AD9142BCPZRL [ADI]

Dual, 16-Bit, 1600 MSPS, TxDAC Digital-to-Analog Converter; 双通道, 16位, 1600 MSPS , TxDAC系列数位类比转换器
AD9142BCPZRL
型号: AD9142BCPZRL
厂家: ADI    ADI
描述:

Dual, 16-Bit, 1600 MSPS, TxDAC Digital-to-Analog Converter
双通道, 16位, 1600 MSPS , TxDAC系列数位类比转换器

转换器
文件: 总65页 (文件大小:1113K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual, 16-Bit, 1600 MSPS, TxDAC+  
Digital-to-Analog Converter  
Data Sheet  
AD9142  
FEATURES  
GENERAL DESCRIPTION  
Very small inherent latency variation: <2 DAC clock cycles  
Proprietary low spurious and distortion design  
6-carrier GSM ACLR = 79 dBc at 200 MHz IF  
SFDR > 85 dBc (bandwidth = 300 MHz) at ZIF  
Flexible 16-bit LVDS interface  
Supports word and byte load  
Multiple chip synchronization  
Fixed latency and data generator latency compensation  
Selectable 2×, 4×, 8× interpolation filter  
Low power architecture  
fS/4 power saving coarse mixer  
Input signal power detection  
Emergency stop for downstream analog circuitry  
protection  
FIFO error detection  
The AD9142 is a dual, 16-bit, high dynamic range digital-to-  
analog converter (DAC) that provides a sample rate of 1600 MSPS,  
permitting a multicarrier generation up to the Nyquist frequency.  
The AD9142 TxDAC+® includes features optimized for direct  
conversion transmit applications, including complex digital mod-  
ulation, input signal power detection, and gain, phase, and offset  
compensation. The DAC outputs are optimized to interface  
seamlessly with analog quadrature modulators, such as the  
ADL537x F-MOD series and the ADRF670x series from Analog  
Devices, Inc. A 3-wire serial port interface provides for the pro-  
gramming/readback of many internal parameters. Full-scale  
output current can be programmed over a range of 9 mA to 33 mA.  
The AD9142 is available in a 72-lead LFCSP.  
PRODUCT HIGHLIGHTS  
1. Advanced low spurious and distortion design techniques  
provide high quality synthesis of wideband signals from  
baseband to high intermediate frequencies.  
2. Very small inherent latency variation simplifies both software  
and hardware design in the system. It allows easy multichip  
synchronization for most applications.  
On-chip numeric control oscillator allows carrier placement  
anywhere in the DAC Nyquist bandwidth  
Transmit enable function for extra power saving  
High performance, low noise PLL clock multiplier  
Digital gain and phase adjustment for sideband suppression  
Digital inverse sinc filter  
3. New low power architecture improves power efficiency  
(mW/MHz/channel) by 30%.  
4. Input signal power and FIFO error detection simplify  
designs for downstream analog circuitry protection.  
5. Programmable transmit enable function allows easy design  
balance between power consumption and wakeup time.  
Supports single DAC mode  
Low power: 2.0 W at 1.6 GSPS, 1.7 W at 1.25 GSPS, full  
operating conditions  
72-lead LFCSP  
APPLICATIONS  
Wireless communications: 3G/4G and MC-GSM base stations,  
wideband repeaters, software defined radios  
Wideband communications: point-to-point, LMDS/MMDS  
Transmit diversity/MIMO  
Instrumentation  
Automated test equipment  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
©2012 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
AD9142  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Input Signal Power Detection and Protection........................ 30  
Transmit Enable Function......................................................... 31  
Digital Function Configuration ............................................... 31  
Multidevice Synchronization and Fixed Latency....................... 32  
Very Small Inherent Latency Variation................................... 32  
Further Reducing the Latency Variation................................. 32  
Synchronization Implementation ............................................ 33  
Synchronization Procedures..................................................... 33  
Interrupt Request Operation ........................................................ 34  
Interrupt Working Mechanism ................................................ 34  
Interrupt Service Routine.......................................................... 34  
Temperature Sensor ....................................................................... 35  
DAC Input Clock Configurations ................................................ 36  
Driving the DACCLK and REFCLK Inputs ........................... 36  
Direct Clocking .......................................................................... 36  
Clock Multiplication .................................................................. 36  
PLL Settings ................................................................................ 37  
Configuring the VCO Tuning Band ........................................ 37  
Automatic VCO Band Select .................................................... 37  
Manual VCO Band Select ......................................................... 37  
Analog Outputs............................................................................... 38  
Transmit DAC Operation.......................................................... 38  
Interfacing to Modulators ......................................................... 39  
Reducing LO Leakage and Unwanted Sidebands .................. 40  
Example Start-Up Routine ............................................................ 41  
Device Configuration Register Map and Description............... 42  
SPI Configure Register .............................................................. 44  
Power-Down Control Register................................................. 44  
Interrupt Enable0 Register........................................................ 44  
Interrupt Enable1 Register........................................................ 44  
Interrupt Flag0 Register............................................................. 45  
Interrupt Flag1 Register............................................................. 45  
Interrupt Select0 Register.......................................................... 45  
Interrupt Select1 Register.......................................................... 46  
DAC Clock Receiver Control Register .................................... 46  
Ref Clock Receiver Control Register ....................................... 46  
PLL Control Register ................................................................. 47  
PLL Control Register ................................................................. 47  
PLL Control Register ................................................................. 47  
PLL Status Register..................................................................... 48  
Applications....................................................................................... 1  
General Description ......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 3  
Functional Block Diagram .............................................................. 4  
Specifications..................................................................................... 5  
DC Specifications ......................................................................... 5  
Digital Specifications ................................................................... 6  
DAC Latency Specifications........................................................ 7  
Latency Variation Specifications ................................................ 7  
AC Specifications.......................................................................... 7  
Operating Speed Specifications.................................................. 8  
Absolute Maximum Ratings ....................................................... 9  
Thermal Resistance ...................................................................... 9  
ESD Caution.................................................................................. 9  
Pin Configuration and Function Descriptions........................... 10  
Typical Performance Characteristics ........................................... 12  
Terminology .................................................................................... 17  
Serial Port Operation ..................................................................... 18  
Data Format ................................................................................ 18  
Serial Port Pin Descriptions...................................................... 18  
Serial Port Options..................................................................... 18  
Data Interface.................................................................................. 20  
LVDS Input Data Ports .............................................................. 20  
Word Interface Mode................................................................. 20  
Byte Interface Mode ................................................................... 20  
Data Interface Configuration Options .................................... 20  
Interface Delay Line ................................................................... 22  
FIFO Operation .............................................................................. 23  
Resetting the FIFO ..................................................................... 24  
Serial Port Initiated FIFO Reset ............................................... 24  
Frame Initiated FIFO Reset....................................................... 24  
Digital Datapath.............................................................................. 26  
Interpolation Filters ................................................................... 26  
Digital Modulation..................................................................... 28  
Datapath Configuration ............................................................ 29  
Digital Quadrature Gain and Phase Adjustment................... 29  
DC Offset Adjustment............................................................... 29  
Inverse Sinc Filter....................................................................... 30  
Rev. 0 | Page 2 of 64  
Data Sheet  
AD9142  
PLL Status Register .....................................................................48  
IDAC FS Adjust LSB Register....................................................48  
IDAC FS Adjust MSB Register ..................................................48  
QDAC FS Adjust LSB Register..................................................48  
QDAC FS Adjust MSB Register ................................................49  
Die Temperature Sensor Control Register...............................49  
Die Temperature LSB Register ..................................................49  
Die Temperature MSB Register.................................................49  
Chip ID Register..........................................................................49  
Interrupt Configuation Register ...............................................50  
Sync CTRL Register....................................................................50  
Frame Reset CTRL Register.......................................................50  
FIFO Level Configuration Register ..........................................51  
FIFO Level Readback Register ..................................................51  
FIFO CTRL Register...................................................................51  
Data Format Select Register.......................................................52  
Datapath Control Register .........................................................52  
Interpolation Control Register..................................................52  
Over Threshold CTRL0 Register ..............................................53  
Over Threshold CTRL1 Register ..............................................53  
Over Threshold CTRL2 Register ..............................................53  
Input Power Readback LSB Register ........................................53  
Input Power Readback MSB Register.......................................53  
NCO Control Register................................................................54  
NCO_FREQ_TUNING_WORD0 Register.............................54  
NCO_FREQ_TUNING_WORD1 Register.............................54  
NCO_FREQ_TUNING_WORD2 Register.............................54  
NCO_FREQ_TUNING_WORD3 Register.............................54  
NCO_PHASE_OFFSET0 Register............................................54  
NCO_PHASE_OFFSET1 Register............................................55  
IQ_PHASE_ADJ0 Register........................................................55  
IQ_PHASE_ADJ1 Register........................................................55  
IDAC_DC_OFFSET0 Register..................................................55  
IDAC_DC_OFFSET1 Register..................................................55  
QDAC_DC_OFFSET0 Register................................................55  
QDAC_DC_OFFSET1 Register................................................56  
IDAC_GAIN_ADJ Register.......................................................56  
QDAC_GAIN_ADJ Register.....................................................56  
Gain Step Control0 Register......................................................56  
Gain Step Control1 Register......................................................56  
TX Enable Control Register ......................................................57  
DAC Output Control Register ..................................................57  
Data Receiver Test Control Register.........................................57  
Data Receiver Test Control Register.........................................57  
Device Configuration0 Register................................................58  
Version Register ..........................................................................58  
Device Configuration1 Register................................................58  
Device Configuration2 Register................................................58  
DAC Latency and System Skews...................................................59  
DAC Latency Variations.............................................................59  
FIFO Latency Variation..............................................................59  
Clock Generation Latency Variation........................................60  
Correcting System Skews...........................................................60  
Packaging and Ordering Information..........................................61  
Outline Dimensions....................................................................61  
Ordering Guide ...........................................................................61  
REVISION HISTORY  
11/12—Revision 0: Initial Version  
Rev. 0 | Page 3 of 64  
 
AD9142  
Data Sheet  
FUNCTIONAL BLOCK DIAGRAM  
INPUT POWER  
DCIP/DCIN  
AD9142  
DETECTION  
16  
IOUT1P  
IOUT1N  
COMPLEX  
D15P/D15N  
DAC 1  
16-BIT  
MODULATION  
NCO  
HB1  
2×  
HB2  
2×  
HB3  
2×  
DAC CLK  
16  
D0P/D0N  
fDAC/4  
MOD  
FRAMEP/  
FRAMEN  
IOUT2P  
IOUT2N  
DAC 2  
16-BIT  
REF  
REFIO  
FSADJ  
AND  
10  
10  
BIAS  
INTERNAL CLOCK TIMING AND CONTROL LOGIC  
DACCLKP  
DACCLKN  
PROGRAMMING  
REGISTERS  
SERIAL  
INPUT/OUTPUT  
PORT  
CLK  
RCVR  
POWER-ON  
RESET  
MULTICHIP  
SYNCHRONIZATION  
DAC_CLK  
REFP/SYNCP  
REFN/SYNCN  
CLOCK  
MULTIPLIER  
REF  
RCVR  
SYNC  
Figure 1.  
Rev. 0 | Page 4 of 64  
 
Data Sheet  
AD9142  
SPECIFICATIONS  
DC SPECIFICATIONS  
TMIN to TMAX, AVDD33 = 3.3 V, DVDD18 = 1.8 V, CVDD18 = 1.8 V, IOUTFS = 20 mA, maximum sample rate, unless otherwise noted.  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
RESOLUTION  
16  
Bits  
ACCURACY  
Differential Nonlinearity (DNL)  
Integral Nonlinearity (INL)  
MAIN DAC OUTPUTS  
Offset Error  
2.1  
3.7  
LSB  
LSB  
−0.001  
−3.2  
0
2
+0.001 % FSR  
Gain Error  
With internal reference  
4.7  
+20.6  
+1.0  
% FSR  
mA  
V
Full-Scale Output Current  
Output Compliance Range  
Output Resistance  
Gain DAC Monotonicity  
Settling Time to Within 0.5 LSB  
MAIN DAC TEMPERATURE DRIFT  
Offset  
Based on a 10 kΩ external resistor between FSADJ and AVSS 19.06  
−1.0  
19.8  
10  
MΩ  
Guaranteed  
20  
ns  
0.04  
100  
30  
ppm/°C  
ppm/°C  
ppm/°C  
Gain  
Reference Voltage  
REFERENCE  
Internal Reference Voltage  
Output Resistance  
ANALOG SUPPLY VOLTAGES  
AVDD33  
1.17  
1.19  
V
kΩ  
5
3.13  
1.71  
3.3  
1.8  
3.47  
1.89  
V
V
CVDD18  
DIGITAL SUPPLY VOLTAGES  
DVDD18  
1.71  
1.8  
1.89  
V
POWER CONSUMPTION  
2× Mode  
fDAC = 491.52 MSPS  
NCO OFF  
NCO ON  
700  
870  
mW  
mW  
4× Mode  
NCO OFF  
NCO ON  
4× Mode  
NCO OFF  
NCO ON  
8× Mode  
fDAC = 737.28 MSPS  
fDAC = 983.04 MSPS  
fDAC = 1600 MSPS  
836  
1085  
mW  
mW  
1030  
1365  
mW  
mW  
NCO OFF  
NCO ON  
Phase-Lock Loop  
Inverse Sinc  
Reduced Power Mode (Power Down)  
AVDD33  
1315  
1815  
70  
mW  
mW  
mW  
mW  
mW  
mA  
mA  
mA  
°C  
fDAC = 1474.56 MSPS  
113  
96.6  
1.5  
42.3  
8.6  
CVDD18  
DVDD18  
OPERATING RANGE  
−40  
+25  
+85  
Rev. 0 | Page 5 of 64  
 
 
AD9142  
Data Sheet  
DIGITAL SPECIFICATIONS  
TMIN to TMAX, AVDD33 = 3.3 V, DVDD18 = 1.8 V, CVDD18 = 1.8 V, IOUTFS = 20 mA, maximum sample rate, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
0.6  
Unit  
CMOS INPUT LOGIC LEVEL  
Input  
Logic High  
Logic Low  
DVDD18 = 1.8 V  
DVDD18 = 1.8 V  
1.2  
V
V
CMOS OUTPUT LOGIC LEVEL  
Output  
Logic High  
Logic Low  
DVDD18 = 1.8 V  
DVDD18 = 1.8 V  
1.4  
V
V
0.4  
LVDS RECEIVER INPUTS  
Input Voltage Range  
Input Differential Threshold  
VIA or VIB  
VIDTH  
825  
−100  
−225  
1675  
+100  
+225  
mV  
mV  
mV  
Data and FRAME inputs  
DCI input  
Input Differential Hysteresis  
Receiver Differential Input Impedance  
DAC UPDATE RATE  
VIDTHH to VIDTHL  
RIN  
20  
120  
mV  
Ω
1600  
250  
MSPS  
MSPS  
DAC Adjusted Update Rate  
DAC CLOCK INPUT (DACCLKP, DACCLKN)  
Differential Peak-to-Peak Voltage  
Common-Mode Voltage  
REFCLK/SYNCCLK INPUT (REFP/SYNCP, REFN/SYNCN)  
Differential Peak-to-Peak Voltage  
Common-Mode Voltage  
Input Clock Frequency  
SERIAL PORT INTERFACE  
Maximum Clock Rate  
2× interpolation  
100  
100  
500  
1.25  
2000  
mV  
V
Self biased input, ac-coupled  
500  
1.25  
2000  
450  
mV  
V
MHz  
1 GHz ≤ fVCO ≤ 2.1 GHz  
SCLK  
40  
MHz  
Minimum Pulse Width  
High  
Low  
Setup Time  
Hold Time  
tPWH  
tPWL  
tDS  
tDH  
tDCSB  
12.5  
12.5  
ns  
ns  
ns  
ns  
ns  
SDIO to SCLK  
SDIO to SCLK  
CS to SCLK  
1.5  
0.68  
2.38  
Setup Time  
1.4  
Rev. 0 | Page 6 of 64  
 
 
Data Sheet  
AD9142  
DAC LATENCY SPECIFICATIONS  
TMIN to TMAX, AVDD33 = 3.3 V, DVDD18 = 1.8 V, CVDD18 = 1.8 V, IOUTFS = 20 mA, FIFO level is set to 4 (half of the FIFO depth), unless  
otherwise noted.  
Table 3.  
Parameter  
Test Conditions/Comments  
Min Typ Max Unit  
WORD INTERFACE MODE  
2× Interpolation  
4× Interpolation  
8× Interpolation  
BYTE INTERFACE MODE  
2× Interpolation  
4× Interpolation  
8× Interpolation  
INDIVIDUAL FUNCTION BLOCKS  
Modulation  
Fine/coarse modulation, inverse sinc, gain/phase compensation off  
134  
244  
481  
DACCLK cycles  
DACCLK cycles  
DACCLK cycles  
Fine/coarse modulation, inverse sinc, gain/phase compensation off  
145  
271  
506  
DACCLK cycles  
DACCLK cycles  
DACCLK cycles  
Fine  
Coarse  
Inverse Sinc  
Phase Compensation  
Gain Compensation  
17  
10  
20  
12  
16  
DACCLK cycles  
DACCLK cycles  
DACCLK cycles  
DACCLK cycles  
DACCLK cycles  
LATENCY VARIATION SPECIFICATIONS1  
Table 4.  
Parameter  
Min  
Typ  
Max  
Unit  
DAC LATENCY VARIATION  
SYNC Off  
SYNC On  
2
1
DACCLK cycles  
DACCLK cycles  
1 DAC latency is defined as the elapsed time from a data sample clocked at the input to the AD9142 until the analog output begins to change.  
AC SPECIFICATIONS  
TMIN to TMAX, AVDD33 = 3.3 V, DVDD18 = 1.8 V, CVDD18 = 1.8 V, IOUTFS = 20 mA, maximum sample rate, unless otherwise noted.  
Table 5.  
Parameter  
Test Conditions/Comments  
−14 dBFS single tone  
fOUT = 200 MHz  
Min Typ  
Max Unit  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)  
fDAC = 737.28 MSPS  
BW = 125 MHz  
85  
80  
dBc  
dBc  
BW = 270 MHz  
fDAC = 983.04 MSPS  
BW = 360MHz  
fDAC = 1228.8 MSPS  
BW = 200MHz  
fOUT = 200 MHz  
fOUT = 280 MHz  
85  
dBc  
85  
75  
dBc  
dBc  
BW = 500MHz  
fDAC = 1474.56 MSPS  
BW = 737MHz  
BW = 400MHz  
fOUT = 10 MHz  
85  
80  
dBc  
dBc  
fOUT = 280 MHz  
−6 dBFS each tone  
fOUT = 200 MHz  
fOUT = 200 MHz  
fOUT = 280 MHz  
fOUT = 10 MHz  
TWO-TONE INTERMODULATION DISTORTION (IMD)  
fDAC = 737.28 MSPS  
fDAC = 983.04 MSPS  
fDAC = 1228.8 MSPS  
fDAC = 1474.56 MSPS  
80  
82  
80  
85  
79  
dBc  
dBc  
dBc  
dBc  
dBc  
fOUT = 280 MHz  
Rev. 0 | Page 7 of 64  
 
 
 
AD9142  
Data Sheet  
Parameter  
Test Conditions/Comments  
Eight-tone, 500 kHz tone spacing  
fOUT = 200 MHz  
fOUT = 200 MHz  
fOUT = 280 MHz  
fOUT = 10 MHz  
fOUT = 280 MHz  
Single carrier  
fOUT = 200 MHz  
fOUT = 20 MHz  
fOUT = 280 MHz  
fOUT = 20 MHz  
fOUT = 280 MHz  
Single carrier  
fOUT = 200 MHz  
fOUT = 20 MHz  
fOUT = 280 MHz  
fOUT = 20 MHz  
Min Typ  
Max Unit  
NOISE SPECTRAL DENSITY (NSD)  
fDAC = 737.28 MSPS  
fDAC = 983.04 MSPS  
fDAC = 1228.8 MSPS  
fDAC = 1474.56 MSPS  
−160  
−161.5  
−164.5  
−166  
−162.5  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
W-CDMA ADJACENT CHANNEL LEAKAGE RATIO (ACLR)  
fDAC = 983.04 MSPS  
fDAC = 1228.8 MSPS  
81  
83  
80  
81  
80  
dBc  
dBc  
dBc  
dBc  
dBc  
fDAC = 1474.56 MSPS  
W-CDMA SECOND (ACLR)  
fDAC = 983.04 MSPS  
fDAC = 1228.8 MSPS  
85  
86  
86  
86  
85  
dBc  
dBc  
dBc  
dBc  
dBc  
fDAC = 1474.56 MSPS  
fOUT = 280 MHz  
OPERATING SPEED SPECIFICATIONS  
Table 6.  
DVDD18, CVDD18 = 1.8 V 5%  
DVDD18, CVDD18 = 1.8 V 2% or 1.9 V 5%  
Interpolation  
Factor  
fINTERFACE (Mbps) Max  
fDAC (Mbps) Max  
fINTERFACE (Mbps) Max  
fDAC (Mbps) Max  
2×  
4×  
8×  
250  
250  
187.5  
500  
1000  
1500  
250  
250  
200  
500  
1000  
1600  
Rev. 0 | Page 8 of 64  
 
 
 
Data Sheet  
AD9142  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 7.  
The exposed pad (EPAD) must be soldered to the ground plane  
(AVSS) for the 72-lead LFCSP. The EPAD provides an electrical,  
thermal, and mechanical connection to the board.  
Parameter  
Rating  
AVDD33 to AVSS, EPAD, CVSS, DVSS  
DVDD18, CVDD18 to AVSS, EPAD,  
CVSS, DVSS  
AVSS to EPAD, CVSS, DVSS  
EPAD to AVSS, CVSS, DVSS  
CVSS to AVSS, EPAD, DVSS  
DVSS to AVSS, EPAD, CVSS  
FSADJ, REFIO, IOUT1P/IOUT1N,  
IOUT2P/IOUT2N to AVSS  
−0.3 V to +3.6 V  
−0.3 V to +2.1 V  
Typical θJA, θJB, and θJC values are specified for a 4-layer board in  
still air. Airflow increases heat dissipation, effectively reducing  
−0.3 V to +0.3 V  
−0.3 V to +0.3 V  
−0.3 V to +0.3 V  
−0.3 V to +0.3 V  
θ
JA and θJB.  
Table 8. Thermal Resistance  
−0.3 V to AVDD33 + 0.3 V  
Package θJA θJB  
θJC  
Unit Conditions  
72-Lead LFCSP 20.7 10.9 1.1  
°C/W EPAD soldered  
to ground plane  
D[15:0]P/D[15:0]N, FRAMEP/FRAMEN, −0.3 V to DVDD18 + 0.3 V  
DCIP/DCIN to EPAD, DVSS  
DACCLKP/DACCLKN,  
−0.3 V to CVDD18 + 0.3 V  
REFP/SYNCP/REFN/SYNCN to CVSS  
RESET, IRQ1, IRQ2, CS, SCLK, SDIO  
to EPAD, DVSS  
ESD CAUTION  
−0.3 V to DVDD18 + 0.3 V  
Junction Temperature  
125°C  
Storage Temperature Range  
−65°C to +150°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 9 of 64  
 
 
 
AD9142  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
CVDD18  
REFP/SYNCP  
REFN/SYNCN  
CVDD18  
1
2
3
4
5
6
7
8
9
54 CS  
53 SCLK  
52 SDIO  
51 IRQ1  
50 IRQ2  
49 DVDD18  
48 DVDD18  
47 D0N  
46 D0P  
45 D1N  
44 D1P  
43 DVDD18  
42 D2N  
RESET  
TXEN  
DVDD18  
FRAMEP  
FRAMEN  
D15P 10  
D15N 11  
DVDD18 12  
D14P 13  
D14N 14  
D13P 15  
D13N 16  
D12P 17  
D12N 18  
AD9142  
TOP VIEW  
(Not to Scale)  
41 D2P  
40 D3N  
39 D3P  
38 D4N  
37 D4P  
NOTES  
1. EXPOSED PAD (EPAD) MUST BE SOLDERED TO THE GROUND  
PLANE (AVSS). THE EPAD PROVIDES AN ELECTRICAL, THERMAL,  
AND MECHANICAL CONNECTION TO THE BOARD.  
2. EPAD IS THE GROUND CONNECTION FOR CVSS AND DVSS.  
Figure 2. Pin Configuration  
Table 9. Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
3
4
5
6
CVDD18  
REFP/SYNCP  
1.8 V PLL Supply. CVDD18 supplies the clock receivers, clock multiplier, and clock distribution.  
PLL Reference Clock Input, Positive.  
REFN/SYNCN PLL Reference Clock Input, Negative.  
CVDD18  
RESET  
TXEN  
1.8 V PLL Supply. CVDD18 supplies the clock receivers, clock multiplier, and clock distribution.  
Reset, Active Low. CMOS levels with respect to DVDD18. Recommended reset pulse length is 1 μs.  
Active High Transmit Path Enable. CMOS levels with respect to DVDD18. A low level on this pin triggers three  
selectable actions in the DAC. See Register 0x43 in Table 77 for details.  
7
DVDD18  
1.8 V Digital Supply. Pin 7 supplies power to the digital core, digital data ports, serial port input/output pins, RESET, IRQ1,  
and IRQ2.  
8
9
FRAMEP  
FRAMEN  
D15P  
D15N  
DVDD18  
D14P  
D14N  
D13P  
D13N  
D12P  
Frame Input, Positive.  
Frame Input, Negative.  
Data Bit 15 (MSB), Positive.  
Data Bit 15 (MSB), Negative.  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1.8 V Digital Supply. Pin 12 supplies the power to the digital core and digital data ports.  
Data Bit 14, Positive.  
Data Bit 14, Negative.  
Data Bit 13, Positive.  
Data Bit 13, Negative.  
Data Bit 12, Positive.  
Data Bit 12, Negative.  
D12N  
DVDD18  
1.8 V Digital Supply. Pin 19 supplies power to the digital core, digital data ports, serial port input/output pins,  
RESET, IRQ1, and IRQ2.  
20  
21  
22  
23  
24  
D11P  
D11N  
D10P  
D10N  
D9P  
Data Bit 11, Positive.  
Data Bit 11, Negative.  
Data Bit 10, Positive.  
Data Bit 10, Negative.  
Data Bit 9, Positive.  
Rev. 0 | Page 10 of 64  
 
 
Data Sheet  
AD9142  
Pin No. Mnemonic  
Description  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
D9N  
D8P  
D8N  
DCIP  
DCIN  
D7P  
D7N  
D6P  
D6N  
D5P  
Data Bit 9, Negative.  
Data Bit 8, Positive.  
Data Bit 8, Negative.  
Data Clock Input, Positive.  
Data Clock Input, Negative.  
Data Bit 7, Positive.  
Data Bit 7, Negative.  
Data Bit 6, Positive.  
Data Bit 6, Negative.  
Data Bit 5, Positive.  
Data Bit 5, Negative.  
D5N  
DVDD18  
1.8 V Digital Supply. Pin 36 supplies power to the digital core, digital data ports, serial port input/output pins,  
RESET, IRQ1, and IRQ2.  
37  
38  
39  
40  
41  
42  
43  
D4P  
D4N  
D3P  
D3N  
D2P  
D2N  
DVDD18  
Data Bit 4, Positive.  
Data Bit 4, Negative.  
Data Bit 3, Positive.  
Data Bit 3, Negative.  
Data Bit 2, Positive.  
Data Bit 2, Negative.  
1.8 V Digital Supply. Pin 43 supplies power to the digital core, digital data ports, serial port input/output pins,  
RESET, IRQ1, and IRQ2.  
44  
45  
46  
47  
48  
D1P  
D1N  
D0P  
D0N  
Data Bit 1, Positive.  
Data Bit 1, Negative.  
Data Bit 0 (LSB), Positive.  
Data Bit 0 (LSB), Negative.  
DVDD18  
1.8 V Digital Supply. Pin 48 supplies power to the digital core, digital data ports, serial port input/output pins,  
RESET, IRQ1, and IRQ2.  
49  
DVDD18  
1.8 V Digital Supply. Pin 49 supplies power to the digital core, digital data ports, serial port input/output  
pins, RESET, IRQ1, and IRQ2.  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
IRQ2  
Second Interrupt Request. Open-drain, active low output. Connect an external pull-up to DVDD18 through a 10 kΩ resistor.  
First Interrupt Request. Open-drain, active low output. Connect an external pull-up to DVDD18 through a 10 kΩ resistor.  
Serial Port Data Input/Output. CMOS levels with respect to DVDD18.  
Serial Port Clock Input. CMOS levels with respect to DVDD18.  
Serial Port Chip Select. Active low (CMOS levels with respect to DVDD18).  
3.3 V Analog Supply.  
QDAC Positive Current Output.  
QDAC Negative Current Output.  
3.3 V Analog Supply.  
IRQ1  
SDIO  
SCLK  
CS  
AVDD33  
IOUT2P  
IOUT2N  
AVDD33  
CVDD18  
CVDD18  
DACCLKN  
DACCLKP  
CVDD18  
CVDD18  
AVDD33  
IOUT1N  
IOUT1P  
AVDD33  
FSADJ  
1.8 V Clock Supply. Supplies clock receivers and clock distribution.  
1.8 V Clock Supply. Supplies clock receivers and clock distribution.  
DAC Clock Input, Negative.  
DAC Clock Input, Positive.  
1.8 V Clock Supply. Supplies clock receivers and clock distribution.  
1.8 V Clock Supply. Supplies clock receivers and clock distribution.  
3.3 V Analog Supply.  
IDAC Negative Current Output.  
IDAC Positive Current Output.  
3.3 V Analog Supply.  
Full-Scale Current Output Adjust. Place a 10 kΩ resistor from this pin to AVSS.  
Voltage Reference. Nominally 1.2 V output. Decouple REFIO to AVSS.  
1.8 V Clock Supply. Pin 71 supplies the clock receivers, clock multiplier, and clock distribution.  
1.8 V Clock Supply. Pin 72 supplies the clock receivers, clock multiplier, and clock distribution.  
Exposed Pad. The exposed pad (EPAD) must be soldered to the ground plane (AVSS). The EPAD provides an  
electrical, thermal, and mechanical connection to the board.  
Rev. 0 | Page 11 of 64  
REFIO  
CVDD18  
CVDD18  
EPAD  
AD9142  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
0
–60  
–65  
BW = 80MHz, –6dBFS  
BW = 80MHz, –12dBFS  
BW = 300MHz, –6dBFS  
BW = 300MHz, –12dBFS  
fDAC = 737.28MHz  
fDAC = 983.04MHz  
fDAC = 1228.8MHz  
–10  
fDAC = 1474.56MHz  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–70  
–75  
–80  
–85  
–85 MEANS ≤ –85  
< –85  
0
100  
200  
300  
400  
500  
600  
700  
800  
0
20  
40  
60  
80  
100 120 140 160 180 200  
fOUT (MHz)  
fOUT (MHz)  
Figure 3. Single-Tone (0 dBFS) SFDR vs. fOUT in the First Nyquist Zone over fDAC  
Figure 6. Single-Tone SFDR (Excluding 2nd Harmonic) vs. fOUT in 80 MHz and  
300 MHz Bandwidths, fDAC = 737.28 MHz  
0
–60  
BW = 80MHz, –6dBFS  
BW = 80MHz, –12dBFS  
BW = 300MHz, –6dBFS  
0dBFS  
–6dBFS  
–12dBFS  
–16dBFS  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–65  
–70  
BW = 300MHz, –12dBFS  
–75  
–80  
–85  
–85 MEANS ≤ –85  
< –85  
0
100  
200  
300  
400  
500  
600  
700  
800  
0
50  
100  
150  
200  
250  
300  
fOUT (MHz)  
fOUT (MHz)  
Figure 4. Single-Tone Second Harmonic vs. fOUT in the First Nyquist Zone  
over Digital Back Off, fDAC = 1474.56 MHz  
Figure 7. Single-Tone SFDR (Excluding 2nd Harmonic) vs. fOUT in 80 MHz and  
300 MHz BW, fDAC = 983.04 MHz  
0
–60  
BW = 80MHz, –6dBFS  
BW = 80MHz, –12dBFS  
BW = 300MHz, –6dBFS  
0dBFS  
–6dBFS  
–12dBFS  
–16dBFS  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–65  
–70  
BW = 300MHz, –12dBFS  
–75  
–80  
–85  
–85 MEANS ≤ –85  
< –85  
0
100  
200  
300  
400  
500  
600  
700  
800  
0
50  
100  
150  
200  
250  
300  
350  
fOUT (MHz)  
fOUT (MHz)  
Figure 5. Single-Tone Third Harmonic vs. fOUT in the First Nyquist Zone  
over Digital Back Off, fDAC = 1474.56 MHz  
Figure 8. Single-Tone SFDR (Excluding 2nd Harmonic) vs. fOUT in 80 MHz and  
300 MHz Bandwidths, fDAC = 1228.8 MHz  
Rev. 0 | Page 12 of 64  
 
Data Sheet  
AD9142  
–60  
0
–20  
BW = 80MHz, –6dBFS  
0.6MHz TONE SPACING  
16MHz TONE SPACING  
35MHz TONE SPACING  
BW = 80MHz, –12dBFS  
BW = 300MHz, –6dBFS  
BW = 300MHz, –12dBFS  
–65  
–70  
–40  
–75  
–60  
–80  
–80  
–85  
–100  
–120  
–85 MEANS ≤ –85  
< –85  
0
50  
100  
150  
200  
250  
300  
350  
0
100  
200  
300  
400  
500  
600  
700  
800  
fOUT (MHz)  
fOUT (MHz)  
Figure 9. Single-Tone SFDR (Excluding 2nd Harmonic) vs. fOUT in 80 MHz and  
300 MHz Bandwidths, fDAC = 1474.56 MHz  
Figure 12. Two-Tone Third IMD vs. fOUT over Tone Spacing,  
DAC = 1474.56 MHz  
f
0
–152  
–154  
–156  
–158  
–160  
–162  
–164  
–166  
–168  
fDAC = 737.28MHz  
fDAC = 983.04MHz  
fDAC = 1228.8MHz  
fDAC = 1474.56MHz  
fDAC = 737.28MHz  
fDAC = 983.04MHz  
fDAC = 1228.8MHz  
fDAC = 1474.56MHz  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
0
100  
200  
300  
400  
500  
600  
700  
800  
0
100  
200  
300  
400  
500  
600  
700  
800  
fOUT (MHz)  
fOUT (MHz)  
Figure 10. Two-Tone Third IMD vs. fOUT over fDAC  
Figure 13. Single-Tone (0 dBFS) NSD vs. fOUT over fDAC  
–152  
–154  
–156  
–158  
–160  
–162  
–164  
–166  
–168  
0
–20  
0dBFS  
0dBFS  
–6dBFS  
–9dBFS  
–6dBFS  
–12dBFS  
–16dBFS  
–40  
–60  
–80  
–100  
–120  
0
100  
200  
300  
400  
500  
600  
700  
800  
0
100  
200  
300  
400  
500  
600  
700  
800  
fOUT (MHz)  
fOUT (MHz)  
Figure 14. Single-Tone NSD vs. fOUT over Digital Back Off,  
DAC = 1474.56 MHz  
Figure 11. Two-Tone Third IMD vs. fOUT over Digital Back Off,  
DAC = 1474.56 MHz  
f
f
Rev. 0 | Page 13 of 64  
AD9142  
Data Sheet  
–150  
–152  
–154  
–156  
–158  
–160  
–162  
–164  
–166  
–168  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
737.2MHz  
fDAC = 1474.56MHz, PLL OFF, 0dBFS  
fDAC = 1474.56MHz, PLL ON, 0dBFS  
fDAC = 1228.8MHz, PLL OFF, 0dBFS  
fDAC = 1228.8MHz, PLL ON, 0dBFS  
983.04MHz  
1228.8MHz  
1474.56MHz  
–170  
0
100  
200  
300  
400  
500  
600  
700  
800  
0
100  
200  
300  
400  
500  
600  
700  
800  
fOUT (MHz)  
fOUT (MHz)  
Figure 15. 1C WCDMA NSD vs. fOUT, over fDAC  
Figure 18. 1C WCDMA 2nd Adjacent ACLR vs. fOUT, PLL On and Off  
–150  
–152  
–154  
–156  
–158  
–160  
–162  
–164  
–166  
PLL OFF  
PLL ON  
–168  
0
100  
200  
300  
400  
500  
600  
700  
800  
fOUT (MHz)  
Figure 16. Single-Tone NSD vs. fOUT, fDAC = 1474.28 MHz, PLL On and Off  
Figure 19. Two-Tone Third IMD Performance,  
IF = 280 MHz, fDAC = 1474.28 MHz  
–60  
fDAC = 1474.56MHz, PLL OFF, 0dBFS  
fDAC = 1474.56MHz, PLL ON, 0dBFS  
fDAC = 1228.8MHz, PLL OFF, 0dBFS  
fDAC = 1228.8MHz, PLL ON, 0dBFS  
–65  
–70  
–75  
–80  
–85  
0
100  
200  
300  
400  
500  
600  
700  
800  
fOUT (MHz)  
Figure 17. 1C WCDMA 1st Adjacent ACLR vs. fOUT, PLL On and Off  
Figure 20. 1C WCDMA ACLR Performance, IF = 280 MHz, fDAC = 1474.28 MHz  
Rev. 0 | Page 14 of 64  
Data Sheet  
AD9142  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
2× INTERPOLATION  
4× INTERPOLATION  
8× INTERPOLATION  
0
200  
400  
600  
800 1000 1200 1400 1600 1800  
fDAC (MHz)  
Figure 21. Single-Tone fDAC = 1474.56 MHz,  
OUT = 280 MHz, −14 dBFS  
Figure 24. Total Power Consumption vs. fDAC over Interpolation  
f
450  
2× INTERPOLATION  
4× INTERPOLATION  
8× INTERPOLATION  
400  
350  
300  
250  
200  
150  
100  
50  
0
0
200  
400  
600  
800 1000 1200 1400 1600 1800  
fDAC (MHz)  
Figure 22. 4C WCDMA ACLR Performance,  
IF = 280 MHz, fDAC = 1474.28 MHz  
Figure 25. DVDD18 Current vs. fDAC over Interpolation  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
NCO  
INV SINC  
DIG GAIN, PHASE, AND OFFSET  
0
200  
400  
600  
800  
1000  
1200  
1400  
1600  
fDAC (MHz)  
Figure 23. Single-Tone SFDR fDAC = 1474.56 MHz,  
4× Interpolation, fOUT = 10 MHz, −14 dBFS  
Figure 26. DVDD18 Current vs. fDAC over Digital Functions  
Rev. 0 | Page 15 of 64  
AD9142  
Data Sheet  
250  
200  
150  
100  
50  
CVDD18 PLL OFF  
AVDD33  
CVDD18 PLL ON  
0
0
200  
400  
600  
800  
1000  
1200  
1400  
1600  
fDAC (MHz)  
Figure 27. CVDD18, AVDD33 Current vs. fDAC  
Rev. 0 | Page 16 of 64  
Data Sheet  
AD9142  
TERMINOLOGY  
Integral Nonlinearity (INL)  
Settling Time  
INL is the maximum deviation of the actual analog output from  
the ideal output, determined by a straight line drawn from zero  
scale to full scale.  
Settling time is the time required for the output to reach and  
remain within a specified error band around its final value,  
measured from the start of the output transition.  
Differential Nonlinearity (DNL)  
Spurious Free Dynamic Range (SFDR)  
DNL is the measure of the variation in analog value, normalized  
to full scale, associated with a 1 LSB change in digital input code.  
SFDR is the difference, in decibels, between the peak amplitude  
of the output signal and the peak spurious signal within the dc  
to Nyquist frequency of the DAC. Typically, the interpoloation  
filters reject energy in this band. This specification, therefore,  
defines how well the interpolation filters work and the effect of  
other parasitic coupling paths on the DAC output.  
Offset Error  
Offset error is the deviation of the output current from the ideal  
of 0 mA. For IOUT1P, 0 mA output is expected when all inputs  
are set to 0. For IOUT1N, 0 mA output is expected when all  
inputs are set to 1.  
Signal-to-Noise Ratio (SNR)  
SNR is the ratio of the rms value of the measured output signal  
to the rms sum of all other spectral components below the Nyquist  
frequency, excluding the first six harmonics and dc. The value  
for SNR is expressed in decibels.  
Gain Error  
Gain error is the difference between the actual and ideal output  
span. The actual span is determined by the difference between  
the output when all inputs are set to 1 and the output when all  
inputs are set to 0.  
Interpolation Filter  
If the digital inputs to the DAC are sampled at a multiple rate of  
Output Compliance Range  
f
DATA (interpolation rate), a digital filter can be constructed that  
The output compliance range is the range of allowable voltage  
at the output of a current output DAC. Operation beyond the  
maximum compliance limits can cause either output stage  
saturation or breakdown, resulting in nonlinear performance.  
has a sharp transition band near fDATA/2. Images that typically  
appear around fDAC (output data rate) can be greatly suppressed.  
Adjacent Channel Leakage Ratio (ACLR)  
ACLR is the ratio in decibels relative to the carrier (dBc) between  
the measured power within a channel relative to its adjacent  
channel.  
Temperature Drift  
Temperature drift is specified as the maximum change from  
the ambient (25°C) value to the value at either TMIN or TMAX  
.
For offset and gain drift, the drift is reported in ppm of full-  
scale range (FSR) per degree Celsius. For reference drift, the  
drift is reported in ppm per degree Celsius.  
Complex Image Rejection  
In a traditional two-part upconversion, two images are created  
around the second IF frequency. These images have the effect  
of wasting transmitter power and system bandwidth. By placing  
the real part of a second complex modulator in series with the  
first complex modulator, either the upper or lower frequency  
image near the second IF can be rejected.  
Power Supply Rejection (PSR)  
PSR is the maximum change in the full-scale output as the  
supplies are varied from minimum to maximum specified  
voltages.  
Rev. 0 | Page 17 of 64  
 
AD9142  
Data Sheet  
SERIAL PORT OPERATION  
The serial port is a flexible, synchronous serial communications  
port that allows easy interfacing to many industry standard micro-  
controllers and microprocessors. The serial I/O is compatible  
with most synchronous transfer formats, including both the  
Motorola SPI and Intel® SSR protocols. The interface allows  
read/write access to all registers that configure the AD9142.  
MSB-first or LSB-first transfer formats are supported. The serial  
port interface is a 3-wire only interface. The input and output  
share a single pin input/output (SDIO).  
A14 to A0 (Bit 14 to Bit 0 of the instruction word) determine  
the register that is accessed during the data transfer portion of  
the communication cycle. For multibyte transfers, A14 is the  
starting address; the device generates the remaining register  
addresses based on the SPI_LSB_FIRST bit.  
SERIAL PORT PIN DESCRIPTIONS  
Serial Clock (SCLK)  
The serial clock pin synchronizes data to and from the device  
and runs the internal state machines. The maximum frequency  
of SCLK is 40 MHz. All data input is registered on the rising edge  
of SCLK. All data is driven out on the falling edge of SCLK.  
54  
53  
52  
CS  
SPI  
PORT  
SCLK  
SDIO  
CS  
Chip Select (  
)
Figure 28. Serial Port Interface Pins  
CS  
is an active low input that starts and gates a communication  
cycle. It allows more than one device to be used on the same serial  
communications line. The SDIO pins enter a high impedance  
There are two phases to a communication cycle with the AD9142.  
Phase 1 is the instruction cycle (the writing of an instruction  
byte into the device), coincident with the first 16 SCLK rising  
edges. The instruction word provides the serial port controller  
with information regarding the data transfer cycle, Phase 2, of  
the communication cycle. The Phase 1 instruction word defines  
whether the upcoming data transfer is a read or write, along with  
the starting register address for the following data transfer.  
CS  
state when the  
input is high. During the communication  
should stay low.  
CS  
cycle,  
Serial Data I/O (SDIO)  
The SDIO pin is a bidirectional data line.  
SERIAL PORT OPTIONS  
CS  
A logic high on the  
pin, followed by a logic low, resets the  
The serial port can support both MSB-first and LSB-first data  
formats. This functionality is controlled by the SPI_LSB_FIRST bit  
(Register 0x00, Bit 6). The default is MSB first (LSB_FIRST = 0).  
serial port timing to the initial state of the instruction cycle.  
From this state, the next 16 rising SCLK edges represent the  
instruction bits of the current I/O operation.  
When SPI_LSB_FIRST = 0 (MSB first), the instruction and data  
bits must be written from MSB to LSB. Multibyte data transfers  
in MSB-first format start with an instruction word that includes the  
register address of the most significant data byte. Subsequent data  
bytes must follow from high address to low address. In MSB-first  
mode, the serial port internal word address generator decrements  
for each data byte of the multibyte communication cycle.  
The remaining SCLK edges are for Phase 2 of the communication  
cycle. Phase 2 is the actual data transfer between the device and  
the system controller. Phase 2 of the communication cycle is a  
transfer of one data byte. Registers change immediately upon  
writing to the last bit of each transfer byte, except for the frequency  
tuning word and NCO phase offsets, which change only when  
the frequency tuning word (FTW) update bit is set.  
When SPI_LSB_FIRST = 1 (LSB first), the instruction and data  
bits must be written from LSB to MSB. Multibyte data transfers  
in LSB-first format start with an instruction word that includes the  
register address of the least significant data byte. Subsequent data  
bytes must follow from low address to high address. In LSB-first  
mode, the serial port internal word address generator increments  
for each data byte of the multibyte communication cycle.  
DATA FORMAT  
The instruction byte contains the information shown in Table 10.  
Table 10. Serial Port Instruction Word  
I15 (MSB)  
I[14:0]  
R/W  
A[14:0]  
If the MSB-first mode is active, the serial port controller data  
address decrements from the data address written toward 0x00  
for multibyte I/O operations. If the LSB-first mode is active, the  
serial port controller data address increments from the data  
address written toward 0xFF for multibyte I/O operations.  
W
R/ (Bit 15 of the instruction word) determines whether a read  
or a write data transfer occurs after the instruction word write.  
Logic 1 indicates a read operation and Logic 0 indicates a write  
operation.  
Rev. 0 | Page 18 of 64  
 
 
 
 
 
Data Sheet  
AD9142  
tDCSB  
tSCLK  
INSTRUCTION CYCLE  
DATA TRANSFER CYCLE  
CS  
CS  
tPWH  
tPWL  
SCLK  
SCLK  
tDS  
tDH  
SDIO  
R/W A14 A13  
A3 A2 A1 A0 D7 D6 D5  
D3 D2 D1 D0  
0 0 0 0  
N
N
N
SDIO  
INSTRUCTION BIT 15 INSTRUCTION BIT 14  
Figure 29. Serial Register Interface Timing, MSB First  
Figure 31. Timing Diagram for Serial Port Register Write  
CS  
INSTRUCTION CYCLE  
DATA TRANSFER CYCLE  
CS  
SCLK  
SCLK  
tDV  
SDIO  
DATA BIT n  
DATA BIT n – 1  
SDIO  
A0 A1 A2  
A12 A13 A14 R/W D00 D10 D20  
D4N D5N D6N D7N  
Figure 32. Timing Diagram for Serial Port Register Read  
Figure 30. Serial Register Interface Timing, LSB First  
Rev. 0 | Page 19 of 64  
AD9142  
Data Sheet  
DATA INTERFACE  
LVDS INPUT DATA PORTS  
BYTE INTERFACE MODE  
In byte mode, the required sequence of the input data stream is  
I[15:8], I[7:0], Q[15:8], Q[7:0]. A frame signal is required to  
align the order of input data bytes properly. Time align both the  
DCI signal and frame signal with the data. The rising edge of  
the frame indicates the start of the sequence. The frame can be  
either a one shot or periodical signal as long as its first rising  
edge is correctly captured by the device. For a one shot frame,  
the frame pulse needs to hold at high for at least one DCI cycle.  
For a periodical frame, the frequency needs to be  
The AD9142 has a 16-bit LVDS bus that accepts 16-bit I and Q  
data either in word wide (16-bit) or byte wide (8-bit) formats. In  
the word wide interface mode, the data is sent over the entire  
16-bit data bus. In the byte wide interface mode, the data is sent  
over the lower 8-bit (D7 to D0) LVDS bus. Table 11 lists the pin  
assignment of the bus and the SPI register configuration for  
each mode.  
Table 11. LVDS Data Input Modes  
Interface Mode Pin Assignment SPI Register Configuration  
f
DCI/(2 × n)  
Word  
Byte  
D15 to D0  
D7 to D0  
Register 0x26, Bit 0 = 0  
Register 0x26, Bit 0 = 1  
where n is a positive integer, that is, 1, 2, 3, …  
Figure 34 is an example of signal timing in byte mode.  
WORD INTERFACE MODE  
BYTE MODE  
In word mode, the digital clock input (DCI) signal is a reference  
bit that generates a double data rate (DDR) data sampling clock.  
Time align the DCI signal with the data. The IDAC data follows  
the rising edge of the DCI, and the QDAC data follows the  
falling edge of the DCI, as shown in Figure 33.  
I
I
Q
Q
0[7:0]  
INPUT DATA[7:0]  
0[15:8]  
0[7:0]  
0[15:8]  
DCI  
FRAME  
WORD MODE  
Figure 34. Timing Diagram for Byte Mode  
I
Q
I
Q
1
INPUT DATA[15:0]  
0
0
1
DATA INTERFACE CONFIGURATION OPTIONS  
To provide more flexibility for the data interface, some  
additional options are listed in Table 12.  
DCI  
Figure 33. Timing Diagram for Word Mode  
Table 12. Data Interface Configuration Options  
Register 0x26  
Function  
Data Format (Bit 7)  
Select between binary and twos  
complement formats.  
Data Pairing (Bit 6)  
Data Bus Invert (Bit 5)  
Indicate I/Q data pairing on data input.  
This allows the I and Q data that is  
received to be paired in various ways.  
Swaps the bit order of the data input  
port. Remaps the input data from  
D[15:0] to D[0:15].  
Rev. 0 | Page 20 of 64  
 
 
 
 
 
 
 
 
 
Data Sheet  
AD9142  
LVDS Input Level Requirements  
receiver requires a minimum of 225 mV swing at its input.  
Figure 35 shows the LVDS input configuration and the required  
swing levels. Because the DCI is typically generated from the  
same bank as the data in the data source, it is recommended  
that the output swing of the LVDS driver be larger than the  
required DCI input level, thus meeting both input data and DCI  
requirements.  
There are two types of LVDS receivers in the AD9142. The  
16-bit data bus and the frame input share the same LVDS  
receiver design. The DCI uses a different LVDS design. The  
main difference between the two LVDS receivers is the required  
input differential swing level. The data bus and frame receiver  
require a minimum of 100 mV swing at the input. The DCI  
AD9142  
+
DATA  
RECEIVER  
TO INTERNAL  
DIGITAL  
100Ω  
Dn  
DnP  
DnN  
GND  
V
= (V P + V N)/2 = 1.2V  
CM  
IN  
IN  
+
DCI  
RECEIVER  
TO INTERNAL  
DIGITAL  
100Ω  
DCI  
DCIP  
DCIN  
GND  
AD9142 LVDS INPUT CONFIGURATION  
1.25V  
1.15V  
DCIP  
DCIN  
DnP  
DnN  
1.32V  
1.1V  
+225mV  
0V  
+100mV  
0V  
–100mV  
DCI  
Dn  
–225mV  
AD9142 DATA AND  
FRAME INPUT LVDS LEVEL  
AD9142 DCI INPUT LVDS LEVEL  
Figure 35. Data Interface Voltage Swing Requirements  
Rev. 0 | Page 21 of 64  
 
AD9142  
Data Sheet  
INTERFACE DELAY LINE  
Interface Timing Requirements  
A four-tap delay line is provided for the user to adjust the  
timing between the data bus and the DCI. Table 13 specifies the  
setup and hold times for each delay tap.  
The following example illustrates how to calculate the optimal  
delay at the data source to achieve the best sampling timing in  
the delay line-based mode:  
There is a fixed 1.9 ns delay on the DCI when the delay line is  
enabled. Each tap adds a nominal delay of 300 ps to the fixed  
delay. To achieve the best timing margin, that is, to center the  
setup and hold window in the middle of the data eye, the user  
may need to add a delay on the data bus with respect to the DCI  
in the data source. Figure 36 is an example of calculating the  
optimal external delay.  
f
DCI = 200 MHz  
Delay setting = 0  
The shadow area in Figure 36 is the interface setup and hold  
time window set to 0. To optimize the interface timing, this  
window must be placed in the middle of the data transitions.  
Because the input is double data rate, the available data period  
is 2.5 ns. Therefore, the optimal data bus delay, with respect to  
the DCI at the data source, can be calculated as  
Table 13. Setup and Hold Times  
Delay Setting  
Register 0x5E[7:0]  
Register 0x5F[2:0]  
tS (ns)1  
tH (ns)  
|tS + tH| (ns)  
0
1
2
3
t DATAPERIOD  
(|t S | + | t H |)  
0x00  
0x0  
−1.25  
2.51  
1.26  
0x07  
0x0  
−1.50  
2.82  
1.32  
0x7F  
0x0  
−1.70  
3.23  
1.53  
0xFF  
0x5  
−1.93  
3.64  
1.71  
t DELAY  
=
=1.88 1.25 = 0.63ns  
2
2
SPI Sequence to Enable Delay Line-Based Mode  
It is recommended that the following SPI sequence be used to  
enable the delay line-based mode:  
1 The negative sign indicates the direction of the setup time. The setup time is  
defined as positive when it is on the left side of the clock edge and negative  
when it is on the right side of the clock edge.  
1. 0x79 0x18 /* Configure Data Interface */  
2. 0x5E 0x00 /* Delay setting 0 */  
0x5F 0x00  
3. 0x5F[3] 1b /* Enable the delay line */  
tDELAY = 0.63ns  
tDATA PERIOD = 2.5ns  
INPUT DATA [15:0]  
WITH OPTIMIZED DELAY  
DATA EYE  
|tS| = 1.25ns  
|tH| = 2.51ns  
DCI = 200MHz  
NO DATA TRANSITION  
Figure 36. Example of Interfacing Timing in the Delay Line-Based Mode  
Rev. 0 | Page 22 of 64  
 
 
 
Data Sheet  
AD9142  
FIFO OPERATION  
As is shown in the Data Interface section, the AD9142 adopts  
source synchronous clocking in the data receiver. The nature of  
source synchronous clocking is the creation of a separate clock  
domain at the receiving device. In the DAC, it is the DAC clock  
domain, that is, the DACCLK. Therefore, there are two clock  
domains inside of the DAC: the DCI and the DACCLK. Often,  
these two clock domains are not synchronous, requiring an  
additional stage to adjust the timing for proper data transfer. In  
the AD9142, a FIFO stage is inserted between the DCI and  
DACCLK domains to transfer the received data into the core  
clock domain (DACCLK) of the DAC.  
is read from the FIFO register, which is determined by the read  
pointer, and fed into the digital datapath. The value of the read  
pointer is incremented every time data is read into the datapath  
from the FIFO. The FIFO pointers are incremented at the data  
rate, which is the DACCLK rate divided by the interpolation rate.  
Valid data is transmitted through the FIFO as long as the FIFO  
does not overflow (full) or underflow (empty). An overflow or  
underflow condition occurs when the write pointer and read  
pointer point to the same FIFO slot. This simultaneous access of  
data leads to unreliable data transfer through the FIFO and must be  
avoided.  
The AD9142 contains a 2-channel, 16-bit wide, 8-word deep  
FIFO. The FIFO acts as a buffer that absorbs timing variations  
between the two clock domains. The timing budget between the  
two clock domains in the system is significantly relaxed due to  
the depth of the FIFO.  
Normally, data is written to and read from the FIFO at the same  
rate to maintain a constant FIFO depth. If data is written to the  
FIFO faster than data is read, the FIFO depth increases. If data  
is read from the FIFO faster than data is written to it, the FIFO  
depth decreases. For optimal timing margin, maintain the FIFO  
depth near half full (a difference of four between the write  
pointer and read pointer values). The FIFO depth represents the  
FIFO pipeline delay and is part of the overall latency of the  
AD9142.  
Figure 37 shows the block diagram of the datapath through the  
FIFO. The input data is latched into the device, formatted, and  
then written into the FIFO register, which is determined by the  
FIFO write pointer. The value of the write pointer is incremented  
every time a new word is loaded into the FIFO. Meanwhile, data  
FIFO WRITE CLOCK  
FIFO READ CLOCK  
DACCLK  
I DAC  
÷INT  
FIFO  
I[15:0]  
I[15:0]  
FIFO SLOT 0  
I DATA PATH  
FIFO SLOT 1  
FIFO SLOT 2  
FIFO SLOT 3  
FIFO SLOT 4  
FIFO SLOT 5  
FIFO SLOT 6  
FIFO SLOT 7  
RETIMED DCI  
DCI  
READ  
POINTER  
DATA  
RECEIVER  
DATA  
FORMAT  
LATCHED  
DATA [15:0]  
INPUT DATA [15:0]  
FRAME  
I/Q[31:0]  
Q[15:0]  
Q[15:0]  
WRITE  
POINTER  
Q DATA PATH  
Q DAC  
RESET  
LOGIC  
SPI FIFO RESET  
REG 0x25[0]  
FIFO LEVEL  
FIFO LEVEL REQUEST  
REG 0x23  
Figure 37. Block Diagram of FIFO  
Rev. 0 | Page 23 of 64  
 
 
AD9142  
Data Sheet  
RESETTING THE FIFO  
SERIAL PORT INITIATED FIFO RESET  
Upon power-on of the device, the read and write pointers start  
to roll around the FIFO from an arbitrary slot; consequently, the  
FIFO depth is unknown. To avoid a concurrent read and write  
to the same FIFO address and to assure a fixed pipeline delay  
from power-on to power-on, it is important to reset the FIFO  
pointers to a known state each time the device powers on or  
wakes up. This state is specified in the requested FIFO level  
(FIFO depth and FIFO level are used interchangeably in this  
document), which consists of two parts: the integral FIFO level  
and the fractional FIFO level.  
A SPI initiated FIFO reset is the most common method to reset  
the FIFO. To initialize the FIFO level through the serial port,  
toggle FIFO_SPI_RESET_REQUEST (Register 0x25[0]) from  
0 to 1 and back to 0. When the write to this register is complete,  
the FIFO level is initialized to the requested FIFO level and the  
readback of FIFO_SPI_RESET_ACK (Register 0x25[1]) is set  
to 1. The FIFO level readback, in the same format as the FIFO  
level request, should be within 1 DACCLK cycle of the  
requested level. For example, if the requested value is 0x40 in  
4× interpolation, the readback value should be one of the  
following: 0x33, 0x40, or 0x41. The range of 1 DACCLK cycle  
indicates the default DAC latency uncertainty from power-on  
to power-on without turning on synchronization.  
The integer FIFO level represents the difference of the states  
between the read and write point in the unit of input data period  
(1/fDATA). The fractional FIFO level represents the difference of  
the FIFO pointers smaller than the input data period. The  
resolution of the fractional FIFO level is the input data period  
divided by the interpolation ratio and, thus, it is equal to one  
DACCLK cycle.  
The recommended procedure for a serial port FIFO reset is as  
follows:  
1. Configure the DAC in the desired interpolation mode  
(Register 0x28[1:0]).  
The exact FIFO level, that is, the FIFO latency, can be calculated  
by  
2. Ensure that the DACCLK and DCI are running and stable  
at the clock inputs.  
3. Program Register 0x23 to the customized value, if the  
desired value is not 0x40.  
4. Request the FIFO level reset by setting Register 0x25[0] to 1.  
5. Verify that the part acknowledges the request by setting  
Register 0x25[1] to 1.  
6. Remove the request by setting Register 0x25[0] to 0.  
7. Verify that the part drops the acknowledge signal by setting  
Register 0x25[1] to 0.  
8. Read back Register 0x24 multiple times to verify that the  
actual FIFO level is set to the requested level and that the  
readback values are stable. By design, the readback should  
be within 1 DACCLK around the requested level.  
FIFO Latency = Integral Level + Fractional Level  
Because the FIFO has eight data slots, there are eight possible  
FIFO integral levels. The maximum supported interpolation  
rate in the AD9142 is 8× interpolation. Therefore, there are eight  
possible FIFO fractional levels. Two 3-bit registers in Register  
0x23 are assigned to represent each level separately; Bits[6:4]  
represent the FIFO integral level and Bits[2:0] represent the FIFO  
fractional level. For example, if the interpolation rate is 4× and  
the desired total FIFO depth is 4.5 input data periods, set the  
FIFO_LEVEL_CONFIG (Register 0x23) to 0x42 (4 here means  
four data cycles and 2 means two DAC cycles, which is half of a  
data cycle). Note that there are only four possible fractional  
levels in the case of 4× interpolation. Table 14 shows additional  
examples of configuring the desired FIFO level in various  
interpolation rate modes.  
FRAME INITIATED FIFO RESET  
The frame input has two functions. One function is to indicate  
the beginning of a byte stream in the byte interface mode, as  
discussed in the Data Interface section. The other function is  
to initialize the FIFO level by asserting the frame signal high  
for at least the time interval required to load complete data to  
the I and QDACs. This corresponds to one DCI period in word  
mode and two DCI periods in byte mode. Note that this  
requirement of the frame pulse length is longer than that of the  
frame signal when it serves only to assemble the byte stream.  
The device accepts either a continuous frame or a one shot  
frame signal.  
Table 14. Examples of FIFO Level Configuration  
Inter-  
Example  
polation FIFO Level Integer Level  
Fractional Level  
(Register 0x23[6:4]) (Register 0x23[2:0])  
Rate  
2×  
4×  
(1/fDATA)  
3 + 1/2  
4 + 1/4  
4 + 3/8  
3
4
4
1
1
3
8×  
By default, the FIFO level is 4.0. It can be programmed to any  
allowed value from 0.0 to 7.x. The maximum allowed number  
for x is the interpolation rate minus 1. For example, in 8×  
interpolation, the maximum allowed for x is 7.  
In the continuous reset mode, the FIFO responds to every valid  
frame pulse and resets itself. In the one shot reset mode, the  
FIFO responds only to the first valid frame pulse after the  
FRAME_RESET_MODE bits (Register 0x22[1:0]) are set.  
Therefore, even with a continuous frame input, the FIFO resets  
one time only; this prevents the FIFO from toggling between  
the two states from periodic resets. The one shot frame reset  
mode is the default and the recommended mode.  
The following two ways are used to reset the FIFO and initialize  
the FIFO level:  
Serial port (SPI) initiated FIFO reset.  
Frame initiated FIFO reset.  
Rev. 0 | Page 24 of 64  
 
 
 
 
Data Sheet  
AD9142  
The recommended procedure for a frame initiated FIFO reset is  
as follows:  
Monitoring the FIFO Status  
The real-time FIFO status can be monitored from the SPI  
Register 0x24 and reflects the real-time FIFO depth after a FIFO  
reset. Without timing drifts in the system, this readback should  
not change from that which resulted from the FIFO reset. When  
there is a timing drift or other abnormal clocking situation, the  
FIFO level readback can change. However, as long as the FIFO  
does not overflow or underflow, there is no error in data trans-  
mission. Three status bits in Register 0x06, Bits[2:0], indicate if  
there are FIFO underflows, overflows, or similar situations. The  
status of the three bits can be latched and used to trigger  
1. Configure the DAC in the desired interpolation mode  
(Register 0x28[1:0]).  
2. Ensure that the DACCLK and DCI are running and stable at  
the clock inputs.  
3. Program Register 0x23 to the customized value, if the  
desired value is not 0x40.  
4. Configure the FRAME_RESET_MODE bits (Register  
0x22[1:0])to 00b.  
5. Choose whether continuous or one shot mode is desired by  
writing 0 or 1 to EN_CON_FRAME_RESET (Register  
0x22[2]).  
6. Toggle the frame input from 0 to 1 and back to 0. The pulse  
width needs to be longer than the minimum requirement.  
a. If the frame input is a continuous clock, turn on the  
signal.  
IRQ1  
IRQ2  
hardware interrupts,  
and  
. To enable latching and  
interrupts, configure the corresponding bits in Register 0x03  
and Register 0x04.  
7. Read back FRAME_RESET_ACK, Register 0x22[3], to  
verify that the reset is complete.  
8. Read back Register 0x24 multiple times to verify that the  
actual FIFO level is set to the requested level and the  
readback values are stable. By design, the readback should be  
within 1 DACCLK around the requested level.  
Rev. 0 | Page 25 of 64  
AD9142  
Data Sheet  
DIGITAL DATAPATH  
INPUT  
DIGITAL GAIN  
AND PHASE  
AND OFFSET  
ADJUSTMENT  
POWER  
DETECTION  
AND  
COARSE AND  
FINE  
MODULATION  
INV  
SINC  
HB1  
HB2  
HB3  
PROTECTION  
Figure 38. Block Diagram of Digital Datapath  
0.02  
The block diagram in Figure 38 shows the functionality of the  
digital datapath. The digital processing includes  
0
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
An input power detection block  
Three half-band interpolation filters  
A quadrature modulator consisting of a fine resolution  
NCO and an fS/4 coarse modulation block  
An inverse sinc filter  
A gain and phase and offset adjustment block  
The interpolation filters accept I and Q data streams and  
process them as two independent data streams, whereas the  
quadrature modulator and phase adjustment block accepts I  
and Q data streams as a quadrature data stream. Therefore,  
quadrature input data is required when digital modulation and  
phase adjustment functions are used.  
0
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45  
FREQUENCY (Hz)  
Figure 39. Pass-Band Detail of 2× Mode  
10  
0
INTERPOLATION FILTERS  
The transmit path contains three interpolation filters. Each of  
the three interpolation filters provides a 2× increase in output data  
rate and a low-pass function. The half-band (HB) filters are cas-  
caded to provide 4× or 8× interpolation ratios.  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
The AD9142 provides three interpolation modes (see Table 6).  
Each mode offers a different usable signal bandwidth in an  
operating mode. Which mode to select depends on the required  
signal bandwidth and the DAC update rate. Refer to Table 6 for  
the maximum speed and signal bandwidth of each interpolation  
mode.  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
The usable bandwidth is defined as the frequency band over  
which the filters have a pass-band ripple of less than 0.001 dB  
and a stop band rejection of greater than 85 dB.  
FREQUENCY (Hz)  
Figure 40. All-Band Response of 2× Mode  
2× Interpolation Mode  
Figure 39 and Figure 40 show the pass-band and all-band filter  
response for 2× mode. Note that the transition from the  
transition band to the stop band is much sharper than the tran-  
sition from the pass band to the transition band. Therefore, when  
the desired output signal moves out of the defined pass band,  
the signal image, which is supposed to be suppressed by the stop  
band, grows faster than the droop of the signal itself due to the  
degraded pass-band flatness. In cases where the degraded image  
rejection is acceptable or can be compensated by the analog  
low-pass filter at the DAC output, it is possible to let the output  
signal extend beyond the specified usable signal bandwidth.  
Rev. 0 | Page 26 of 64  
 
 
 
 
 
Data Sheet  
AD9142  
10  
0
4× Interpolation Mode  
Figure 41 and Figure 42 show the pass-band and all-band filter  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
responses for 4× mode.  
0.02  
0
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
FREQUENCY (Hz)  
Figure 44. All-Band Response of 8× Mode  
0
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45  
FREQUENCY (Hz)  
Table 15. Half-Band Filter 1 Coefficient  
Lower Coefficient  
Upper Coefficient  
H(55)  
H(54)  
H(53)  
H(52)  
H(51)  
H(50)  
H(49)  
H(48)  
H(47)  
H(46)  
H(45)  
H(44)  
H(43)  
H(42)  
H(41)  
H(40)  
H(39)  
H(38)  
H(37)  
H(36)  
H(35)  
H(34)  
H(33)  
H(32)  
H(31)  
H(30)  
H(29)  
Integer Value  
Figure 41. Pass-Band Detail of 4× Mode  
H(1)  
H(2)  
H(3)  
H(4)  
H(5)  
H(6)  
H(7)  
H(8)  
−4  
0
+13  
0
−32  
0
+69  
0
−134  
0
+239  
0
−401  
0
+642  
0
−994  
0
+1512  
0
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
H(9)  
H(10)  
H(11)  
H(12)  
H(13)  
H(14)  
H(15)  
H(16)  
H(17)  
H(18)  
H(19)  
H(20)  
H(21)  
H(22)  
H(23)  
H(24)  
H(25)  
H(26)  
H(27)  
H(28)  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
FREQUENCY (Hz)  
Figure 42. All-Band Response of 4× Mode  
8× Interpolation Mode  
Figure 43 and Figure 44 show the pass-band and all-band filter  
responses for 8× mode. The maximum DAC update rate is 1.6 GHz,  
and the maximum input data rate that is supported in this mode is  
200 MHz (1.6 GHz/8).  
−2307  
0
+3665  
0
−6638  
0
+20,754  
+32,768  
0.02  
0
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
0
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45  
FREQUENCY (Hz)  
Figure 43. Pass-Band Detail of 8× Mode  
Rev. 0 | Page 27 of 64  
 
 
 
 
AD9142  
Data Sheet  
I DATA OUT  
I DATA IN  
Table 16. Half-Band Filter 2 Coefficient  
Lower Coefficient  
Upper Coefficient  
Integer Value  
H(1)  
H(2)  
H(3)  
H(4)  
H(5)  
H(6)  
H(7)  
H(8)  
H(9)  
H(10)  
H(11)  
H(12)  
H(23)  
H(22)  
H(21)  
H(20)  
H(19)  
H(18)  
H(17)  
H(16)  
−2  
0
+17  
0
−75  
0
+238  
0
−660  
0
+2530  
+4096  
FTW[31:0]  
COSINE  
~
SINE  
NCO  
PHASE[15:0]  
Q DATA IN  
Q DATA OUT  
Figure 45. NCO Modulator Block Diagram  
H(15)  
H(14)  
H(13)  
The NCO modulator mixes the carrier signal generated by the  
NCO with the I and Q signals. The NCO produces a quadrature  
carrier signal to translate the input signal to a new center fre-  
quency. A complex carrier signal is a pair of sinusoidal waveforms  
of the same frequency, offset 90 degrees from each other. The  
frequency of the complex carrier signal is set via NCO_FREQ_  
TUNING_WORD[31:0] in Register 0x31 through Register 0x34.  
Table 17. Half-Band Filter 3 Coefficient  
Lower Coefficient  
Upper Coefficient  
Integer Value  
H(1)  
H(2)  
H(3)  
H(4)  
H(5)  
H(6)  
H(11)  
H(10)  
H(9)  
H(8)  
H(7)  
+29  
0
−214  
0
+1209  
+2048  
The NCO operating frequency, fNCO, is always equal to fDAC, the  
DACCLK frequency. The frequency of the complex carrier  
signal can be set from dc up to 0.5 × fNCO  
.
The frequency tuning word (FTW) is in twos complement  
format. It can be calculated as  
fDAC  
2
fDAC  
2
DIGITAL MODULATION  
fCARRIER  
The AD9142 provides two modes to modulate the baseband  
quadrature signal to the desired DAC output frequency.  
fCARRIER  
FTW =  
×
(
232  
)
(
fCARRIER 0  
)
fDAC  
Coarse (fS/4) modulation  
Fine (NCO) modulation  
fCARRIER  
FTW = (1−  
)× (232 )  
(
fCARRIER < 0  
)
fDAC  
fS/4 Modulation  
The generated quadrature carrier signal is mixed with the I and  
Q data. The quadrature products are then summed into the I  
and Q data paths, as shown in Figure 45.  
The fS/4 modulation is a convenient and low power modulation  
mode to translate the input baseband frequency to a fixed fS/4  
IF frequency, fS being the DAC sampling rate. When modulation  
frequencies other than this frequency are required, the NCO  
modulation mode must be used.  
Updating the Frequency Tuning Word  
The frequency tuning word registers are not updated immediately  
upon writing, as are other configuration registers. Similar to  
FIFO reset, the NCO update can be triggered in two ways.  
NCO Modulation  
The NCO modulation mode makes use of a numerically  
controlled oscillator (NCO), a phase shifter, and a complex  
modulator to provide a means for modulating the signal by a  
programmable carrier signal. A block diagram of the digital  
modulator is shown in Figure 45. The NCO modulation allows  
the DAC output signal to be placed anywhere in the output  
spectrum with very fine frequency resolution.  
SPI initiated update  
Frame initiated update  
Rev. 0 | Page 28 of 64  
 
 
Data Sheet  
AD9142  
quadrature gain and phase adjust values optimizes image  
rejection in single sideband radios.  
SPI Initiated Update  
In the SPI initiated update method, the user simply toggles  
Register 0x30[0] (NCO_SPI_UPDATE_REQ) after configuring  
the NCO settings. The NCO is updated on the rising edge (from  
0 to 1) in this bit. Register 0x30[1] (NCO_SPI_UPDATE_ACK)  
goes high when the NCO is updated. A falling edge (from 1 to  
0) in Register 0x30[0] clears Bit 1 of Register 0x30 and prepares  
the NCO for the next update operation. This update method is  
recommended when there is no requirement to align the DAC  
output from multiple devices because SPI writes to multiple  
devices are asynchronous.  
Quadrature Gain Adjustment  
Ordinarily, the I and Q channels have the same gain or signal  
magnitude. The quadrature gain adjustment is used to balance the  
gain between the I and Q channels. The digital gain of the I and Q  
channels can be adjusted independently through two 6-bit registers,  
IDAC_GAIN_ADJ (Register 0x3F[5:0]) and QDAC_GAIN_ADJ  
(Register 0x40[5:0]). The range of the adjustment is [0, 2] or [−∞,  
6 dB] with a step size of 2−5 (−30 dB). The default setting is 0x20,  
corresponding to a gain equal to 1 or 0 dB.  
Frame Initiated Update  
Quadrature Phase Adjustment  
When the DAC output from multiple devices needs to be well  
aligned with NCO turned on, the frame initiated update is  
recommended. In this method, the NCOs from multiple devices  
are updated at the same time upon the rising edge of the frame  
signal. To use this update method, the FRAME_RESET_MODE  
(Register 0x22[1:0]) needs to be set in NCO only or FIFO and  
NCO, depending on whether FIFO reset is needed at the same  
time. The second step is to ensure that the reset mode is in one  
shot mode (EN_CON_FRAME_RESET, Register 0x22[2] = 0).  
When this second step is completed, the NCO waits for a valid  
frame pulse and updates the FTW accordingly. The user can verify  
if the frame pulse is correctly received by reading Register 0x30[6]  
(NCO_FRAME_ UPDATE_ACK) wherein a 1 indicates a  
complete update operation. See the FIFO Operation section for  
information to generate a valid frame pulse.  
Under normal circumstances, I and Q channels have an angle of  
precisely 90 degrees between them. The quadrature phase adjust-  
ment is used to change the angle between the I and Q channels.  
IQ_PHASE_ADJ[12:0] (Register 0x37 and Register 0x38) provide  
an adjustment range of 14 degrees with a resolution of 0.0035  
degrees. If the original angle is precisely 90 degrees, setting  
IQ_PHASE_ADJ[12:0] to 0x0FFF adds approximately 14 degrees  
between I and QDAC outputs, creating an angle of 104 degrees  
between the channels. Likewise, if the original angle is precisely  
90 degrees, setting IQ_PHASE_ADJ[12:0] to 0x1000 adds  
approximately −14 degrees between the I and QDAC outputs,  
creating an angle of 76 degrees between the channels.  
DC OFFSET ADJUSTMENT  
The dc value of the I datapath and the Q datapath can be controlled  
independently by adjusting the values in the two 16-bit registers,  
IDAC_DC_OFFSET, Bits[15:0] and QDAC_DC_OFFSET,  
Bits[15:0] (Register 0x3B through Register 0x3E). These values  
are added directly to the datapath values. Care should be taken  
not to overrange the transmitted values.  
DATAPATH CONFIGURATION  
Configuring the AD9142 datapath starts with the following four  
parameters:  
The application requirements of the input data rate  
The interpolation ratio  
The output signal center frequency  
The output signal bandwidth  
As shown in Figure 46, the DAC offset current varies as a function  
of the I/QDAC_DC_OFFSET values. Figure 46 shows the  
nominal current of the positive node of the DAC output, IOUTP  
when the digital inputs are fixed at midscale (0x0000, twos  
,
Given these four parameters, the first step in configuring the  
datapath is to verify that the device supports the desired input  
data rate, the DAC sampling rate, and the bandwidth requirements.  
After this verification, the modes of the interpolation filters can be  
chosen. If the output signal center frequency is different from the  
baseband input center frequency, additional frequency offset  
requirements are determined and applied with on-chip digital  
modulation.  
complement data format) and the DAC offset value is swept from  
0x0000 to 0xFFFF. Because IOUTP and IOUTN are complementary  
current outputs, the sum of IOUTP and IOUTN is always 20 mA.  
20  
15  
10  
5
0
5
DIGITAL QUADRATURE GAIN AND PHASE  
ADJUSTMENT  
10  
15  
The digital quadrature gain and phase adjustment function  
enables compensation of the gain and phase imbalance of the I  
and Q paths caused by analog mismatches between DAC I/Q  
outputs, quadrature modulator I/Q baseband inputs, and  
DAC/modulator interface I/Q paths. The undesired imbalances  
cause unwanted sideband signal to appear at the quadrature  
modulator output with significant energy. Tuning the  
0
20  
0x0000  
0x4000  
0x8000  
0xC000  
0xFFFF  
DAC OFFSET VALUE  
Figure 46. DAC Output Currents vs. DAC Offset Value  
Rev. 0 | Page 29 of 64  
 
 
 
 
 
AD9142  
Data Sheet  
INVERSE SINC FILTER  
INPUT SIGNAL POWER DETECTION AND  
PROTECTION  
The AD9142 provides a digital inverse sinc filter to compensate  
for the DAC rolloff over frequency. The inverse sinc (sinc−1) filter  
is a seven tap FIR filter. Figure 47 shows the frequency response  
of sin(x)/x rolloff, the inverse sinc filter, and their composite  
response. The composite response has less than 0.05 dB pass-  
The input signal power detection and protection function detects  
the average power of the DAC input signal and prevents overrange  
signals from being passed to the next stage. An overrange DAC  
output signal can cause destructive breakdown on power sensitive  
devices, such as power amplifiers. The power detection and  
protection feature of the AD9142 detects overrange signals in  
the DAC. When an overrange signal is detected, the protection  
function either attenuates or mutes the signal to protect the  
downstream devices from abnormal power surges in the signal.  
band ripple up to a frequency of 0.4 × fDAC  
.
To provide the necessary peaking at the upper end of the pass  
band, the inverse sinc filter has an intrinsic insertion loss of about  
3.8 dB. The loss of the digital gain can be offset by increasing the  
quadrature gain adjustment setting on both the I and Q data paths  
to minimize the impact on the output signal-to-noise ratio. How-  
ever, care is needed to ensure that the additional digital gain does  
not cause signal saturation, especially at high output frequencies.  
The sinc−1 filter is disabled by default; it can be enabled by setting  
the INVSINC_ENABLE bit to 1 in Register 0x27[7]).  
1
Figure 48 shows the block diagram of the power detection and  
protection function. The protection block is at the very last  
stage of the data path and the detection block uses a separate  
path from the data path. The design of the detection block  
guarantees that the worst-case latency of power detecting is  
shorter than that of the data path. This ensures that the  
protection circuit initiates before the overrange signal reaches  
the analog DAC core. The sum of I2 and Q2 is calculated as a  
representation of the input signal power. Only the upper six  
MSBs, D[15:10], of data samples are used in the calculation;  
consequently, samples whose power is 36 dB below the full-  
scale peak power are not detected. The calculated sample power  
numbers accumulate through a moving average filter. Its output  
is the average of the input signal power in a certain number of  
data clock cycles. The length of the filter is configurable through  
the SAMPLE_WINDOW_LENGTH (Register 0x2B[3:0]). To  
determine whether the input average power is over range, the  
device averages the power of the samples in the filter and  
compares the average power with a user defined threshold,  
OVER_THRESHOLD_LEVEL[11:0] (Register 0x29 and  
Register 0x2A). When the output of the averaging filter is larger  
than the threshold, the DAC output is either attenuated or muted.  
0
–1  
–2  
–3  
–4  
–5  
0
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50  
FREQUENCY (Hz)  
Figure 47. Responses of sin(x)/x Roll Off (Blue), the Sinc−1 Filter (Red), and the  
Composite of Both (Black)  
Table 18. Inverse Sinc Filter  
The appropriate filter length and average power threshold for  
effective protection are application dependent. It is recommended  
that experiments be performed with real-world vectors to  
determine the values of these parameters.  
Lower Coefficient  
Upper Coefficient  
Integer Value  
H(1)  
H(2)  
H(3)  
H(4)  
H(7)  
H(6)  
H(5)  
−1  
+4  
−16  
+192  
POWER  
SIGNAL  
PROCESSING  
ENGINE  
PROTECTION  
(ATTENUATE  
OR MUTE)  
DAC  
CORE  
FIFO  
POWER DETECTION  
AVE POWER  
2
2
+ Q  
I
REG 0x2C AND  
0x2D[4:0]  
AVERAGING  
FILTER  
FILTER LENGTH USER-DEFINED THRESHOLD  
SETTINGS  
REG 0x2B[3:0]  
REG 0x29 AND 0x2A[4:0]  
Figure 48. Block Diagram of Input Signal Power Detection and Protection Function  
Rev. 0 | Page 30 of 64  
 
 
 
 
Data Sheet  
AD9142  
DIGITAL FUNCTION CONFIGURATION  
TRANSMIT ENABLE FUNCTION  
Each of the digital gain and phase adjust functions and the  
inverse sinc filter can be enabled and adjusted independently.  
The pipeline latencies these blocks add into the data path are  
different between enabled and disabled. If fixed DAC pipeline  
latency is desired during operation, leave these functions always  
on or always off after initial configuration.  
The transmit enable (TXEN) function provides the user a  
hardware switch of the DAC output. The function accepts a  
CMOS signal via Pin 6 (TXEN). When this signal is detected  
high, the transmit path is enabled and the DAC transmits the  
data normally. When this signal is detected low, one of the three  
actions related to the DAC output is triggered.  
The digital dc adjust function is always on. The default value is  
0; that is, there is no additional dc offset. The pipeline latency that  
this block adds is a constant, no matter the value of the dc  
offset.  
1. The DAC output is gradually attenuated from full scale gain  
to 0. The attenuation step size is set in Register 0x42[5:0].  
2. The DAC is put in sleep mode and the output current is  
turned off. Other parts of the DAC are still running in this  
mode.  
3. The DAC is put in power-down mode. In this mode, not  
only the DAC output current is turned off but the rest of  
the DAC is powered down. This minimizes the power  
consumption of the DAC when the data is not transmitting  
but it takes a bit longer than the first two modes to start to  
re-transmit data due to the device power-up time.  
There is also a latency difference between using and not using  
the input signal power detection and protection function.  
Therefore, to keep the overall latency fixed, leave this function  
always on or always off after the initial configuration.  
The TXEN function also provides a gain ramp-up function that  
lets the user turn on the DAC output gradually when the TXEN  
signal switches from low to high. The ramp-up gain step can be  
configured using Register 0x41[5:0]. Although all of these actions  
can be taken through SPI writes, TXEN provides a much faster  
way to turn on and off the DAC output. The response time of a SPI  
write command is dominated by the SPI port communication  
time. This feature is useful when the user must turn off the  
DAC very quickly.  
Rev. 0 | Page 31 of 64  
 
 
AD9142  
Data Sheet  
MULTIDEVICE SYNCHRONIZATION AND FIXED LATENCY  
FURTHER REDUCING THE LATENCY VARIATION  
A DAC introduces a variation of pipeline latency to a system.  
The latency variation causes the phase of a DAC output to vary  
from power-on to power-on. Therefore, the output from  
different DAC devices may not be perfectly aligned even with  
well aligned clocks and digital inputs. The skew between  
multiple DAC outputs varies from power-on to power-on.  
For applications that require finer synchronization accuracy  
(DAC latency variation < 2 DAC clock cycles), the AD9142 has  
a provision for enabling multiple devices to be synchronized to  
each other within a single DAC clock cycle.  
To further reduce the latency variation in the DAC, the  
synchronization machine needs to be turned on and two  
external clocks (frame and sync) need to be generated in the  
system and fed to all the DAC devices.  
In applications such as transmit diversity or digital pre-  
distortion, where deterministic latency is desired, the variation  
of the pipeline latency must be minimized. Deterministic  
latency in this document is defined as a fixed time delay from  
the digital input to the analog output in a DAC from power-on  
to power-on. Multiple DAC devices are considered synchronized  
to each other when each DAC in this group has the same  
constant latency from power-on to power-on. Three conditions  
must be identical in all of the ready-to-sync devices before these  
devices are considered synchronized:  
Set Up and Hold Timing Requirement  
The sync clock (fSYNC) serves as a reference clock in the system  
to reset the clock generation circuitry in multiple AD9142 devices  
simultaneously. Inside the DAC, the sync clock is sampled by the  
DACCLK to generate a reference point for aligning the internal  
clocks, so there is a setup and hold timing requirement between  
the sync clock and the DAC clock.  
The phase of DAC internal clocks  
The FIFO level  
The alignment of the input data  
If the user adopts the continuous frame reset mode, that is, the  
FIFO and sync engine periodically reset, the timing requirements  
between the sync clock and the DAC clock must be met.  
Otherwise, the device can lose lock and corrupt the output. In  
the one shot frame reset mode, it is still recommended that this  
timing be met at the time when the sync routine is run because  
not meeting the timing can degrade the sync alignment  
accuracy by one DAC cycle, as shown in Table 19.  
VERY SMALL INHERENT LATENCY VARIATION  
The innovative architecture of the AD9142 minimizes the  
inherent latency variation. The worst-case variation in the  
AD9142 is two DAC clock cycles. For example, in the case of a  
1.5 GHz sample rate, the variation is less than 1.4 ns under any  
scenario. Therefore, without turning on the synchronization  
engine, the DAC outputs from multiple AD9142 devices are  
guaranteed to be aligned within two DAC clock cycles, regardless  
of the timing between the DCI and the DACCLK. No additional  
clocks are required to achieve this accuracy. The user must reset  
the FIFO in each DAC device through the SPI at start-up.  
Therefore, the AD9142 can decrease the complexity of system  
design in multi transmit channel applications.  
For users who want to synchronize the device in a one-shot  
manner and continue to monitor the synchronization status,  
the AD9142 provides a sync monitoring mode. It provides a  
continuous sync and frame clock to synchronize the part once  
and ignore the clock cycles after the first valid frame pulse is  
detected. In this way, the user can monitor the sync status  
without periodically resynchronizing the device; to engage the  
sync monitoring mode, set Register 0x22[1:0] (FRAME_RESET_  
MODE) to 11b.  
Note the alignment of the DCI signals in the design. The DCI is  
used as a reference in the AD9142 design to align the FIFO and  
the phase of internal clocks in multiple parts. The achieved  
DAC output alignment depends on how well the DCIs are  
aligned at the input of each device. The equation below is the  
expression of the worst-case DAC output alignment accuracy in  
the case of DCI mismatches.  
Table 19. Sync Clock and DAC Clock Setup and Hold Times  
Falling Edge Sync Timing (default)  
Max  
246  
−11  
235  
Unit  
tS (ns)  
tH (ns)  
|tS + tH| (ns)  
ps  
ps  
ps  
t
SK (OUT) = tSK (DCI) + 2/fDAC  
where:  
SK (OUT) is the worst case skew between the DAC output from  
two AD9142 devices.  
SK (DCI) is the skew between two DCIs at the DCI input of the  
two AD9142 devices.  
DAC is the DACCLK frequency.  
t
t
f
The better the alignment of the DCIs, the smaller is the overall  
skew between two DAC outputs.  
Rev. 0 | Page 32 of 64  
 
 
 
 
Data Sheet  
AD9142  
Synchronization Procedure for PLL Off  
SYNCHRONIZATION IMPLEMENTATION  
1. Configure the DAC interpolation mode and, if NCO is  
used, configure the NC O F T W.  
The AD9142 lets the user choose either the rising or falling  
edge of the DAC clock to sample the sync clock, which makes it  
2. Set up the DAC data interface according to the procedure  
outlined in the Data Interface section and verify that the  
DLL is locked.  
easier to meet the timing requirements. The sync clock, fSYNC  
should be 1/8 × fDATA or slower by a factor of 2n, n being an  
integer (1, 2, 3…). Note that there is a limit on how slow the  
,
3. Choose the appropriate mode in FRAME_RESET_MODE.  
a. If NCO is not used, choose FIFO only mode.  
b. If NCO is used, it must be synchronized. FIFO and  
NCO mode can then be used.  
sync clock can be because of the ac coupling nature of the sync  
clock receiver. Choose an appropriate value of the ac coupling  
capacitors to ensure that the signal swing meets the data sheet  
specification, as listed in Table 2.  
4. Configure Bit 2 in Register 0x22 for continuous or one shot  
reset mode. One shot reset mode is recommended.  
5. Ensure that the DACCLK, DCI, and sync clock to all of the  
AD9142 devices are running and stable.  
6. Enable the sync engine by writing 1 to Register 0x21[0].  
7. Send a valid frame pulse(s) to all of the AD9142 devices.  
8. Verify that the frame pulse is received by each device by  
reading back Register 0x22[3]. All the readback values are 1.  
At this point, the devices should be synchronized.  
The frame clock resets the FIFO in multiple AD9142 devices.  
The frame can be either a one shot or continuous clock. In either  
case, the pulse width of the frame must be longer than one DCI  
cycle in the word mode and two DCI cycles in the byte mode.  
When the frame is a continuous clock, fFRAME should be at 1/8 ×  
fDATA or slower by a factor of 2n, n being an integer (1, 2, 3…).  
Table 20 lists the requirements of the frame clock in various  
conditions.  
Table 20. Frame Clock Speed and Pulse Width Requirement  
Synchronization Procedure for PLL On  
Maximum  
Note that, because the sync clock and PLL reference clock share  
the same clock and the maximum sync clock rate is fDATA/8, the  
same limit also applies to the reference clock. Therefore, only  
2× interpolation is supported for synchronization with PLL on.  
Sync Clock Speed  
Minimum Pulse Width  
One Shot  
Continuous fDATA/8  
N/A1  
For both one shot and continuous  
sync clocks, word mode = one DCI  
cycle and byte mode = two DCI cycles.  
1 N/A means not applicable.  
1. Set up the PLL according to the procedure in the Clock  
Multiplication section and ensure that the PLL is locked.  
2. Configure the DAC interpolation mode and, if NCO is  
used, configure the NC O F T W.  
3. Set up the DAC data interface according to the procedure  
in the Data Interface section and verify that the DLL is  
locked.  
SYNCHRONIZATION PROCEDURES  
When the sync accuracy of an application is looser than two  
DAC clock cycles, it is recommended to turn off the synchro-  
nization machine because there are no additional steps required,  
other than the regular start-up procedure sequence.  
For applications that require finer than two-DAC clock cycle  
sync accuracy, it is recommended that the procedure in the  
Synchronization Procedure for PLL Off or Synchronization  
Procedure for PLL On sections be followed to set up the system  
and configure the device. For more information about the  
details of the synchronization scheme in the AD9142 and using  
the synchronization function to correct system skews and drifts,  
see the DAC Latency and System Skews section.  
4. Choose the appropriate mode in FRAME_RESET_MODE.  
a. If NCO is not used, choose the FIFO only mode.  
b. If NCO is used, it must be synchronized. FIFO and  
NCO mode can then be used.  
5. Configure Bit 2 in Register 0x22 for continuous or one shot  
reset mode. One shot reset mode is recommended.  
6. Ensure that DACCLK, DCI, and sync clock to all of the  
AD9142 devices are running.  
7. Enable the sync engine by writing 1 to Register 0x21[0].  
8. Send a valid frame pulse(s) to all of the AD9142 devices.  
9. Verify that the frame pulse is received by each device by  
reading back Register 0x22[3]. All the readback values are 1.  
At this point, the devices should be synchronized.  
Rev. 0 | Page 33 of 64  
 
 
 
 
 
AD9142  
Data Sheet  
INTERRUPT REQUEST OPERATION  
The AD9142 provides an interrupt request output signal on  
method is by writing 1 to the corresponding event flag bit. The  
second method is to use a hardware or software reset to clear the  
INTERRUPT_SOURCE signal.  
IRQ2  
Pin 50 and Pin 51 (  
IRQ1  
and  
, respectively) that can be used  
to notify an external host processor of significant device events.  
Upon assertion of the interrupt, query the device to determine  
IRQ2  
IRQ1  
circuitry.  
The  
Any one or multiple event flags can be enabled to trigger  
IRQ1 IRQ2  
circuitry works in the same way as the  
IRQ1  
the precise event that occurred. The  
pin is an open-drain,  
IRQ1  
active low output. Pull the  
pin high external to the device.  
the  
and  
pins. The user can select one or both  
This pin can be tied to the interrupt pins of other devices with  
open-drain outputs to wire-OR these pins together.  
hardware interrupt pins for the enabled event flags. Register 0x07  
and Register 0x08 determine the pin to which each event flag is  
IRQ1  
routed. Set Register 0x07 and Register 0x08 to 0 for  
IRQ2  
and set  
Ten event flags provide visibility into the device. These flags are  
located in the two event flag registers, Register 0x05 and  
Register 0x06. The behavior of each event flag is independently  
selected in the interrupt enable registers, Register 0x03 and  
Register 0x04. When the flag interrupt enable is active, the event  
flag latches and triggers an external interrupt. When the flag  
interrupt is disabled, the event flag monitors the source signal,  
these registers to 1 for  
.
INTERRUPT SERVICE ROUTINE  
Interrupt request management starts by selecting the set of  
event flags that require host intervention or monitoring. Enable  
the events that require host action so that the host is notified  
when they occur. For events requiring host intervention  
IRQ1  
IRQ2  
but the  
and  
pin remain inactive.  
IRQx  
upon  
activation, run the following routine to clear an  
INTERRUPT WORKING MECHANISM  
interrupt request:  
Figure 49 shows the interrupt related circuitry and how the event  
1. Read the status of the event flag bits that are being  
monitored.  
IRQx  
flag signals propagate to the  
output. The INTERRUPT_  
ENABLE signal represents one bit from the interrupt enable  
register. The EVENT_FLAG_SOURCE signal represents one bit  
from the event flag register. The EVENT_FLAG_SOURCE signal  
represents one of the device signals that can be monitored, such as  
the PLL_LOCK signal from the PLL phase detector or the  
FIFO_WARNING_1 signal from the FIFO controller.  
2. Set the interrupt enable bit low so that the unlatched  
EVENT_FLAG_SOURCE can be monitored directly.  
3. Perform any actions that may be required to clear the  
EVENT_FLAG_SOURCE. In many cases, no specific  
actions may be required.  
4. Read the event flag to verify that the actions taken have  
cleared the EVENT_FLAG_SOURCE.  
5. Clear the interrupt by writing 1 to the event flag bit.  
6. Set the interrupt enable bits of the events to be monitored.  
When an interrupt enable bit is set high, the corresponding event  
flag bit reflects a positively tripped version of the EVENT_FLAG_  
SOURCE signal; that is, the event flag bit is latched on the rising  
edge of the EVENT_FLAG_SOURCE signal. This signal also  
Note that some EVENT_FLAG_SOURCE signals are latched  
signals. These signals are cleared by writing to the correspon-  
ding event flag bit. For more information about each of the  
event flags, see the Device Configuration Register Map and  
Description section.  
IRQ  
asserts the external  
pins.  
When an interrupt enable bit is set low, the event flag bit reflects  
the present status of the EVENT_FLAG_SOURCE signal, and  
IRQ  
the event flag has no effect on the external  
pins.  
Clear the latched version of an event flag (the INTERRUPT_  
SOURCE signal) in one of two ways. The recommended  
0
1
EVENT_FLAG  
IRQ  
INTERRUPT_  
SOURCE  
INTERRUPT_ENABLE  
OTHER  
INTERRUPT  
SOURCES  
EVENT_FLAG_SOURCE  
WRITE_1_TO_EVENT_FLAG  
DEVICE_RESET  
IRQ  
Figure 49. Simplified Schematic of  
Circuitry  
Rev. 0 | Page 34 of 64  
 
 
 
 
Data Sheet  
AD9142  
TEMPERATURE SENSOR  
The AD9142 has a diode-based temperature sensor for measuring  
the temperature of the die. The temperature reading is accessed  
using Register 0x1D and Register 0x1E. The temperature of the  
die can be calculated as  
Estimates of the ambient temperature can be made if the power  
dissipation of the device is known. For example, if the device  
power dissipation is 800 mW and the measured die temperature  
is 50°C, then the ambient temperature can be calculated as  
TA = TDIE PD × θJA = 50 – 0.8 × 20.7 = 33.4°C  
( DieTemp[15:0]41,237)  
TDIE  
=
where:  
106  
TA is the ambient temperature in degrees Celsius.  
where TDIE is the die temperature in degrees Celsius. The  
temperature accuracy is 7°C typical over the +85°C to −40°C  
range with one point temperature calibration against a known  
temperature. A typical plot of the die temperature vs. die  
temperature code readback is shown in Figure 50.  
θ
JA is the thermal resistance from junction to ambient of the  
AD9142 as shown in Table 8.  
To use the temperature sensor, it must be enabled by setting Bit 0,  
Register 0x1C to 1. In addition, to get accurate readings, the die  
temperature control register (Register 0x1C) should be set to 0x03.  
51000  
49000  
47000  
45000  
43000  
41000  
39000  
37000  
35000  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
TEMPERATURE (°C)  
Figure 50. Die Temperature vs. Die Temperature Code Readback  
Rev. 0 | Page 35 of 64  
 
 
AD9142  
Data Sheet  
DAC INPUT CLOCK CONFIGURATIONS  
The AD9142 DAC sample clock (DACCLK) can be sourced  
directly or by clock multiplying. Clock multiplying employs the  
on-chip phase-locked loop (PLL) that accepts a reference clock  
operating at a submultiple of the desired DACCLK rate. The  
PLL then multiplies the reference clock up to the desired DACCLK  
frequency, which can then be used to generate all of the internal  
clocks required by the DAC. The clock multiplier provides a  
high quality clock that meets the performance requirements of  
most applications. Using the on-chip clock multiplier removes  
the burden of generating and distributing the high speed DACCLK.  
DIRECT CLOCKING  
Direct clocking with a low noise clock produces the lowest noise  
spectral density at the DAC outputs. To select the differential  
CLK inputs as the source for the DAC sampling clock, set the  
PLL enable bit (Register 0x12[7]) to 0. This powers down the  
internal PLL clock multiplier and selects the input from the  
DACCLKP and DACCLKN pins as the source for the internal  
DAC sampling clock. The REFCLK input can remain floating.  
The device also has clock duty cycle correction circuitry and  
differential input level correction circuitry. Enabling these circuits  
can provide improved performance in some cases. The control  
bits for these functions are in Register 0x10 and Register 0x11.  
The second mode bypasses the clock multiplier circuitry and lets  
DACCLK be sourced directly to the DAC core. This mode lets the  
user source a very high quality clock directly to the DAC core.  
CLOCK MULTIPLICATION  
DRIVING THE DACCLK AND REFCLK INPUTS  
The on-chip PLL clock multiplier circuit generates the DAC  
sample rate clock from a lower frequency reference clock. When  
the PLL enable bit (Register 0x12[7]) is set to 1, the clock  
multiplication circuit generates the DAC sampling clock from  
the lower rate REFCLK input and the DACCLK input is left  
floating. The functional diagram of the clock multiplier is  
shown in Figure 52.  
The DACCLK and REFCLK differential inputs share similar  
clock receiver input circuitry. Figure 51 shows a simplified circuit  
diagram of the input. The on-chip clock receiver has a differential  
input impedance of about 10 kΩ. It is self biased to a common-  
mode voltage of about 1.25 V. The inputs can be driven by  
differential PECL or LVDS drivers with ac coupling between the  
clock source and the receiver.  
The clock multiplication circuit operates such that the VCO  
outputs a frequency, fVCO, equal to the REFCLK input signal  
frequency multiplied by N1 × N0. N1 is the divide ratio of the  
loop divider; N0 is the divide ratio of the VCO divider.  
RECOMMENDED  
EXTERNAL  
CIRCUITRY  
AD9142  
DACCLKP/  
REFP/SYNCP  
1~100nF  
f
VCO = fREFCLK × (N1 × N0)  
The DAC sample clock frequency, fDACCLK, is equal to  
DACCLK = fREFCLK × N1  
5kΩ  
100Ω  
1.25V  
5kΩ  
1~100nF  
f
DACCLKN/  
REFN/SYNCN  
The output frequency of the VCO must be chosen to keep fVCO  
in the optimal operating range of 1.0 GHz to 2.1 GHz. It is  
important to select a frequency of the reference clock and values  
of N1 and N0 so that the desired DACCLK frequency can be  
synthesized and the VCO output frequency is in the correct range.  
Figure 51. Clock Receiver Input Simplified Equivalent Circuit  
The minimum input drive level to the differential clock input is  
100 mV p-p differential. The optimal performance is achieved  
when the clock input signal is between 800 mV p-p differential  
and 1.6 V p-p differential. Whether using the on-chip clock  
multiplier or sourcing the DACCLK directly, the input clock  
signal to the device must have low jitter and fast edge rates to  
optimize the DAC noise performance.  
VCO CONTROL  
VOLTAGE  
ADC  
PLL CHARGE  
REG 0x16[3:0]  
PUMP CURRENT PLL LOOP BW  
REFP/SYNCP  
(PIN 2)  
REG 0x14[4:0]  
REG 0x14[7:5]  
PHASE  
FREQUENCY  
DETECTION  
CHARGE  
PUMP  
ON-CHIP  
LOOP FILTER  
VCO  
(1GHz~2.1GHz)  
REFN/SYNCN  
(PIN 3)  
LOOP DIVIDER  
REG 0x15[1:0]  
VCO DIVIDER  
REG 0x15[3:2]  
DIVIDE BY  
2, 4, 8, OR 16  
DIVIDE BY  
1, 2, OR 4  
DACCLKN  
(PIN 62)  
DACCLK  
DACCLKP  
(PIN 61)  
PLL ENABLE  
REG 0x12[7]  
Figure 52. PLL Clock Multiplication Circuit  
Rev. 0 | Page 36 of 64  
 
 
 
 
 
 
Data Sheet  
AD9142  
61  
57  
53  
49  
45  
41  
37  
33  
29  
25  
21  
17  
13  
9
PLL SETTINGS  
The PLL circuitry requires three settings to be programmed to  
their nominal values. The PLL values shown in Table 21 are the  
recommended settings for these parameters.  
Table 21. PLL Settings  
PLL SPI Control  
Register  
Register  
Address  
Optimal Setting  
(Binary)  
PLL Loop Bandwidth  
PLL Charge Pump Current 0x14[4:0]  
PLL Cross Control Enable 0x15[4]  
0x14[7:5]  
111  
00111  
0
5
1
950  
1150  
1350  
1550  
1750  
1950  
2150  
CONFIGURING THE VCO TUNING BAND  
VCO FREQUENCY (MHz)  
The PLL VCO has a valid operating range from approximately  
1.0 GHz to 2.1 GHz covered in 64 overlapping frequency bands.  
For any desired VCO output frequency, there may be several  
valid PLL band select values. The frequency bands of a typical  
device are shown in Figure 53. Device-to-device variations and  
operating temperature affect the actual band frequency range.  
Therefore, it is required that the optimal PLL band select value  
be determined for each individual device.  
Figure 53. PLL Lock Range for a Typical Device  
MANUAL VCO BAND SELECT  
The device includes a manual band select mode (PLL auto  
manual enable, Register 0x12[6] = 1) that lets the user select the  
VCO tuning band. In manual mode, the VCO band is set  
directly with the value written to the manual VCO band bits  
(Register 0x12[5:0]).  
AUTOMATIC VCO BAND SELECT  
PLL ENABLE SEQUENCE  
The device has an automatic VCO band select feature on chip.  
Using the automatic VCO band select feature is a simple and  
reliable method of configuring the VCO frequency band. This  
feature is enabled by starting the PLL in manual mode, and then  
placing the PLL in autoband select mode by setting Register  
0x12 to a value of 0xC0 and then to a value of 0x80. When these  
values are written, the device executes an automated routine  
that determines the optimal VCO band setting for the device.  
To enable the PLL in automatic or manual mode properly, the  
following sequence must be followed:  
Automatic Mode Sequence  
1. Configure the loop divider and the VCO divider registers  
for the desired divide ratios.  
2. Set 00111b to PLL charge pump current and 111b to PLL  
loop bandwidth for the best performance.  
3. Set the PLL mode to manual using Register 0x12[6] = 1b.  
4. Enable the PLL using Register 0x12[7] = 1b.  
5. Set the PLL mode to automatic using Register 0x12[6] = 0b.  
6. Enable the PLL using Register 0x12[7] = 1b.  
The setting selected by the device ensures that the PLL remains  
locked over the full −40°C to +85°C operating temperature  
range of the device without further adjustment. The PLL  
remains locked over the full temperature range even if the  
temperature during initialization is at one of the temperature  
extremes.  
Manual Mode  
1. Configure the loop divider and the VCO divider registers  
for the desired divide ratios.  
2. Set 00111b to PLL charge pump current and 111b to PLL  
loop bandwidth for the best performance.  
3. Select the desired band.  
4. Set the PLL mode to manual using Register 0x12[6] = 1b.  
5. Enable the PLL using Register 0x12[7] = 1b.  
6. Enable the PLL one more time using Register 0x12[7] = 1b.  
Rev. 0 | Page 37 of 64  
 
 
 
 
 
 
AD9142  
Data Sheet  
ANALOG OUTPUTS  
For nominal values of VREF (1.2 V), RSET (10 kΩ), and DAC gain  
(512), the full-scale current of the DAC is typically 20.16 mA. The  
DAC full-scale current can be adjusted from 8.64 mA to 31.68 mA  
by setting the DAC gain parameter, as shown in Figure 55.  
35  
TRANSMIT DAC OPERATION  
Figure 54 shows a simplified block diagram of the transmit path  
DACs. The DAC core consists of a current source array, a switch  
core, digital control logic, and full-scale output current control.  
The DAC full-scale output current (IOUTFS) is nominally 20 mA.  
The output currents from the IOUT1P/IOUT2P and IOUT1N/  
IOUT2N pins are complementary, meaning that the sum of the  
two currents always equals the full-scale current of the DAC.  
The digital input code to the DAC determines the effective  
differential current delivered to the load.  
30  
25  
20  
15  
10  
5
I DAC FS ADJUST  
1.2V  
REG 0x18, 0x19  
IOUT1P  
I DAC  
5kΩ  
IOUT1N  
REFIO  
CURRENT  
SCALING  
0.1µF  
FSADJ  
10kΩ  
IOUT2N  
IOUT2P  
0
R
Q DAC  
SET  
0
200  
400  
600  
800  
1000  
Q DAC FS ADJUST  
REG 0x1A, 0x1B  
DAC GAIN CODE  
Figure 55. DAC Full-Scale Current vs. DAC Gain Code  
Figure 54. Simplified Block Diagram of DAC Core  
Transmit DAC Transfer Function  
The DAC has a 1.2 V band gap reference with an output imped-  
ance of 5 kΩ. The reference output voltage appears on the REFIO  
pin. When using the internal reference, decouple the REFIO pin  
to AVSS with a 0.1 µF capacitor. Use the internal reference only  
for external circuits that draw dc currents of 2 µA or less. For  
dynamic loads or static loads greater than 2 µA, buffer the REFIO  
pin. If desired, the internal reference can be overdriven by  
applying an external reference (from 1.10 V to 1.30 V) to the  
REFIO pin.  
The output currents from the IOUT1P/IOUT2P and IOUT1N/  
IOUT2N pins are complementary, meaning that the sum of the  
two currents always equals the full-scale current of the DAC. The  
digital input code to the DAC determines the effective differen-  
tial current delivered to the load. IOUT1P/IOUT2P provide  
maximum output current when all bits are high. The output  
currents vs. DACCODE for the DAC outputs is expressed as  
DACCODE  
(1)  
(2)  
IOUTP  
=
× IOUTFS  
2N  
A 10 kΩ external resistor, RSET, must be connected from the  
FSADJ pin to AVSS. This resistor, together with the reference  
control amplifier, sets up the correct internal bias currents for  
the DAC. Because the full-scale current is inversely proportional to  
this resistor, the tolerance of RSET is reflected in the full-scale  
output amplitude.  
IOUTN = IOUTFS IOUTP  
where DACCODE = 0 to 2N − 1.  
Transmit DAC Output Configurations  
The optimum noise and distortion performance of the AD9142  
is realized when it is configured for differential operation. The  
common-mode rejection of a transformer or differential amplifier  
significantly reduces the common-mode error sources of the DAC  
outputs. These common-mode error sources include even-order  
distortion products and noise. The enhancement in distortion  
performance becomes more significant as the frequency content of  
the reconstructed waveform increases and/or its amplitude  
increases. This is due to the first-order cancellation of various  
dynamic common-mode distortion mechanisms, digital feed-  
through, and noise.  
The full-scale current equation, where the DAC gain is set  
individually for the Q and IDACs in Register 0x40 and Register  
0x44, respectively, is as follows:  
VREF  
RSET  
3
16  
IFS  
=
× 72 +  
× DAC gain  
Rev. 0 | Page 38 of 64  
 
 
 
 
Data Sheet  
AD9142  
Figure 56 shows the most basic DAC output circuitry. A pair of  
resistors, RO, convert each of the complementary output currents to  
a differential voltage output, VOUT. Because the current outputs  
of the DAC are high impedance, the differential driving point  
impedance of the DAC outputs, ROUT, is equal to 2 × RO. See  
Figure 57 for the output voltage waveforms.  
AD9142  
ADL537x  
67  
IOUT1P  
IBBP  
RBIP  
50Ω  
RLI  
100Ω  
RBIN  
50Ω  
66  
59  
IOUT1N  
IOUT2N  
IBBN  
V
+
IP  
IOUT1P  
QBBN  
RBQN  
R
O
O
50Ω  
RLQ  
100Ω  
V
OUTI  
RBQP  
50Ω  
58  
R
V
IOUT2P  
QBBP  
IN  
IOUT1N  
Figure 58. Typical Interface Circuitry Between the AD9142 and the ADL537x  
Family of Modulators  
V
+
QP  
IOUT2P  
The baseband inputs of the ADL537x family require a dc bias  
of 500 mV. The nominal midscale output current on each output of  
the DAC is 10 mA (one-half the full-scale current). Therefore,  
a single 50 Ω resistor to ground from each of the DAC outputs  
results in the desired 500 mV dc common-mode bias for the  
inputs to the ADL537x. The addition of the load resistor in  
parallel with the modulator inputs reduces the signal level. The  
peak-to-peak voltage swing of the transmitted signal is  
R
O
O
V
OUTQ  
R
V
QN  
IOUT2N  
Figure 56. Basic Transmit DAC Output Circuit  
+V  
PEAK  
(2×RB ×RL )  
V
CM  
0
VSIGNAL = IFS  
×
V
(2×RB + RL )  
V
P
N
Baseband Filter Implementation  
Most applications require a baseband anti-imaging filter between  
the DAC and the modulator to filter out Nyquist images and  
broadband DAC noise. The filter can be inserted between the  
I-V resistors at the DAC output and the signal level setting resistor  
across the modulator input. This configuration establishes the  
input and output impedances for the filter.  
V
OUT  
–V  
PEAK  
Figure 57. Output Voltage Waveforms  
Figure 59 shows a fifth-order, low-pass filter. A common-mode  
choke is placed between the I-V resistors and the remainder of  
the filter to remove the common-mode signal produced by the  
DAC and to prevent the common-mode signal from being  
converted to a differential signal, which can appear as unwanted  
spurious signals in the output spectrum. Splitting the first filter  
capacitor into two and grounding the center point creates a  
common-mode low-pass filter, which provides additional  
common-mode rejection of high frequency signals. A purely  
differential filter can pass common-mode signals.  
The common-mode signal voltage, VCM, is calculated as  
IFS  
2
VCM  
=
× RO  
The peak output voltage, VPEAK, is calculated as  
PEAK = IFS × RO  
V
In this circuit configuration, the single-ended peak voltage is  
the same as the peak differential output voltage.  
INTERFACING TO MODULATORS  
For more details about interfacing the AD9142 DAC to an IQ  
modulator, refer to the Circuits from the Lab CN-0205, Interfacing  
the ADL5375 I/Q Modulator to the AD9122 Dual Channel,  
1.2 GSPS High Speed DAC on the Analog Devices website.  
The AD9142 interfaces to the ADL537x family of modulators  
with a minimal number of components. An example of the  
recommended interface circuitry is shown in Figure 58.  
22pF  
50Ω  
3pF  
33nH  
33nH  
3.6pF  
6pF  
3pF  
140Ω ADL537x  
AD9142  
33nH  
33nH  
50Ω  
22pF  
Figure 59. DAC Modulator Interface with Fifth-Order, Low-Pass Filter  
Rev. 0 | Page 39 of 64  
 
 
 
 
 
AD9142  
Data Sheet  
(Register 0x37 and Register 0x38) and the DAC FS adjust  
REDUCING LO LEAKAGE AND UNWANTED  
SIDEBANDS  
registers (Register 0x18 through Register 0x1B) can be used to  
calibrate the I and Q transmit paths to optimize sideband  
suppression.  
Analog quadrature modulators can introduce unwanted signals  
at the local oscillator (LO) frequency due to dc offset voltages in  
the I and Q baseband inputs, as well as feedthrough paths from  
the LO input to the output. The LO feedthrough can be nulled  
by applying the correct dc offset voltages at the DAC output  
using the digital dc offset adjustments (Register 0x3B through  
Register 0x3E).  
For more information about suppressing LO leakage and  
sideband image, refer to Application Note AN-1039, Correcting  
Imperfections in IQ Modulators to Improve RF Signal Fidelity  
and Application Note AN-1100, Wireless Transmitter IQ Balance  
and Sideband Suppression from the Analog Devices website.  
Effective sideband suppression requires both gain and phase  
matching of the I and Q signals. The I/Q phase adjust registers  
Rev. 0 | Page 40 of 64  
 
Data Sheet  
AD9142  
EXAMPLE START-UP ROUTINE  
To ensure reliable start-up of the AD9142, certain sequences  
must be followed. This section shows an example start-up  
routine.  
/* Configure PLL */  
0x14 → 0xE3 /* Configure PLL loop BW and charge  
pump current */  
0x15 0xC2 /* Configure VCO divider and Loop  
divider */  
Device Configuration and Start-Up Sequence  
0x12 → 0xC0 /*Enable the PLL */  
0x12 0x80  
fDATA = 200 MHz, interpolation is 8×.  
Input data is baseband data.  
fOUT = 350 MHz.  
PLL is enabled, fREF = 200 MHz.  
Fine NCO is enabled, inverse sinc filter is enabled.  
A delay line-based mode is used with an interface delay  
setting of 0.  
/* Configure Data Interface */  
0x5E → 0x00 /* Delay setting 0 */  
0x5F → 0x08 /* Enable the delay line */  
/* Configure Interpolation filter */  
Derived PLL Settings  
0x28 → 0x03 /* 8× interpolation */  
The following PLL settings can be derived from the device  
configuration:  
/* Reset FIFO */  
f
DAC = 200 × 8 = 1600 MHz.  
0x25 0x01  
fVCO= fDAC = 1600 MHz (1 GHz < fVCO < 2 GHz).  
Read 0x25[1] /* Expect 1b if the FIFO reset is  
complete */  
VCO divider = fVCO/fDAC = 1.  
Loop divider = fDAC/fREF = 8.  
Read 0x24 /* The readback should be one of the  
three values: 0x37, 0x40, or 0x41 */  
Derived NCO Settings  
The following NCO settings can be derived from the device  
configuration:  
/* Configure NCO */  
0x27→ 0x40 /* Enable NCO */  
0x31 0x00  
fDAC = 200 × 8 = 1600 MHz.  
CARRIER = fOUT = 350 MHz.  
FTW = fCARRIER/fDAC × 232 = 0x38000000.  
f
0x32 0x00  
0x33 0x00  
Start-Up Sequence  
0x34 0x38  
0x30 0x01  
1. Power up the device (no specific power supply sequence is  
required).  
2. Apply stable DAC clock.  
3. Apply stable DCI clock.  
Read 0x30[1] /* Expect 1b if the NCO update is  
complete */  
4. Feed stable input data.  
/* Enable Inverse SINC filter */  
5. Issue H/W reset (optional).  
0x27 0xC0  
/* Device configuration register write  
sequence. Must be written in sequence for every  
device after reset*/  
/* Power up DAC outputs */  
0x01 → 0x00  
0x00 → 0x20 /* Issue software reset */  
0x20 0x01 /* Device Startup Configuration */  
0x79 0x18 /* Device Startup Configuration */  
0x80 0xAD /* Device Startup Configuration */  
0xE1 0x1A /* Device Startup Configuration */  
Rev. 0 | Page 41 of 64  
 
AD9142  
Data Sheet  
DEVICE CONFIGURATION REGISTER MAP AND DESCRIPTION  
Table 22. Device Configuration Register Map  
Reg Name  
Bits Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Reserved  
PD_DEVICE  
Bit 1  
Bit 0  
PD_FRAME  
Reset RW  
0x00 RW  
0xC0 RW  
0x00 RW  
0x00 Common  
0x01 PD_CONTROL  
[7:0] Reserved  
[7:0] PD_IDAC  
[7:0] Reserved  
SPI_LSB_FIRST DEVICE_RESET  
PD_QDAC  
PD_DATARCV  
ENABLE_  
SYNC_LOCKED SYNC_DONE  
Reserved  
PD_DACCLK  
0x03 INTERRUPT_  
ENABLE0  
ENABLE_  
ENABLE_  
ENABLE_PLL_  
LOST  
ENABLE_PLL_ ENABLE_OVER_ ENABLE_  
LOCKED  
SYNC_LOST  
THRESHOLD  
DACOUT_  
MUTED  
0x04 INTERRUPT_  
ENABLE1  
[7:0]  
Reserved  
ENABLE_FIFO_ ENABLE_FIFO_ ENABLE_FIFO_ 0x00 RW  
UNDERFLOW OVERFLOW  
WARNING  
0x05 INTERRUPT_  
FLAG0  
[7:0] Reserved  
[7:0]  
SYNC_LOST  
SYNC_LOCKED SYNC_DONE  
Reserved  
PLL_LOST  
PLL_LOCKED OVER_  
THRESHOLD  
DACOUT_  
MUTED  
0x00  
0x00  
R
R
0x06 INTERRUPT_  
FLAG1  
FIFO_  
FIFO_OVER-  
FIFO_  
WARNING  
UNDERFLOW FLOW  
0x07 IRQ_SEL0  
[7:0] Reserved  
[7:0]  
SEL_SYNC_  
LOST  
SEL_SYNC_  
LOCKED  
SEL_SYNC_  
DONE  
SEL_PLL_LOST  
SEL_PLL_  
LOCKED  
SEL_OVER_  
THRESHOLD  
SEL_DACOUT 0x00 RW  
_MUTED  
0x08 IRQ_SEL1  
Reserved  
SEL_FIFO_  
UNDERFLOW OVERFLOW  
SEL_FIFO_  
SEL_FIFO_  
WARNING  
0x00 RW  
0x10 DACCLK_  
RECEIVER_  
CTRL  
[7:0] DACCLK_  
Reserved  
DACCLK_  
CROSSPOINT_  
CTRL_ENABLE  
DACCLK_CROSSPOINT_LEVEL  
0xFF RW  
DUTYCYCLE_  
CORRECTION  
0x11 REFCLK_  
RECEIVER_CTRL  
[7:0] DUTYCYCLE_ Reserved  
CORRECTION  
REFCLK_  
CROSSPOINT_  
CTRL_ENABLE  
REFCLK_CROSSPOINT_LEVEL  
PLL_MANUAL_BAND  
0xBF RW  
0x00 RW  
0x12 PLL_CTRL0  
[7:0] PLL_ENABLE  
AUTO_  
MANUAL_SEL  
0x14 PLL_CTRL2  
0x15 PLL_CTRL3  
[7:0]  
PLL_LOOP_BW  
PLL_CP_CURRENT  
VCO_DIVIDER  
0xE7 RW  
0xC9 RW  
[7:0]  
DIGLOGIC_DIVIDER  
Reserved  
Reserved  
CROSSPOINT_  
CTRL_EN  
LOOP_DIVIDER  
0x16 PLL_STATUS0  
0x17 PLL_STATUS1  
[7:0] PLL_LOCK  
[7:0]  
VCO_CTRL_VOLTAGE_READBACK  
PLL_BAND_READBACK  
IDAC_FULLSCALE_ADJUST_LSB  
Reserved  
0x00  
0x00  
R
R
Reserved  
0x18 IDAC_FS_ADJ0 [7:0]  
0x19 IDAC_FS_ADJ1 [7:0]  
0xF9 RW  
IDAC_FULLSCALE_ADJUST_ 0xE1 RW  
MSB  
0x1A QDAC_FS_ADJ0 [7:0]  
0x1B QDAC_FS_ADJ1 [7:0]  
QDAC_FULLSCALE_ADJUST_LSB  
0xF9 RW  
Reserved  
QDAC_FULLSCALE_ADJUST_ 0x01 RW  
MSB  
0x1C DIE_TEMP_  
SENSOR_CTRL  
[7:0] Reserved  
FS_CURRENT  
REF_CURRENT  
DIE_TEMP_  
SENSOR_EN  
0x02 RW  
0x1D DIE_TEMP_LSB [7:0]  
0x1E DIE_TEMP_MSB [7:0]  
DIE_TEMP_LSB  
DIE_TEMP_MSB  
0x00  
0x00  
0x0A  
R
R
R
0x1F CHIP_ID  
[7:0]  
[7:0]  
CHIP_ID  
0x20 INTERRUPT_  
CONFIG  
INTERRUPT_CONFIGURATION  
0x00 RW  
0x00 RW  
0x12 RW  
0x40 RW  
0x21 SYNC_CTRL  
[7:0]  
Reserved  
SYNC_CLK_  
EDGE_SEL  
SYNC_  
ENABLE  
0x22 FRAME_RST_  
CTRL  
[7:0]  
Reserved  
FRAME_  
RESET_ACK  
EN_CON_  
FRAME_RESET  
FRAME_RESET_MODE  
0x23 FIFO_LEVEL_  
CONFIG  
[7:0] Reserved  
[7:0] Reserved  
[7:0]  
INTEGRAL_FIFO_LEVEL_REQUEST  
INTEGRAL_FIFO_LEVEL_READBACK  
Reserved  
Reserved  
Reserved  
FRACTIONAL_FIFO_LEVEL_REQUEST  
FRACTIONAL_FIFO_LEVEL_READBACK  
0x24 FIFO_LEVEL_  
READBACK  
0x00  
R
0x25 FIFO_CTRL  
FIFO_SPI_  
RESET_ACK  
FIFO_SPI_  
RESET_  
REQUEST  
0x00 RW  
0x00 RW  
0x26 DATA_  
FORMAT_SEL  
[7:0] DATA_  
FORMAT  
DATA_PAIRIN DATA_BUS_  
INVERT  
NCO_ENABLE IQ_GAIN_ADJ_ IQ_PHASE_  
Reserved  
FS4_  
DATA_BUS_  
WIDTH  
G
0x27 DATAPATH_  
CTRL  
[7:0] INVSINC_  
ENABLE  
Reserved  
NCO_SIDE-  
MODULATION_ BAND_SEL  
ENABLE  
SEND_IDATA_ 0x00 RW  
TO_QDAC  
DCOFFSET_  
ENABLE  
ADJ_ENABLE  
Rev. 0 | Page 42 of 64  
 
Data Sheet  
AD9142  
0x28 INTERPOLATION_ [7:0]  
CTRL  
Reserved  
THRESHOLD_LEVEL_REQUEST_LSB  
INTERPOLATION_MODE  
0x00 RW  
0x29 OVER_  
THRESHOLD_  
[7:0]  
0x00 RW  
CTRL0  
0x2A OVER_  
[7:0]  
Reserved  
THRESHOLD_LEVEL_REQUEST_MSB  
0x00 RW  
0x00 RW  
THRESHOLD_  
CTRL1  
0x2B OVER_  
[7:0] ENABLE_  
IQ_DATA_  
SWAP  
Reserved  
SAMPLE_WINDOW_LENGTH  
THRESHOLD_  
CTRL2  
PROTECTION  
0x2C INPUT_POWER_ [7:0]  
READBACK_LSB  
INPUT_POWER_READBACK_LSB  
INPUT_POWER_READBACK_MSB  
Reserved NCO_SPI_  
0x00  
0x00  
R
R
0x2D INPUT_POWER_ [7:0]  
READBACK_MSB  
Reserved  
0x30 NCO_CTRL  
[7:0] Reserved  
NCO_FRAME_ SPI_NCO_  
UPDATE_ACK PHASE_RST_  
ACK  
SPI_NCO_  
PHASE_  
NCO_SPI_  
0x00 RW  
0x00 RW  
0x00 RW  
0x00 RW  
0x10 RW  
UPDATE_ACK UPDATE_REQ  
RST_REQ  
0x31 NCO_FREQ_  
TUNING_  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
NCO_FTW0  
NCO_FTW1  
NCO_FTW2  
NCO_FTW3  
WORD0  
0x32 NCO_FREQ_  
TUNING_  
WORD1  
0x33 NCO_FREQ_  
TUNING_  
WORD2  
0x34 NCO_FREQ_  
TUNING_  
WORD3  
0x35 NCO_PHASE_  
OFFSET0  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
NCO_PHASE_OFFSET_LSB  
0x00 RW  
0x00 RW  
0x00 RW  
0x36 NCO_PHASE_  
OFFSET1  
NCO_PHASE_OFFSET_MSB  
IQ_PHASE_ADJ_LSB  
0x37 IQ_PHASE_  
ADJ0  
0x38 IQ_PHASE_  
ADJ1  
Reserved  
IQ_PHASE_ADJ_MSB  
0x00 RW  
0
0x3B IDAC_DC_  
OFFSET0  
IDAC_DC_OFFSET_LSB  
IDAC_DC_OFFSET_MSB  
QDAC_DC_OFFSET_LSB  
QDAC_DC_OFFSET_MSB  
0x00 RW  
0x00 RW  
0x00 RW  
0x00 RW  
0x3C IDAC_DC_  
OFFSET1  
0x3D QDAC_DC_  
OFFSET0  
0x3E QDAC_DC_  
OFFSET1  
0x3F IDAC_GAIN_ADJ [7:0]  
Reserved  
IDAC_GAIN_ADJ  
0x20 RW  
0x20 RW  
0x40 QDAC_GAIN_  
ADJ  
[7:0]  
Reserved  
QDAC_GAIN_ADJ  
0x41 GAIN_STEP_  
CTRL0  
[7:0]  
Reserved  
RAMP_UP_STEP  
0x01 RW  
0x01 RW  
0x07 RW  
0x42 GAIN_STEP_  
CTRL1  
[7:0] DAC_OUTPUT_ DAC_OUTPUT_  
STATUS ON  
RAMP_DOWN_STEP  
0x43 TX_ENABLE_  
CTRL  
[7:0]  
Reserved  
Reserved  
TXENABLE_  
GAINSTEP_EN SLEEP_EN  
TXENABLE_  
TXENABLE_  
POWER_  
DOWN_EN  
0x44 DAC_OUTPUT_ [7:0] DAC_OUTPUT_  
FIFO_WARNING_ OVER-  
Reserved  
FIFO_ERROR_ 0x8F RW  
CTRL  
CTRL_EN  
SHUTDOWN_EN THRESHOLD_  
SHUTDOWN_  
EN  
SHUTDOWN_  
EN  
0x5E DATA_RX_CTRL0 [7:0]  
0x5F DATA_RX_CTRL1 [7:0]  
DLY_TAP_LSB  
0xFF RW  
0x07 RW  
0x00 RW  
Reserved  
DLYLINE_EN  
DLY_TAP_MSB  
0x79 DEVICE_  
CONFIG0  
[7:0]  
DEVICE_CONFIGURATION0  
0x7F Version  
[7:0]  
[7:0]  
Version  
0x05  
R
0x80 DEVICE_  
CONFIG1  
DEVICE_CONFIGURATION1  
0x00 RW  
0xE1 DEVICE_  
CONFIG2  
[7:0]  
DEVICE_CONFIGURATION2  
0x00 RW  
Rev. 0 | Page 43 of 64  
AD9142  
Data Sheet  
SPI CONFIGURE REGISTER  
Address: 0x00, Reset: 0x00, Name: Common  
Table 23. Bit Descriptions for Common  
Bits  
Bit Name  
Settings Description  
Serial port communication, MSB-first or LSB-first selection.  
MSB first.  
Reset  
Access  
6
SPI_LSB_FIRST  
0x0  
RW  
0
1
LSB first.  
5
DEVICE_RESET  
The device resets when 1 is written to this bit. DEVICE_RESET is a self clear bit.  
After the reset, the bit returns to 0 automatically. The readback is always 0.  
0x0  
RW  
POWER-DOWN CONTROL REGISTER  
Address: 0x01, Reset: 0xC0, Name: PD_CONTROL  
Table 24. Bit Descriptions for PD_CONTROL  
Bits  
Bit Name  
Settings Description  
The IDAC is powered down when PD_IDAC is set to 1. This bit powers down  
only the analog portion of the IDAC. The IDAC digital data path is not affected.  
Reset  
Access  
7
PD_IDAC  
0x1  
RW  
6
5
2
1
0
PD_QDAC  
The QDAC is powered down when PD_QDAC is set to 1. This bit powers down only 0x1  
the analog portion of the QDAC. The QDAC digital data path is not affected.  
RW  
RW  
RW  
RW  
RW  
PD_DATARCV  
PD_DEVICE  
PD_DACCLK  
PD_FRAME  
The data interface circuitry is powered down when PD_DATARCV is set to 1.  
This bit powers down the data interface and the write side of the FIFO.  
0x0  
0x0  
0x0  
0x0  
The bandgap circuitry is powered down when set to 1. This bit powers down  
the entire chip.  
The DAC clocking powers down when PD_DEVICE is set to 1. This bit powers down  
the DAC clocking path and, thus, the majority of the digital functions.  
The frame receiver powers down when PD_FRAME is set to 1. The frame signal  
is internally pulled low. Set to 1 when frame is not used.  
INTERRUPT ENABLE0 REGISTER  
Address: 0x03, Reset: 0x00, Name: INTERRUPT_ENABLE0  
Table 25. Bit Descriptions for INTERRUPT_ENABLE0  
Bits  
6
Bit Name  
Settings  
Description  
Reset  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
Access  
RW  
ENABLE_SYNC_LOST  
ENABLE_SYNC_LOCKED  
ENABLE_SYNC_DONE  
ENABLE_PLL_LOST  
Enable interrupt for sync lost.  
Enable interrupt for sync lock.  
Enable interrupt for sync done.  
Enable interrupt for PLL lost.  
Enable interrupt for PLL locked.  
Enable interrupt for overthreshold.  
Enable interrupt for DACOUT muted.  
5
RW  
4
RW  
3
RW  
2
ENABLE_PLL_LOCKED  
ENABLE_OVER_THRESHOLD  
ENABLE_DACOUT_MUTED  
RW  
1
RW  
0
RW  
INTERRUPT ENABLE1 REGISTER  
Address: 0x04, Reset: 0x00, Name: INTERRUPT_ENABLE1  
Table 26. Bit Descriptions for INTERRUPT_ENABLE1  
Bits  
2
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
ENABLE_FIFO_UNDERFLOW  
ENABLE_FIFO_OVERFLOW  
ENABLE_FIFO_WARNING  
Enable interrupt for FIFO underflow.  
Enable interrupt for FIFO overflow.  
Enable interrupt for FIFO warning.  
1
0x0  
RW  
0
0x0  
RW  
Rev. 0 | Page 44 of 64  
 
 
 
 
Data Sheet  
AD9142  
INTERRUPT FLAG0 REGISTER  
Address: 0x05, Reset: 0x00, Name: INTERRUPT_FLAG0  
Table 27. Bit Descriptions for INTERRUPT_FLAG0  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
6
SYNC_LOST  
SYNC_LOST is set to 1 when sync is lost.  
SYNC_LOCKED is set to 1 when sync is locked.  
SYNC_DONE is set to 1 when sync is done.  
PLL_LOST is set to 1 when PLL loses lock.  
PLL_LOCKED is set to 1 when PLL is locked.  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
R
R
R
R
R
R
5
SYNC_LOCKED  
SYNC_DONE  
PLL_LOST  
4
3
2
PLL_LOCKED  
OVER_THRESHOLD  
1
OVER_THRESHOLD is set to 1 when input power is  
overthreshold.  
0
DACOUT_MUTED  
DACOUT_MUTED is set to 1 when the DAC output is muted  
(midscale dc).  
0x0  
R
INTERRUPT FLAG1 REGISTER  
Address: 0x06, Reset: 0x00, Name: INTERRUPT_FLAG1  
Table 28. Bit Descriptions for INTERRUPT_FLAG1  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
2
FIFO_UNDERFLOW  
FIFO_UNDERFLOW is set to 1 when the FIFO read pointer  
catches the FIFO write pointer.  
0x0  
R
1
0
FIFO_OVERFLOW  
FIFO_WARNING  
FIFO_OVERFLOW is set to 1 when the FIFO write pointer  
catches the FIFO read pointer.  
0x0  
0x0  
R
R
FIFO_WARNING is set to 1 when the FIFO is one slot from  
empty (≤1) or full (≥6).  
INTERRUPT SELECT0 REGISTER  
Address: 0x07, Reset: 0x00, Name: IRQ_SEL0  
Table 29. Bit Descriptions for IRQ_SEL0  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
6
SEL_SYNC_LOST  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Selects the IRQ1 pin.  
Selects the IRQ2 pin.  
Selects the IRQ1 pin.  
Selects the IRQ2 pin.  
Selects the IRQ1 pin.  
Selects the IRQ2 pin.  
Selects the IRQ1 pin.  
Selects the IRQ2 pin.  
Selects the IRQ1 pin.  
Selects the IRQ2 pin.  
Selects the IRQ1 pin.  
Selects the IRQ2 pin.  
Selects the IRQ1 pin.  
Selects the IRQ2 pin.  
0x0  
RW  
5
4
3
2
1
0
SEL_SYNC_LOCKED  
SEL_SYNC_DONE  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
RW  
RW  
RW  
RW  
RW  
RW  
SEL_PLL_LOST  
SEL_PLL_LOCKED  
SEL_OVER_THRESHOLD  
SEL_DACOUT_MUTED  
Rev. 0 | Page 45 of 64  
 
 
 
AD9142  
Data Sheet  
INTERRUPT SELECT1 REGISTER  
Address: 0x08, Reset: 0x00, Name: IRQ_SEL1  
Table 30. Bit Descriptions for IRQ_SEL1  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
2
SEL_FIFO_UNDERFLOW  
0
1
0
1
0
1
Selects the IRQ1 pin.  
Selects the IRQ2 pin.  
Selects the IRQ1 pin.  
Selects the IRQ2 pin.  
Selects the IRQ1 pin.  
Selects the IRQ2 pin.  
0x0  
RW  
1
0
SEL_FIFO_OVERFLOW  
SEL_FIFO_WARNING  
0x0  
0x0  
RW  
RW  
DAC CLOCK RECEIVER CONTROL REGISTER  
Address: 0x10, Reset: 0xFF, Name: DACCLK_RECEIVER_CTRL  
Table 31. Bit Descriptions for DACCLK_RECEIVER_CTRL  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
7
DACCLK_DUTYCYCLE_CORRECTION  
Enables duty cycle correction at the DACCLK input. For  
best performance, the default and recommended status  
is turned on.  
0x1  
RW  
5
DACCLK_CROSSPOINT_CTRL_ENABLE  
DACCLK_CROSSPOINT_LEVEL  
Enables crosspoint control at the DACCLK input. For best 0x1  
performance, the default and recommended status is  
turned on.  
RW  
RW  
[4:0]  
A twos complement value. For best performance, it is  
recommended to set DACCLK_CROSSPOINT_LEVEL to  
the default value.  
0x1F  
01111 Highest crosspoint.  
11111 Lowest crosspoint.  
REF CLOCK RECEIVER CONTROL REGISTER  
Address: 0x11, Reset: 0xBF, Name: REFCLK_RECEIVER_CTRL  
Table 32. Bit Descriptions for REFCLK_RECEIVER_CTRL  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
7
DUTYCYCLE_CORRECTION  
Enables duty cycle correction at the REFCLK input. For  
best performance, the default and recommended status  
is turned off.  
0x0  
RW  
5
REFCLK_CROSSPOINT_CTRL_ENABLE  
REFCLK_CROSSPOINT_LEVEL  
Enables crosspoint control at the REFCLK input. For best 0x0  
performance, the default and recommended status is  
turned off.  
RW  
RW  
[4:0]  
A twos complement value. For best performance, it is  
recommended to set REFCLK_CROSSPOINT_LEVEL to  
the default value.  
0x1F  
01111 Highest crosspoint.  
11111 Lowest crosspoint.  
Rev. 0 | Page 46 of 64  
 
 
 
Data Sheet  
AD9142  
PLL CONTROL REGISTER  
Address: 0x12, Reset: 0x00, Name: PLL_CTRL0  
Table 33. Bit Descriptions for PLL_CTRL0  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
RW  
7
PLL_ENABLE  
Enables PLL clock multiplier.  
PLL band selection mode.  
Automatic mode.  
0x0  
0x0  
6
AUTO_MANUAL_SEL  
RW  
0
1
Manual mode.  
[5:0]  
PLL_MANUAL_BAND  
PLL band setting in manual mode. 64 bands in total, covering a 1 GHz to 0x00  
2.1 GHz VCO range.  
RW  
000000 Lowest band (1 GHz).  
111111 Highest band (2.1 GHz).  
PLL CONTROL REGISTER  
Address: 0x14, Reset: 0xE7, Name: PLL_CTRL2  
Table 34. Bit Descriptions for PLL_CTRL2  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:5]  
PLL_LOOP_BW  
Selects the PLL loop filter bandwidth. The default and recommended  
setting is 111 for optimal PLL performance.  
0x7  
RW  
0x00 Lowest setting.  
0x1F Highest setting.  
Sets nominal PLL charge pump current. The default and recommended  
setting is 00111 for optimal PLL performance.  
0x00 Lowest setting.  
0x1F Highest setting.  
[4:0]  
PLL_CP_CURRENT  
0x07  
RW  
PLL CONTROL REGISTER  
Address: 0x15, Reset: 0xC9, Name: PLL_CTRL3  
Table 35. Bit Descriptions for PLL_CTRL3  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:6]  
DIGLOGIC_DIVIDER  
REFCLK to PLL digital clock divide ratio. The PLL digital clock drives the  
internal PLL logics. The divide ratio must be set to ensure that the PLL  
digital clock is below 75 MHz.  
0x3  
RW  
00 fREFCLK/fDIG = 2.  
01 fREFCLK/fDIG = 4.  
10 fREFCLK/fDIG = 8.  
11 fREFCLK/fDIG = 16.  
4
CROSSPOINT_CTRL_EN  
VCO_DIVIDER  
Enable loop divider crosspoint control. The default and recommended  
setting is turned off (0) for optimal PLL performance.  
0x0  
0x2  
RW  
RW  
[3:2]  
PLL VCO divider. This divider determines the ratio of the VCO frequency  
to the DACCLK frequency.  
00 fVCO/fDACCLK = 1.  
01 fVCO/fDACCLK = 2.  
10 fVCO/fDACCLK = 4.  
11 fVCO/fDACCLK = 4.  
[1:0]  
LOOP_DIVIDER  
PLL loop divider. This divider determines the ratio of the DACCLK  
frequency to the REFCLK frequency.  
00 fDACCLK/fREFCLK = 2.  
0x1  
RW  
01 fDACCLK/fREFCLK = 4.  
10 fDACCLK/fREFCLK = 8.  
11 fDACCLK/fREFCLK = 16.  
Rev. 0 | Page 47 of 64  
 
 
 
AD9142  
Data Sheet  
PLL STATUS REGISTER  
Address: 0x16, Reset: 0x00, Name: PLL_STATUS0  
Table 36. Bit Descriptions for PLL_STATUS0  
Bits  
Bit Name  
Settings Description  
Reset  
0x0  
Access  
7
PLL_LOCK  
PLL clock multiplier output is stable.  
R
R
[3:0]  
VCO_CTRL_VOLTAGE_READBACK  
VCO control voltage readback. A binary value.  
1111 The highest VCO control voltage.  
0x0  
0111 The mid value when a proper VCO band is selected. When  
the PLL is locked, selecting a higher VCO band decreases this  
value and selecting a lower VCO band increases this value.  
0000 The lowest VCO control voltage.  
PLL STATUS REGISTER  
Address: 0x17, Reset: 0x00, Name: PLL_STATUS1  
Table 37. Bit Descriptions for PLL_STATUS1  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[5:0]  
PLL_BAND_READBACK  
Indicates the VCO band currently selected.  
0x00  
R
IDAC FS ADJUST LSB REGISTER  
Address: 0x18, Reset: 0xF9, Name: IDAC_FS_ADJ0  
Table 38. Bit Descriptions for IDAC_FS_ADJ0  
Bits  
Bit Name  
Settings Description  
Reset  
Access  
[7:0]  
IDAC_FULLSCALE_ADJUST_LSB  
See Register 0x19.  
0xF9  
RW  
IDAC FS ADJUST MSB REGISTER  
Address: 0x19, Reset: 0xE1, Name: IDAC_FS_ADJ1  
Table 39. Bit Descriptions for IDAC_FS_ADJ1  
Bits  
Bit Name  
Settings Description  
Reset  
Access  
[1:0]  
IDAC_FULLSCALE_ADJUST_MSB  
IDAC full-scale adjust, Bits[9:0] sets the full-scale current of  
the IDAC. The full-scale current can be adjusted from 8.64 mA  
to 31.68 mA. The default value (0x1F9) sets the full-scale  
current to 20 mA.  
0x1  
RW  
QDAC FS ADJUST LSB REGISTER  
Address: 0x1A, Reset: 0xF9, Name: QDAC_FS_ADJ0  
Table 40. Bit Descriptions for QDAC_FS_ADJ0  
Bits  
Bit Name  
Settings Description  
Reset  
Access  
[7:0]  
QDAC_FULLSCALE_ADJUST_LSB  
See Register 0x1B.  
0xF9  
RW  
Rev. 0 | Page 48 of 64  
 
 
 
 
 
Data Sheet  
AD9142  
QDAC FS ADJUST MSB REGISTER  
Address: 0x1B, Reset: 0x01, Name: QDAC_FS_ADJ1  
Table 41. Bit Descriptions for QDAC_FS_ADJ1  
Bits Bit Name  
Settings Description  
Reset Access  
[1:0] QDAC_FULLSCALE_ADJUST_MSB  
QDAC full-scale adjust, Bits[9:0] sets the full-scale current of the QDAC.  
The full-scale current can be adjusted from 8.64 mA to 31.68 mA. The  
default value (0x1F9) sets the full-scale current to 20 mA.  
0x1  
RW  
DIE TEMPERATURE SENSOR CONTROL REGISTER  
Address: 0x1C, Reset: 0x02, Name: DIE_TEMP_SENSOR_CTRL  
Table 42. Bit Descriptions for DIE_TEMP_SENSOR_CTRL  
Bits Bit Name  
Settings Description  
Temperature sensor ADC full-scale current. Using the default  
setting is recommended.  
000 50 μA.  
Reset Access  
[6:4] FS_CURRENT  
0x0  
0x1  
0x0  
RW  
RW  
RW  
001 62.5 μA.  
110 125 μA.  
111 137.5 μA.  
[3:1] REF_CURRENT  
Temperature sensor ADC reference current. Using the default  
setting is recommended.  
000 12.5 μA.  
001 19 μA.  
110 50 μA.  
111 56.5 μA.  
0
DIE_TEMP_SENSOR_EN  
Enable the on-chip temperature sensor.  
DIE TEMPERATURE LSB REGISTER  
Address: 0x1D, Reset: 0x00, Name: DIE_TEMP_LSB  
Table 43. Bit Descriptions for DIE_TEMP_LSB  
Bits Bit Name  
Settings Description  
See Register 0x1E.  
Reset Access  
[7:0] DIE_TEMP_LSB  
0x00  
R
DIE TEMPERATURE MSB REGISTER  
Address: 0x1E, Reset: 0x00, Name: DIE_TEMP_MSB  
Table 44. Bit Descriptions for DIE_TEMP_MSB  
Bits Bit Name  
Settings Description  
Reset  
Access  
[7:0] DIE_TEMP_MSB  
Die temperature, Bits[15:0] indicate the approximate die temperature. 0x00  
For more information, see the Temperature Sensor section.  
R
CHIP ID REGISTER  
Address: 0x1F, Reset: 0x0A, Name: CHIP_ID  
Table 45. Bit Descriptions for CHIP_ID  
Bits Bit Name  
Settings Description  
Reset Access  
0x0A  
[7:0] CHIP_ID  
The AD9142 chip ID is 0x0A.  
R
Rev. 0 | Page 49 of 64  
 
 
 
 
 
AD9142  
Data Sheet  
INTERRUPT CONFIGUATION REGISTER  
Address: 0x20, Reset: 0x00, Name: INTERRUPT_CONFIG  
Table 46. Bit Descriptions for INTERRUPT_CONFIG  
Bits Bit Name  
Settings Description  
Reset Access  
[7:0] INTERRUPT_CONFIGURATION  
0x00 Test mode.  
0x00  
RW  
0x01 Recommended mode (described in Interrupt Request  
Operation section).  
SYNC CTRL REGISTER  
Address: 0x21, Reset: 0x00, Name: SYNC_CTRL  
Table 47. Bit Descriptions for SYNC_CTRL  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
1
SYNC_CLK_EDGE_SEL  
Selects the sampling edge of the DACCLK on the SYNC CLK.  
SYNC CLK is sampled by rising edges of DACCLK.  
SYNC CLK is sampled by falling edges of DACCLK.  
Enables multichip synchronization.  
0x0  
RW  
0
1
0
SYNC_ENABLE  
0x0  
RW  
FRAME RESET CTRL REGISTER  
Address: 0x22, Reset: 0x12, Name: FRAME_RST_CTRL  
Table 48. Bit Descriptions for FRAME_RST_CTRL  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
3
FRAME_RESET_ACK  
Frame reset acknowledge. This bit is set to 1 when a valid frame pulse 0x0  
is received.  
R
2
EN_CON_FRAME_RESET  
Reset mode selection.  
0x0  
RW  
0
1
Responds to only the first valid frame pulse and resets the FIFO and/or  
NCO one time only. This is the default and recommended mode.  
Responds to every valid frame pulse and resets the FIFO and/or NCO  
accordingly.  
[1:0]  
FRAME_RESET_MODE  
These bits determine what is to be reset when the device receives a  
valid frame signal.  
0x2  
RW  
00 FIFO only.  
01 NCO only.  
10 FIFO and NCO.  
11 None.  
Rev. 0 | Page 50 of 64  
 
 
 
Data Sheet  
AD9142  
FIFO LEVEL CONFIGURATION REGISTER  
Address: 0x23, Reset: 0x40, Name: FIFO_LEVEL_CONFIG  
Table 49. Bit Descriptions for FIFO_LEVEL_CONFIG  
Bits  
Bit Name  
Settings Description  
Reset  
Access  
[6:4]  
INTEGRAL_FIFO_LEVEL_REQUEST  
Sets the integral FIFO level. This is the difference between the 0x4  
RW  
read pointer and the write pointer values in the unit of  
input data rate (fDATA). The default and recommended FIFO  
level is integral level = 4 and fractional level = 0. See the  
FIFO Operation section for details.  
000 0.  
001 1.  
111 7.  
[2:0]  
FRACTIONAL_FIFO_LEVEL_REQUEST  
Sets the fractional FIFO level. This is the difference between  
0x0  
RW  
the read pointer and the write pointer values in the unit of  
DACCLK rate (FDAC). The maximum allowed setting value =  
interpolation rate − 1. See the FIFO Operation section for  
details.  
000 0.  
001 1.  
Max 001 in 2×.  
allowed  
setting.  
003 in 4×.  
007 in 8×.  
FIFO LEVEL READBACK REGISTER  
Address: 0x24, Reset: 0x00, Name: FIFO_LEVEL_READBACK  
Table 50. Bit Descriptions for FIFO_LEVEL_READBACK  
Bits  
Bit Name  
Settings Description  
Reset  
Access  
[6:4]  
INTEGRAL_FIFO_LEVEL_READBACK  
The integral FIFO level read back. The difference between the 0x0  
R
overall FIFO level request and readback should be within  
two DACCLK cycles. See the FIFO Operation section for  
details.  
[2:0]  
FRACTIONAL_FIFO_LEVEL_READBACK  
The fractional FIFO level read back. This value should be  
used in combination with the readback in Bit[6:4].  
0x0  
R
FIFO CTRL REGISTER  
Address: 0x25, Reset: 0x00, Name: FIFO_CTRL  
Table 51. Bit Descriptions for FIFO_CTRL  
Bits  
Bit Name  
Settings Description  
Reset  
0x0  
Access  
R
1
FIFO_SPI_RESET_ACK  
FIFO_SPI_RESET_REQUEST  
Acknowledge a serial port initialized FIFO reset.  
Initialize a FIFO reset via the serial port.  
0
0x0  
RW  
Rev. 0 | Page 51 of 64  
 
 
 
AD9142  
Data Sheet  
DATA FORMAT SELECT REGISTER  
Address: 0x26, Reset: 0x00, Name: DATA_FORMAT_SEL  
Table 52. Bit Descriptions for DATA_FORMAT_SEL  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
7
DATA_FORMAT  
Select binary or twos complement data format.  
Input data in twos complement format.  
Input data in binary format.  
0x0  
RW  
0
1
6
5
DATA_PAIRING  
Indicate I/Q data pairing on data input.  
I samples are paired with the next Q samples.  
I samples are paired with the prior Q samples.  
0x0  
0x0  
RW  
RW  
0
1
DATA_BUS_INVERT  
Swap the bit order of the data input port. MSBs become the LSBs:  
D[15:0] changes to D[0:15].  
0
1
The order of the data bits corresponds to the pin descriptions in Table 9.  
The order of the data bits is inverted.  
0
DATA_BUS_WIDTH  
Data interface mode. See the LVDS Input Data Ports section for  
information about the operation of the different interface modes.  
0x0  
RW  
0
1
Word mode; 16-bit interface bus width.  
Byte mode; 8-bit interface bus width.  
DATAPATH CONTROL REGISTER  
Address: 0x27, Reset: 0x00, Name: DATAPATH_CTRL  
Table 53. Bit Descriptions for DATAPATH_CTRL  
Bits  
7
Bit Name  
Settings  
Description  
Reset  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
Access  
RW  
INVSINC_ENABLE  
Enable the inverse sinc filter.  
6
NCO_ENABLE  
Enable the NCO.  
RW  
5
IQ_GAIN_ADJ_DCOFFSET_ENABLE  
IQ_PHASE_ADJ_ENABLE  
FS4_MODULATION_ENABLE  
NCO_SIDEBAND_SEL  
Enable digital IQ gain adjustment and dc offset.  
Enable digital IQ phase adjustment.  
Enable fS/4 modulation function.  
Selects the single-side NCO modulation image.  
The NCO outputs the high-side image.  
The NCO outputs the low-side image.  
RW  
4
RW  
2
RW  
1
RW  
0
1
0
SEND_IDATA_TO_QDAC  
Send the IDATA to the QDAC. When enabled, I data is sent  
to both the IDAC and the QDAC. The Q data path still runs,  
and the Q data is ignored.  
0x0  
RW  
INTERPOLATION CONTROL REGISTER  
Address: 0x28, Reset: 0x00, Name: INTERPOLATION_CTRL  
Table 54. Bit Descriptions for INTERPOLATION_CTRL  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[1:0]  
INTERPOLATION_MODE  
Interpolation rate and mode selection.  
00 2× Mode 1; use HB1 filter.  
0x0  
RW  
10 4× mode; use HB1 and HB2 filters.  
11 8× mode; use all three filters (HB1, HB2, and HB3).  
Rev. 0 | Page 52 of 64  
 
 
 
Data Sheet  
AD9142  
OVER THRESHOLD CTRL0 REGISTER  
Address: 0x29, Reset: 0x00, Name: OVER_THRESHOLD_CTRL0  
Table 55. Bit Descriptions for OVER_THRESHOLD_CTRL0  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
[7:0]  
THRESHOLD_LEVEL_REQUEST_LSB  
See Register 0x2A.  
OVER THRESHOLD CTRL1 REGISTER  
Address: 0x2A, Reset: 0x00, Name: OVER_THRESHOLD_CTRL1  
Table 56. Bit Descriptions for OVER_THRESHOLD_CTRL1  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x00  
Access  
RW  
[4:0]  
THRESHOLD_LEVEL_REQUEST_MSB  
Minimum average input power (I2 + Q2) to trigger the  
input power protection function.  
OVER THRESHOLD CTRL2 REGISTER  
Address: 0x2B, Reset: 0x00, Name: OVER_THRESHOLD_CTRL2  
Table 57. Bit Descriptions for OVER_THRESHOLD_CTRL2  
Bits Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RW  
7
6
ENABLE_PROTECTION  
IQ_DATA_SWAP  
Enable input power protection.  
Swap I and Q data in average power calculation.  
Number of data input samples for power averaging.  
0x0  
RW  
[3:0] SAMPLE_WINDOW_LENGTH  
0x0  
RW  
0000 512 IQ data sample pairs.  
0001 1024 IQ data sample pairs.  
1010 219 IQ data sample pairs.  
1011 to invalid.  
1111  
INPUT POWER READBACK LSB REGISTER  
Address: 0x2C, Reset: 0x00, Name: INPUT_POWER_READBACK_LSB  
Table 58. Bit Descriptions for INPUT_POWER_READBACK_LSB  
Bits Bit Name  
Settings  
Description  
Reset  
Access  
[7:0] INPUT_POWER_READBACK_LSB  
See Register 0x2D.  
0x0  
R
INPUT POWER READBACK MSB REGISTER  
Address: 0x2D, Reset: 0x00, Name: INPUT_POWER_READBACK_MSB  
Table 59. Bit Descriptions for INPUT_POWER_READBACK_MSB  
Bits Bit Name  
Settings  
Description  
Reset  
Access  
[4:0] INPUT_POWER_READBACK_MSB  
Input signal average power readback.  
0x00  
R
Rev. 0 | Page 53 of 64  
 
 
 
 
 
AD9142  
Data Sheet  
NCO CONTROL REGISTER  
Address: 0x30, Reset: 0x00, Name: NCO_CTRL  
Table 60. Bit Descriptions for NCO_CTRL  
Bits Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
6
5
4
1
0
NCO_FRAME_UPDATE_ACK  
Frequency tuning word update request from frame.  
NCO phase SPI reset acknowledge.  
NCO phase SPI reset request.  
R
SPI_NCO_PHASE_RST_ACK  
SPI_NCO_PHASE_RST_REQ  
NCO_SPI_UPDATE_ACK  
NCO_SPI_UPDATE_REQ  
0x0  
R
0x0  
RW  
R
Frequency tuning word update acknowledge.  
Frequency tuning word update request from SPI.  
0x0  
0x0  
RW  
NCO_FREQ_TUNING_WORD0 REGISTER  
Address: 0x31, Reset: 0x00, Name: NCO_FREQ_TUNING_WORD0  
Table 61. Bit Descriptions for NCO_FREQ_TUNING_WORD0  
Bits Bit Name  
Settings  
Description  
Reset  
Access  
[7:0] NCO_FTW0  
See Register 0x34.  
0x00  
RW  
NCO_FREQ_TUNING_WORD1 REGISTER  
Address: 0x32, Reset: 0x00, Name: NCO_FREQ_TUNING_WORD1  
Table 62. Bit Descriptions for NCO_FREQ_TUNING_WORD1  
Bits Bit Name  
Settings  
Description  
Reset  
Access  
[7:0] NCO_FTW1  
See Register 0x34.  
0x00  
RW  
NCO_FREQ_TUNING_WORD2 REGISTER  
Address: 0x33, Reset: 0x00, Name: NCO_FREQ_TUNING_WORD2  
Table 63. Bit Descriptions for NCO_FREQ_TUNING_WORD2  
Bits Bit Name  
Settings  
Description  
Reset  
Access  
[7:0] NCO_FTW2  
See Register 0x34.  
0x00  
RW  
NCO_FREQ_TUNING_WORD3 REGISTER  
Address: 0x34, Reset: 0x10, Name: NCO_FREQ_TUNING_WORD3  
Table 64. Bit Descriptions for NCO_FREQ_TUNING_WORD3  
Bits Bit Name  
Settings Description  
FTW[31:0] is the 32-bit frequency tuning word that determines the  
Reset  
Access  
[7:0] NCO_FTW3  
0x10  
RW  
frequency of the complex carrier generated by the on-chip NCO.  
The frequency is not updated when the FTW registers are written. The  
values are only updated when a serial port update or frame update is  
initialized in Register 0x30. It is in twos complement format.  
NCO_PHASE_OFFSET0 REGISTER  
Address: 0x35, Reset: 0x00, Name: NCO_PHASE_OFFSET0  
Table 65. Bit Descriptions for NCO_PHASE_OFFSET0  
Bits Bit Name  
Settings Description  
See Register 0x36.  
Reset  
Access  
[7:0] NCO_PHASE_OFFSET_LSB  
0x00  
RW  
Rev. 0 | Page 54 of 64  
 
 
 
 
 
 
Data Sheet  
AD9142  
NCO_PHASE_OFFSET1 REGISTER  
Address: 0x36, Reset: 0x00, Name: NCO_PHASE_OFFSET1  
Table 66. Bit Descriptions for NCO_PHASE_OFFSET1  
Bits Bit Name  
Settings  
Description  
Reset  
Access  
[7:0] NCO_PHASE_OFFSET_MSB  
This register sets the initial phase of the complex carrier signal upon reset.  
The phase offset spans from 0 degrees to 360 degrees. Each bit represents  
an offset of 0.0055 degrees. This value is in twos complement format.  
0x00  
RW  
IQ_PHASE_ADJ0 REGISTER  
Address: 0x37, Reset: 0x00, Name: IQ_PHASE_ADJ0  
Table 67. Bit Descriptions for IQ_PHASE_ADJ0  
Bits Bit Name  
Settings  
Description  
Reset  
Access  
[7:0] IQ_PHASE_ADJ_LSB  
See Register 0x38.  
0x00  
RW  
IQ_PHASE_ADJ1 REGISTER  
Address: 0x38, Reset: 0x000, Name: IQ_PHASE_ADJ1  
Table 68. Bit Descriptions for IQ_PHASE_ADJ1  
Bits Bit Name  
Settings  
Description  
Reset  
Access  
[4:0] IQ_PHASE_ADJ_MSB  
IQ phase adjust, Bits[12:0], is used to insert a phase offset between the 0x0  
I and Q datapaths. It provides an adjustment range of 14 degrees with  
a step of 0.0035 degrees. This value is in twos complement. See the  
Quadrature Phase Adjustment section for more information.  
RW  
IDAC_DC_OFFSET0 REGISTER  
Address: 0x3B, Reset: 0x00, Name: IDAC_DC_OFFSET0  
Table 69. Bit Descriptions for IDAC_DC_OFFSET0  
Bits Bit Name  
Settings  
Description  
Reset  
Access  
[7:0] IDAC_DC_OFFSET_LSB  
See Register 0x3C.  
0x00  
RW  
IDAC_DC_OFFSET1 REGISTER  
Address: 0x3C, Reset: 0x00, Name: IDAC_DC_OFFSET1  
Table 70. Bit Descriptions for IDAC_DC_OFFSET1  
Bits Bit Name  
Settings  
Description  
Reset  
Access  
[7:0] IDAC_DC_OFFSET_MSB  
IDAC DC offset, Bits[15:0], is a dc value that is added directly to the  
sample values written to the IDAC.  
0x00  
RW  
QDAC_DC_OFFSET0 REGISTER  
Address: 0x3D, Reset: 0x00, Name: QDAC_DC_OFFSET0  
Table 71. Bit Descriptions for QDAC_DC_OFFSET0  
Bits Bit Name  
Settings  
Description  
Reset  
Access  
[7:0] QDAC_DC_OFFSET_LSB  
See Register 0x3E.  
0x00  
RW  
Rev. 0 | Page 55 of 64  
 
 
 
 
 
 
AD9142  
Data Sheet  
QDAC_DC_OFFSET1 REGISTER  
Address: 0x3E, Reset: 0x00, Name: QDAC_DC_OFFSET1  
Table 72. Bit Descriptions for QDAC_DC_OFFSET1  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
QDAC_DC_OFFSET_MSB  
QDAC DC offset, Bits[15:0], is a dc value that is added directly to the  
sample values written to the QDAC.  
0x00  
RW  
IDAC_GAIN_ADJ REGISTER  
Address: 0x3F, Reset: 0x20, Name: IDAC_GAIN_ADJ  
Table 73. Bit Descriptions for IDAC_GAIN_ADJ  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[5:0]  
IDAC_GAIN_ADJ  
This register is the 6-bit digital gain adjust on the I channel. The bit  
weighting is MSB = 20, LSB = 2−5, which yields a multiplier range of 0 to 2 or  
−∞ to 6 dB. The default gain setting is 0x20, which maps to unity gain (0 dB).  
0x20  
RW  
QDAC_GAIN_ADJ REGISTER  
Address: 0x40, Reset: 0x20, Name: QDAC_GAIN_ADJ  
Table 74. Bit Descriptions for QDAC_GAIN_ADJ  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[5:0]  
QDAC_GAIN_ADJ  
This register is the 6-bit digital gain adjust on the Q channel. The bit  
weighting is MSB = 20, LSB = 2−5, which yields a multiplier range of 0 to 2 or  
−∞ to 6 dB. The default gain setting is 0x20, which maps to unity gain (0 dB).  
0x20  
RW  
GAIN STEP CONTROL0 REGISTER  
Address: 0x41, Reset: 0x01, Name: GAIN_STEP_CTRL0  
Table 75. Bit Descriptions for GAIN_STEP_CTRL0  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[5:0]  
RAMP_UP_STEP  
This register sets the step size of the increasing gain. The digital gain  
increases by the configured amount in every four DAC cycles until the  
gain reaches the setting in I/QDAC_GAIN_ADJ (Register 0x3F and  
Register 0x40). The bit weighting is MSB = 21, LSB = 2−4. Note that the  
value in this register should not be greater than the values in the  
I/QDAC_GAIN_ADJ (Register 0x3F and Register 0x40).  
0x01  
RW  
GAIN STEP CONTROL1 REGISTER  
Address: 0x42, Reset: 0x01, Name: GAIN_STEP_CTRL1  
Table 76. Bit Descriptions for GAIN_STEP_CTRL1  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
7
DAC_OUTPUT_STATUS  
This bit indicates the DAC output on/off status. When the DAC output  
is automatically turned off, this bit is 1.  
0x0  
RW  
6
DAC_OUTPUT_ON  
RAMP_DOWN_STEP  
In the case where the DAC output is automatically turned off in the  
input power protection mode or TX enable mode, this register allows  
for turning on the DAC output manually. It is a self clear bit.  
0x0  
R
[5:0]  
This register sets the step size of the decreasing gain. The digital gain  
decreases by the configured amount in every four DAC cycles until the  
gain reaches zero. The bit weighting is MSB = 21, LSB = 2−4. Note that the  
value in this register should not be greater than the values in the  
I/QDAC_GAIN_ADJ (Register 0x3F and Register 0x40).  
0x01  
RW  
Rev. 0 | Page 56 of 64  
 
 
 
 
 
Data Sheet  
AD9142  
TX ENABLE CONTROL REGISTER  
Address: 0x43, Reset: 0x07, Name: TX_ENABLE_CTRL  
Table 77. Bit Descriptions for TX_ENABLE_CTRL  
Bits Bit Name  
Settings  
Description  
Reset  
Access  
2
TXENABLE_GAINSTEP_EN  
DAC output gradually turns on/off under the control of the  
TXENABLE signal from the TXEN pin according to the settings  
in Register 0x41 and Register 0x42.  
0x1  
RW  
1
0
TXENABLE_SLEEP_EN  
When set to 1, the device is put in sleep mode when the  
TXENABLE signal from the TXEN pin is low.  
0x1  
0x1  
RW  
RW  
TXENABLE_POWER_DOWN_EN  
When set to 1, the device is put in power down mode when  
TXENABLE signal from the TXEN pin is low.  
DAC OUTPUT CONTROL REGISTER  
Address: 0x44, Reset: 0x8F, Name: DAC_OUTPUT_CTRL  
Table 78. Bit Descriptions for DAC_OUTPUT_CTRL  
Bits Bit Name  
Settings  
Description  
Reset  
Access  
7
DAC_OUTPUT_CTRL_EN  
Enable the DAC output control. This bit needs to be set to 1 to 0x1  
enable the rest of the bits in this register.  
RW  
3
FIFO_WARNING_SHUTDOWN_EN  
When this bit and Bit 7 are both high, if a FIFO warning occurs, 0x1  
the DAC output shuts down automatically. By default, this  
function is on.  
RW  
2
0
OVERTHRESHOLD_SHUTDOWN_EN  
FIFO_ERROR_SHUTDOWN_EN  
The DAC output is turned off when the input average power is 0x1  
greater than the predefined threshold.  
RW  
RW  
The DAC output is turned off when the FIFO reports warnings. 0x1  
DATA RECEIVER TEST CONTROL REGISTER  
Address: 0x5E, Reset: 0xFF, Name: DATA_RX_CTRL0  
Table 79. Bit Descriptions for DATA_RX_CTRL0  
Bits Bit Name  
Settings  
Description  
Reset  
Access  
[7:0] DLY_TAP_LSB  
See Register 0x5F[2:0].  
0xFF  
RW  
DATA RECEIVER TEST CONTROL REGISTER  
Address: 0x5F, Reset: 0x07, Name: DATA_RX_CTRL1  
Table 80. Bit Descriptions for DATA_RX_CTRL1  
Bits Bit Name  
DLYLINE_EN  
[2:0] DLY_TAP_MSB  
Settings  
Description  
Reset  
0x0  
Access  
RW  
3
1 = Enable the data interface.  
Four available delay settings. See the Interface Delay Line section for more  
information.  
0x7  
RW  
00 0x000  
01 0x007  
10 0x07F  
11 0x5FF  
Rev. 0 | Page 57 of 64  
 
 
 
 
 
AD9142  
Data Sheet  
DEVICE CONFIGURATION0 REGISTER  
Address: 0x79, Reset: 0x00, Name: DEVICE_CONFIG0  
Table 81. Bit Descriptions for DEVICE_CONFIG0  
Bits  
Bit Name  
Settings Description  
Reset  
Access  
[7:0]  
DEVICE_  
0x18 Recommended setting for device start-up configuration  
0x00  
RW  
CONFIGURATION0  
VERSION REGISTER  
Address: 0x7F, Reset: 0x05, Name: Version  
Table 82. Bit Descriptions for Version  
Bits  
Bit Name  
Settings Description  
Reset  
Access  
[7:0]  
Version  
Chip version  
0x05  
R
DEVICE CONFIGURATION1 REGISTER  
Address: 0x80, Reset: 0x00, Name: DEVICE_CONFIG1  
Table 83. Bit Descriptions for DEVICE_CONFIG1  
Bits  
Bit Name  
Settings Description  
Reset  
Access  
[7:0]  
DEVICE_  
0xAD Recommended setting for device start-up configuration  
0x00  
RW  
CONFIGURATION1  
DEVICE CONFIGURATION2 REGISTER  
Address: 0xE1, Reset: 0x00, Name: DEVICE_CONFIG2  
Table 84. Bit Descriptions for DEVICE_CONFIG2  
Bits  
Bit Name  
Settings Description  
Reset  
Access  
[7:0]  
DEVICE_  
0x1A Recommended setting for device start-up configuration  
0x00  
RW  
CONFIGURATION2  
Rev. 0 | Page 58 of 64  
 
 
 
 
Data Sheet  
AD9142  
DAC LATENCY AND SYSTEM SKEWS  
DACCLK/8  
DACCLK  
DIV 2  
DIV 2  
DIV 2  
DACCLK/4  
DACCLK/2  
FIFO  
RdPtr  
I AND  
Q DAC  
DATA  
INTERFACE  
OTHER DIGITAL  
FUNCTIONALITIES  
FIFO  
HB1  
HB2  
HB3  
FIFO  
WrPtr  
DCI  
FIXED  
LATENCY  
VARYING  
LATENCY  
VARYING  
LATENCY  
FIXED  
LATENCY  
Figure 60. Breakdown of Pipeline Latencies  
FIFO  
FIFO  
DAC LATENCY VARIATIONS  
DATA 0  
DATA 1  
DATA 0  
DATA 1  
FIFO  
WrPtr  
DACs, like any other devices with internal multiphase clocks,  
have an inherent pipeline latency variation. Figure 60 shows the  
breakdown of pipeline latencies in the AD9142. The highlighted  
section, including the FIFO and the clock generation circuitry, is  
where the pipeline latencies vary. Upon each power-on, the status  
of both the FIFO and the clock generation state machine is  
arbitrary. This leads to varying latency in these two blocks.  
FIFO  
RdPtr  
DATA 2  
DATA 3  
DATA 4  
DATA 5  
DATA 2  
DATA 3  
DATA 4  
DATA 5  
FIFO  
RdPtr  
FIFO  
WrPtr  
DATA 6  
DATA 7  
DATA 6  
DATA 7  
FIFO LATENCY VARIATION  
CASE 1:  
CASE 2:  
There are eight data slots in the FIFO. The FIFO read and write  
pointers circulate the FIFO from Slot 0 to Slot 7 and back to Slot 0.  
The FIFO depth is defined as the number of FIFO slots that are  
required for the read pointer to catch the write pointer. It is also  
the time a particular piece of data stays in the FIFO from the  
point that it is written into the FIFO to the point where it is read  
out from the FIFO. Therefore, the latency of the FIFO is equivalent  
to its depth.  
LATENCY = 4 DCI CYCLES  
LATENCY = 6 DCI CYCLES  
Figure 61. Example of FIFO Latency Difference  
Figure 62 shows two equivalent cases of FIFO latency of four data  
cycles. Although neither the read nor the write pointer match  
each other in these two cases, the FIFO depth is the same in both  
cases. Also, note that the beginning slots of the data stream in the  
two cases are not the same, but the read and write pointers point  
to the same piece of data in both cases. This does not affect the  
alignment accuracy of the DAC outputs as long as the data and  
the DCIs are well aligned at multiple devices.  
Figure 61 is an example of FIFO latency variation. The latency in  
Case 2 is two data cycles longer than that in Case 1. If other  
latencies are the same, the skew between the DAC outputs in  
these two cases is, likewise, two data cycles. Therefore, to keep a  
constant FIFO latency, the FIFO depth needs to be reset to a pre-  
defined value. Theoretically, any value other than 0 is valid but  
typically it is set to 4 to maximize the capacity of absorbing the  
rate fluctuation between the read and write side.  
FIFO  
FIFO  
DATA 0  
DATA 1  
DATA 5  
DATA 6  
FIFO  
WrPtr  
FIFO  
RdPtr  
DATA 2  
DATA 3  
DATA 4  
DATA 5  
DATA 7  
DATA 0  
DATA 1  
DATA 2  
LATENCY = 4 DCI CYCLES  
FIFO  
RdPtr  
FIFO  
WrPtr  
DATA 6  
DATA 7  
DATA 3  
DATA 4  
Figure 62. Example of Equal FIFO Latencies  
Rev. 0 | Page 59 of 64  
 
 
 
 
 
 
AD9142  
Data Sheet  
CLOCK GENERATION LATENCY VARIATION  
CORRECTING SYSTEM SKEWS  
The state machine of the clock generation circuitry is another  
source of latency variations; this type of latency variation results  
from inherent phase uncertainty of the static frequency dividers.  
The divided down clock can be high or low at the rising edge of  
the input clock, unless specifically forced to a known state. This  
means that whenever there is interpolation (when slower clocks  
need to be internally generated by dividing down the DACCLK),  
there is an inherent latency variation in the DAC. Figure 63 is an  
example of this latency variation in 2× interpolation. There are  
two phase possibilities in the DACCLK/2 clock. The DACCLK/2  
clock is used to read data from the FIFO and to drive the interpo-  
lation filter. Regardless of which clock edge is used to drive the  
digital circuit, there is a latency of one DAC clock cycle between  
Case 1 and Case 2 (see Figure 62). Because the power-on state  
arbitrarily falls in one of the two cases, the phase uncertainty of  
the divider appears as a varying skew between two DAC outputs.  
Generally, it is assumed that the input data and the DCI among  
multiple devices are well aligned to each other. Depending on the  
system design, the data and DCI being input into each DAC can  
originate from various FPGAs or ASICs. Without synchronizing  
the data sources, the output of one data source can be skewed  
from that of another. The alignment between multiple data  
sources can also drift over temperature.  
Figure 64 shows an example of a 2-channel transmitter with two  
data sources and two dual DACs. A constant but unknown phase  
offset appears between the outputs of the DAC devices, even if  
the DAC does not introduce any latency variations. The  
multidevice synchronization in the AD9142 can be used to  
compensate the skew due to misalignment of the data sources by  
resetting the two sides of the FIFO independently through two  
external reference clocks: the frame and the sync clock. The offset  
between the two data sources is then absorbed by the FIFO and  
clock generation block in the DAC. For more information about  
using the multidevice synchronization function, refer to the  
Synchronization Implementation section.  
HB1  
HB2  
HB3  
DCI  
FRAME  
DAC  
16-BIT DATA  
DATA  
DACCLK  
GEN  
DCI  
FRAME  
DAC  
16-BIT DATA  
DACCLK/2  
(CASE 1)  
DCI  
FRAME  
DAC  
DACCLK/2  
(CASE 2)  
16-BIT DATA  
DATA  
GEN  
DCI  
LATENCY VARIATION = 1 DACCLK CYCLE  
FRAME  
DAC  
Figure 63. Latency Variation in 2× Interpolation from Clock Generation  
16-BIT DATA  
2
4
MASTER  
SYNC CLOCK  
REF CLOCK  
DATA SKEW  
Figure 64. DAC Output Skew from Skewed Input Data and DCI  
Rev. 0 | Page 60 of 64  
 
 
 
 
Data Sheet  
AD9142  
PACKAGING AND ORDERING INFORMATION  
OUTLINE DIMENSIONS  
10.10  
10.00 SQ  
9.90  
0.60  
0.42  
0.24  
0.30  
0.23  
0.18  
0.60  
0.42  
0.24  
PIN 1  
INDICATOR  
55  
54  
72  
1
PIN 1  
INDICATOR  
9.85  
0.50  
BSC  
9.75 SQ  
9.65  
6.15  
6.00 SQ  
5.85  
EXPOSED  
PAD  
0.50  
0.40  
0.30  
18  
19  
37  
36  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
8.50 REF  
0.80 MAX  
0.65 TYP  
12° MAX  
1.00  
0.85  
0.80  
0.05 MAX  
0.02 NOM  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
COPLANARITY  
0.08  
SEATING  
PLANE  
0.20 REF  
SECTION OF THIS DATA SHEET.  
COMPLIANT TO JEDEC STANDARDS MO-220-VNND-4  
Figure 65. 72-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
10 mm × 10 mm Body, Very Thin Quad  
(CP-72-7)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
AD9142BCPZ  
72-lead LFCSP_VQ  
72-lead LFCSP_VQ  
Evaluation Board Connected to ADL5372 Modulator  
Evaluation Board Connected to ADL5375 Modulator  
CP-72-7  
CP-72-7  
AD9142BCPZRL  
AD9142-M5372-EBZ  
AD9142-M5375-EBZ  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 61 of 64  
 
 
 
AD9142  
NOTES  
Data Sheet  
Rev. 0 | Page 62 of 64  
Data Sheet  
NOTES  
AD9142  
Rev. 0 | Page 63 of 64  
AD9142  
NOTES  
Data Sheet  
©2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D10930-0-11/12(0)  
Rev. 0 | Page 64 of 64  
Mouser Electronics  
Authorized Distributor  
Click to View Pricing, Inventory, Delivery & Lifecycle Information:  
Analog Devices Inc.:  
AD9142BCPZ AD9142BCPZRL  

相关型号:

AD9144

Digital-to-Analog Converter
ADI

AD9144-EBZ

Digital-to-Analog Converter
ADI

AD9144-FMC-EBZ

Digital-to-Analog Converter
ADI

AD9144-M6720-EBZ

Digital-to-Analog Converter
ADI

AD9144BCPAZ

Digital-to-Analog Converter
ADI

AD9144BCPAZRL

Digital-to-Analog Converter
ADI

AD9144BCPZ

Digital-to-Analog Converter
ADI

AD9144BCPZRL

Digital-to-Analog Converter
ADI

AD9144_17

Digital-to-Analog Converter
ADI

AD9146

Dual, 16-Bit, 1230 MSPS, TxDAC+ Digital-to-Analog Converter
ADI

AD9146-M5375-EBZ

Dual, 16-Bit, 1230 MSPS, TxDAC+ Digital-to-Analog Converter
ADI

AD9146BCPZ

Dual, 16-Bit, 1230 MSPS, TxDAC+ Digital-to-Analog Converter
ADI