AD9204BCPZRL7-40 [ADI]

1.8 V Dual Analog-to-Digital Converter;
AD9204BCPZRL7-40
型号: AD9204BCPZRL7-40
厂家: ADI    ADI
描述:

1.8 V Dual Analog-to-Digital Converter

文件: 总37页 (文件大小:1291K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
10-Bit, 20 MSPS/40 MSPS/65 MSPS/80 MSPS,  
1.8 V Dual Analog-to-Digital Converter  
Data Sheet  
AD9204  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
AVDD  
GND  
SDIO SCLK CSB  
1.8 V analog supply operation  
1.8 V to 3.3 V output supply  
SNR  
SPI  
ORA  
D9A  
61.3 dBFS at 9.7 MHz input  
61.0 dBFS at 200 MHz input  
SFDR  
PROGRAMMING DATA  
VIN+A  
VIN–A  
ADC  
D0A  
75 dBc at 9.7 MHz input  
73 dBc at 200 MHz input  
DCOA  
VREF  
Low power  
SENSE  
DRVDD  
AD9204  
30 mW per channel at 20 MSPS  
63 mW per channel at 80 MSPS  
Differential input with 700 MHz bandwidth  
On-chip voltage reference and sample-and-hold circuit  
DNL = 0.11 LSB  
REF  
SELECT  
VCM  
ORB  
D9B  
RBIAS  
VIN–B  
VIN+B  
ADC  
D0B  
Serial port control options  
DCOB  
Scalable analog input: 1 V p-p to 2 V p-p differential  
Offset binary, gray code, or twos complement data format  
Optional clock duty cycle stabilizer  
Integer 1-to-8 input clock divider  
Built-in selectable digital test pattern generation  
Energy-saving power-down modes  
Data clock out with programmable clock and data  
alignment  
DIVIDE  
1 TO 8  
DUTY CYCLE  
STABILIZER  
MODE  
CONTROLS  
CLK+ CLK–  
SYNC  
DCS  
PDWN DFS OEB  
Figure 1.  
PRODUCT HIGHLIGHTS  
1. The AD9204 operates from a single 1.8 V analog power  
supply and features a separate digital output driver supply  
to accommodate 1.8 V to 3.3 V logic families.  
APPLICATIONS  
Communications  
2. The patented sample-and-hold circuit maintains excellent  
performance for input frequencies up to 200 MHz and is  
designed for low cost, low power, and ease of use.  
3. A standard serial port interface supports various product  
features and functions, such as data output formatting,  
internal clock divider, power-down, DCO/DATA timing  
and offset adjustments, and voltage reference modes.  
4. The AD9204 is packaged in a 64-lead RoHS compliant  
LFCSP that is pin compatible with the AD9268 16-bit  
ADC, the AD9251 and AD9258 14-bit ADCs, and the  
AD9231 12-bit ADC, enabling a simple migration path  
between 10-bit and 16-bit converters sampling from  
20 MSPS to 125 MSPS.  
Diversity radio systems  
Multimode digital receivers  
GSM, EDGE, W-CDMA, LT E, CDMA2000, WiMAX, TD-SCDMA  
I/Q demodulation systems  
Smart antenna systems  
Battery-powered instruments  
Handheld scope meters  
Ultrasound  
Radar/LIDAR  
PET/SPECT imaging  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2009–2016 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
AD9204* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
TOOLS AND SIMULATIONS  
Visual Analog  
AD9204 IBIS Models  
EVALUATION KITS  
AD9204/AD9231/AD9251 S-Parameter Data  
AD9204 Evaluation Board  
REFERENCE MATERIALS  
Product Selection Guide  
RF Source Booklet  
DOCUMENTATION  
Application Notes  
AN-1142: Techniques for High Speed ADC PCB Layout  
Technical Articles  
AN-742: Frequency Domain Response of Switched-  
Improve The Design Of Your Passive Wideband ADC  
Capacitor ADCs  
Front-End Network  
AN-812: MicroController-Based Serial Port Interface (SPI)  
MS-2210: Designing Power Supplies for High Speed ADC  
Boot Circuit  
AN-827: A Resonant Approach to Interfacing Amplifiers to  
Switched-Capacitor ADCs  
DESIGN RESOURCES  
AD9204 Material Declaration  
PCN-PDN Information  
Quality And Reliability  
Symbols and Footprints  
AN-877: Interfacing to High Speed ADCs via SPI  
AN-878: High Speed ADC SPI Control Software  
AN-905: Visual Analog Converter Evaluation Tool Version  
1.0 User Manual  
AN-935: Designing an ADC Transformer-Coupled Front  
End  
DISCUSSIONS  
View all AD9204 EngineerZone Discussions.  
Data Sheet  
AD9204: 10-Bit, 20 MSPS/40 MSPS/65 MSPS/80 MSPS, 1.8  
SAMPLE AND BUY  
V Dual Analog-to-Digital Converter Data Sheet  
Visit the product page to see pricing options.  
User Guides  
UG-003: Evaluating the AD9650/AD9268/AD9258/  
AD9251/AD9231/AD9204 Analog-to-Digital Converters  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
AD9204  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Voltage Reference ....................................................................... 22  
Clock Input Considerations...................................................... 23  
Power Dissipation and Standby Mode .................................... 25  
Digital Outputs ........................................................................... 26  
Timing ......................................................................................... 26  
Built-In Self-Test (BIST) and Output Test .................................. 27  
Built-In Self-Test (BIST)............................................................ 27  
Output Test Modes..................................................................... 27  
Channel/Chip Synchronization.................................................... 28  
Serial Port Interface (SPI).............................................................. 29  
Configuration Using the SPI..................................................... 29  
Hardware Interface..................................................................... 30  
Configuration Without the SPI ................................................ 30  
SPI Accessible Features.............................................................. 30  
Memory Map .................................................................................. 31  
Reading the Memory Map Register Table............................... 31  
Open Locations .......................................................................... 31  
Default Values............................................................................. 31  
Memory Map Register Table..................................................... 32  
Memory Map Register Descriptions........................................ 34  
Applications Information.............................................................. 35  
Design Guidelines ...................................................................... 35  
Outline Dimensions....................................................................... 36  
Ordering Guide .......................................................................... 36  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
General Description......................................................................... 3  
Specifications..................................................................................... 4  
DC Specifications ......................................................................... 4  
AC Specifications.......................................................................... 5  
Digital Specifications ................................................................... 6  
Switching Specifications .............................................................. 7  
Timing Specifications .................................................................. 8  
Absolute Maximum Ratings............................................................ 9  
Thermal Characteristics .............................................................. 9  
ESD Caution.................................................................................. 9  
Pin Configuration and Function Descriptions........................... 10  
Typical Performance Characteristics ........................................... 12  
AD9204-80 .................................................................................. 12  
AD9204-65 .................................................................................. 14  
AD9204-40 .................................................................................. 15  
AD9204-20 .................................................................................. 16  
Equivalent Circuits......................................................................... 17  
Theory of Operation ...................................................................... 19  
ADC Architecture ...................................................................... 19  
Analog Input Considerations.................................................... 19  
REVISION HISTORY  
9/2016—Rev. 0 to Rev. A  
Changes to Figure 3.......................................................................... 7  
Changes to Clock Input Options Section.................................... 24  
7/2009—Revision 0: Initial Version  
Rev. A | Page 2 of 36  
 
Data Sheet  
AD9204  
GENERAL DESCRIPTION  
The AD9204 is a monolithic, dual-channel, 1.8 V supply, 10-bit,  
20 MSPS/40 MSPS/65 MSPS/80 MSPS analog-to-digital converter  
(ADC). It features a high performance sample-and-hold circuit  
and on-chip voltage reference.  
A differential clock input controls all internal conversion cycles.  
An optional duty cycle stabilizer (DCS) compensates for wide  
variations in the clock duty cycle while maintaining excellent  
overall ADC performance.  
The product uses multistage differential pipeline architecture  
with output error correction logic to provide 10-bit accuracy at  
80 MSPS data rates and to guarantee no missing codes over the  
full operating temperature range.  
The digital output data is presented in offset binary, gray code, or  
twos complement format. A data output clock (DCO) is provided  
for each ADC channel to ensure proper latch timing with receiving  
logic. Both 1.8 V and 3.3 V CMOS levels are supported and output  
data can be multiplexed onto a single output bus.  
The ADC contains several features designed to maximize  
flexibility and minimize system cost, such as programmable  
clock and data alignment and programmable digital test pattern  
generation. The available digital test patterns include built-in  
deterministic and pseudorandom patterns, along with custom  
user-defined test patterns entered via the serial port interface (SPI).  
The AD9204 is available in a 64-lead RoHS compliant LFCSP  
and is specified over the industrial temperature range (−40°C  
to +85°C).  
Rev. A | Page 3 of 36  
 
AD9204  
Data Sheet  
SPECIFICATIONS  
DC SPECIFICATIONS  
AVDD = 1.8 V; DRVDD = 1.8 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS,  
DCS disabled, unless otherwise noted.  
Table 1.  
AD9204-20/AD9204-40  
Temp Min Typ Max  
AD9204-65  
AD9204-80  
Parameter  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
RESOLUTION  
Full  
10  
10  
10  
Bits  
ACCURACY  
No Missing Codes  
Offset Error  
Full  
Full  
Full  
Full  
25°C  
Full  
25°C  
Guaranteed  
0.1  
+1.8  
Guaranteed  
0.1  
Guaranteed  
0.1  
0.70  
0.50  
0.30  
0.60  
0.70 % FSR  
% FSR  
0.30 LSB  
LSB  
0.60 LSB  
LSB  
Gain Error1  
+1.8  
+1.8  
Differential Nonlinearity (DNL)2  
0.30  
0.60  
0.075  
0.15  
0.25  
0.11  
0.25  
Integral Nonlinearity (INL)2  
0.15  
MATCHING CHARACTERISTICS  
Offset Error  
Gain Error1  
25°C  
25°C  
0.0  
0.3  
0.75  
0.0  
0.3  
0.75  
0.0  
0.3  
0.75 % FSR  
% FSR  
TEMPERATURE DRIFT  
Offset Error  
Full  
2
2
2
ppm/°C  
INTERNAL VOLTAGE REFERENCE  
Output Voltage (1 V Mode)  
Load Regulation Error at 1.0 mA  
INPUT REFERRED NOISE  
VREF = 1.0 V  
Full  
Full  
0.981 0.993  
2
1.005  
0.981 0.993 1.005 0.981 0.993 1.005  
V
mV  
2
2
25°C  
0.06  
0.08  
0.08  
LSB rms  
ANALOG INPUT  
Input Span, VREF = 1.0 V  
Input Capacitance3  
Input Common-Mode Voltage  
Input Common-Mode Range  
REFERENCE INPUT RESISTANCE  
POWER SUPPLIES  
Supply Voltage  
AVDD  
DRVDD  
Full  
Full  
Full  
Full  
Full  
2
6
0.9  
2
6
0.9  
2
6
0.9  
V p-p  
pF  
V
0.5  
1.3  
0.5  
1.3  
0.5  
1.3  
V
7.5  
7.5  
1.8  
7.5  
1.8  
kΩ  
Full  
Full  
1.7  
1.7  
1.8  
1.9  
3.6  
1.7  
1.7  
1.9  
3.6  
1.7  
1.7  
1.9  
3.6  
V
V
Supply Current  
IAVDD2  
Full  
Full  
Full  
33.5/46.4 35.8/49.6  
2.6/4.4  
5.0/8.3  
61.1  
6.5  
12.4  
64.8  
70.3  
8.0  
15.3  
75.2  
mA  
mA  
mA  
IDRVDD2 (1.8 V)  
IDRVDD2 (3.3 V)  
POWER CONSUMPTION  
DC Input  
Sine Wave Input2 (DRVDD = 1.8 V)  
Sine Wave Input2 (DRVDD = 3.3 V)  
Standby Power4  
Full  
Full  
Full  
Full  
Full  
59.5/82.1  
64.9/91.4 69.5/97.7  
76.7/111  
37/37  
2.2  
108  
121.7 128.5  
150.8  
37  
2.2  
125  
141  
177  
37  
mW  
mW  
mW  
mW  
mW  
150  
Power-Down Power  
2.2  
1 Measured with a 1.0 V external reference.  
2 Measured with a 10 MHz input frequency at rated sample rate, full-scale sine wave, with approximately 5 pF loading on each output bit.  
3 Input capacitance refers to the effective capacitance between one differential input pin and AGND.  
4 Standby power is measured with a dc input, the CLK active.  
Rev. A | Page 4 of 36  
 
 
Data Sheet  
AD9204  
AC SPECIFICATIONS  
AVDD = 1.8 V; DRVDD = 1.8 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS,  
DCS disabled, unless otherwise noted.  
Table 2.  
AD9204-20/AD9204-40  
AD9204-65  
Min Typ Max Min Typ  
AD9204-80  
Parameter1  
Temp Min  
Typ  
Max  
Max Unit  
SIGNAL-TO-NOISE RATIO (SNR)  
fIN = 9.7 MHz  
fIN = 30.5 MHz  
25°C  
25°C  
Full  
25°C  
Full  
25°C  
61.7  
61.6  
61.5  
61.4  
61.3  
61.3  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
61.0  
60.1  
60.5  
59.7  
fIN = 70 MHz  
61.6  
61.4  
61.0  
61.3  
61.0  
60.4  
59.5  
fIN = 200 MHz  
SIGNAL-TO-NOISE-AND DISTORTION (SINAD)  
fIN = 9.7 MHz  
fIN = 30.5 MHz  
25°C  
25°C  
Full  
25°C  
Full  
61.5  
61.5  
61.2  
61.2  
61.1  
61.1  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
fIN = 70 MHz  
61.5  
61.2  
60  
61.1  
60  
fIN = 200 MHz  
25°C  
EFFECTIVE NUMBER OF BITS (ENOB)  
fIN = 9.7 MHz  
fIN = 30.5 MHz  
fIN = 70 MHz  
fIN = 200 MHz  
25°C  
25°C  
25°C  
25°C  
9.9  
9.9  
9.9  
9.8  
9.8  
9.8  
9.6  
9.8  
9.8  
9.8  
9.6  
Bits  
Bits  
Bits  
Bits  
WORST SECOND OR THIRD HARMONIC  
fIN = 9.7 MHz  
fIN = 30.5 MHz  
25°C  
25°C  
Full  
25°C  
Full  
−81  
−81  
−78  
−78  
−78  
−78  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
−65  
−64  
fIN = 70 MHz  
−82  
−78  
−73  
−78  
−73  
−64  
fIN = 200 MHz  
25°C  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)  
fIN = 9.7 MHz  
fIN = 30.5 MHz  
25°C  
25°C  
Full  
25°C  
Full  
78  
78  
75  
75  
75  
75  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
65  
64  
fIN = 70 MHz  
78  
75  
73  
75  
73  
64  
fIN = 200 MHz  
25°C  
WORST OTHER (HARMONIC OR SPUR)  
fIN = 9.7 MHz  
fIN = 30.5 MHz  
25°C  
25°C  
Full  
25°C  
Full  
−82  
−82  
−80  
−80  
−80  
−80  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
−71  
−70  
fIN = 70 MHz  
−82  
−80  
−80  
−80  
−80  
−70  
fIN = 200 MHz  
25°C  
TWO-TONE SFDR  
fIN = 30.5 MHz (−7 dBFS), 32.5 MHz (−7 dBFS)  
CROSSTALK2  
25°C  
Full  
78  
78  
dBc  
dBc  
MHz  
−100  
700  
−100  
700  
−100  
700  
ANALOG INPUT BANDWIDTH  
25°C  
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions.  
2 Crosstalk is measured at 100 MHz with −1.0 dBFS on one channel and no input on the alternate channel.  
Rev. A | Page 5 of 36  
 
AD9204  
Data Sheet  
DIGITAL SPECIFICATIONS  
AVDD = 1.8 V; DRVDD = 1.8 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS,  
DCS disabled, unless otherwise noted.  
Table 3.  
AD9204-20/AD9204-40/AD9204-65/AD9204-80  
Parameter  
Temp Min  
Typ  
Max  
Unit  
DIFFERENTIAL CLOCK INPUTS (CLK+, CLK−)  
Logic Compliance  
Internal Common-Mode Bias  
Differential Input Voltage  
Input Voltage Range  
High Level Input Current  
Low Level Input Current  
Input Resistance  
CMOS/LVDS/LVPECL  
0.9  
Full  
V
Full  
Full  
Full  
Full  
Full  
Full  
0.2  
GND − 0.3  
−10  
−10  
8
3.6  
AVDD + 0.2  
+10  
+10  
12  
V p-p  
V
μA  
μA  
kΩ  
pF  
10  
4
Input Capacitance  
LOGIC INPUTS (SCLK/DFS, SYNC, PDWN)1  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.2  
0
−50  
−10  
DRVDD + 0.3  
0.8  
−75  
+10  
V
V
μA  
μA  
kΩ  
pF  
30  
2
Input Capacitance  
LOGIC INPUTS (CSB)2  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.2  
0
−10  
+40  
DRVDD + 0.3  
0.8  
+10  
V
V
μA  
μA  
kΩ  
pF  
+135  
26  
2
Input Capacitance  
LOGIC INPUTS (SDIO/DCS)2  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.2  
0
−10  
+40  
DRVDD + 0.3  
0.8  
+10  
V
V
μA  
μA  
kΩ  
pF  
+130  
26  
5
Input Capacitance  
DIGITAL OUTPUTS  
DRVDD = 3.3 V  
High Level Output Voltage, IOH = 50 μA  
High Level Output Voltage, IOH = 0.5 mA  
Low Level Output Voltage, IOL = 1.6 mA  
Low Level Output Voltage, IOL = 50 μA  
DRVDD = 1.8 V  
Full  
Full  
Full  
Full  
3.29  
3.25  
V
V
V
V
0.2  
0.05  
High Level Output Voltage, IOH = 50 μA  
High Level Output Voltage, IOH = 0.5 mA  
Low Level Output Voltage, IOL = 1.6 mA  
Low Level Output Voltage, IOL = 50 μA  
Full  
Full  
Full  
Full  
1.79  
1.75  
V
V
V
V
0.2  
0.05  
1 Internal 30 kΩ pull-down.  
2 Internal 30 kΩ pull-up.  
Rev. A | Page 6 of 36  
 
 
Data Sheet  
AD9204  
SWITCHING SPECIFICATIONS  
AVDD = 1.8 V; DRVDD = 1.8 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS,  
DCS disabled, unless otherwise noted.  
Table 4.  
AD9204-20/AD9204-40  
AD9204-65  
Typ  
AD9204-80  
Parameter  
Temp  
Min  
Typ  
Max  
Min  
Max Min Typ  
Max Unit  
CLOCK INPUT PARAMETERS  
Input Clock Rate  
Conversion Rate1  
CLK Period—Divide-by-1 Mode (tCLK  
CLK Pulse Width High (tCH)  
Aperture Delay (tA)  
Aperture Uncertainty (Jitter, tJ)  
DATA OUTPUT PARAMETERS  
Data Propagation Delay (tPD)  
Full  
Full  
Full  
625  
20/40  
625  
65  
625  
80  
MHz  
MSPS  
ns  
ns  
ns  
3
3
3
12.5  
50/25  
)
15.38  
25.0/12.5  
1.0  
0.1  
7.69  
1.0  
0.1  
6.25  
1.0  
0.1  
Full  
Full  
ps rms  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
3
3
0.1  
9
350  
600/400  
2
3
3
3
3
ns  
ns  
ns  
Cycles  
μs  
DCO Propagation Delay (tDCO  
)
DCO to Data Skew (tSKEW  
)
0.1  
9
350  
300  
2
0.1  
9
350  
260  
2
Pipeline Delay (Latency)  
Wake-Up Time2  
Standby  
ns  
OUT-OF-RANGE RECOVERY TIME  
Cycles  
1 Conversion rate is the clock rate after the CLK divider.  
2 Wake-up time is dependent on the value of the decoupling capacitors.  
N – 1  
N + 4  
tA  
N + 5  
N
N + 3  
VIN  
N + 1  
N + 2  
tCH  
tCLK  
CLK+  
CLK–  
tDCO  
DCOA/DCOB  
tSKEW  
CH A/CH B DATA  
N – 9  
N – 8  
N – 7  
N – 6  
N – 5  
tPD  
Figure 2. CMOS Output Data Timing  
N – 1  
N + 4  
tA  
N + 5  
N
N + 3  
VIN  
N + 1  
N + 2  
tCH  
tCLK  
CLK+  
CLK–  
tDCO  
DCOA/DCOB  
tSKEW  
CH A/CH B DATA  
AS APPEARS ON  
CHA OUTPUT PINS  
CH A CH B CH A CH B CH A CH B  
N – 9 N – 9 N – 8 N – 8 N – 7 N – 7  
CH A CH B  
N – 6 N – 6  
CH A  
N – 5  
tPD  
Figure 3. CMOS Interleaved Output Timing, Output as Appears on the Channel A Output Pins  
Rev. A | Page 7 of 36  
 
 
 
AD9204  
Data Sheet  
TIMING SPECIFICATIONS  
Table 5.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
SYNC TIMING REQUIREMENTS  
tSSYNC  
tHSYNC  
SYNC to rising edge of CLK setup time  
SYNC to rising edge of CLK hold time  
0.24  
0.40  
ns  
ns  
SPI TIMING REQUIREMENTS  
tDS  
tDH  
tCLK  
tS  
tH  
tHIGH  
tLOW  
tEN_SDIO  
Setup time between the data and the rising edge of SCLK  
Hold time between the data and the rising edge of SCLK  
Period of the SCLK  
Setup time between CSB and SCLK  
Hold time between CSB and SCLK  
SCLK pulse width high  
SCLK pulse width low  
Time required for the SDIO pin to switch from an input to an  
output relative to the SCLK falling edge  
2
2
40  
2
2
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDIS_SDIO  
Time required for the SDIO pin to switch from an output to an  
input relative to the SCLK rising edge  
10  
ns  
CLK+  
tSSYNC  
tHSYNC  
SYNC  
Figure 4. SYNC Input Timing Requirements  
Rev. A | Page 8 of 36  
 
 
Data Sheet  
AD9204  
ABSOLUTE MAXIMUM RATINGS  
THERMAL CHARACTERISTICS  
Table 6.  
Parameter  
Rating  
The exposed paddle is the only ground connection for the chip.  
The exposed paddle must be soldered to the AGND plane of the  
user circuit board. Soldering the exposed paddle to the user  
board also increases the reliability of the solder joints and  
maximizes the thermal capability of the package.  
AVDD to AGND  
DRVDD to AGND  
VIN+A, VIN+B, VIN−A, VIN−B to AGND  
CLK+, CLK− to AGND  
SYNC to AGND  
VREF to AGND  
SENSE to AGND  
VCM to AGND  
RBIAS to AGND  
−0.3 V to +2.0 V  
−0.3 V to +3.9 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DRVDD + 0.3 V  
−40°C to +85°C  
Table 7. Thermal Resistance  
Airflow  
Velocity  
(m/sec)  
1, 2  
1, 3  
1, 4  
Package Type  
θJA  
23  
20  
18  
θJC  
2.0  
θJB  
Unit  
°C/W  
°C/W  
°C/W  
64-Lead LFCSP  
9 mm × 9 mm  
(CP-64-4)  
0
CSB to AGND  
1.0  
2.5  
12  
SCLK/DFS to AGND  
SDIO/DCS to AGND  
OEB to AGND  
1 Per JEDEC 51-7, plus JEDEC 25-5 2S2P test board.  
PDWN to AGND  
2 Per JEDEC JESD51-2 (still air) or JEDEC JESD51-6 (moving air).  
3 Per MIL-Std 883, Method 1012.1.  
D0A/D0B Through D13A/D13B to AGND  
DCOA/DCOB to AGND  
Operating Temperature Range (Ambient)  
Maximum Junction Temperature  
Under Bias  
4 Per JEDEC JESD51-8 (still air).  
Typical θJA is specified for a 4-layer PCB with a solid ground  
plane. As shown in Table 7, airflow improves heat dissipation,  
which reduces θJA. In addition, metal in direct contact with the  
package leads from metal traces, through holes, ground, and  
power planes reduces the θJA.  
150°C  
Storage Temperature Range (Ambient)  
−65°C to +150°C  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
ESD CAUTION  
Rev. A | Page 9 of 36  
 
 
 
 
 
AD9204  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PIN 1  
INDICATOR  
CLK+  
CLK–  
SYNC  
NC  
NC  
NC  
NC  
NC  
NC  
1
2
3
4
5
6
7
8
9
48 PDWN  
47 OEB  
46 CSB  
45 SCLK/DFS  
44 SDIO/DCS  
43 ORA  
42 D9A (MSB)  
41 D8A  
40 D7A  
39 D6A  
38 D5A  
37 DRVDD  
36 D4A  
AD9204  
TOP VIEW  
(Not to Scale)  
DRVDD 10  
D0B (LSB) 11  
D1B 12  
D2B 13  
D3B 14  
35 D3A  
D4B 15  
34 D2A  
D5B 16  
33 D1A  
NOTES  
1. NC = NO CONNECT  
2. THE EXPOSED PADDLE MUST BE SOLDERED TO THE PCB GROUND  
TO ENSURE PROPER HEAT DISSIPATION, NOISE, AND MECHANICAL  
STRENGTH BENEFITS.  
Figure 5. Pin Configuration  
Table 8. Pin Function Description  
Pin No.  
Mnemonic  
Description  
0
1, 2  
3
GND  
CLK+, CLK−  
SYNC  
Exposed paddle is the only ground connection for the chip. Must be connected to PCB AGND.  
Differential Encode Clock. PECL, LVDS, or 1.8 V CMOS inputs.  
Digital Input. SYNC input to clock divider. 30 kΩ internal pull-down.  
Do Not Connect.  
4, 5, 6, 7, 8, 9, 25, 26, 27,  
29, 30, 31  
NC  
10, 19, 28, 37  
11 to 18, 20, 21  
22  
23  
DRVDD  
D0B to D9B  
ORB  
DCOB  
DCOA  
D0A to D9A  
ORA  
SDIO/DCS  
Digital Output Driver Supply (1.8 V to 3.3 V).  
Channel B Digital Outputs. D9B = MSB.  
Channel B Out-of-Range Digital Output.  
Channel B Data Clock Digital Output.  
Channel A Data Clock Digital Output.  
Channel A Digital Outputs. D9A = MSB.  
Channel A Out-of-Range Digital Output.  
24  
32 to 36, 38 to 42  
43  
44  
SPI Data Input/Output (SDIO). Bidirectional SPI Data I/O in SPI mode. 30 kΩ internal pull-  
down in SPI mode.  
Duty Cycle Stabilizer (DCS). Static enable input for duty cycle stabilizer in non-SPI mode.  
30 kΩ internal pull-up in non-SPI (DCS) mode.  
45  
SCLK/DFS  
SPI Clock (SCLK) Input in SPI mode. 30 kΩ internal pull-down.  
Data Format Select (DFS). Static control of data output format in non-SPI mode. 30 kΩ internal  
pull-down.  
DFS high = twos complement output.  
DFS low = offset binary output.  
46  
47  
CSB  
OEB  
SPI Chip Select. Active low enable; 30 kΩ internal pull-up.  
Digital Input. Enable Channel A and Channel B digital outputs if low, three-state outputs if  
high. 30 kΩ internal pull-down.  
48  
PDWN  
Digital Input. 30 kΩ internal pull-down.  
PDWN high = power-down device.  
PDWN low = run device, normal operation.  
Rev. A | Page 10 of 36  
 
Data Sheet  
AD9204  
Pin No.  
Mnemonic  
Description  
49, 50, 53, 54, 59, 60, 63, 64 AVDD  
1.8 V Analog Supply Pins.  
51, 52  
55  
56  
57  
58  
VIN+A, VIN−A Channel A Analog Inputs.  
VREF  
SENSE  
VCM  
Voltage Reference Input/Output.  
Reference Mode Selection.  
Analog output voltage at midsupply to set common mode of the analog inputs.  
Sets Analog Current Bias. Connect to 10 kΩ (1% tolerance) resistor to ground.  
RBIAS  
61, 62  
VIN−B, VIN+B Channel B Analog Inputs.  
Rev. A | Page 11 of 36  
AD9204  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
AD9204-80  
AVDD = 1.8 V; DRVDD = 1.8 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS, DCS  
disabled, unless otherwise noted.  
0
0
80MSPS  
80MSPS  
30.5MHz @ –1dBFS  
SNR = 60.5dB (61.5dBFS)  
SFDR = 83.5dBc  
9.7MHz @ –1dBFS  
SNR = 60.5dB (61.5dBFS)  
SFDR = 80.3dBc  
–20  
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
0
5
10  
15  
20  
25  
30  
35  
40  
40  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 6. AD9204-80 Single-Tone FFT with fIN = 9.7 MHz  
Figure 9. AD9204-80 Single-Tone FFT with fIN = 30.5 MHz  
0
0
80MSPS  
200MHz @ –1dBFS  
SNR = 60.1dB (60.1dBFS)  
SFDR = 74.176dBc  
80MSPS  
70.3MHz @ –1dBFS  
SNR = 60.4dB (61.4dBFS)  
SFDR = 82.2dBc  
–20  
–20  
–40  
–40  
–60  
–60  
2
–80  
–80  
3
+
6
5
4
–100  
–120  
–100  
–120  
0
5
10  
15  
20  
25  
30  
35  
0
5
10  
15  
20  
25  
30  
35  
40  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 7. AD9204-80 Single-Tone FFT with fIN = 70.3 MHz  
Figure 10. AD9204-80 Single-Tone FFT with fIN =200 MHz  
0
80MSPS  
30.5MHz @ –7dBFS  
32.5MHz @ –7dBFS  
SFDR = 78dBc  
–15  
–10  
–30  
–45  
–60  
SFDR (dBc)  
–30  
IMD3 (dBc)  
–50  
F1 + F2  
2F1 – F2  
2F2 + F1  
SFDR (dBFS)  
–70  
–75  
–90  
F2 – F1  
2F1 – F2  
–90  
IMD3 (dBFS)  
–105  
–120  
–110  
–60  
–54  
–48  
–42  
–36  
–30  
–24  
–18  
–12  
–6  
0
4
8
12  
16  
20  
24  
28  
32  
36  
INPUT AMPLITUDE (dBFS)  
FREQUENCY (MHz)  
Figure 8. AD9204-80 Two-Tone FFT with fIN1 = 30.5 MHz and fIN2 = 32.5 MHz  
Figure 11. AD9204-80 Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN) with  
fIN1 = 30.5 MHz and fIN2 = 32.5 MHz  
Rev. A | Page 12 of 36  
 
 
Data Sheet  
AD9204  
AVDD = 1.8 V; DRVDD = 1.8 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS, DCS  
disabled, unless otherwise noted.  
85  
90  
80  
75  
70  
65  
60  
55  
50  
80  
70  
60  
50  
40  
30  
20  
10  
0
SFDRFS  
SNRFS  
SFDR (dBc)  
SNR (dBFS)  
SFDR  
SNR  
0
50  
100  
150  
200  
–60  
–50  
–40  
–30  
–20  
–10  
0
AIN FREQUENCY (MHz)  
INPUT AMPLITUDE (dBc)  
Figure 12. AD9204-80 SNR/SFDR vs. Input Frequency (AIN) with  
2 V p-p Full Scale  
Figure 15. AD9204-80 SNR/SFDR vs. Input Amplitude (AIN) with fIN = 9.7MHz  
85  
120,000  
100,000  
80,000  
60,000  
40,000  
20,000  
0
SFDR (dBc)  
80  
75  
70  
65  
SNR (dBFS)  
60  
0
10  
20  
30  
40  
50  
60  
70  
80  
N – 3  
N – 2  
N – 1  
N
N + 1  
N + 2  
N + 3  
SAMPLE RATE (MHz)  
OUTPUT CODE  
Figure 13. AD9204-80 SNR/SFDR vs. Sample Rate with AIN = 9.7 MHz  
Figure 16. AD9204-80 Grounded Input Histogram  
0.20  
0.16  
0.12  
0.08  
0.04  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.04  
–0.08  
–0.12  
–0.16  
–0.20  
24  
224  
424  
624  
824  
1024  
24  
224  
424  
624  
824  
1024  
OUTPUT CODE  
OUTPUT CODE  
Figure 14. AD9204-80 DNL with fIN = 9.7 MHz  
Figure 17. AD9204-80 INL with fIN = 9.7 MHz  
Rev. A | Page 13 of 36  
AD9204  
Data Sheet  
AD9204-65  
AVDD = 1.8 V; DRVDD = 1.8 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS, DCS  
disabled, unless otherwise noted.  
0
65MSPS  
9.7MHz @ –1dBFS  
SNR = 60.6dB (61.6dBFS)  
SFDR = 83.1dBc  
–10  
–20  
–40  
–30  
–50  
SFDR (dBc)  
IMD3 (dBc)  
–60  
–70  
–90  
–80  
SFDR (dBFS)  
–100  
–120  
IMD3 (dBFS)  
–48  
–110  
–60  
–54  
–42  
–36  
–30  
–24  
–18  
–12  
–6  
0
5
10  
15  
20  
25  
30  
INPUT AMPLITUDE (dBFS)  
FREQUENCY (MHz)  
Figure 18. AD9204-65 Single-Tone FFT with fIN = 9.7 MHz  
Figure 21. AD9204-65 SNR/SFDR vs. Input Amplitude (AIN) with fIN = 9.7 MHz  
0
85  
65MSPS  
70.3MHz @ –1dBFS  
SNR = 60.6dB (61.6dBFS)  
SFDR = 83.4dBc  
80  
–20  
SFDR (dBc)  
75  
70  
–40  
–60  
65  
SNR (dBFS)  
–80  
60  
55  
50  
–100  
–120  
0
5
10  
15  
20  
25  
30  
0
50  
100  
150  
200  
FREQUENCY (MHz)  
AIN FREQUENCY (MHz)  
Figure 22. AD9204-65 SNR/SFDR vs. Input Frequency (AIN) with  
2 V p-p Full Scale  
Figure 19. AD9204-65 Single-Tone FFT with fIN = 70.3 MHz  
0
65MSPS  
30.5MHz @ –1dBFS  
–20  
SNR = 60.6dB (61.6dBFS)  
SFDR = 83.9dBc  
–40  
–60  
–80  
–100  
–120  
0
5
10  
15  
20  
25  
30  
FREQUENCY (MHz)  
Figure 20. AD9204-65 Single-Tone FFT with fIN = 30.5 MHz  
Rev. A | Page 14 of 36  
 
 
Data Sheet  
AD9204  
AD9204-40  
AVDD = 1.8 V; DRVDD = 1.8 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS, DCS  
disabled, unless otherwise noted.  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
40MSPS  
SFDRFS  
SNRFS  
9.7MHz @ –1dBFS  
SNR = 60.6dB (61.6dBFS)  
SFDR = 82.0dBc  
–20  
–40  
–60  
SFDR  
–80  
SNR  
–100  
–120  
–60  
–50  
–40  
–30  
–20  
–10  
0
0
5
10  
FREQUENCY (MHz)  
15  
20  
INPUT AMPLITUDE (dBc)  
Figure 23. AD9204-40 Single-Tone FFT with fIN = 9.7 MHz  
Figure 25. AD9204-40 SNR/SFDR vs. Input Amplitude (AIN) with fIN = 9.7 MHz  
0
40MSPS  
30.5MHz @ –1dBFS  
SNR = 60.6dB (61.6dBFS)  
SFDR = 83.8dBc  
–20  
–40  
–60  
–80  
–100  
–120  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
FREQUENCY (MHz)  
Figure 24. AD9204-40 Single-Tone FFT with fIN = 30.5 MHz  
Rev. A | Page 15 of 36  
AD9204  
Data Sheet  
AD9204-20  
AVDD = 1.8 V; DRVDD = 1.8 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS, DCS  
disabled, unless otherwise noted.  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
20MSPS  
SFDR (dBFS)  
9.7MHz @ –1dBFS  
SNR = 60.6dBFS (61.6dBFS)  
SFDR = 81.3dBc  
–20  
SNR (dBFS)  
–40  
–60  
SFDR (dBc)  
SNR (dBc)  
–80  
–100  
–120  
–10  
0
2
4
6
8
10  
–60  
–50  
–40  
–30  
–20  
0
FREQUENCY (MHz)  
INPUT AMPLITUDE (dBc)  
Figure 26. AD9204-20 Single-Tone FFT with fIN = 9.7 MHz  
Figure 28. AD9204-20 SNR/SFDR vs. Input Amplitude (AIN) with fIN = 9.7MHz  
0
20MSPS  
30.5MHz @ –1dBFS  
SNR = 60.6dBFS (61.6dBFS)  
SFDR = 84.0dBc  
–20  
–40  
–60  
–80  
–100  
–120  
0
2
4
6
8
10  
FREQUENCY (MHz)  
Figure 27. AD9204-20 Single-Tone FFT with fIN = 30.5 MHz  
Rev. A | Page 16 of 36  
 
Data Sheet  
AD9204  
EQUIVALENT CIRCUITS  
DRVDD  
AVDD  
VIN±x  
Figure 29. Equivalent Analog Input Circuit  
Figure 32. Equivalent Digital Output Circuit  
5Ω  
CLK+  
15kΩ  
15kΩ  
0.9V  
DRVDD  
5Ω  
CLK–  
350Ω  
SCLK/DFS, SYNC,  
OEB, AND PDWN  
30kΩ  
Figure 30. Equivalent Clock Input Circuit  
Figure 33. Equivalent SCLK/DFS, SYNC, OEB, and PDWN Input Circuit  
AVDD  
AVDD  
DRVDD  
30kΩ  
350Ω  
SDIO/DCS  
375Ω  
RBIAS  
30kΩ  
AND VCM  
Figure 34. Equivalent RBIAS, VCM Circuit  
Figure 31. Equivalent SDIO/DCS Input Circuit  
Rev. A | Page 17 of 36  
 
AD9204  
Data Sheet  
DRVDD  
AVDD  
AVDD  
30k  
350Ω  
CSB  
375  
VREF  
7.5kΩ  
Figure 35. Equivalent CSB Input Circuit  
Figure 37. Equivalent VREF Circuit  
AVDD  
375  
SENSE  
Figure 36. Equivalent SENSE Circuit  
Rev. A | Page 18 of 36  
 
Data Sheet  
AD9204  
THEORY OF OPERATION  
The AD9204 dual ADC design can be used for diversity  
reception of signals, where the ADCs are operating identically  
on the same carrier but from two separate antennae. The ADCs  
can also be operated with independent analog inputs. The user  
can sample any fS/2 frequency segment from dc to 200 MHz,  
using appropriate low-pass or band-pass filtering at the ADC  
inputs with little loss in ADC performance. Operation to  
300 MHz analog input is permitted but occurs at the  
expense of increased ADC noise and distortion.  
ANALOG INPUT CONSIDERATIONS  
The analog input to the AD9204 is a differential switched-  
capacitor circuit designed for processing differential input  
signals. This circuit can support a wide common-mode range  
while maintaining excellent performance. By using an input  
common-mode voltage of midsupply, users can minimize  
signal-dependent errors and achieve optimum performance.  
In nondiversity applications, the AD9204 can be used as a base-  
band or direct downconversion receiver, where one ADC is  
used for I input data and the other is used for Q input data.  
H
CPAR  
H
VIN+x  
CSAMPLE  
Synchronization capability is provided to allow synchronized  
timing among multiple channels or multiple devices.  
S
S
S
S
CSAMPLE  
Programming and control of the AD9204 are accomplished  
using a 3-bit SPI-compatible serial interface.  
VIN–x  
H
CPAR  
H
ADC ARCHITECTURE  
The AD9204 architecture consists of a multistage, pipelined ADC.  
Each stage provides sufficient overlap to correct for flash errors  
in the preceding stage. The quantized outputs from each stage are  
combined into a final 10-bit result in the digital correction logic.  
The pipelined architecture permits the first stage to operate with  
a new input sample, while the remaining stages operate with  
preceding samples. Sampling occurs on the rising edge of  
the clock.  
Figure 38. Switched-Capacitor Input Circuit  
The clock signal alternately switches the input circuit between  
sample-and-hold mode (see Figure 38). When the input circuit  
is switched to sample mode, the signal source must be capable  
of charging the sample capacitors and settling within one-half  
of a clock cycle. A small resistor in series with each input can  
help reduce the peak transient current injected from the output  
stage of the driving source. In addition, low Q inductors or ferrite  
beads can be placed on each leg of the input to reduce high  
differential capacitance at the analog inputs and, therefore,  
achieve the maximum bandwidth of the ADC. Such use of low  
Q inductors or ferrite beads is required when driving the converter  
front end at high IF frequencies. Either a shunt capacitor or two  
single-ended capacitors can be placed on the inputs to provide a  
matching passive network. This ultimately creates a low-pass  
filter at the input to limit unwanted broadband noise. See the  
AN-742 Application Note, the AN-827 Application Note, and the  
Analog Dialogue article Transformer-Coupled Front-End for  
Wideband A/D Converters(Volume 39, April 2005) for more  
information. In general, the precise values depend on the  
application.  
Each stage of the pipeline, excluding the last, consists of a low  
resolution flash ADC connected to a switched-capacitor DAC  
and an interstage residue amplifier (for example, a multiplying  
digital-to-analog converter (MDAC)). The residue amplifier  
magnifies the difference between the reconstructed DAC output  
and the flash input for the next stage in the pipeline. One bit of  
redundancy is used in each stage to facilitate digital correction  
of flash errors. The last stage simply consists of a flash ADC.  
The output staging block aligns the data, corrects errors, and  
passes the data to the CMOS output buffers. The output buffers  
are powered from a separate (DRVDD) supply, allowing adjust-  
ment of the output voltage swing. During power-down, the  
output buffers go into a high impedance state.  
Rev. A | Page 19 of 36  
 
 
 
 
AD9204  
Data Sheet  
Input Common Mode  
The output common-mode voltage of the ADA4938-2 is easily  
set with the VCM pin of the AD9204 (see Figure 41), and the  
driver can be configured in a Sallen-Key filter topology to  
provide band limiting of the input signal.  
The analog inputs of the AD9204 are not internally dc-biased.  
Therefore, in ac-coupled applications, the user must provide a  
dc bias externally. Setting the device so that VCM = AVDD/2 is  
recommended for optimum performance, but the device can  
function over a wider range with reasonable performance, as  
shown in Figure 39 and Figure 40. .  
200  
33Ω  
VIN–x  
VIN  
76.8Ω  
AVDD  
90Ω  
10pF  
ADC  
ADA4938-2  
An on-board, common-mode voltage reference is included in  
the design and is available from the VCM pin. The VCM pin  
must be decoupled to ground by a 0.1 μF capacitor, as described  
in the Applications Information section.  
0.1µF  
120Ω  
33Ω  
VCM  
VIN+x  
200Ω  
Figure 41. Differential Input Configuration Using the ADA4938-2  
100  
For baseband applications below ~10 MHz where SNR is a key  
parameter, differential transformer-coupling is the recommended  
input configuration. An example is shown in Figure 42. To bias  
the analog input, the VCM voltage can be connected to the  
center tap of the secondary winding of the transformer.  
90  
80  
SFDR (dBc)  
VIN–x  
R
2V p-p  
49.9  
70  
C
ADC  
R
SNR (dBFS)  
VCM  
VIN+x  
60  
0.1µF  
Figure 42. Differential Transformer-Coupled Configuration  
50  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
The signal characteristics must be considered when selecting  
a transformer. Most RF transformers saturate at frequencies  
below a few megahertz (MHz). Excessive signal power can  
also cause core saturation, which leads to distortion.  
INPUT COMMON-MODE VOLTAGE (V)  
Figure 39. SNR/SFDR vs. Input Common-Mode Voltage,  
fIN = 32.1 MHz, fS = 80 MSPS  
100  
90  
80  
70  
60  
50  
At input frequencies in the second Nyquist zone and above, the  
noise performance of most amplifiers is not adequate to achieve  
the true SNR performance of the AD9204. For applications above  
~10 MHz where SNR is a key parameter, differential double balun  
coupling is the recommended input configuration (see Figure 44).  
SFDR (dBc)  
SNR (dBFS)  
An alternative to using a transformer-coupled input at frequencies  
in the second Nyquist zone is to use the AD8352 differential driver.  
An example is shown in Figure 45. See the AD8352 data sheet  
for more information.  
In any configuration, the value of Shunt Capacitor C is dependent  
on the input frequency and source impedance and may need to  
be reduced or removed. Table 9 displays the suggested values to  
set the RC network. However, these values are dependent on  
the input signal and must be used only as a starting guide.  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
INPUT COMMON-MODE VOLTAGE (V)  
Figure 40. SNR/SFDR vs. Input Common-Mode Voltage,  
fIN = 10.3 MHz, fS = 20 MSPS  
Differential Input Configurations  
Table 9. Example RC Network  
R Series  
(Ω Each)  
Optimum performance is achieved while driving the AD9204 in a  
differential input configuration. For baseband applications, the  
AD8138, ADA4937-2, and ADA4938-2 differential drivers provide  
excellent performance and a flexible interface to the ADC.  
Frequency Range (MHz)  
0 to 70  
70 to 200  
C Differential (pF)  
33  
125  
22  
Open  
Rev. A | Page 20 of 36  
 
 
 
 
 
Data Sheet  
AD9204  
10µF  
AVDD  
1kΩ  
Single-Ended Input Configuration  
R
VIN+x  
A single-ended input can provide adequate performance in  
cost-sensitive applications. In this configuration, SFDR and  
distortion performance degrade due to the large input common-  
mode swing. If the source impedances on each input are matched,  
there should be little effect on SNR performance. Figure 43  
shows a typical single-ended input configuration.  
1V p-p  
0.1µF  
49.9Ω  
1kΩ  
AVDD  
ADC  
C
1kΩ  
R
VIN–x  
10µF  
0.1µF  
1kΩ  
Figure 43. Single-Ended Input Configuration  
0.1µF  
R
0.1µF  
VIN+x  
2V p-p  
25Ω  
25Ω  
P
A
S
S
P
C
ADC  
0.1µF  
0.1µF  
R
VCM  
VIN–x  
Figure 44. Differential Double Balun Input Configuration  
V
CC  
0.1µF  
0Ω  
0.1µF  
16  
1
8, 13  
11  
0.1µF  
0.1µF  
ANALOG INPUT  
R
R
VIN+x  
2
200Ω  
C
ADC  
AD8352  
10  
R
R
G
C
D
D
3
4
5
200Ω  
VCM  
VIN–x  
14  
0.1µF  
ANALOG INPUT  
0Ω  
0.1µF  
0.1µF  
Figure 45. Differential Input Configuration Using the AD8352  
Rev. A | Page 21 of 36  
 
 
 
AD9204  
Data Sheet  
In either internal or external reference mode, the maximum  
input range of the ADC can be varied by configuring SPI  
Address 0x18 as shown in Table 11, resulting in a selectable  
differential span from 1 V p-p to 2 V p-p.  
VOLTAGE REFERENCE  
A stable and accurate 1.0 V voltage reference is built into the  
AD9204. The VREF can be configured using either the internal  
1.0 V reference or an externally applied 1.0 V reference voltage.  
The various reference modes are summarized in the sections that  
follow. The Reference Decoupling section describes the best  
practices PCB layout of the reference.  
If the internal reference of the AD9204 drives multiple  
converters to improve gain matching, the loading of the reference  
by the other converters must be considered. Figure 47 shows  
how the internal reference voltage is affected by loading.  
0
Internal Reference Connection  
A comparator within the AD9204 detects the potential at the  
SENSE pin and configures the reference into two possible  
modes, which are summarized in Table 10. If SENSE is grounded,  
the reference amplifier switch is connected to the internal resistor  
divider (see Figure 46), setting VREF to 1.0 V.  
–0.5  
–1.0  
INTERNAL V  
= 0.993V  
REF  
–1.5  
–2.0  
–2.5  
–3.0  
VIN+A/VIN+B  
VIN–A/VIN–B  
ADC  
CORE  
VREF  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
1.0µF  
0.1µF  
LOAD CURRENT (mA)  
SELECT  
LOGIC  
Figure 47. VREF Accuracy vs. Load Current  
SENSE  
0.5V  
ADC  
Figure 46. Internal Reference Configuration  
Table 10. Reference Configuration Summary  
Selected Mode  
SENSE Voltage (V) Resulting VREF (V)  
Resulting Differential Span (V p-p)  
Fixed Internal Reference  
Fixed External Reference  
AGND to 0.2  
AVDD  
1.0 internal  
1.0 applied to external VREF pin  
2.0  
2.0  
Table 11. Scaled Differential Span Summary  
Selected Mode  
Resulting VREF (V)  
SPI Register 0x18 (Hex)  
Resulting Differential Span (V p-p)  
Fixed Internal or External Reference  
Fixed Internal or External Reference  
Fixed Internal or External Reference  
Fixed Internal or External Reference  
Fixed Internal or External Reference  
1.0 (internal or external)  
1.0 (internal or external)  
1.0 (internal or external)  
1.0 (internal or external)  
1.0 (internal or external)  
0xC0  
0xC8  
0xD0  
0xD8  
0xE0  
1.0  
1.14  
1.33  
1.6  
2.0  
Rev. A | Page 22 of 36  
 
 
 
 
 
Data Sheet  
AD9204  
Clock Input Options  
External Reference Operation  
The AD9204 has a very flexible clock input structure. The clock  
input can be a CMOS, LVDS, LVPECL, or sine wave signal.  
Regardless of the type of signal being used, clock source jitter  
is of the most concern, as described in the Jitter Considerations  
section.  
The use of an external reference may be necessary to enhance  
the gain accuracy of the ADC or improve thermal drift charac-  
teristics. Figure 48 shows the typical drift characteristics of the  
internal reference in 1.0 V mode.  
4
Figure 50 and Figure 51 show two preferred methods for clocking  
the AD9204 (at clock rates up to 625 MHz). A low jitter clock  
source is converted from a single-ended signal to a differential  
signal using either an RF transformer or an RF balun.  
3
2
V
ERROR (mV)  
REF  
1
0
The RF balun configuration is recommended for clock frequencies  
between 125 MHz and 625 MHz, and the RF transformer is recom-  
mended for clock frequencies from 10 MHz to 200 MHz. The  
back-to-back Schottky diodes across the transformer/balun  
secondary limit clock excursions into the AD9204 to approx-  
imately 0.8 V p-p differential.  
–1  
–2  
–3  
–4  
–5  
–6  
This limit helps prevent the large voltage swings of the clock  
from feeding through to other portions of the AD9204 while  
preserving the fast rise and fall times of the signal that are critical  
to a low jitter performance.  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
Figure 48. Typical VREF Drift  
When the SENSE pin is tied to AVDD, the internal reference is  
disabled, allowing the use of an external reference. An internal  
reference buffer loads the external reference with an equivalent  
7.5 kΩ load (see Figure 37). The internal buffer generates the  
positive and negative full-scale references for the ADC core.  
Therefore, the external reference must be limited to a maximum  
of 1.0 V.  
®
Mini-Circuits  
ADT1-1WT, 1:1 Z  
0.1µF  
0.1µF  
XFMR  
CLOCK  
INPUT  
CLK+  
100Ω  
50Ω  
ADC  
0.1µF  
CLK–  
SCHOTTKY  
DIODES:  
HSMS2822  
0.1µF  
CLOCK INPUT CONSIDERATIONS  
Figure 50. Transformer-Coupled Differential Clock (Up to 200 MHz)  
For optimum performance, clock the AD9204 sample clock  
inputs, CLK+ and CLK−, with a differential signal. The signal  
is typically ac-coupled into the CLK+ and CLK− pins via a  
transformer or capacitors. These pins are biased internally  
(see Figure 49) and require no external bias.  
AVDD  
1nF  
50Ω  
1nF  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
ADC  
CLK–  
SCHOTTKY  
DIODES:  
HSMS2822  
0.9V  
Figure 51. Balun-Coupled Differential Clock (Up to 625 MHz)  
CLK+  
CLK–  
2pF  
2pF  
Figure 49. Equivalent Clock Input Circuit  
Rev. A | Page 23 of 36  
 
 
 
 
 
AD9204  
Data Sheet  
If a low jitter clock source is not available, another option is to  
ac couple a differential PECL signal to the sample clock input  
pins, as shown in Figure 52. The AD9510, AD9511, AD9512,  
AD9513, AD9514, AD9515, AD9516-0, AD9516-1, AD9516-2,  
AD9516-3, AD9516-4, AD9516-5, AD9517-0, AD9517-1,  
AD9517-2, AD9517-3, and AD9517-4 clock drivers offer  
excellent jitter performance.  
Input Clock Divider  
The AD9204 contains an input clock divider with the ability  
to divide the input clock by integer values between 1 and 8.  
Optimum performance can be obtained by enabling the  
internal duty cycle stabilizer (DCS) when using divide ratios  
other than 1, 2, or 4.  
The AD9204 clock divider can be synchronized using the  
external SYNC input. Bit 1 and Bit 2 of Register 0x100 allow  
the clock divider to be resynchronized on every SYNC signal  
or only on the first SYNC signal after the register is written. A  
valid SYNC causes the clock divider to reset to the initial state.  
This synchronization feature allows multiple devices to have the  
clock dividers aligned to guarantee simultaneous input  
sampling.  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
AD951x  
PECL DRIVER  
100  
ADC  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK–  
240Ω  
240Ω  
50kΩ  
50kΩ  
Figure 52. Differential PECL Sample Clock (Up to 625 MHz)  
Clock Duty Cycle  
A third option is to ac couple a differential LVDS signal to the  
sample clock input pins, as shown in Figure 53. The AD9510,  
AD9511, AD9512, AD9513, AD9514, AD9515, AD9516-0,  
AD9516-1, AD9516-2, AD9516-3, AD9516-4, AD9516-5,  
AD9517-0, AD9517-1, AD9517-2, AD9517-3, and AD9517-4  
clock drivers offer excellent jitter performance.  
Typical high speed ADCs use both clock edges to generate  
a variety of internal timing signals and, as a result, may be  
sensitive to clock duty cycle. Commonly, a 5% tolerance is  
required on the clock duty cycle to maintain dynamic  
performance characteristics.  
The AD9204 contains a duty cycle stabilizer (DCS) that retimes  
the nonsampling (falling) edge, providing an internal clock  
signal with a nominal 50% duty cycle. This allows the user to  
provide a wide range of clock input duty cycles without affecting  
the performance of the AD9204. Noise and distortion perform-  
ance are nearly flat for a wide range of duty cycles with the DCS  
on, as shown in Figure 55.  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
AD951x  
LVDS DRIVER  
100Ω  
ADC  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK–  
50kΩ  
50kΩ  
Jitter in the rising edge of the input is still of concern and is not  
easily reduced by the internal stabilization circuit. The duty  
cycle control loop does not function for clock rates less than  
20 MHz nominally. The loop has a time constant associated  
with it that must be considered in applications in which the  
clock rate can change dynamically. A wait time of 1.5 ꢀs to 5 ꢀs  
is required after a dynamic clock frequency increase or decrease  
before the DCS loop is relocked to the input signal.  
80  
Figure 53. Differential LVDS Sample Clock (Up to 625 MHz)  
In some applications, it may be acceptable to drive the sample  
clock inputs with a single-ended 1.8 V CMOS signal. In such  
applications, drive the CLK+ pin directly from a CMOS gate, and  
bypass the CLK− pin to ground with a 0.1 μF capacitor (see  
Figure 54).  
V
CC  
OPTIONAL  
100Ω  
0.1µF  
1
0.1µF  
1kΩ  
1kΩ  
AD951x  
CMOS DRIVER  
CLOCK  
INPUT  
CLK+  
75  
70  
50Ω  
ADC  
CLK–  
DCS ON  
65  
0.1µF  
1
60  
50RESISTOR IS OPTIONAL.  
Figure 54. Single-Ended 1.8 V CMOS Input Clock (Up to 200 MHz)  
55  
DCS OFF  
50  
45  
40  
10  
20  
30  
40  
50  
60  
70  
80  
POSITIVE DUTY CYCLE (%)  
Figure 55. SNR vs. DCS On/Off  
Rev. A | Page 24 of 36  
 
 
 
Data Sheet  
AD9204  
Jitter Considerations  
POWER DISSIPATION AND STANDBY MODE  
High speed, high resolution ADCs are sensitive to the quality  
of the clock input. The degradation in SNR from the low fre-  
quency SNR (SNRLF) at a given input frequency (fINPUT) due to  
jitter (tJRMS) can be calculated by  
As shown in Figure 57, the analog core power dissipated by the  
AD9204 is proportional to the ADC sample rate. The digital  
power dissipation of the CMOS outputs is determined primarily  
by the strength of the digital drivers and the load on each  
output bit.  
SNRHF = −10 log[(2π × fINPUT × tJRMS)2 + 10 (SNR /10)  
]
LF  
The maximum DRVDD current (IDRVDD) can be calculated as  
In the previous equation, the rms aperture jitter represents  
the clock input jitter specification. Input frequency (IF)  
undersampling applications are particularly sensitive to jitter,  
as illustrated in Figure 56.  
IDRVDD = VDRVDD × CLOAD × fCLK × N  
where N is the number of output bits (30, in the case of the  
AD9204).  
80  
This maximum current occurs when every output bit switches  
on every clock cycle, that is, a full-scale square wave at the Nyquist  
frequency of fCLK/2. In practice, the DRVDD current is estab-  
lished by the average number of output bits switching, which  
is determined by the sample rate and the characteristics of the  
analog input signal.  
75  
70  
65  
0.05ps  
0.2ps  
60  
55  
50  
0.5ps  
Reducing the capacitive load presented to the output drivers can  
minimize digital power consumption. The data in Figure 57 was  
taken using the same operating conditions as those used in the  
Typical Performance Characteristics, with a 5 pF load on each  
output driver.  
1.0ps  
1.5ps  
2.0ps  
2.5ps  
3.0ps  
45  
140  
1
10  
100  
1k  
FREQUENCY (MHz)  
130  
Figure 56. SNR vs. Input Frequency and Jitter  
AD9204-80  
120  
110  
100  
90  
Treat the clock input as an analog signal in cases in which  
aperture jitter may affect the dynamic range of the AD9204. To  
avoid modulating the clock signal with digital noise, keep power  
supplies for clock drivers separate from the ADC output driver  
supplies. Low jitter, crystal-controlled oscillators make the best  
clock sources. If the clock is generated from another type of source  
(by gating, dividing, or another method), retime it by the original  
clock at the last step.  
AD9204-65  
80  
AD9204-40  
70  
60  
AD9204-20  
30  
50  
See the AN-501 Application Note and the AN-756 Application  
Note available on www.analog.com for more information.  
0
10  
20  
40  
50  
60  
70  
80  
CLOCK RATE (MSPS)  
Figure 57. AD9204 Analog Core Power vs. Clock Rate  
Rev. A | Page 25 of 36  
 
 
 
 
AD9204  
Data Sheet  
The AD9204 is placed in power-down mode either by the SPI port  
or by asserting the PDWN pin high. In this state, the ADC typically  
dissipates 2.2 mW. During power-down, the output drivers are  
placed in a high impedance state. Asserting the PDWN pin low  
returns the AD9204 to normal device operating mode. Note that  
PDWN is referenced to the digital output driver supply (DRVDD)  
and should not exceed that supply voltage.  
Table 12. SCLK/DFS Mode Selection (External Pin Mode)  
Voltage at Pin SCLK/DFS  
SDIO/DCS  
Offset binary (default) DCS disabled  
Twos complement DCS enabled (default)  
AGND  
DRVDD  
Digital Output Enable Function (OEB)  
The AD9204 has a flexible three-state ability for the digital  
output pins. The three-state mode is enabled using the OEB  
pin or through the SPI interface. If the OEB pin is low, the  
output data drivers and DCOs are enabled. If the OEB pin is  
high, the output data drivers and DCOs are placed in a high  
impedance state. This OEB function is not intended for rapid  
access to the data bus. Note that OEB is referenced to the digital  
output driver supply (DRVDD) and should not exceed that  
supply voltage.  
Low power dissipation in power-down mode is achieved by  
shutting down the reference, reference buffer, biasing networks,  
and clock. Internal capacitors are discharged when entering power-  
down mode and then must be recharged when returning to normal  
operation. As a result, wake-up time is related to the time spent  
in power-down mode, and shorter power-down cycles result in  
proportionally shorter wake-up times.  
When using the SPI port interface, the user can place the ADC  
in power-down mode or standby mode. Standby mode allows  
the user to keep the internal reference circuitry powered when  
faster wake-up times are required. See the Memory Map section  
for more details.  
When using the SPI interface, the data outputs and DCO of  
each channel can be independently three-stated by using the  
output disable (OEB) bit (Bit 4) in Register 0x14.  
TIMING  
DIGITAL OUTPUTS  
The AD9204 provides latched data with a pipeline delay of  
nine clock cycles. Data outputs are available one propagation  
delay (tPD) after the rising edge of the clock signal.  
The AD9204 output drivers can be configured to interface with  
1.8 V to 3.3 V CMOS logic families. Output data can also be  
multiplexed onto a single output bus to reduce the total number of  
traces required.  
Minimize the length of the output data lines and loads placed  
on them to reduce transients within the AD9204. These  
transients can degrade converter dynamic performance.  
The CMOS output drivers are sized to provide sufficient output  
current to drive a wide variety of logic families. However, large  
drive currents tend to cause current glitches on the supplies that  
may affect converter performance.  
The lowest typical conversion rate of the AD9204 is 3 MSPS. At  
clock rates below 3 MSPS, dynamic performance can degrade.  
Data Clock Output (DCO)  
Applications requiring the ADC to drive large capacitive loads  
or large fanouts may require external buffers or latches.  
The AD9204 provides two data clock output (DCO) signals  
intended for capturing the data in an external register. The CMOS  
data outputs are valid on the rising edge of DCO, unless the DCO  
clock polarity has been changed via the SPI. See Figure 2 and  
Figure 3 for a graphical timing description.  
The output data format can be selected to be either offset binary  
or twos complement by setting the SCLK/DFS pin when operating  
in the external pin mode (see Table 12).  
As detailed in the AN-877 Application Note, Interfacing to High  
Speed ADCs via SPI, the data format can be selected for offset  
binary, twos complement, or gray code when using the SPI control.  
Table 13. Output Data Format  
Input (V)  
Condition (V)  
< −VREF − 0.5 LSB  
= −VREF  
Offset Binary Output Mode  
00 0000 0000 0000  
00 0000 0000 0000  
10 0000 0000 0000  
11 1111 1111 1111  
11 1111 1111 1111  
Twos Complement Mode  
10 0000 0000 0000  
10 0000 0000 0000  
00 0000 0000 0000  
01 1111 1111 1111  
01 1111 1111 1111  
OR  
1
0
0
0
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
= 0  
= +VREF − 1.0 LSB  
> +VREF − 0.5 LSB  
1
Rev. A | Page 26 of 36  
 
 
 
Data Sheet  
AD9204  
BUILT-IN SELF-TEST (BIST) AND OUTPUT TEST  
The AD9204 includes a built-in test feature designed to enable  
verification of the integrity of each channel, as well as facilitate  
board level debugging. A built-in self-test (BIST) feature that  
verifies the integrity of the digital datapath of the AD9204 is  
included. Various output test options are also provided to place  
predictable values on the outputs of the AD9204.  
completion  
of the BIST, Bit 0 of Register 0x24 is automatically cleared. The PN  
sequence can be continued from the last value by writing a 0 in  
Bit 2 of Register 0x0E. However, if the PN sequence is not reset,  
the signature calculation will not equal the predetermined value  
at the end of the test. At that point, the user must rely on  
verifying the output data.  
BUILT-IN SELF-TEST (BIST)  
OUTPUT TEST MODES  
The BIST is a thorough test of the digital portion of the selected  
AD9204 signal path. Perform the BIST test after a reset to ensure  
that the device is in a known state. During BIST, data from an  
internal pseudorandom noise (PN) source is driven through the  
digital datapath of both channels, starting at the ADC block  
output. At the datapath output, CRC logic calculates a signature  
from the data. The BIST sequence runs for 512 cycles and then  
stops. Once completed, the BIST compares the signature results  
with a predetermined value. If the signatures match, the BIST sets  
Bit 0 of Register 0x24, signifying that the test passed. If the BIST  
test failed, Bit 0 of Register 0x24 is cleared. The outputs are  
connected during this test so that the PN sequence can be  
observed as it runs. Writing 0x05 to Register 0x0E runs the BIST.  
This enables the Bit 0 (BIST enable) of Register 0x0E and resets the  
PN sequence generator, Bit 2 (BIST INIT) of Register 0x0E. At the  
The output test options are described in Table 17 at Address  
0x0D. When an output test mode is enabled, the analog section  
of the ADC is disconnected from the digital back-end blocks,  
and the test pattern is run through the output formatting block.  
Some of the test patterns are subject to output formatting, and  
some are not. The PN generators from the PN sequence tests  
can be reset by setting Bit 4 or Bit 5 of Register 0x0D. These  
tests can be performed with or without an analog signal (if  
present, the analog signal is ignored), but they do require an  
encode clock. For more information, see the AN-877  
Application Note, Interfacing to High Speed ADCs via SPI.  
Rev. A | Page 27 of 36  
 
 
 
AD9204  
Data Sheet  
CHANNEL/CHIP SYNCHRONIZATION  
The AD9204 has a SYNC input that offers the user flexible  
synchronization options for synchronizing sample clocks  
across multiple ADCs. The input clock divider can be enabled  
to synchronize on a single occurrence of the SYNC signal or on  
every occurrence. The SYNC input is internally synchronized  
to the sample clock; however, to ensure that there is no timing  
uncertainty between multiple devices, the SYNC input signal  
should be externally synchronized to the input clock signal,  
meeting the setup and hold times shown in Table 5. Drive the  
SYNC input using a single-ended CMOS-type signal.  
Rev. A | Page 28 of 36  
 
Data Sheet  
AD9204  
SERIAL PORT INTERFACE (SPI)  
The AD9204 serial port interface (SPI) allows the user to configure  
the converter for specific functions or operations through a  
structured register space provided inside the ADC. The SPI  
gives the user added flexibility and customization, depending  
on the application. Addresses are accessed via the serial port  
and can be written to or read from via the port. Memory is  
organized into bytes that can be further divided into fields,  
which are documented in the Memory Map section. For  
detailed operational information, see the AN-877 Application  
Note, Interfacing to High Speed ADCs via SPI.  
The falling edge of CSB, in conjunction with the rising edge of  
SCLK, determines the start of the framing. An example of the  
serial timing and the definitions can be found in Figure 58 and  
Table 5.  
Other modes involving the CSB are available. The CSB can be  
held low indefinitely, which permanently enables the device;  
this is called streaming. The CSB can stall high between bytes to  
allow for additional external timing. When CSB is tied high, SPI  
functions are placed in high impedance mode. This mode turns  
on any SPI pin secondary functions.  
CONFIGURATION USING THE SPI  
During an instruction phase, a 16-bit instruction is transmitted.  
Data follows the instruction phase, and the length is determined  
by the W0 and W1 bits, as shown in Figure 58.  
Three pins define the SPI of this ADC: the SCLK, the SDIO,  
and the CSB (see Table 14). The SCLK (a serial clock) is used  
to synchronize the read and write data presented from and to  
the ADC. The SDIO (serial data input/output) is a dual-purpose  
pin that allows data to be sent and read from the internal ADC  
memory map registers. The CSB (chip select bar) is an active-  
low control that enables or disables the read and write cycles.  
All data is composed of 8-bit words. The first bit of the first byte  
in a multibyte serial data transfer frame indicates whether a read  
command or a write command is issued. This allows the serial  
data input/output (SDIO) pin to change direction from an input  
to an output at the appropriate point in the serial frame.  
Table 14. Serial Port Interface Pins  
In addition to word length, the instruction phase determines  
whether the serial frame is a read or write operation, allowing  
the serial port to be used both to program the chip and to read  
the contents of the on-chip memory. If the instruction is a readback  
operation, performing a readback causes the serial data input/  
output (SDIO) pin to change direction from an input to an output  
at the appropriate point in the serial frame.  
Pin  
Function  
SCLK Serial Clock. The serial shift clock input synchronizes  
serial interface reads and writes.  
SDIO Serial Data Input/Output. A dual-purpose pin that  
typically serves as an input or an output, depending  
on the instruction being sent and the relative position  
in the timing frame.  
CSB  
Chip Select Bar. An active-low control that gates the read  
and write cycles.  
Data can be sent in MSB-first mode or in LSB-first mode. MSB  
first is the default on power-up and can be changed via the SPI  
port configuration register. For more information about this  
and other features, see the AN-877 Application Note, Interfacing  
to High Speed ADCs via SPI.  
tHIGH  
tDS  
tCLK  
tH  
tS  
tDH  
tLOW  
CSB  
SCLK DON’T CARE  
SDIO DON’T CARE  
DON’T CARE  
R/W  
W1  
W0  
A12  
A11  
A10  
A9  
A8  
A7  
D5  
D4  
D3  
D2  
D1  
D0  
DON’T CARE  
Figure 58. Serial Port Interface Timing Diagram  
Rev. A | Page 29 of 36  
 
 
 
 
AD9204  
Data Sheet  
Table 15. Mode Selection  
HARDWARE INTERFACE  
External  
Voltage  
The pins described in Table 14 constitute the physical interface  
between the programming device of the user and the serial port  
of the AD9204. The SCLK and CSB pins function as inputs  
when using the SPI interface. The SDIO pin is bidirectional,  
functioning as an input during write phases and as an output  
during readback.  
Pin  
Configuration  
SDIO/DCS AVDD (default)  
AGND  
SCLK/DFS AVDD  
AGND (default)  
Duty cycle stabilizer enabled  
Duty cycle stabilizer disabled  
Twos complement enabled  
Offset binary enabled  
OEB  
AVDD  
Outputs in high impedance  
Outputs enabled  
Chip in power-down or standby  
Normal operation  
The SPI interface is flexible enough to be controlled by  
either FPGAs or microcontrollers. One method for SPI  
configuration is described in detail in the AN-812 Appli-  
cation Note, Microcontroller-Based Serial Port Interface  
(SPI) Boot Circuit.  
AGND (default)  
AVDD  
AGND (default)  
PDWN  
SPI ACCESSIBLE FEATURES  
The SPI port should not be active during periods when the full  
dynamic performance of the converter is required. Because the  
SCLK signal, the CSB signal, and the SDIO signal are typically  
asynchronous to the ADC clock, noise from these signals can  
degrade converter performance. If the on-board SPI bus is used  
for other devices, it may be necessary to provide buffers between  
this bus and the AD9204 to prevent these signals from transi-  
tioning at the converter inputs during critical sampling periods.  
Table 16 provides a brief description of the general features that  
are accessible via the SPI. These features are described in detail  
in the AN-812 Application Note, Interfacing to High Speed ADCs  
via SPI. The AD9204 device -specific features are described in  
detail in Table 17.  
Table 16. Features Accessible Using the SPI  
Feature  
Description  
Mode  
Allows the user to set either power-down mode  
or standby mode  
Allows the user to access the DCS via the SPI  
Allows the user to digitally adjust the  
converter offset  
Allows the user to set test modes to have known  
data on output bits  
SDIO/DCS and SCLK/DFS serve a dual function when the  
SPI interface is not being used. When the pins are strapped to  
AVDD or ground during device power-on, they are associated  
with a specific function. The Digital Outputs section describes  
the strappable functions supported on the AD9204.  
Clock  
Offset  
Test I/O  
CONFIGURATION WITHOUT THE SPI  
Output Mode Allows the user to set up outputs  
Output Phase Allows the user to set the output clock polarity  
Output Delay Allows the user to vary the DCO delay  
In applications that do not interface to the SPI control registers,  
the SDIO/DCS pin, the SCLK/DFS pin, the OEB pin, and the  
PDWN pin serve as standalone CMOS-compatible control  
pins. When the device is powered up, it is assumed that the  
user intends to use the pins as static control lines for the duty  
cycle stabilizer, output data format, output enable, and power-  
down feature control. In this mode, connect the CSB chip  
select to AVDD, which disables the serial port interface.  
VREF  
Allows the user to set the reference voltage  
Rev. A | Page 30 of 36  
 
 
 
 
Data Sheet  
AD9204  
MEMORY MAP  
READING THE MEMORY MAP REGISTER TABLE  
DEFAULT VALUES  
Each row in the memory map register table (see Table 17) has  
eight bit locations. The memory map is roughly divided into  
four sections: the chip configuration registers (Address 0x00  
to Address 0x02); the device index and transfer registers  
(Address 0x05 and Address 0xFF); the program registers  
(Address 0x08 to Address 0x2E); and the digital feature control  
registers (Address 0x100 and Address 0x101).  
After the AD9204 is reset, critical registers are loaded with  
default values. The default values for the registers are given  
in the memory map register table (see Table 17).  
Logic Levels  
An explanation of logic level terminology follows:  
“Bit is set” is synonymous with “bit is set to Logic 1” or  
“writing Logic 1 for the bit.”  
Table 17 documents the default hexadecimal value for each  
hexadecimal address shown. The column with the heading Bit 7  
(MSB) is the start of the default hexadecimal value given. For  
example, Address 0x18, the VREF register, has a hexadecimal  
default value of 0xE0. This means that Bits[7:5] = 1, and the  
remaining Bits[4:0] = 0. This setting is the default reference  
selection setting. The default value uses a 2.0 V p-p reference.  
For more information on this function and others, see the AN-812  
Application Note, Interfacing to High Speed ADCs via SPI. This  
document details the functions controlled by Register 0x00 to  
register 0xFF. The remaining registers, Register 0x100 and  
Register 0x101, are documented in the Memory Map Register  
Descriptions section following Table 17.  
“Clear a bit” is synonymous with “bit is set to Logic 0” or  
“writing Logic 0 for the bit.”  
Transfer Register Map  
Address 0x08 to Address 0x18 are shadowed. Writes to these  
addresses do not affect device operation until a transfer command  
is issued by writing 0x01 to Address 0xFF, setting the transfer bit.  
This allows these registers to be updated internally and simulta-  
neously when the transfer bit is set. The internal update takes  
place when the transfer bit is set, and then the bit autoclears.  
Channel-Specific Registers  
Some channel setup functions can be programmed differently  
for each channel. In these cases, channel address locations are  
internally duplicated for each channel. These registers and bits  
are designated in the memory map register table as local. These  
local registers and bits can be accessed by setting the appropriate  
Channel A (Bit 0) or Channel B (Bit 1) bits in Register 0x05.  
OPEN LOCATIONS  
All address and bit locations that are not included in the SPI  
map are not currently supported for this device. Unused bits of  
a valid address location should be written with 0s. Writing to these  
locations is required only when part of an address location is  
open (for example, Address 0x18). If the entire address location  
is open, it is omitted from the SPI map (for example, Address 0x13)  
and should not be written.  
If both bits are set, the subsequent write affects the registers of  
both channels. In a read cycle, set only Channel A or Channel B  
to read one of the two registers. If both bits are set during an  
SPI read cycle, the device returns the value for Channel A.  
Registers and bits designated as global in the memory map  
register table affect the entire device or the channel features for  
which independent settings are not allowed between channels.  
The settings in Register 0x05 do not affect the global registers  
and bits.  
Rev. A | Page 31 of 36  
 
 
 
 
AD9204  
Data Sheet  
Memory Map Register Table  
All address and bit locations that are not included in Table 17 are not currently supported for this device.  
Table 17.  
Default  
Value  
(Hex)  
Addr  
Register  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
(Hex) Name  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Comments  
Chip Configuration Registers  
0x00  
SPI port  
configuration  
(global)  
0
LSB  
first  
Soft reset  
1
1
Soft  
reset  
LSB first  
0
0x18  
The nibbles are  
mirrored so that  
LSB- or MSB-first  
mode registers  
correctly, regard-  
less of shift mode  
0x01  
0x02  
Chip ID (global)  
8-bit chip ID bits [7:0]  
AD9204 = 0x25  
Unique chip ID  
differentiates  
devices; read only  
Chip grade  
(global)  
Open  
Speed grade ID 6:4  
20 MSPS = 000  
40 MSPS = 001  
65 MSPS = 010  
80 MSPS = 011  
Open  
Open  
Unique speed  
grade ID  
differentiates  
devices; read only  
Device Index and Transfer Registers  
0x05  
Channel index  
Open  
Open Open  
Open  
Open  
Open  
Open  
ADC B  
default  
ADC A  
default  
0xFF  
Bits are set to  
determine which  
device on-chip  
receives the next  
write command;  
the default is all  
devices on-chip  
0xFF  
Transfer  
Open  
Open Open  
Open  
Open  
Open  
Transfer 0x00  
Synchronously  
transfers data  
from the master  
shift register to  
the slave  
Program Registers (May or May Not Be Indexed by Device Index)  
0x08  
Modes  
External  
power-  
down  
enable  
(local)  
External pin function  
0x00 full power-down  
0x01 standby  
Open  
00 = chip run  
01 = full power-  
down  
10 = standby  
11 = chip wide  
digital reset  
(local)  
0x80  
Determines  
various generic  
modes of chip  
operation  
(local)  
0x09  
0x0B  
Clock (global)  
Open  
Open  
Open  
Open  
Open  
Open  
Duty  
cycle  
stabilize  
0x00  
0x00  
Clock divide  
(global)  
Clock divider [2:0]  
Clock divide ratio  
000 = divide by 1  
001 = divide by 2  
010 = divide by 3  
011 = divide by 4  
100 = divide by 5  
101 = divide by 6  
110 = divide by 7  
111 = divide by 8  
The divide ratio is  
the value plus 1  
Rev. A | Page 32 of 36  
 
 
Data Sheet  
AD9204  
Default  
Value  
(Hex)  
Addr  
(Hex) Name  
0x0D Test mode (local)  
Register  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Comments  
User test mode  
(local)  
00 = single  
01 = alternate  
10 = single once  
11 = alternate  
once  
Reset PN  
long gen  
Reset PN  
Output test mode [3:0] (local)  
0x00  
When set, the test  
data is placed on  
the output pins in  
place of normal  
data  
short gen 0000 = off (default)  
0001 = midscale short  
0010 = positive FS  
0011 = negative FS  
0100 = alternating checkerboard  
0101 = PN 23 sequence  
0110 = PN 9 sequence  
0111 = one/zero word toggle  
1000 = user input  
1001 = 1-/0-bit toggle  
1010 = 1× sync  
1011 = one bit high  
1100 = mixed bit frequency  
0x0E  
BIST enable  
Open  
Open  
BIST INIT Open  
BIST  
enable  
0x00  
When Bit 0 is set,  
the BIST function  
is initiated  
0x10  
0x14  
Offset adjust  
(local)  
8-bit device offset adjustment [7:0] (local)  
Offset adjust in LSBs from +127 to −128 (twos complement format)  
0x00  
0x00  
Device offset trim  
Output mode  
00 = 3.3 V CMOS  
10 = 1.8 V CMOS  
Output mux  
enable  
Output  
disable  
Open  
Output  
invert  
(local)  
00 = offset binary  
01 = twos  
complement  
10 = gray code  
11 = offset binary  
(local)  
Configures the  
outputs and the  
format of the data  
(interleaved) (local)  
3.3 V DCO  
1.8 V DCO  
drive strength  
00 = 1 stripe  
01 = 2 stripes  
10 = 3 stripes (default)  
11 = 4 stripes  
3.3 V data  
1.8 V data  
0x22  
0x00  
Determines  
CMOS output  
drive strength  
properties  
0x15  
0x16  
OUTPUT_ADJUST  
drive strength  
00 = 1 stripe  
(default)  
01 = 2 stripes  
10 = 3 stripes  
11 = 4 stripes  
drive strength  
00 = 1 stripe  
(default)  
01 = 2 stripes  
10 = 3 stripes  
11 = 4 stripes  
drive strength  
00 = 1 stripe  
01 = 2 stripes  
10 = 3 stripes  
(default)  
11 = 4 stripes  
OUTPUT_PHASE  
DCO  
Input clock phase adjust [2:0]  
(Value is number of input clock  
cycles of phase delay)  
On devices that  
utilize global  
clock divide,  
output  
polarity  
0 =  
000 = no delay  
determines which  
normal  
1 =  
inverted  
(local)  
001 = 1 input clock cycle  
010 = 2 input clock cycles  
011 = 3 input clock cycles  
100 = 4 input clock cycles  
101 = 5 input clock cycles  
110 = 6 input clock cycles  
111 = 7 input clock cycles  
phase of the  
divider output  
supplies the  
output clock;  
internal latching  
is unaffected  
This sets the fine  
output delay of  
the output clock  
but does not  
change internal  
timing  
0x17  
OUTPUT_DELAY  
Enable  
DCO  
delay  
Enable  
data  
delay  
DCO/Data delay[2:0]  
000 = 0.56 ns  
001 = 1.12 ns  
010 = 1.68 ns  
011 = 2.24 ns  
100 = 2.80 ns  
101 = 3.36 ns  
110 = 3.92 ns  
111 = 4.48 ns  
0x00  
0x18  
VREF  
Reserved =11  
Internal VREF adjustment [2:0]  
000 = 1.0 V p-p  
0xE0  
Selects and/or  
adjusts the VREF  
001 = 1.14 V p-p  
010 = 1.33 V p-p  
011 = 1.60 V p-p  
100 = 2.0 V p-p  
0x19  
0x1A  
0x1B  
USER_PATT1_LSB  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B9  
B1  
B0  
B8  
B0  
0x00  
0x00  
0x00  
User-defined  
pattern, 1 LSB  
USER_PATT1_MSB B15  
USER_PATT2_LSB B7  
B14  
B6  
B13  
B5  
B12  
B4  
B11  
B3  
B10  
B2  
User-defined  
pattern, 1 MSB  
User-defined  
pattern, 2 LSB  
Rev. A | Page 33 of 36  
AD9204  
Data Sheet  
Default  
Value  
(Hex)  
Addr  
(Hex)  
Register  
Name  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Comments  
0x1C  
USER_PATT2_MSB B15  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
0x00  
User-defined  
pattern, 2 MSB  
0x24  
MISR_LSB  
Features  
Open  
Open Open  
Open Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
B0  
0x00  
Least significant  
byte of MISR; read  
only  
0x2A  
0x2E  
Open  
Open  
OR  
0x01  
Disables the OR  
pin for the  
indexed channel  
output  
enable  
(local)  
Output assign  
Open Open  
Open  
Open  
Open  
Open  
Open  
0 =  
ADC A  
1 =  
ADC B  
(local)  
Ch A =  
0x00  
Ch B =  
0x01  
Assign an ADC to  
an output  
channel  
Digital Feature Control  
0x10  
0
Sync control  
(global)  
Open  
Open Open  
Open Open  
Open  
Open  
Clock  
divider  
Clock  
divider  
Master  
sync  
enable  
0x01  
0x88  
next sync sync  
only enable  
Enable Run Open  
GCLK  
detect  
0x10  
1
USR2  
Enable  
OEB  
Pin 47  
(local)  
Disable  
SDIO  
pull-  
Enables internal  
oscillator for clock  
rates < 5 MHz  
GCLK  
down  
USR2 (Register 0x101)  
Bit 7—Enable OEB Pin 47  
MEMORY MAP REGISTER DESCRIPTIONS  
For additional information about functions controlled in  
Register 0x00 to Register 0xFF, see the AN-812 Application  
Note, Interfacing to High Speed ADCs via SPI.  
Normally set high, this bit allows Pin 47 to function as the  
output enable. If it is set low, it disables Pin 47.  
Bit 3—Enable GCLK Detect  
Sync Control (Register 0x100)  
Bits[7:3]—Reserved  
Normally set high, this bit enables a circuit that detects encode  
rates below about 5 MSPS. When a low encode rate is detected,  
an internal oscillator, GCLK, is enabled, ensuring the proper  
operation of several circuits. If set low, the detector is disabled.  
Bit 2—Clock Divider Next Sync Only  
If the master sync enable bit (Address 0x100, Bit 0) and the  
clock divider sync enable bit (Address 0x100, Bit 1) are high,  
Bit 2 allows the clock divider to sync to the first sync pulse it  
receives and to ignore the rest. The clock divider sync enable  
bit (Address 0x100, Bit 1) resets after it syncs.  
Bit 2—Run GCLK  
This bit enables the GCLK oscillator. For some applications  
with encode rates below 10 MSPS, it may be preferable to set  
this bit high to supersede the GCLK detector.  
Bit 1—Clock Divider Sync Enable  
Bit 0—Disable SDIO Pull-Down  
Bit 1 gates the sync pulse to the clock divider. The sync signal  
is enabled when Bit 1 and Bit 0 are high and the device is  
operating in continuous sync mode as long as Bit 2 of the  
sync control is low.  
This bit can be set high to disable the internal 30 kΩ pull-down  
on the SDIO pin, which can limit the loading when many devices  
are connected to the SPI bus.  
Bit 0—Master Sync Enable  
Bit 0 must be high to enable any of the sync functions.  
Rev. A | Page 34 of 36  
 
Data Sheet  
AD9204  
APPLICATIONS INFORMATION  
To maximize the coverage and adhesion between the ADC and  
the PCB, a silkscreen should be overlaid to partition the continuous  
plane on the PCB into several uniform sections. This provides  
several tie points between the ADC and the PCB during the reflow  
process. Using one continuous plane with no partitions guarantees  
only one tie point between the ADC and the PCB. For detailed  
information about packaging and PCB layout of chip scale  
packages, see the AN-772 Application Note, A Design and  
Manufacturing Guide for the Lead Frame Chip Scale Package  
(LFCSP), at www.analog.com.  
DESIGN GUIDELINES  
Before starting design and layout of the AD9204 as a system,  
it is recommended that the designer become familiar with these  
guidelines, which discuss the special circuit connections and  
layout requirements needed for certain pins.  
Power and Ground Recommendations  
When connecting power to the AD9204, it is strongly  
recommended that two separate supplies be used. Use one 1.8 V  
supply for analog (AVDD); use a separate 1.8 V to 3.3 V supply for  
the digital output supply (DRVDD). If a common 1.8 V AVDD and  
DRVDD supply must be used, the AVDD and DRVDD domains  
must be isolated with a ferrite bead or filter choke and separate  
decoupling capacitors. Several different decoupling capacitors can  
cover both high and low frequencies. Locate these capacitors close  
to the point of entry at the PCB level and close to the pins of the  
device, with minimal trace length.  
VCM  
The VCM pin should be decoupled to ground with a 0.1 μF  
capacitor, as shown in Figure 42.  
RBIAS  
The AD9204 requires that a 10 kΩ resistor be placed between  
the RBIAS pin and ground. This resistor sets the master current  
reference of the ADC core and should have at least a 1% tolerance.  
A single PCB ground plane should be sufficient when using the  
AD9204. With proper decoupling and smart partitioning of the  
PCB analog, digital, and clock sections, optimum performance  
is easily achieved.  
Reference Decoupling  
Externally decouple the VREF pin to ground with a low ESR,  
1.0 μF capacitor in parallel with a low ESR, 0.1 μF ceramic  
capacitor.  
Exposed Paddle Thermal Heat Sink Recommendations  
The exposed paddle (Pin 0) is the only ground connection  
for the AD9204 and, therefore, it must be connected to analog  
ground (AGND) on the customer PCB. To achieve the best  
electrical and thermal performance, mate an exposed (no  
solder mask) continuous copper plane on the PCB to the  
AD9204 exposed paddle, Pin 0.  
SPI Port  
The SPI port should not be active during periods when the full  
dynamic performance of the converter is required. Because the  
SCLK, CSB, and SDIO signals are typically asynchronous to the  
ADC clock, noise from these signals can degrade converter  
performance. If the on-board SPI bus is used for other devices,  
it may be necessary to provide buffers between this bus and the  
AD9204 to keep these signals from transitioning at the converter  
inputs during critical sampling periods.  
The copper plane should have several vias to achieve the  
lowest possible resistive thermal path for heat dissipation to  
flow through the bottom of the PCB. Fill or plug these vias  
with nonconductive epoxy.  
Rev. A | Page 35 of 36  
 
 
 
AD9204  
Data Sheet  
OUTLINE DIMENSIONS  
0.60  
0.42  
0.24  
9.10  
9.00 SQ  
8.90  
0.30  
0.23  
0.18  
0.60  
0.42  
0.24  
PIN 1  
INDICATOR  
49  
64  
1
48  
PIN 1  
INDICATOR  
8.85  
8.75 SQ  
8.65  
0.50  
BSC  
EXPOSED  
PAD  
6.35  
6.20 SQ  
6.05  
0.50  
0.40  
0.30  
33  
32  
16  
17  
0.25 MIN  
BOTTOM VIEW  
7.50 REF  
TOP VIEW  
0.80 MAX  
0.65 NOM  
12° MAX  
1.00  
0.85  
0.80  
0.05 MAX  
0.02 NOM  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
SEATING  
PLANE  
0.20 REF  
SECTION OF THIS DATA SHEET.  
COMPLIANT TO JEDEC STANDARDS MO-220-VMMD-4  
Figure 59. 64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
9 mm × 9 mm Body, Very Thin Quad (CP-64-4)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1, 2  
Temperature Range  
–40°C to +85°C  
Package Description  
Package Option  
CP-64-4  
CP-64-4  
CP-64-4  
CP-64-4  
CP-64-4  
CP-64-4  
CP-64-4  
CP-64-4  
AD9204BCPZ-80  
AD9204BCPZRL7-80  
AD9204BCPZ-65  
AD9204BCPZRL7-65  
AD9204BCPZ-40  
AD9204BCPZRL7-40  
AD9204BCPZ-20  
AD9204BCPZRL7-20  
AD9204-80EBZ  
64-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
64-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
64-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
64-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
64-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
64-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
64-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
64-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
Evaluation Board  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
AD9204-65EBZ  
Evaluation Board  
AD9204-40EBZ  
Evaluation Board  
AD9204-20EBZ  
Evaluation Board  
1 Z = RoHS Compliant Part.  
2 The exposed paddle (Pin 0) is the only GND connection on the chip and must be connected to the PCB AGND.  
©2009–2016 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08122-0-9/16(A)  
Rev. A | Page 36 of 36  
 
 

相关型号:

AD9204BCPZRL7-401,2

10-Bit, 20 MSPS/40 MSPS/65 MSPS/80 MSPS, 1.8 V Dual Analog-to-Digital Converter
ADI

AD9204BCPZRL7-65

1.8 V Dual Analog-to-Digital Converter
ADI

AD9204BCPZRL7-651,2

10-Bit, 20 MSPS/40 MSPS/65 MSPS/80 MSPS, 1.8 V Dual Analog-to-Digital Converter
ADI

AD9204BCPZRL7-80

1.8 V Dual Analog-to-Digital Converter
ADI

AD9204BCPZRL7-801,2

10-Bit, 20 MSPS/40 MSPS/65 MSPS/80 MSPS, 1.8 V Dual Analog-to-Digital Converter
ADI

AD9204_17

1.8 V Dual Analog-to-Digital Converter
ADI

AD9208

14-Bit, 3 GSPS, JESD204B, Dual Analog-to-Digital Converter
ADI

AD9208-3000EBZ

14-Bit, 3 GSPS, JESD204B, Dual Analog-to-Digital Converter
ADI

AD9208BBPZ-3000

14-Bit, 3 GSPS, JESD204B, Dual Analog-to-Digital Converter
ADI

AD9208BBPZRL-3000

14-Bit, 3 GSPS, JESD204B, Dual Analog-to-Digital Converter
ADI

AD9211

10位,200 MSPS/250 MSPS/300中型项目,1.8V模拟数字转换器.
ADI

AD9211-170EB

10-Bit, 170/200/250 MSPS 1.8 V A/D Converter
ADI