
DEFINITION OF SPECIFICATIONS  
Analog Bandwidth  
Overvoltage Recovery Time  
The analog input frequency at which the spectral power of the  
fundamental frequency (as determined by the FFT analysis) is  
reduced by 3 dB.  
The amount of time required for the converter to recover to  
0.2% accuracy after an analog input signal 150% of full scale is  
reduced to midscale.  
Aperture Delay  
Power Supply Rejection Ratio  
The delay between the 50% point of the rising edge of the  
ENCODE command and the instant at which the analog input  
is sampled.  
The ratio of a change in input offset voltage to a change in  
power supply voltage.  
Signal-to-Noise-and-Distortion (SINAD)  
Aperture Uncertainty (Jitter)  
The sample-to-sample variation in aperture delay.  
The ratio of the rms signal amplitude (set at 1 dB below full  
scale) to the rms value of the sum of all other spectral compo-  
nents, including harmonics but excluding dc.  
Differential Nonlinearity  
The deviation of any code from an ideal 1 LSB step.  
Signal-to-Noise Ratio (Without Harmonics)  
The ratio of the rms signal amplitude (set at 1 dB below full  
scale) to the rms value of the sum of all other spectral compo-  
nents, excluding the first five harmonics and dc.  
Harmonic Distortion  
The ratio of the rms signal amplitude to the rms value of the  
worst harmonic component.  
Spurious-Free Dynamic Range  
Integral Nonlinearity  
The ratio of the rms signal amplitude to the rms value of the  
peak spurious spectral component. The peak spurious compo-  
nent may or may not be a harmonic.  
The deviation of the transfer function from a reference line  
measured in fractions of 1 LSB using a “best straight line”  
determined by a least square curve fit.  
Transient Response  
Minimum Conversion Rate  
The time required for the converter to achieve 0.2% accuracy when  
a one-half full-scale step function is applied to the analog input.  
The encode rate at which the SNR of the lowest analog signal  
frequency drops by no more than 3 dB below the guaranteed limit.  
Two-Tone Intermodulation Distortion Rejection  
The ratio of the rms value of either input tone to the rms value  
of the worst third order intermodulation product.  
Maximum Conversion Rate  
The encode rate at which parametric testing is performed.  
Output Propagation Delay  
Two-Tone SFDR  
The delay between the 50% point of the rising edge of ENCODE  
command and the time when all output data bits are within  
valid logic levels.  
The ratio of the rms value of either input tone to the rms value  
of the peak spurious component. The peak spurious component  
may or may not be an IMD product.  
EQUIVALENT CIRCUITS  
+V  
+V  
S
S
+V  
+V  
S
S
100  
11k  
12k  
ENCODE  
180  
ANALOG  
INPUT  
D11 – D0  
900  
120  
5pF  
–V  
S
–V  
–V  
S
S
Analog Input Stage  
AD9026 Encode Input  
AD9026 Output Stage  
1200  
BYPASS  
3400  
3400  
ENCODE  
ENCODE  
50  
–V  
S
D11 – D0  
20pF  
–V  
–V  
S
–V  
S
S
Bypass  
AD9027 Encode Input  
AD9027 Output Stage  
–6–  
REV. 0  
AD9026/AD9027  
Typical AD9026 Performance  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
ENCODE = 31 MSPS  
AIN = 13.4 MHz  
SNR = 61 dB  
SFDR = 78 dBc  
–20  
ENCODE = 25.6 MSPS  
AIN = 12.6 MHz  
–40  
–60  
ENCODE = 31 MSPS  
AIN = 14.75 MHz  
–80  
–100  
dc  
3.1  
6.2  
9.3  
12.4  
15.5  
–60  
–50  
–40  
–30  
–20  
–10  
0
10  
FREQUENCY – MHz  
ANALOG INPUT POWER LEVEL – dBm  
Figure 1. Single Tone at 13.4 MHz  
Figure 4. SFDR vs. Analog Input Level  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
ENCODE = 31 MSPS  
ENCODE = 31 MSPS  
AIN = 8.1, 9.6 MHz  
SFDR = 72 dBc  
–20  
–40  
–60  
–80  
–100  
–60  
–50  
–40  
–30  
–20  
–10  
0
10  
dc  
3.1  
6.2  
9.3  
12.4  
15.5  
ANALOG INPUT POWER LEVEL – dBm  
FREQUENCY – MHz  
Figure 5. Two-Tone SFDR vs. Analog Input Level  
Figure 2. Two Tones @ 8.1 MHz & 9.6 MHz  
0
0
ENCODE = 31 MSPS  
AIN = 40 MHz  
ENCODE = 31 MSPS  
AIN = 8.1, 13.4 MHz  
SFDR = 75 dBc  
–20  
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–100  
dc  
3.1  
6.2  
9.3  
12.4  
15.5  
dc  
3.1  
6.2  
9.3  
12.4  
15.5  
FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 6. Undersampling a 40 MHz Input Tone  
Figure 3. Two Tones @ 8.1 MHz & 13.4 MHz  
REV. 0  
–7–  
AD9026/AD9027  
Typical AD9027 Performance  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
ENCODE = 31 MSPS  
AIN = 14.75 MHz  
ENCODE = 31 MSPS  
AIN = 13.4 MHz  
SNR = 62 dB  
–20  
–40  
SFDR = 73 dBc  
–60  
–80  
–100  
–60  
–50  
–40  
–30  
–20  
–10  
0
10  
dc  
3.1  
6.2  
9.3  
12.4  
15.5  
ANALOG INPUT POWER LEVEL – dBm  
FREQUENCY – MHz  
Figure 7. Single Tone at 13.4 MHz  
Figure 10. SFDR vs. Analog Input Level  
100  
0
–20  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
ENCODE = 31 MSPS  
ENCODE = 31 MSPS  
AIN = 8.1, 9.6 MHz  
SFDR = 71 dBc  
–40  
–60  
–80  
–100  
–60  
–50  
–40  
–30  
–20  
–10  
0
10  
dc  
3.1  
6.2  
9.3  
12.4  
15.5  
ANALOG INPUT POWER LEVEL – dBm  
FREQUENCY – MHz  
Figure 8. Two Tones @ 8.1 MHz & 9.6 MHz  
Figure 11. Two-Tone SFDR vs. Analog Input Level  
0
0
ENCODE = 31 MSPS  
AIN = 8.1, 13.4 MHz  
SFDR = 73 dBc  
–20  
–40  
ENCODE = 31 MSPS  
AIN = 40 MHz  
–20  
–40  
–60  
–60  
–80  
–80  
–100  
–100  
dc  
3.1  
6.2  
9.3  
12.4  
15.5  
dc  
3.1  
6.2  
9.3  
12.4  
15.5  
FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 12. Undersampling a 40 MHz Input Tone  
Figure 9. Two Tones @ 8.1 MHz & 13.4 MHz  
–8–  
REV. 0  
AD9026/AD9027  
Typical AD9027 Performance  
Typical AD9026 Performance  
90  
80  
70  
60  
50  
40  
30  
90  
ENCODE = 31 MSPS  
ENCODE = 31 MSPS  
HARMONICS  
80  
70  
60  
50  
40  
30  
HARMONICS  
SNR  
SNR  
1
2
4
10  
20  
40  
100  
1
2
4
10  
20  
40  
100  
ANALOG INPUT FREQUENCY – MHz  
ANALOG INPUT FREQUENCY – MHz  
Figure 13. Noise and Distortion vs. AIN Frequency  
Figure 16. Noise and Distortion vs. AIN Frequency  
80  
80  
ENCODE = 31 MSPS  
ENCODE = 31 MSPS  
75  
75  
70  
70  
SFDR  
SFDR  
65  
60  
65  
60  
SNR  
55  
SNR  
55  
50  
45  
40  
50  
45  
40  
35  
40  
45  
50  
55  
60  
65  
35  
40  
45  
50  
55  
60  
65  
ENCODE DUTY CYCLE – %  
ENCODE DUTY CYCLE – %  
Figure 17. SNR, SFDR vs. Encode Duty Cycle  
Figure 14. SNR , SFDR vs. Encode Duty Cycle  
0
0
ENCODE = 25.6 MSPS  
–20  
ENCODE = 25.6 MSPS  
AIN = 21.4 MHz  
–20  
–40  
AIN = 21.4 MHz  
–40  
–60  
–80  
–60  
–80  
–100  
–100  
dc  
2.56  
5.12  
7.68  
10.24  
12.8  
dc  
2.56  
5.12  
7.68  
10.24  
12.8  
FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 15. Undersampling a 21.4 MHz Input Tone  
Figure 18. Undersampling a 21.4 MHz Input Tone  
REV. 0  
–9–  
AD9026/AD9027  
AD9026/AD9027  
180  
5-BIT  
ADC  
ANALOG  
INPUT  
T/H  
1
12  
DIGITAL  
ERROR  
CORRECTION  
**ECL/  
TTL  
5-BIT  
ADC  
120  
ENCODE  
DAC  
+5V  
*ENCODE  
DAC  
16  
T/H  
2
–5.2V  
GND  
+2V  
REF  
4-BIT  
ADC  
T/H  
8
3
*AD9027 ONLY  
**AD9026 OUTPUTS: TTL  
AD9027 OUTPUTS: ECL  
Figure 19. AD9026/AD9027 Functional Block Diagram  
THEORY OF OPERATION  
The AD9026/AD9027 analog-to-digital converters (ADCs)  
employ a three-pass subranging architecture and digital error  
correction. This combination of design techniques ensures 12-  
bit accuracy at relatively low power.  
Internally, the encode clock is delayed and gated to generate all  
of the timing necessary for data conversion. The allocation of  
hold and acquisition time for the first track-and-hold is critical  
and is affected by the duty cycle of the encode clock. Perfor-  
mance is optimized for encode duty cycles of 50%. Duty cycle  
variations that exceed 50 ± 5% will negatively impact perfor-  
mance at 31 Msps (see Performance Curves for detail).  
As shown in Figure 19, analog input signals are immediately at-  
tenuated through a resistor divider and applied directly to the  
sampling bridge of a track-and-hold (T/H). The rising edge of  
the ENCODE pulse places this first track-and-hold, T/H1, into  
hold mode. The held value of T/H1 is applied to a 5-bit flash  
ADC. The 5-bit converter resolves the most significant bits  
(MSBs) of the held analog voltage. These five bits are recon-  
structed by a 5-bit digital-to-analog converter (DAC) and sub-  
tracted from T/H1’s output to form a residual signal. Note that  
the reconstruction DAC has a resolution of 5 bits but must  
maintain 12-bit accuracy.  
Operation at encode rates less than 4 Msps is not recom-  
mended. At these low encodes, the internal T/Hs will droop out  
of error correction range and cease to function properly. For  
the same reason, burst mode operation at the ENCODE pin is  
not recommended. If burst mode is required, gate the digital  
output data instead of the encode to the ADC; do not leave the  
ENCODE pin in a static “logic high” state.  
Encoding the AD9026  
A second track-and-hold, T/H2, holds the amplified residue signal  
while it is encoded by a second 5-bit flash ADC. These five bits  
are reconstructed and subtracted from T/H2’s output to form a  
second residual signal. A third and final track-and-hold, T/H3,  
precedes a gain stage which in turn drives a 4-bit flash ADC.  
Care should be taken when selecting drive logic for this single-  
ended TTL-compatible input. Fast, clean, symmetrical output  
swings with low jitter will yield optimal performance.  
Gates from the “LS” logic family are not recommended because  
of their extreme differences in rising versus falling characteristics.  
Digital error correction logic corrects and aligns the data from  
the three flash converters and presents the result as a 12-bit par-  
allel digital word. In the case of the AD9026, the digital output  
stage provides TTL logic levels; the AD9027 parallel output  
provides ECL logic levels.  
“AC” logic on the other hand, is too fast with excessive drive  
capability, and tends to couple clock noise into the converter’s  
first T/H stage. “AS” logic offers the best compromise of the  
TTL families evaluated, but optimal performance was achieved  
with AD969X family of TTL comparators (see AD9026/PCB-T  
schematic).  
APPLYING THE AD9026/AD9027  
Timing  
Encoding the AD9027  
Conversion is initiated by asserting a logic “high” state on the  
ENCODE command for both the AD9026 and AD9027 con-  
verters, as shown in Figure 20. The digital output data which  
corresponds to a given encode rising edge is available after two  
A differential ECL encode is required for the AD9027: EN-  
CODE (Pin 8), ENCODE (Pin 5). This signal should be  
“clean” and fast, with a minimum amount of jitter. Such a sig-  
nal may be generated by using a spectrally pure low phase noise  
sine wave to drive an AD96687 ECL comparator (see AD9027/  
PCB-E schematic).  
pipeline delays and one propagation delay  
.
N
Analog Input  
The analog input (Pin 12) voltage range is nominally ±1.024 V.  
The range is set with an internal voltage reference and cannot be  
adjusted by the user. The input resistance is 300 , and the  
analog small signal bandwidth is 150 MHz, making the AD9026  
and AD9027 suitable for undersampling applications. Sample  
FFTs of 40 MHz large signal inputs can be found in the Perfor-  
mance section (Figures 6, 12).  
ANALOG  
IN  
N+1  
ta  
N+2  
ta = 3ns TYPICAL  
tOD  
ENCODE  
tOD = 13–23ns (AD9026); 10–18ns (AD9027)  
N–2 N–1  
DATA  
OUTPUT  
N–3  
N
Figure 20. Timing Diagram  
–10–  
REV. 0  
AD9026/AD9027  
AD9027 should be bypassed individually. The bypass pin (BY-  
PASS Pin 17) should be connected to the –VS supply (Pin 15)  
through a 0.1 µF chip capacitor as close to the part as possible.  
+V  
S
10µF  
R
R
F
G =  
G
R
IN  
AD9027  
0.1µF  
100–130  
7
Multilayer boards allow designers to lay out signal traces with-  
out interrupting the ground plane and provide low impedance  
return paths. In systems with dedicated analog and digital  
grounds, all grounds for the AD9026 and AD9027 should be  
connected to the analog ground plane.  
3
2
ANALOG  
INPUT  
AD9631/32  
4
6
R
F
R
G
V
IN  
0.1µF  
In systems using multilayer boards, dedicated power planes are  
recommended to provide low impedance connections for device  
power. Sockets limit dynamic performance and are not recom-  
mended for use with the AD9026 or AD9027.  
R
TERM  
10µF  
–V  
S
Figure 21. Low Distortion Drive Circuit for AD9026/AD9027  
EVALUATING PERFORMANCE OF THE AD9026/AD9027  
Noise Performance  
Driving the Analog Input  
High speed, wide bandwidth ADCs such as the AD9026 and  
AD9027 are optimized for dynamic performance over a wide  
range of analog input frequencies. Due to this wide input band-  
width, for a given analog input voltage there will be a range of  
output codes that may occur. This is caused by unavoidable  
circuit noise within the wideband circuits of the ADC. If a dc  
signal is applied to the ADC and several thousand outputs are  
recorded, a distribution of codes such as that shown in the his-  
togram may result (Figure 22).  
Special care must be taken to ensure that the analog input signal  
is not compromised before it reaches the ADC. Any required  
filtering should be done as close to the AD9026/AD9027 as  
possible, and away from any digital lines.  
In systems that have impedance matching problems or require  
gain before the converter, a low noise, low distortion, wideband  
op amp may be used. Typically this amplifier will degrade over-  
all performance, but this degradation will be minimal if the cor-  
rect amplifier is selected.  
The correct code appears most of the time, but adjacent codes  
also appear with reduced probability. If a normal probability  
density curve is fitted to this Gaussian distribution of codes, the  
standard deviation will be equal to the equivalent input rms  
noise of the ADC. The rms input noise may also be approxi-  
mated by converting the signal-to-noise ratio (SNR), as mea-  
sured by a low frequency FFT, to an equivalent input noise.  
This method is accurate only if the SNR performance is domi-  
nated by random thermal noise (the low frequency SNR without  
harmonics is the best measure); 63 dB equates to 1 LSB rms for  
a 2 V p-p (0.707 V rms) input signal.  
Figure 21 shows the ultralow distortion, wide bandwidth AD9631  
driving an AD9027 converter at a gain of –1. This amplifier/  
ADC combination maintains >70 dB harmonic distortion over  
the Nyquist band. The low output impedance of the AD9631  
also reduces drive circuitry sensitivity to the small current spikes  
that can come from an ADC’s internal track-and-hold.  
Power Supplies  
The power supplies of the AD9026 and AD9027 should be iso-  
lated from the supplies used for noisy devices (digital logic espe-  
cially) to reduce the amount of noise coupled into the ADC.  
For optimum performance, linear supplies ensure that switching  
noise from the supplies does not introduce distortion products  
during the encoding process. If switching supplies must be  
used, decoupling recommendations should be observed.  
ONE STANDARD  
DEVIATION = RMS  
NOISE LEVEL  
Layout Information  
Preserving the accuracy and dynamic performance of the  
AD9026 and AD9027 requires that designers pay special atten-  
tion to layout of the printed circuit board.  
Analog paths should be kept as short as possible and be properly  
terminated to avoid reflections. The analog input connection  
should be kept away from digital signal paths; this reduces the  
amount of digital switching noise that is capacitively coupled  
into the analog section. Digital signal paths should also be kept  
short, and run lengths should be matched to avoid propagation  
delay mismatch. The AD9026 and AD9027 outputs should be  
buffered or latched close to the device (<2 cm). This prevents  
load transients which may feed back into the device.  
X–3  
X–2  
X–1  
X
X + 1  
X + 2  
X + 3  
OUTPUT CODE  
Figure 22. ADC Equivalent Input Noise  
In high speed circuits, layout of the ground is critical. A single  
low impedance ground plane on the component side of the  
board is the minimum requirement (an internal ground plane is  
preferred). Power supplies should be capacitively coupled to  
the ground plane with high quality 0.1 µF chip capacitors to re-  
duce noise in the circuit. All power pins of the AD9026 and  
The AD9027 has approximately 0.7 LSB of rms input noise  
which would predict a noise-limited SNR of 66 dB. Since the  
actual SNR of the AD9027 is 65 dB for a 1.2 MHz input, ther-  
mal noise alone does not limit the SNR performance of the de-  
vice. Differential nonlinearities, aperture uncertainty, and  
digital switching noise account for the additional degradation in  
SNR as measured at the ADC output.  
REV. 0  
–11–  
AD9026/AD9027  
Two-tone intermodulation distortion rejection was also charac-  
terized on the AD9026 and AD9027. Two tones, each at  
–7 dBFS, were varied in frequency to determine flatness of IMD  
rejection across the Nyquist band. A “Two-Tone SFDR” speci-  
fication was created to distinguish between the typical level of  
IMD products and other spurious levels. In most cases, second  
order terms and direct harmonics limited Two-Tone SFDR on  
these converters. Third order products were typically >80 dBc  
(dBc indicates strength relative to the carrier), while first and  
second order products were >72 dBc (Figures 2, 3, 5, 8, 9,  
and 11).  
Performance curves illustrate SNR vs. input frequency for the  
AD9026 and AD9027 at encode rates of 31 Msps (Figures 13,  
16). Because the AD9026 TTL converter has larger digital out-  
put voltage swings, it tends to have slightly worse noise perfor-  
mance than its ECL counterpart.  
For a fixed analog input frequency, reducing the encode rate  
on the AD9026 actually improves SNR (note specifications at  
31 Msps vs. 25.6 Msps). This improvement results because the  
rms noise coupled to internal circuits decreases as the time be-  
tween samples increases.  
Performance in the Frequency Domain  
Performance Over Temperature  
The AD9026 and AD9027 were designed to minimize harmonic  
distortion over the entire Nyquist bandwidth. Performance  
curves are included which illustrate >70 dB spurious-free dy-  
namic range (SFDR) for –1 dBFS signals from dc to 15 MHz  
(Figures 13 and 16).  
Signal-to-noise ratio (SNR) is typically flat over the specified  
operating temperature range for both the AD9026 and AD9027  
across the entire Nyquist band.  
Spurious-free dynamic range (SFDR) for a given input fre-  
quency varies by a few dB over the rated operating temperature  
range as indicated in the specification table.  
Typically, the spurious levels generated by tones near full scale  
are dominated by low order harmonics generated in the con-  
verter’s first track-and-hold. As the strength of the analog input  
signal is reduced, there is actually a slight increase in spurious-  
free dynamic range relative to the carrier. At approximately  
–7 dBFS the SFDR decreases linearly as input power is reduced  
(Figures 4 and 10).  
Harmonic distortion consistently increases with input frequency  
at the maximum operating temperature of +85°C measured at  
device case. For example, the SFDR of the ADC may vary from  
a low of 71 dBc (13.4 MHz analog in), to a high of 80 dBc  
(1.2 MHz analog in) at +85°C.  
U3  
74AS574  
H40DMC  
J3  
U2  
AD9698R  
SMA  
J1  
2
3
4
5
6
7
8
9
19  
18  
17  
16  
15  
14  
13  
12  
1D  
2D  
3D  
4D  
5D  
6D  
7D  
8D  
1Q  
2Q  
3Q  
4Q  
5Q  
6Q  
7Q  
8Q  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
1
11  
5
ENCODE  
INPUT  
2
R8–R12  
&
R14–R20  
ARE 1k  
CLK  
U5  
AD9713B  
6
3
R1  
51  
CLK  
12  
4
9
D11  
D10  
D9  
5
R8  
R9  
D0  
D1  
D2  
D3  
2
3
4
5
(MSB)  
6
7
R10  
D8  
R4  
7.5k  
8
D7  
R11  
24  
20  
9
R SET  
REF OUT  
D6  
CK  
OE  
1
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
D5  
11  
D4  
19  
18  
R3  
20  
CON AMP IN  
U1  
AD9026  
U4  
74AS574  
CON AMP OUT  
1
2
3
4
25  
24  
23  
22  
21  
20  
19  
18  
17  
2
3
4
5
6
7
8
9
19  
18  
17  
16  
15  
14  
13  
12  
R12  
R14  
D4  
D4  
D5  
1D  
2D  
3D  
4D  
5D  
6D  
7D  
1Q  
2Q  
3Q  
4Q  
5Q  
6Q  
7Q  
8Q  
6
7
D3  
D2  
D1  
17  
16  
14  
D5  
REF IN  
D3  
D2  
D1  
D0  
C5  
0.1µF  
U2  
AD9698R  
14  
4
R15  
D6  
D6  
8
R16  
IOUT  
D7  
D7  
9
D0 (LSB)  
–5.2V  
R17  
D8  
D8  
10  
11  
14  
20  
8
3
R18  
R5  
51  
D9  
IOUT  
ENCODE  
D9  
13  
16  
SMA  
J2  
R19  
D10  
D10  
D11  
12  
SMA  
J4  
ANALOG  
INPUT  
R20  
(MSB) D11  
BYPASS  
8D  
AIN  
(LSB)  
CK  
RC  
OUT  
OE  
1
R7  
62  
J5  
J6  
J7  
–5.2V  
11  
+5V  
C4  
0.1µF  
R6  
51  
26  
LE  
GND  
–5.2V  
Figure 23. AD9026 Evaluation Board Schematic (AD9026/PCB-T)  
–12–  
REV. 0  
AD9026/AD9027  
J5  
J6  
J7  
RC OUTPUT  
J4  
C 1 6  
U3  
C7  
+5V  
GND  
-5.2V  
C2  
C3  
R6  
R5  
R8  
R9  
R10  
R11  
C 5  
C 1 5  
U1  
J1  
R1  
C 2 2  
R3  
C 1 9  
C 8  
C17  
C5  
C9  
U4  
C 2 1  
R12  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
ENCODE  
INPUT  
U 2  
U 5  
R4  
C 1 4  
C11  
C12  
ANALOG  
INPUT  
C4  
C20  
R7  
C18  
J3  
J2  
C13  
AD9026 EVALUATION BOARD  
Figure 24. AD9026/PCB-T Top Side  
J5  
J6  
J7  
U3  
C7  
J4  
C2  
C3  
R6  
R8  
R9  
R5  
C 1 6  
R10  
C 5  
C 1 5  
R11  
U1  
R1  
C 2 2  
J1  
R3  
C 1 9  
C 8  
C17  
C5  
C9  
U4  
C 2 1  
R12  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
U 2  
U 5  
C 1 4  
R4  
C11  
C12  
C20  
C4  
C18  
J3  
J2  
R7  
C13  
Figure 25. AD9026/PCB-T Bottom Side  
REV. 0  
–13–  
AD9026/AD9027  
5
8
7
2
U101  
AD96687  
5
RZ100  
6PT–5.2  
160/260  
B8  
D8B  
D8  
U200  
AD96687  
SMA  
ECLEN  
5
2
3 4  
REF  
1
8
2
4
R101  
49.9  
7
12  
1
9
15  
16  
C37DRPF  
J200  
1
2
3
4
4
DUT 1  
AD9027  
B9  
D9B  
D9  
U200  
AD96687  
10  
REF  
U101  
1
2
3
4
5
6
7
8
9
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
GND  
DRB  
D4B  
D5B  
D6B  
D7B  
D8B  
D9B  
D10B  
D11B  
GND  
13  
5
AD96687  
B3  
B2  
B1  
B0  
GND  
–5.2V  
+5V  
B4  
D3  
D2  
D1  
12  
–V  
S
9
15  
16  
8
7
2
1
+V  
S
5
6
B10  
REF  
D10B  
D10  
RZ101  
6PT–5.2  
160/260  
U201  
AD96687  
10  
D0 (LSB)  
D4  
D5  
D6  
D7  
7
8
ENCODE  
13  
B5  
4
2
3
4
5
NC  
NC  
B6  
9
12  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
GND  
9
15  
16  
GND  
B7  
B11  
REF  
D11B  
D11  
U201  
AD96687  
ENCODE  
GND  
B8  
D8  
D9  
10  
E100  
ENC  
E101  
GND  
B9  
13  
5
E102  
10  
11  
12  
13  
14  
+V  
S
+5V  
D10  
D11 (MSB)  
BYPASS  
GND  
B10  
B11  
SMA  
AIN  
D0B  
D1B  
D2B  
D3B  
GND  
C102  
0.1µF  
GND  
AIN  
GND  
8
7
2
1
B6  
D6B  
D6  
U202  
AD96687  
AIN  
REF  
–V  
S
R102  
62  
GND  
–5.2V  
+5V  
4
+V  
S
–5.2V  
–V  
S
–5.2V  
DR  
D4  
12  
9
15  
16  
B7  
D7B  
D7  
U202  
AD96687  
D5  
D6  
10  
REF  
D7  
D8  
13  
5
+5V  
–5.2V  
BJ100  
VC1  
D9  
D10  
D11  
+5V  
8
7
2
1
C100  
10µF  
B4  
R200  
3.9k  
D4B  
D4  
U203  
AD96687  
R202  
3k  
REF  
ECL  
TTL  
4
BJ104  
BJ101  
R203  
2k  
R201  
1.3k  
12  
–5.2V  
9
15  
16  
D0  
D1  
D2  
D3  
B5  
D5B  
D5  
U203  
AD96687  
REFU  
REF  
VE1  
10  
REF  
C200  
0.1µF  
C101  
10µF  
13  
5
8
7
2
1
B2  
D2B  
D2  
U204  
AD96687  
REF  
U207  
AD9712  
RZ103  
10PB–5.2  
2k  
RZ102  
6PB–5.2  
2k  
4
DRB  
28  
1
2
12  
26  
2
3
2
3
4
5
6
9
15  
16  
B4  
B5  
B3  
D3B  
D3  
B3  
B2  
B1  
B0  
LE  
U204  
AD96687  
4
5
10  
(MSB) D11  
BIT 1  
BIT 2  
REF  
B6  
B7  
D10  
D9  
D8  
13  
5
6
7
20  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
BIT 7  
BIT 8  
BIT 9  
BIT 10  
BIT 11  
BIT 12  
BG  
CIN  
3
B8  
B9  
19  
18  
17  
24  
4
5
8
9
8
7
2
1
R204  
20  
D7  
D6  
B0  
D0B  
D0  
B10  
B11  
U205  
AD96687  
COUT  
REF  
RS  
6
7
10  
REF  
D5  
D4  
4
8
9
C202  
0.1µF  
D3  
D2  
12  
10  
11  
9
15  
16  
–5.2V  
R207  
7.5k  
D1  
B1  
D1B  
D1  
U205  
AD96687  
(LSB) D0  
10  
REF  
SMA  
RCOUT  
13  
14  
16  
R206  
51  
12  
13  
5
E200  
R205  
51  
9
15  
8
7
2
1
ENC  
DRB  
U206  
AD96687  
U206  
AD96687  
10  
REF  
DR  
REF  
16  
C201  
0.1µF  
4
Figure 26. AD9027 Evaluation Board Schematic (AD9027/PCB-E)  
–14–  
REV. 0  
AD9026/AD9027  
C200 C125  
U206  
RZ206  
E200  
BCOM  
a
AD9027  
E101  
ENCODE  
INPUT  
ECLEN  
EVALUATION BOARD  
RZ101  
1994  
USA  
©
E102  
E100  
C114  
48280(B)  
MICROPHONE  
C126 U203  
–5.2V  
RZ203  
RZ202  
C101  
J200  
TO ANTENNA ™  
VE1  
R101  
C115  
U202  
DUT 1  
C127  
RZ103  
C112  
C122  
RECONSTRUCT  
C116  
C128  
U101  
OUTPUT  
U200  
U207  
RZ201  
RZ208  
RZ100  
ANALOG  
INPUT  
C117  
C129  
GND  
U201  
R207  
AIN  
C102  
C105  
RCOUT  
C104  
C134  
C103  
C124  
E2  
E1  
R204  
C118  
C130  
U205  
U204  
U102  
RZ205  
R205  
VC1  
C100  
R206  
R105  
+5V  
C113  
RZ102  
C133  
C119  
C123  
AINA  
R200  
R201  
RZ204  
ECL  
REFV  
BUFFERED  
ANALOG  
INPUT  
R202  
R203  
C120  
BB/GH/KB  
7/21/94  
C201  
TTL  
Figure 27. AD9027/PCB-E Top Side  
C200 C125  
U206  
RZ206  
E200  
E101  
RZ101  
E102  
E100  
C114  
C126 U203  
RZ203  
RZ202  
ECLEN  
J200  
VE1 C101  
R101  
C122  
C115  
C127  
DUT 1  
U202  
RZ103  
C112  
C116  
C128  
U101  
U200  
U207  
RZ201  
RZ208  
RZ100  
C 1 3 8  
C117  
C129  
U201  
AIN  
R207  
C 1 3 1  
C 1 3 7  
C102  
C105  
C104  
C134  
RCOUT  
C103  
C124  
E2  
E1  
R204  
C118  
C130  
U205  
C 1 3 5  
U102  
C 2 0 2  
C 1 3 6  
RZ205  
R205  
VC1  
C100  
R206  
R105  
C113  
RZ102  
C133  
C119  
C123  
AINA  
U204  
C120  
R200  
R201  
RZ204  
ECL  
REFV  
R202  
R203  
C201  
TTL  
Figure 28. AD9027PCB-E Bottom Side  
REV. 0  
–15–  
AD9026/AD9027  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
15  
28  
0.595 ± 0.010  
(15.11 ± 0.25)  
1
14  
PIN 1  
IDENTIFIERS  
1.400 ± 0.014  
(35.56 ± 0.35)  
0.2 ± 0.024  
(5.08 ± 0.61)  
0.010 ± 0.002  
(0.25 ± 0.05)  
0.150  
(3.81)  
MIN  
0.050 ± 0.010  
(1.27 ± 0.25)  
0.600 (15.24) REF  
0.100 (2.54)  
TYP  
0.018 ± 0.002  
(0.46 ± 0.05)  
SEATING  
PLANE  
0.05 (1.27)  
TYP  
–16–  
REV. 0  

相关型号:

AD9026BD

IC 1-CH 12-BIT FLASH METHOD ADC, PARALLEL ACCESS, CDIP28, 0.600 INCH, HERMETIC SEALED, CERAMIC, DIP-28, Analog to Digital Converter
ADI

AD9027AD

IC 1-CH 12-BIT FLASH METHOD ADC, PARALLEL ACCESS, CDIP28, 0.600 INCH, HERMETIC SEALED, CERAMIC, DIP-28, Analog to Digital Converter
ADI

AD9027BD

IC 1-CH 12-BIT FLASH METHOD ADC, PARALLEL ACCESS, CDIP28, 0.600 INCH, HERMETIC SEALED, CERAMIC, DIP-28, Analog to Digital Converter
ADI

AD9027CHIPS

IC 1-CH 12-BIT FLASH METHOD ADC, PARALLEL ACCESS, UUC28, DIE-28, Analog to Digital Converter
ADI

AD9028JE

Analog-to-Digital Converter, 8-Bit
ETC

AD9028JZ

Analog-to-Digital Converter, 8-Bit
ETC

AD9028KE

Analog-to-Digital Converter, 8-Bit
ETC

AD9028KZ

Analog-to-Digital Converter, 8-Bit
ETC

AD9028SE/883B

Analog-to-Digital Converter, 8-Bit
ETC

AD9028SZ/883B

Analog-to-Digital Converter, 8-Bit
ETC

AD9028TE/883B

Analog-to-Digital Converter, 8-Bit
ETC

AD9028TZ/883B

Analog-to-Digital Converter, 8-Bit
ETC