AD9216BCPZ-65 [ADI]

10-Bit, 65/80/105 MSPS Dual A/D Converter;
AD9216BCPZ-65
型号: AD9216BCPZ-65
厂家: ADI    ADI
描述:

10-Bit, 65/80/105 MSPS Dual A/D Converter

转换器
文件: 总40页 (文件大小:1494K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
10-Bit, 65/80/105 MSPS  
Dual A/D Converter  
AD9216  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Integrated dual 10-bit ADC  
AVDD AGND  
Single 3 V supply operation  
VIN+_A  
VIN–_A  
10  
10  
SNR = 57.6 dBc (to Nyquist, AD9216-105)  
SFDR = 74 dBc (to Nyquist, AD9216-105)  
Low power: 150 mW/ch at 105 MSPS  
Differential input with 300 MHz 3 dB bandwidth  
Exceptional crosstalk immunity < -80 dB  
Offset binary or twos complement data format  
Clock duty cycle stabilizer  
D9_A–D0_A  
OEB_A  
SHA  
ADC  
OUTPUT  
MUX/  
BUFFERS  
REFT_A  
REFB_A  
VREF  
MUX_SELECT  
CLK_A  
CLOCK  
DUTY CYCLE  
STABILIZER  
CLK_B  
DCS  
SENSE  
AGND  
SHARED_REF  
PWDN_A  
PWDN_B  
DFS  
0.5V  
APPLICATIONS  
MODE  
CONTROL  
Ultrasound equipment  
REFT_B  
REFB_B  
VIN+_B  
VIN–_B  
IF sampling in communications receivers  
3G, radio point-to-point, LMDS, MMDS  
Battery-powered instruments  
Hand-held scopemeters  
10  
10  
OUTPUT  
MUX/  
BUFFERS  
D9_B–D0_B  
OEB_B  
SHA  
ADC  
Low cost digital oscilloscopes  
AD9216  
DRVDD  
DRGND  
GENERAL DESCRIPTION  
Figure 1.  
The AD9216 is a dual, 3 V, 10-bit, 105 MSPS analog-to-digital  
converter (ADC). It features dual high performance sample-  
and-hold amplifiers (SHAs) and an integrated voltage reference.  
The AD9216 uses a multistage differential pipelined archi-  
tecture with output error correction logic to provide 10-bit  
accuracy and guarantee no missing codes over the full  
operating temperature range at up to 105 MSPS data rates.  
The wide bandwidth, differential SHA allows for a variety of  
user selectable input ranges and offsets, including single-ended  
applications. The AD9216 is suitable for various applications,  
including multiplexed systems that switch full-scale voltage  
levels in successive channels and for sampling inputs at  
frequencies well beyond the Nyquist rate.  
Fabricated on an advanced CMOS process, the AD9216 is avail-  
able in a space saving, Pb-free, 64-lead LFCSP (9 mm × 9 mm) and  
is specified over the industrial temperature range (−40°C to  
+85°C).  
PRODUCT HIGHLIGHTS  
1. Pin compatible with AD9238, dual 12-bit 20 MSPS/40 MSPS/  
65 MSPS ADC and AD9248, dual 14-bit 20 MSPS/40 MSPS/  
65 MSPS ADC.  
2. 105 MSPS capability allows for demanding, high frequency  
applications.  
3. Low power consumption: AD9216–105: 105 MSPS = 300 mW.  
Dual single-ended clock inputs are used to control all internal  
conversion cycles. A duty cycle stabilizer is available on the  
AD9216 and can compensate for wide variations in the clock  
duty cycle, allowing the converters to maintain excellent  
performance. The digital output data is presented in either  
straight binary or twos complement format.  
4. The patented SHA input maintains excellent performance for  
input frequencies up to 200 MHz and can be configured for  
single-ended or differential operation.  
5. Typical channel crosstalk of < −80 dB at fIN up to 70 MHz.  
6. The clock duty cycle stabilizer maintains performance over a  
wide range of clock duty cycles.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
© 2005 Analog Devices, Inc. All rights reserved.  
AD9216  
TABLE OF CONTENTS  
DC Specifications ............................................................................. 3  
Output Coding............................................................................ 23  
Timing ......................................................................................... 23  
Data Format ................................................................................ 23  
Voltage Reference....................................................................... 24  
Dual ADC LFCSP PCB.................................................................. 26  
Power Connector........................................................................ 26  
Analog Inputs ............................................................................. 26  
Optional Operational Amplifier .............................................. 26  
Clock ............................................................................................ 26  
Voltage Reference ....................................................................... 26  
Data Outputs............................................................................... 26  
LFCSP Evaluation Board Bill of Materials (BOM) ................ 27  
LFCSP PCB Schematics............................................................. 28  
LFCSP PCB Layers..................................................................... 31  
Thermal Considerations............................................................ 37  
Outline Dimensions....................................................................... 38  
Ordering Guide .......................................................................... 38  
AC Specifications.............................................................................. 4  
Logic Specifications.......................................................................... 5  
Switching Specifications .................................................................. 6  
Timing Diagram ............................................................................... 7  
Absolute Maximum Ratings............................................................ 8  
Explanation of Test Levels........................................................... 8  
ESD Caution.................................................................................. 8  
Pin Configuration and Function Descriptions............................. 9  
Terminology .................................................................................... 11  
Typical Performance Characteristics ........................................... 13  
Equivalent Circuits......................................................................... 19  
Theory of Operation ...................................................................... 20  
Analog Input ............................................................................... 20  
Clock Input and Considerations .............................................. 22  
Power Dissipation and Standby Mode..................................... 22  
Digital Outputs ........................................................................... 22  
REVISION HISTORY  
6/05—Rev. 0 to Rev. A  
10/04—Revision 0: Initial Version  
Added 65 and 80 Speed Grades ........................................Universal  
Changes to Table 1............................................................................ 3  
Changes to Table 2............................................................................ 4  
Changes to Table 3............................................................................ 5  
Changes to Table 4............................................................................ 6  
Changes to Table 7............................................................................ 9  
Added Figure 8................................................................................ 13  
Added Figure 11, Figure 13, and Figure 14................................. 14  
Changes to Figure 36...................................................................... 18  
Changes to Table 12........................................................................ 27  
Changes to Figure 51...................................................................... 28  
Changes to Figure 52...................................................................... 29  
Changes to Figure 53...................................................................... 30  
Changes to Figure 54...................................................................... 31  
Changes to Figure 55...................................................................... 32  
Changes to Figure 56...................................................................... 33  
Changes to Figure 57...................................................................... 34  
Changes to Figure 58...................................................................... 35  
Changes to Figure 59...................................................................... 36  
Changes to Ordering Guide .......................................................... 38  
Rev. A | Page 2 of 40  
AD9216  
SPECIFICATIONS  
DC SPECIFICATIONS  
AVDD = 3.0 V, DRVDD = 2.5 V, maximum sample rate, CLK_A = CLK_B; AIN = −0.5 dBFS differential input, 1.0 V internal reference,  
TMIN to TMAX, DCS enabled, unless otherwise noted.  
Table 1.  
Temp Test  
AD9216BCPZ-65  
AD9216BCPZ-80  
AD9216BCPZ-105  
Typ Max  
Parameter  
Level Min Typ Max Min Typ Max Min  
Unit  
RESOLUTION  
Full  
VI  
10  
10  
10  
Bits  
ACCURACY  
No Missing Codes  
Offset Error  
Full  
Full  
25°C  
Full  
25°C  
Full  
VI  
VI  
VI  
IV  
I
Guaranteed  
Guaranteed  
Guaranteed  
-1.9 ±0.3 +1.9 -1.9 ±0.3 +1.9 −2.2 ±0.3 +2.2  
-1.6 ±0.4 +1.6 -1.6 ±0.4 +1.6 −1.6 ±0.4 +1.6  
-1.0 ±0.3 +1.0 -1.0 ±0.4 +1.0 −1.0 ±0.5 +1.0  
-0.9 ±0.3 +0.9 -0.9 ±0.4 +0.9 −1.0 ±0.5 +1.0  
-1.4 ±0.5 +1.4 -1.6 ±0.5 +1.6 −2.5 ±1.0 +2.5  
-1.0 ±0.5 +1.0 -1.1 ±0.5 +1.1 −1.5 ±1.0 +1.5  
% FSR  
% FSR  
LSB  
LSB  
LSB  
Gain Error1  
Differential Nonlinearity (DNL)2  
Integral Nonlinearity (INL)2  
IV  
I
25°C  
LSB  
TEMPERATURE DRIFT  
Offset Error  
Full  
Full  
Full  
V
V
V
±10  
±±5  
±15  
±10  
±±5  
±15  
±10  
±±5  
±15  
µV/°C  
ppm/°C  
ppm/°C  
Gain Error1  
Reference Voltage  
INTERNAL VOLTAGE REFERENCE  
Output Voltage Error  
Load Regulation @ 1.0 mA  
INPUT REFERRED NOISE  
Input Span = 2.0 V  
ANALOG INPUT  
Full  
25°C  
VI  
V
±2  
1.0  
±35  
±2  
1.0  
±35  
±2  
1.0  
±35  
mV  
mV  
25°C  
V
0.5  
0.5  
0.5  
LSB rms  
Input Span, VREF = 1.0 V  
Input Capacitance3  
REFERENCE INPUT RESISTANCE  
POWER SUPPLIES  
Supply Voltages  
AVDD  
Full  
25°C  
25°C  
IV  
V
2
2
±
2
2
±
2
2
±
V p-p  
pF  
V
kΩ  
Full  
Full  
IV  
IV  
2.±  
3.0  
2.25 2.5  
3.3  
3.3  
2.±  
3.0  
2.25 2.5  
3.3  
3.3  
2.±  
2.25  
3.0  
2.5  
3.3  
3.3  
V
V
DRVDD  
Supply Current  
IAVDD4  
Full  
Full  
25°C  
VI  
VI  
V
±2  
15  
±0.1  
80  
±8  
18  
±0.1  
85  
100 110  
24  
±0.1  
mA  
mA  
% FSR  
IDRVDD4  
PSRR  
POWER CONSUMPTION  
4
PAVDD  
25°C  
25°C  
25°C  
I
V
V
216 240  
38  
3.0  
234 255  
45  
3.0  
300 330  
60  
3.0  
mW  
mW  
mW  
4
PDRVDD  
Standby Power5  
MATCHING CHARACTERISTICS  
Offset Matching Error6  
Gain Matching Error (Shared Reference  
Mode)  
25°C  
25°C  
I
I
-2.6 ±0.2 +2.6 -2.6 ±0.2 +2.6 −3.5 ±0.3 +3.5  
-0.4 ±0.1 +0.4 -0.4 ±0.1 +0.4 −0.6 ±0.1 +0.6  
% FSR  
% FSR  
Gain Matching Error (Nonshared  
Reference Mode)  
25°C  
I
-1.6 ±0.1 +1.6 -1.6 ±0.1 +1.6 −1.6 ±0.3 +1.6  
% FSR  
1 Gain error and gain temperature coefficient are based on the ADC only (with a fixed 1.0 V external reference).  
2 Measured with low frequency ramp at maximum clock rate.  
3 Input capacitance refers to the effective capacitance between one differential input pin and AVSS. Refer to Figure 3± for the equivalent analog input structure.  
4 Measured with low frequency analog input at maximum clock rate with approximately 5 pF loading on each output bit.  
5 Standby power is measured with the CLK_A and CLK_B pins inactive (that is, set to AVDD or AGND).  
6 Both shared reference mode and nonshared reference mode.  
Rev. A | Page 3 of 40  
 
 
AD9216  
AC SPECIFICATIONS  
AVDD = 3.0 V, DRVDD = 2.5 V, maximum sample rate, CLK_A = CLK_B; AIN = −0.5 dBFS differential input, 1.0 V internal reference,  
TMIN to TMAX, DCS enabled, unless otherwise noted.  
Table 2.  
AD9216BCPZ-65  
AD9216BCPZ-80  
AD9216BCPZ-105  
Parameter  
Temp Test  
Level  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min Typ  
Max  
Unit  
SIGNAL-TO-NOISE RATIO (SNR)  
fINPUT = 2.4 MHz  
25°C  
Full  
25°C  
25°C  
25°C  
V
IV  
I
V
V
58.6  
58.4  
58.4  
58.0  
5±.5  
58.5  
58.1  
58.5  
58.0  
5±.5  
58.0  
54.8 5±.6  
56.4 5±.6  
5±.4  
dB  
dB  
dB  
dB  
dB  
fINPUT = Nyquist1  
56.6  
5±.2  
55.9  
56.4  
fINPUT = 69 MHz  
fINPUT = 100 MHz  
5±.3  
SIGNAL-TO-NOISE AND DISTORTION  
RATIO (SINAD)  
fINPUT = 2.4 MHz  
fINPUT = Nyquist1  
25°C  
Full  
25°C  
25°C  
25°C  
V
IV  
I
V
V
58.5  
58.3  
58.3  
5±.5  
5±.0  
58.2  
58.0  
58.0  
5±.5  
5±.0  
5±.8  
53.4 5±.4  
56.1 5±.4  
56.8  
dB  
dB  
dB  
dB  
dB  
56.4  
5±.0  
55.4  
56.2  
fINPUT = 69 MHz  
fINPUT = 100 MHz  
56.±  
EFFECTIVE NUMBER OF BITS (ENOB)  
fINPUT = 2.4 MHz  
25°C  
Full  
25°C  
25°C  
25°C  
V
IV  
I
V
V
9.4  
9.4  
9.4  
9.3  
9.3  
9.4  
9.3  
9.3  
9.3  
9.3  
9.3  
Bits  
Bits  
Bits  
Bits  
Bits  
fINPUT = Nyquist1  
9.1  
9.2  
8.9  
9.0  
8.6  
9.1  
9.3  
9.3  
9.2  
9.2  
fINPUT = 69 MHz  
fINPUT = 100 MHz  
WORST HARMONIC (SECOND OR  
THIRD)  
fINPUT = 2.4 MHz  
fINPUT = Nyquist1  
Full  
Full  
25°C  
25°C  
25°C  
IV  
IV  
I
V
V
−82.0  
−81.0  
−±6.0  
−±4.0 −60.0 dBc  
−±4.0 −66.5 dBc  
−±4.0  
−±4.0  
dBc  
−±9.5 -65.1  
−±9.5 -6±.8  
−±9.0  
−±±.0 -64.1  
−±±.0 -6±.2  
−±6.5  
fINPUT = 69 MHz  
fINPUT = 100 MHz  
dBc  
dBc  
−±8.5  
−±6.0  
WORST OTHER (EXCLUDING  
SECOND OR THIRD)  
fINPUT = 2.4 MHz  
fINPUT = Nyquist1  
Full  
Full  
25°C  
25°C  
25°C  
IV  
IV  
I
V
V
−82.5  
−81.5  
−±6.5  
−±5.0 −62.0 dBc  
−±5.0 −6±.5 dBc  
−±5.0  
−±5.0  
dBc  
−80.5 -65.8  
−80.5 -68.±  
−80.0  
−±8.0 -64.5  
−±8.0 -6±.8  
−±±.5  
fINPUT = 69 MHz  
fINPUT = 100 MHz  
dBc  
dBc  
−±9.5  
−±±.0  
SPURIOUS-FREE DYNAMIC RANGE  
(SFDR)  
fINPUT = 2.4 MHz  
fINPUT = Nyquist1  
Full  
Full  
25°C  
25°C  
25°C  
IV  
IV  
I
V
V
82.0  
±9.5  
±9.5  
±9.0  
±8.5  
81.0  
±±.0  
±±.0  
±6.5  
±6.0  
±6.0  
dBc  
dBc  
dBc  
dBc  
dBc  
65.1  
6±.8  
64.1  
6±.2  
60.0 ±4.0  
66.5 ±4.0  
±4.0  
fINPUT = 69 MHz  
fINPUT = 100 MHz  
±4.0  
TWO-TONE SFDR (AIN = −± dBFS)  
fIN1 = 69.1 MHz, fIN2 = ±0.1 MHz  
fIN1 = 100.1 MHz, fIN2 = 101.1 MHz  
ANALOG BANDWIDTH  
CROSSTALK  
25°C  
25°C  
25°C  
25°C  
V
V
V
V
±1.0  
±0.0  
300  
±0.0  
69.0  
300  
±0.0  
69.0  
300  
dBc  
dBc  
MHz  
dB  
−80.0  
−80.0  
−80.0  
1 Nyquist = approximately 32 MHz, 40MHz, 50MHz for the −65, −80, and −105 grades respectively  
Rev. A | Page 4 of 40  
 
 
AD9216  
LOGIC SPECIFICATIONS  
AVDD = 3.0 V, DRVDD = 2.5 V, maximum sample rate, CLK_A = CLK_B; AIN = −0.5 dBFS differential input, 1.0 V internal reference,  
TMIN to TMAX, DCS enabled, unless otherwise noted.  
Table 3.  
AD9216BCPZ-65  
AD9216BCPZ-80  
AD9216BCPZ-105  
Parameter  
Temp Test  
Level  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ Max Unit  
LOGIC INPUTS  
High Level Input  
Voltage  
Low Level Input  
Voltage  
High Level Input  
Current  
Low Level Input  
Current  
Input Capacitance  
LOGIC OUTPUTS1  
DRVDD = 2.5 V  
Full  
Full  
Full  
Full  
Full  
IV  
IV  
IV  
IV  
IV  
2.0  
2.0  
2.0  
V
V
0.8  
0.8  
0.8  
−10  
−10  
+10  
+10  
−10  
−10  
+10  
+10  
−10  
−10  
+10 µA  
+10 µA  
pF  
2
2
2
High Level Output  
Voltage  
Low Level Output  
Voltage  
Full  
Full  
IV  
IV  
2.45  
2.45  
2.45  
V
0.05  
0.05  
0.05  
V
1 Output voltage levels measured with 5 pF load on each output.  
Rev. A | Page 5 of 40  
 
 
AD9216  
SWITCHING SPECIFICATIONS  
AVDD = 3.0 V, DRVDD = 2.5 V, maximum sample rate, CLK_A = CLK_B; AIN = −0.5 dBFS differential input, 1.0 V internal reference,  
TMIN to TMAX, DCS enabled, unless otherwise noted.  
Table 4.  
AD9216BCPZ-65  
AD9216BCPZ-80  
AD9216BCPZ-105  
Parameter  
Temp Test Level  
Min Typ Max Min Typ Max Min  
Typ  
Max Unit  
SWITCHING PERFORMANCE  
Maximum Conversion Rate  
Minimum Conversion Rate  
CLK Period  
CLK Pulse Width High  
CLK Pulse Width Low  
OUTPUT PARAMETERS1  
Output Propagation Delay2 (tPD)  
Valid Time3 (tV)  
Output Rise Time (10% to 90%)  
Output Fall Time (10% to 90%)  
Output Enable Time4  
Output Disable Time4  
Pipeline Delay (Latency)  
APERTURE  
Full  
Full  
Full  
Full  
Full  
VI  
IV  
VI  
VI  
VI  
65  
80  
105  
MSPS  
MSPS  
nS  
nS  
nS  
10  
10  
10  
15.4  
4.6  
4.6  
12.5  
4.4  
4.4  
9.5  
3.8  
3.8  
25°C  
25°C  
25°C  
25°C  
Full  
I
I
4.5  
6.4  
4.5  
6.4  
4.5  
6.4  
nS  
2.0  
2.0  
2.0  
V
V
IV  
IV  
IV  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
nS  
nS  
Cycle  
Cycle  
Cycle  
1
1
1
1
1
1
Full  
Full  
6
6
6
Aperture Delay (tA)  
Aperture Uncertainty (tJ)  
Wake-Up Time5  
25°C  
25°C  
25°C  
25°C  
V
V
V
V
1.5  
0.5  
±
1.5  
0.5  
±
1.5  
0.5  
±
nS  
pS rms  
ms  
OUT-OF-RANGE RECOVERY TIME  
1
1
1
Cycle  
1
CLOAD equals 5 pF maximum for all output switching parameters.  
Output delay is measured from clock 50% transition to data 50% transition.  
Valid time is approximately equal to the minimum output propagation delay.  
Output enable time is OEB_A, OEB_B falling to respective channel outputs coming out of high impedance. Output disable time is OEB_A, OEB_B rising to respective  
channel outputs going into high impedance.  
2
3
4
5
Wake-up time is dependent on value of decoupling capacitors; typical values shown for 0.1 µF and 10 µF capacitors on REFT and REFB.  
Rev. A | Page 6 of 40  
 
 
AD9216  
TIMING DIAGRAM  
N+1  
N
N+2  
N+8  
N–1  
N+3  
tA  
N+7  
ANALOG  
INPUT  
N+4  
N+6  
N+5  
CLK  
DATA  
OUT  
N–8  
N–7  
N–6  
N–5  
N–4  
N–3  
N–2  
N–1  
N
N+1  
tPD  
Figure 2.  
Rev. A | Page ± of 40  
 
 
AD9216  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only and functional operation of the device at these or  
any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
ELECTRICAL  
AVDD  
To  
Rating  
AGND  
−0.3 V to  
+3.9 V  
DRVDD  
DRGND −0.3 V to  
+3.9 V  
AGND  
DRGND −0.3 V to  
+0.3 V  
EXPLANATION OF TEST LEVELS  
Table 6.  
AVDD  
DRVDD −0.3 V to  
+3.9 V  
Test Level  
Description  
Digital Outputs  
DRGND −0.3 V to  
DRVDD +  
I
100% production tested.  
II  
100% production tested at 25°C and sample  
tested at specified temperatures.  
0.3 V  
CLK_A, CLK_B, DCS, DFS, MUX_SELECT, AGND  
OEB_A, OEB_B, SHARED_REF,  
PDWN_A, PDWN_B  
−0.3 V to  
AVDD +  
0.3 V  
−0.3 V to  
AVDD +  
0.3 V  
−0.3 V to  
AVDD +  
0.3 V  
III  
Sample tested only.  
IV  
Parameter is guaranteed by design and  
characterization testing.  
AGND  
VIN_A, VIN+_A, VIN_B, VIN+_B  
V
Parameter is a typical value only.  
VI  
100% production tested at 25°C; guaranteed by  
design and characterization testing for industrial  
temperature range; 100% production tested at  
temperature extremes for military devices.  
REFT_A, REFB_A,VREF, REFT_B, REFB_B, AGND  
SENSE  
ENVIRONMENTAL1  
Operating Temperature  
−40°C to  
+85°C  
Junction Temperature  
Lead Temperature (10 sec)  
Storage Temperature  
150°C  
300°C  
−65°C to  
+150°C  
1 Typical thermal impedances (64-lead LFCSP); θJA = 26.4°C/W. These  
measurements were taken on a 4-layer board (with thermal via array) in still  
air, in accordance with EIA/JESD51-±.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. A | Page 8 of 40  
 
 
AD9216  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PIN 1  
INDICATOR  
AGND  
VIN+_A  
VIN–_A  
AGND  
1
2
3
4
5
6
7
8
9
48 D2_A  
47 D1_A  
46 D0_A (LSB)  
45 DNC  
44 DNC  
43 DNC  
AVDD  
REFT_A  
REFB_A  
VREF  
42 DNC  
AD9216  
TOP VIEW  
(Not to Scale)  
41 DRVDD  
40 DRGND  
39 DNC  
38 D9_B (MSB)  
37 D8_B  
36 D7_B  
35 D6_B  
34 D5_B  
33 D4_B  
SENSE  
REFB_B 10  
REFT_B 11  
AVDD 12  
AGND 13  
VIN–_B 14  
VIN+_B 15  
AGND 16  
DNC =  
DO NOT CONNECT  
Figure 3. Pin Configuration  
Table 7. Pin Function Descriptions  
Pin No.  
Mnemonic  
AGND1  
VIN+_A  
VIN−_A  
AVDD  
Description  
1, 4, 13, 16  
2
3
Analog Ground.  
Analog Input Pin (+) for Channel A.  
Analog Input Pin (−) for Channel A.  
Analog Power Supply.  
5, 12, 1±, 64  
6
±
8
9
REFT_A  
REFB_A  
VREF  
Differential Reference (+) for Channel A.  
Differential Reference (−) for Channel A.  
Voltage Reference Input/Output.  
Reference Mode Selection.  
SENSE  
10  
11  
14  
15  
18  
19  
20  
21  
REFB_B  
REFT_B  
VIN−_B  
VIN+_B  
CLK_B  
DCS  
DFS  
PDWN_B  
Differential Reference (−) for Channel B.  
Differential Reference (+) for Channel B.  
Analog Input Pin (−) for Channel B.  
Analog Input Pin (+) for Channel B.  
Clock Input Pin for Channel B.  
Duty Cycle Stabilizer (DCS) Mode Pin (Active High).  
Data Output Format Select Pin. Low for offset binary; high for twos complement.  
Power-Down Function Selection for Channel B.  
Logic 0 enables Channel B.  
Logic 1 powers down Channel B. (Outputs static, not High-Z.)  
Output Enable for Channel B.  
Logic 0 enables Data Bus B.  
Logic 1 sets outputs to High-Z.  
Do Not Connect Pins. Should be left floating.  
22  
OEB_B  
DNC  
23 to 26, 39,  
42 to 45, 58  
2±, 30 to 38  
D0_B (LSB) to  
D9_B (MSB)  
DRGND  
DRVDD  
Channel B Data Output Bits.  
Digital Output Ground.  
Digital Output Driver Supply. Must be decoupled to DRGND with a minimum 0.1 µF capacitor.  
Recommended decoupling is 0.1 µF capacitor in parallel with 10 µF.  
28, 40, 53  
29, 41, 52  
Rev. A | Page 9 of 40  
 
AD9216  
Pin No.  
Mnemonic  
Description  
46 to 51,  
54 to 5±  
D0_A (LSB) to  
D9_A (MSB)  
Channel A Data Output Bits.  
59  
60  
OEB_A  
Output Enable for Channel A.  
Logic 0 enables Data Bus A.  
Logic 1 sets outputs to High-Z.  
Power-Down Function Selection for Channel A.  
Logic 0 enables Channel A.  
PDWN_A  
Logic 1 powers down Channel A. (Outputs static, not High-Z.)  
Data Multiplexed Mode. (See Data Format section for how to enable.)  
Shared Reference Control Bit. Low for independent reference mode; high for shared reference mode.  
Clock Input Pin for Channel A.  
61  
62  
63  
MUX_SELECT  
SHARED_REF  
CLK_A  
1 It is recommended that all ground pins (AGND and DRGND) be tied to a common ground plane.  
Rev. A | Page 10 of 40  
AD9216  
TERMINOLOGY  
Analog Bandwidth  
Effective Number of Bits (ENOB)  
The analog input frequency at which the spectral power of the  
fundamental frequency (as determined by the FFT analysis) is  
reduced by 3 dB.  
The ENOB is calculated from the measured SINAD based on  
the equation (assuming full-scale input)  
SINADMEASURED 1.76 dB  
ENOB =  
6.02  
Aperture Delay  
The delay between the 50% point of the rising edge of the  
encode command and the instant the analog input is sampled.  
Full-Scale Input Power  
Expressed in dBm and computed using the following equation.  
Aperture Uncertainty (Jitter)  
The sample-to-sample variation in aperture delay.  
2
V
rms  
FULL SCALE  
ZINPUT  
0.001  
PowerFULL SCALE =10 log  
Clock Pulse Width/Duty Cycle  
Pulse-width high is the minimum amount of time that the  
clock pulse should be left in a Logic 1 state to achieve rated  
performance; pulse-width low is the minimum time clock pulse  
should be left in a low state. At a given clock rate, these  
specifications define an acceptable clock duty cycle.  
Gain Error  
The difference between the measured and ideal full-scale input  
voltage range of the ADC.  
Crosstalk  
Harmonic Distortion, Second  
The ratio of the rms signal amplitude to the rms value of the  
second harmonic component, reported in dBc.  
Coupling onto one channel being driven by a low level (−40  
dBFS) signal when the adjacent interfering channel is driven by  
a full-scale signal.  
Harmonic Distortion, Third  
The ratio of the rms signal amplitude to the rms value of the  
third harmonic component, reported in dBc.  
Differential Analog Input Resistance, Differential Analog  
Input Capacitance, and Differential Analog Input  
Impedance  
The real and complex impedances measured at each analog  
input port. The resistance is measured statically and the  
capacitance and differential input impedances are measured  
with a network analyzer.  
Integral Nonlinearity  
The deviation of the transfer function from a reference line  
measured in fractions of 1 LSB using a best straight line  
determined by a least square curve fit.  
Differential Analog Input Voltage Range  
Minimum Conversion Rate  
The peak-to-peak differential voltage that must be applied to  
the converter to generate a full-scale response. Peak differential  
voltage is computed by observing the voltage on a single pin  
and subtracting the voltage from the other pin, which is 180°  
out of phase. Peak-to-peak differential is computed by rotating  
the inputs phase 180° and by taking the peak measurement  
again. The difference is then computed between both peak  
measurements.  
The encode rate at which the SNR of the lowest analog signal  
frequency drops by no more than 3 dB below the guaran-  
teed limit.  
Maximum Conversion Rate  
The encode rate at which parametric testing is performed.  
Output Propagation Delay  
The delay between a 50% crossing of the CLK rising edge and  
the time when all output data bits are within valid logic levels.  
Differential Nonlinearity  
The deviation of any code width from an ideal 1 LSB step.  
Rev. A | Page 11 of 40  
 
AD9216  
Noise (for Any Range within the ADC)  
Two-Tone Intermodulation Distortion Rejection  
This value includes both thermal and quantization noise.  
The ratio of the rms value of either input tone to the rms value  
of the worst third-order intermodulation product, in dBc.  
FSdBm SNRdBc SignaldBFS  
Vnoise  
=
Z × 0.001×10 ⎜  
10  
Two-Tone SFDR  
The ratio of the rms value of either input tone to the rms value  
of the peak spurious component. The peak spurious  
component may or may not be an IMD product. It also may be  
reported in dBc (that is, degrades as signal level is lowered) or  
in dBFS (that is, always relates back to converter full scale).  
where:  
Z is the input impedance.  
FS is the full scale of the device for the frequency in question.  
SNR is the value for the particular input level.  
Worst Other Spur  
The ratio of the rms signal amplitude to the rms value of the  
worst spurious component (excluding the second and third  
harmonic), reported in dBc.  
Signal is the signal level within the ADC reported in dB below  
full scale.  
Transient Response Time  
Power Supply Rejection Ratio  
The time it takes for the ADC to reacquire the analog input  
after a transient from 10% above negative full scale to 10%  
below positive full scale.  
The specification shows the maximum change in full scale  
from the value with the supply at the minimum limit to the  
value with the supply at its maximum limit.  
Out-of-Range Recovery Time  
Signal-to-Noise and Distortion (SINAD)  
The time it takes for the ADC to reacquire the analog input  
after a transient from 10% above positive full scale to 10% above  
negative full scale, or from 10% below negative full scale to 10%  
below positive full scale.  
The ratio of the rms signal amplitude (set 1 dB below full scale)  
to the rms value of the sum of all other spectral components,  
including harmonics, but excluding dc.  
Signal-to-Noise Ratio (without Harmonics)  
The ratio of the rms signal amplitude (set at 1 dB below  
full scale) to the rms value of the sum of all other spectral  
components, excluding the first seven harmonics and dc.  
Spurious-Free Dynamic Range (SFDR)  
The ratio of the rms signal amplitude to the rms value of  
the peak spurious spectral component. The peak spurious  
component may or may not be a harmonic. It also may be  
reported in dBc (that is, degrades as signal level is lowered)  
or dBFS (that is, always related back to converter full scale).  
Rev. A | Page 12 of 40  
AD9216  
TYPICAL PERFORMANCE CHARACTERISTICS  
AVDD = 3.0 V, DRVDD = 2.5 V, T = 25°C, AIN differential drive, internal reference, DCS on, unless otherwise noted.  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
SNR = 57.8dB  
SINAD = 57.8dB  
H2 = –92.7dBc  
H3 = –80.3dBc  
SFDR = 78.2dBc  
70MHz ON CHANNEL A ACTIVE  
–20  
–40  
–60  
76MHz CROSSTALK FROM  
CHANNEL B  
–80  
–100  
–120  
0
10  
20  
30  
40  
50  
27  
28  
29  
(76)  
30  
31  
32  
33  
34  
35  
(70)  
36  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 4. FFT: fS = 105 MSPS, AIN = 10.3 MHz at −0.5 dBFS (−105 Grade)  
Figure 7. FFT: fS = 105 MSPS, AIN =70 MHz, 76 MHz (−105 Grade)  
(A Port FFT while Both A and B Ports Are Driven at −0.5 dBFS)  
0
0
SNR = 57.6dB  
SINAD = 57.4dB  
H2 = –84.1dBc  
H3 = –77.2dBc  
SFDR = 74dBc  
SNR = 56.9dB  
SINAD = 56.8dB  
H2 = –78.5dBc  
H3 = –80dBc  
SFDR = 78.3dBc  
70MHz ON  
CHANNEL A  
ACTIVE  
–20  
–40  
–20  
–40  
76MHz  
CROSSTALK  
FROM  
–60  
–60  
CHANNEL B  
–80  
–80  
–100  
–120  
–100  
–120  
0
10  
20  
30  
40  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 8. FFT: fS = 80 MSPS, AIN =70 MHz, 76 MHz (−80 Grade)  
Figure 5. FFT: fS = 105 MSPS, AIN = 70 MHz at −0.5 dBFS (−105 Grade)  
(A Port FFT while Both A and B Ports Are Driven at −0.5 dBFS)  
0
SNR = 56.8dB  
SINAD = 56.7dB  
H2 = –74dBc  
H3 = –84.3dBc  
SFDR = 74dBc  
0
SNR = 57.5dB  
70MHz ON  
CHANNEL A  
ACTIVE  
SINAD = 57.3dB  
H2 = –85.9dBc  
H3 = –74.4dBc  
SFDR = 72.4dBc  
–20  
–40  
–20  
–40  
76MHz  
CROSSTALK  
FROM  
–60  
–60  
CHANNEL B  
–80  
–80  
–100  
–120  
–100  
–120  
0
10  
20  
30  
40  
50  
0
5
10  
15  
20  
25  
30  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 9. FFT: fS = 65 MSPS, AIN =70 MHz, 76 MHz (−65 Grade)  
(A Port FFT while Both A and B Ports Are Driven at −0.5 dBFS)  
Figure 6. FFT: fS = 105 MSPS, AIN = 100 MHz at −0.5 dBFS (−105 Grade)  
Rev. A | Page 13 of 40  
 
AD9216  
100  
90  
80  
70  
60  
100  
90  
80  
70  
60  
50  
H3  
H2  
H2  
H3  
SFDR  
SFDR  
SNR  
SNR  
SINAD  
50  
0
SINAD  
100  
ANALOG INPUT FREQUENCY (MHz)  
20  
40  
60  
80  
100  
120  
0
50  
150  
200  
250  
300  
CLOCK FREQUENCY (MHz)  
Figure 13. Analog Input Frequency Sweep, AIN = −0.5 dBFS,  
fS = 80 MSPS (−80 Grade)  
Figure 10. SNR, SINAD, H2, H3, SFDR vs. Sample Clock Frequency  
AIN = 70 MHz at −0.5 dBFS (−105 Grade)  
100  
100  
H2  
90  
90  
80  
70  
60  
50  
H2  
H3  
H3  
80  
70  
SFDR  
SNR  
SFDR  
SNR  
60  
SINAD  
40 50  
CLOCK FREQUENCY (MHz)  
SINAD  
50  
0
10  
20  
30  
60  
70  
80  
90  
100  
0
50  
100  
150  
200  
250  
300  
ANALOG INPUT FREQUENCY (MHz)  
Figure 14. Analog Input Frequency Sweep, AIN = −0.5 dBFS,  
fS = 65 MSPS (−65 Grade)  
Figure 11. SNR, SINAD, H2, H3, SFDR vs. Sample Clock Frequency,  
AIN = 70 MHz at −0.5 dBFS (−65/80 Grade)  
100  
90  
80  
90  
70  
H2  
SFDR dBFS  
60  
80  
H3  
50  
SFDR dBc  
40  
70  
65dB REF. LINE  
30  
20  
SFDR  
SNR  
60  
50  
SNR dB  
10  
SINAD  
200  
ANALOG INPUT FREQUENCY (MHz)  
0
0
50  
100  
150  
250  
300  
–60  
–50  
–40  
–30  
–20  
–10  
0
INPUT LEVEL (dBFS)  
Figure 12. Analog Input Frequency Sweep, AIN = −0.5 dBFS,  
fS = 105 MSPS (−105 Grade)  
Figure 15. SFDR vs. Analog Input Level,  
AIN = 70 MHz, fS = 105 MSPS (−105 Grade)  
Rev. A | Page 14 of 40  
AD9216  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
TWO-TONE SFDR dBFS  
TWO-TONE SFDR dBc  
SFDR dBFS  
SFDR dBc  
70dB REF LINE  
65dB REF. LINE  
SNR dB  
–60  
–50  
–40  
–30  
–20  
–10  
0
–60  
–50  
–40  
–30  
–20  
–10  
0
TWO-TONE ANALOG INPUT LEVEL (dBFS)  
INPUT LEVEL (dBFS)  
Figure 16. SFDR vs. Analog Input Level,  
AIN = 70 MHz, fS = 80 MSPS (−80 Grade)  
Figure 19. Two-Tone IMD Performance vs. Input Drive Level  
(69.1 MHz and 70.1 MHz; fS = 105 MSPS (−105 Grade); F1, F2 Levels Equal)  
90  
90  
80  
SFDR dBFS  
80  
70  
60  
50  
40  
30  
20  
10  
0
70  
SFDR dBFS  
60  
SFDR dBc  
50  
SFDR dBc  
75dB REF. LINE  
40  
30  
20  
10  
0
SNR dB  
65dB REF. LINE  
–60  
–50  
–40  
–30  
–20  
–10  
0
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
INPUT LEVEL (dBFS)  
TWO-TONE ANALOG INPUT LEVEL (dBFS)  
Figure 17. SFDR vs. Analog Input Level,  
AIN = 70 MHz, fS = 65 MSPS (−65 Grade )  
Figure 20. Two-Tone IMD Performance vs. Input Drive Level  
(69.1 MHz and 70.1 MHz; fS = 80 MSPS (−80 Grade); F1, F2 Levels Equal)  
0
90  
–10  
80  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
SFDR dBFS  
70  
60  
SFDR dBc  
50  
75dB REF. LINE  
40  
IMD = –69.9dBc  
30  
20  
10  
0
0
10  
20  
30  
40  
50  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
TWO-TONE ANALOG INPUT LEVEL (dBFS)  
INPUT FREQUENCY (MHz)  
Figure 21. Two-Tone IMD Performance vs. Input Drive Level  
(69.1 MHz and 70.1 MHz; fS = 65 MSPS (−65 Grade); F1, F2 Levels Equal)  
Figure 18. Two-Tone IMD Performance  
F1, F2 = 69.1 MHz, 70.1 MHz at −7 dBFS, 105 MSPS (−105 Grade)  
Rev. A | Page 15 of 40  
AD9216  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
75  
70  
65  
60  
55  
50  
45  
40  
SFDR  
TWO-TONE SFDR dBFS  
TWO-TONE SFDR dBc  
SNR  
70dB REF LINE  
0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95 1.05 1.15 1.25  
–60  
–50  
–40  
–30  
–20  
–10  
0
TWO-TONE ANALOG INPUT LEVEL (dBFS)  
VREF (V)  
Figure 22. Two-Tone IMD Performance vs. Input Drive Level  
(100.1 MHz and 101.1 MHz; fS = 105 MSPS (−105 Grade); F1, F2 Levels Equal)  
Figure 25. SNR, SFDR vs. External VREF (Full Scale = 2 × VREF)  
AIN = 70.3 MHz at −0.5 dBFS, 105 MSPS (−105 Grade)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
AVDD CURRENT (–105 GRADE)  
1.0  
0.8  
0.6  
0.4  
AVDD CURRENT (–65/80 GRADE)  
0.2  
EXTERNAL REFERENCE MODE  
0
–0.2  
–0.4  
DRVDD CURRENT (ALL GRADES)  
–0.6  
INTERNAL REFERENCE MODE  
–0.8  
–1.0  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
–40  
–20  
0
20  
40  
60  
80  
SAMPLE CLOCK RATE (MSPS)  
TEMPERATURE (°C)  
Figure 23. IAVDD, IDRVDD vs. Sample Clock Frequency,  
Figure 26. Typical Gain Error Variation vs. Temperature, (−105 Grade)  
AIN = 70 MHz at 0.5 dBFS, 105 MSPS (Normalized to 25°C)  
C
LOAD = 5 pF, AIN = 70 MHz @ −0.5 dBFS  
80  
80  
70  
60  
50  
40  
30  
20  
SFDR DCS ON  
75  
SFDR  
SFDR DCS  
OFF  
70  
65  
SNR DCS ON  
SNR DCS OFF  
60  
SNR  
SINAD  
55  
–40  
–20  
0
20  
40  
60  
80  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
TEMPERATURE (°C)  
POSITIVE DUTY CYCLE (%)  
Figure 27. SNR, SINAD, SFDR vs. Temperature, (−105 Grade)  
AIN = 70 MHz at −0.5 dBFS, 105 MSPS, Internal Reference Mode  
Figure 24. SNR, SFDR vs. Positive Duty Cycle DCS Enabled, Disabled;  
AIN = 70 MHz at −0.5 dBFS, 105 MSPS (−105 Grade)  
Rev. A | Page 16 of 40  
 
AD9216  
80  
75  
70  
65  
60  
55  
80  
75  
70  
65  
60  
55  
SFDR  
SFDR  
SNR  
SNR  
SINAD  
–20  
SINAD  
3.0  
AVDD (V)  
2.7  
2.8  
2.9  
3.1  
3.2  
3.3  
–40  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
Figure 28. SNR, SINAD, SFDR vs. Temperature, (−105 Grade)  
AIN = 70 MHz at −0.5 dBFS, 105 MSPS , External Reference Mode  
Figure 31. SNR, SINAD, SFDR vs. AVDD, AIN = 70 MHz at −0.5 dBFS, 105 MSPS  
(−105 Grade)  
80  
80  
SFDR  
SFDR  
75  
70  
65  
60  
55  
75  
70  
65  
SNR  
60  
SNR  
SINAD  
SINAD  
60  
55  
–40  
–20  
0
20  
40  
80  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
TEMPERATURE (°C)  
AVDD (V)  
Figure 29. SNR, SINAD, SFDR vs. Temperature, (-80 Grade)  
AIN = 70 MHz at −0.5 dBFS, 80 MSPS, Internal Reference Mode  
Figure 32. SNR, SINAD, SFDR vs. AVDD, AIN = 70 MHz at −0.5 dBFS, 80 MSPS  
(−80 Grade)  
85  
85  
SFDR  
80  
80  
SFDR  
75  
70  
65  
75  
70  
65  
SNR  
SNR  
60  
60  
SINAD  
SINAD  
60  
55  
55  
–40  
–20  
0
20  
40  
80  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
TEMPERATURE (°C)  
AVDD (V)  
Figure 30. SNR, SINAD, SFDR vs. Temperature, (-65 Grade)  
IN = 70 MHz at −0.5 dBFS, 65 MSPS,, Internal Reference Mode  
Figure 33. SNR, SINAD, SFDR vs. AVDD, AIN = 70 MHz at −0.5 dBFS, 65MSPS  
(−65 Grade)  
A
Rev. A | Page 1± of 40  
AD9216  
2.0  
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
1.5  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
0
200  
400  
600  
800  
1000  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
CODE  
Figure 36. Typical Propagation Delay vs. Temperature ( All Speed Grades)  
Figure 34. Typical DNL Plot, AIN = 10.3 MHz at −0.5 dBFS, 105 MSPS  
(−105 Grade)  
2.0  
1.5  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
0
200  
400  
600  
800  
1000  
CODE  
Figure 35. Typical INL Plot, AIN = 10.3 MHz at −0.5 dBFS, 105 MSPS  
(−105 Grade)  
Rev. A | Page 18 of 40  
AD9216  
EQUIVALENT CIRCUITS  
AVDD  
AVDD  
VIN+_A, VIN–_A,  
VIN+_B, VIN–_B  
PDWN  
30k  
Figure 37. Equivalent Analog Input  
Figure 39. Power-Down Input  
AVDD  
DRVDD  
CLK_A, CLK_B  
DCS, DFS,  
MUX_SELECT,  
SHARED_REF  
Figure 40. Digital Outputs  
Figure 38. Equivalent Clock, Digital Inputs Circuit  
Rev. A | Page 19 of 40  
 
 
AD9216  
THEORY OF OPERATION  
The AD9216 consists of two high performance ADCs that are  
based on the AD9215 converter core. The dual ADC paths are  
independent, except for a shared internal band gap reference  
source, VREF. Each of the ADC paths consists of a proprietary  
front end SHA followed by a pipelined, switched-capacitor ADC.  
The pipelined ADC is divided into three sections, consisting of  
a sample-and-hold amplifier, followed by seven 1.5-bit stages,  
and a final 3-bit flash. Each stage provides sufficient overlap to  
correct for flash errors in the preceding stages. The quantized  
outputs from each stage are combined through the digital  
correction logic block into a final 10-bit result. The pipelined  
architecture permits the first stage to operate on a new input  
sample, while the remaining stages operate on preceding  
samples. Sampling occurs on the rising edge of the respec-  
tive clock.  
This passive network creates a low-pass filter at the ADCs  
input; therefore, the precise values are dependant on the  
application. In IF under-sampling applications, any shunt  
capacitors should be removed. In combination with the driv-  
ing source impedance, they would limit the input bandwidth.  
For best dynamic performance, the source impedances driving  
VIN+ and VIN− should be matched, so the common-mode  
settling errors are symmetrical. These errors are reduced by the  
common-mode rejection of the ADC.  
H
T
T
0.5pF  
0.5pF  
VIN+  
C
PAR  
T
Each stage of the pipeline, excluding the last, consists of a low  
resolution flash ADC and a residual multiplier to drive the next  
stage of the pipeline. The residual multiplier uses the flash  
ADC output to control a switched capacitor digital-to-analog  
converter (DAC) of the same resolution. The DAC output is  
subtracted from the stages input signal and the residual is  
amplified (multiplied) to drive the next pipeline stage. The  
residual multiplier stage is also called a multiplying DAC  
(MDAC). One bit of redundancy is used in each one of the  
stages to facilitate digital correction of flash errors. The last  
stage simply consists of a flash ADC.  
VIN  
C
PAR  
T
H
Figure 41. Switched-Capacitor Input  
An internal differential reference buffer creates positive and  
negative reference voltages, REFT and REFB, respectively, that  
define the span of the ADC core. The output common-mode  
of the reference buffer is set to midsupply, and the REFT and  
REFB voltages and span are defined as:  
The input stage contains a differential SHA that can be config-  
ured as ac- or dc-coupled in differential or single-ended modes.  
The output-staging block aligns the data, carries out the error  
correction, and passes the data to the output buffers. The output  
buffers are powered from a separate supply, allowing  
adjustment of the output voltage swing.  
REFT = 1/2 (AVDD + VREF)  
REFB = 1/2 (AVDD VREF)  
Span = 2 × (REFT REFB) = 2 × VREF  
It can be seen from the equations above that the REFT and  
REFB voltages are symmetrical about the midsupply voltage and,  
by definition, the input span is twice the value of the VREF voltage.  
ANALOG INPUT  
The analog input to the AD9216 is a differential switched-  
capacitor SHA that has been designed for optimum perform-  
ance while processing a differential input signal. The SHA  
input accepts inputs over a wide common-mode range. An  
input common-mode voltage of midsupply is recommended  
to maintain optimal performance.  
The SHA may be driven from a source that keeps the signal  
peaks within the allowable range for the selected reference  
voltage. The minimum and maximum common-mode input  
levels are defined as  
VCMMIN = VREF/2  
The SHA input is a differential switched-capacitor circuit.  
In Figure 41, the clock signal alternatively switches the SHA  
between sample mode and hold mode. When the SHA is  
switched into sample mode, the signal source must be capable  
of charging the sample capacitors and settling within one-half  
of a clock cycle. A small resistor in series with each input can  
help reduce the peak transient current required from the output  
stage of the driving source. Also, a small shunt capacitor can be  
placed across the inputs to provide dynamic charging currents.  
VCMMAX = (AVDD + VREF)/2  
The minimum common-mode input level allows the AD9216  
to accommodate ground-referenced inputs. Although optimum  
performance is achieved with a differential input, a single-ended  
source may be driven into VIN+ or VIN−. In this configuration,  
one input accepts the signal, while the opposite input should be  
set to midscale by connecting it to an appropriate reference.  
Rev. A | Page 20 of 40  
 
 
AD9216  
For example, a 2 V p-p signal may be applied to VIN+, while a  
1 V reference is applied to VIN−. The AD9216 then accepts an  
input signal varying between 2 V and 0 V. In the single-ended  
configuration, distortion performance may degrade signifi-  
cantly as compared to the differential case. However, the effect  
is less noticeable at lower input frequencies.  
For dc-coupled applications, the AD8138, AD8139, or  
AD8351 can serve as a convenient ADC driver, depending on  
requirements. Figure 44 shows an example with the AD8138.  
The AD9216 PCB has an optional AD8139 on board, as shown  
in Figure 53. Note the AD8351 typically yields better perform-  
ance for frequencies greater than 30 MHz to 40 MHz.  
85  
49.9  
80  
499Ω  
2V p-p SFDR  
AVDD  
33Ω  
499Ω  
523Ω  
75  
70  
65  
60  
VIN+  
20pF  
33Ω  
AD9216  
AD8138  
1kΩ  
1kΩ  
VIN–  
AGND  
0.1µF  
499Ω  
Figure 44. Driving the ADC with the AD8138  
2V p-p SNR  
55  
50  
45  
40  
SENSE = GROUND  
0.25  
0.75  
1.25  
1.75  
2.25  
2.75  
ANALOG INPUT COMMON-MODE VOLTAGE (V)  
VIN+  
Figure 42. Input Common-Mode Voltage Sensitivity  
Differential Input Configurations  
FULL  
SCALE/2  
AVDD/2  
AVDD/2  
As previously detailed, optimum performance is achieved while  
driving the AD9216 in a differential input configuration. For  
baseband applications, the AD8138 differential driver provides  
excellent performance and a flexible interface to the ADC. The  
output common-mode voltage of the AD8138 is easily set to  
AVDD/2, and the driver can be configured in a Sallen-Key filter  
topology to provide band limiting of the input signal.  
VIN–  
DIGITAL OUT = ALL ONES  
DIGITAL OUT = ALL ZEROES  
Figure 45. Analog Input Full Scale (Full Scale = 2 V)  
At input frequencies in the second Nyquist zone and above, the  
performance of most amplifiers is not adequate to achieve the  
true performance of the AD9216. This is especially true in IF  
under-sampling applications where frequencies in the 70 MHz  
to 200 MHz range are being sampled. For these applications,  
differential transformer coupling is the recommended input  
configuration, as shown in Figure 43.  
Single-Ended Input Configuration  
A single-ended input may provide adequate performance in  
cost-sensitive applications. In this configuration, there is a  
degradation in SFDR and distortion performance due to the  
large input common-mode swing. However, if the source  
impedances on each input are matched, there should be little  
effect on SNR performance.  
AVDD  
50  
VIN_A  
10pF  
2V p-p  
49.9Ω  
AD9216  
50Ω  
VIN_B  
AGND  
10pF  
1kΩ  
1kΩ  
0.1µF  
Figure 43. Differential Transformer Coupling  
The signal characteristics must be considered when selecting a  
transformer. Most RF transformers saturate at frequencies  
below a few MHz, and excessive signal power can also cause  
core saturation, which leads to distortion.  
Rev. A | Page 21 of 40  
 
 
AD9216  
POWER DISSIPATION AND STANDBY MODE  
CLOCK INPUT AND CONSIDERATIONS  
The power dissipated by the AD9216 is proportional to its  
sampling rates. The digital (DRVDD) power dissipation is  
determined primarily by the strength of the digital drivers  
and the load on each output bit. The digital drive current can  
be calculated by  
Typical high speed ADCs use both clock edges to generate  
a variety of internal timing signals and, as a result, may be  
sensitive to clock duty cycle. Commonly, a 5% tolerance is  
required on the clock duty cycle to maintain dynamic  
performance characteristics.  
IDRVDD = VDRVDD × CLOAD × fCLOCK × N  
The AD9216 provides separate clock inputs for each channel.  
The optimum performance is achieved with the clocks operated  
at the same frequency and phase. Clocking the channels asyn-  
chronously may degrade performance significantly. In some  
applications, it is desirable to skew the clock timing of adjacent  
channels. The AD9216s separate clock inputs allow for clock  
timing skew (typically 1 ns) between the channels without  
significant performance degradation.  
where N is the number of bits changing, and CLOAD is the average  
load on the digital pins that changed.  
The analog circuitry is optimally biased, so each speed grade  
provides excellent performance while affording reduced power  
consumption. Each speed grade dissipates a baseline power at  
low sample rates that increases with clock frequency.  
The AD9216 contains two clock duty cycle stabilizers, one for  
each converter, that retime the nonsampling edge, providing an  
internal clock with a nominal 50% duty cycle. Faster input clock  
rates, where it becomes difficult to maintain 50% duty cycles,  
can benefit from using DCS, as a wide range of input clock duty  
cycles can be accommodated. Maintaining a 50% duty cycle  
clock is particularly important in high speed applications, when  
proper track-and-hold times for the converter are required to  
maintain high performance. The DCS can be enabled by tying  
the DCS pin high.  
Either channel of the AD9216 can be placed into standby mode  
independently by asserting the PWDN_A or PDWN_B pins.  
Time to go into or come out of standby mode is 5 cycles maxi-  
mum when only one channel is being powered down. When both  
channels are powered down, VREF goes to ground, resulting in a  
wake-up time of ~7 ms dependent on decoupling capacitor  
values.  
It is recommended that the input clock(s) and analog input(s)  
remain static during either independent or total standby, which  
results in a typical power consumption of 3 mW for the ADC.  
If the clock inputs remain active while in total standby mode,  
typical power dissipation of 10 mW results.  
The duty cycle stabilizer uses a delay-locked loop to create the  
nonsampling edge. As a result, any changes to the sampling  
frequency require approximately 2 µs to 3 µs to allow the DLL  
to acquire and settle to the new rate.  
The minimum standby power is achieved when both channels  
are placed into full power-down mode (PDWN_A = PDWN_B  
= HI). Under this condition, the internal references are powered  
down. When either or both of the channel paths are enabled  
after a power-down, the wake-up time is directly related to the  
recharging of the REFT and REFB decoupling capacitors and to  
the duration of the power-down.  
High speed, high resolution ADCs are sensitive to the quality of  
the clock input. The degradation in SNR at a given full-scale  
input frequency (fINPUT) due only to aperture jitter (tJ) can be  
calculated by  
SNR degradation = 2 × log 10[1/2 × p × fINPUT × tJ]  
A single channel can be powered down for moderate power  
savings. The powered-down channel shuts down internal  
circuits, but both the reference buffers and shared reference  
remain powered on. Because the buffer and voltage reference  
remain powered on, the wake-up time is reduced to several  
clock cycles.  
In the equation, the rms aperture jitter, tJ, represents the root-  
sum square of all jitter sources, which includes the clock input,  
analog input signal, and ADC aperture jitter specification. Under-  
sampling applications are particularly sensitive to jitter.  
For optimal performance, especially in cases where aper-  
ture jitter may affect the dynamic range of the AD9216, it  
is important to minimize input clock jitter. The clock input  
circuitry should use stable references; for example, use analog  
power and ground planes to generate the valid high and low  
digital levels for the AD9216 clock input. Power supplies for  
clock drivers should be separated from the ADC output driver  
supplies to avoid modulating the clock signal with digital noise.  
Low jitter, crystal-controlled oscillators make the best clock  
sources. If the clock is generated from another type of source  
(by gating, dividing, or other methods), it should be retimed by  
the original clock at the last step.  
DIGITAL OUTPUTS  
The AD9216 output drivers can interface directly with 3 V  
logic families. Applications requiring the ADC to drive large  
capacitive loads or large fanouts may require external buffers  
or latches because large drive currents tend to cause current  
glitches on the supplies that may affect converter performance.  
The data format can be selected for either offset binary or twos  
complement. This is discussed in the Data Format section.  
Rev. A | Page 22 of 40  
 
AD9216  
OUTPUT CODING  
DATA FORMAT  
Table 8.  
The AD9216 data output format can be configured for either  
twos complement or offset binary. This is controlled by the  
data format select pin (DFS). Connecting DFS to AGND  
produces offset binary output data. Conversely, connecting  
DFS to AVDD formats the output data as twos complement.  
Code (VIN+) − (VIN−) Offset Binary Twos Complement  
1023 > +0.998 V  
1023 +0.998 V  
1022 +0.996 V  
11 1111 1111  
11 1111 1111  
11 1111 1110  
01 1111 1111  
01 1111 1111  
01 1111 1110  
The output data from the dual ADCs can be multiplexed onto a  
single, 10-bit output bus. The multiplexing is accomplished by  
toggling the MUX_SELECT bit, which directs channel data to  
the same or opposite channel data port. When MUX_SELECT  
is logic high, the Channel A data is directed to the Channel A  
output bus, and the Channel B data is directed to the Channel B  
output bus. When MUX_SELECT is logic low, the channel  
data is reversed; that is, the Channel A data is directed to the  
Channel B output bus, and the Channel B data is directed to  
the Channel A output bus. By toggling the MUX_SELECT bit,  
multiplexed data is available on either of the output data ports.  
513  
512  
511  
+0.002 V  
+0.0 V  
−0.002 V  
10 0000 0001  
10 0000 0000  
01 1111 1111  
00 0000 0001  
00 0000 0000  
11 1111 1111  
1
0
0
−0.998 V  
−1.000 V  
< −1.000 V  
00 0000 0001  
00 0000 0000  
00 0000 0000  
10 0000 0001  
10 0000 0000  
10 0000 0000  
TIMING  
The AD9216 provides latched data outputs with a pipeline delay  
of six clock cycles. Data outputs are available one propagation  
delay (tPD) after the rising edge of the clock signal. Refer to  
Figure 2 for a detailed timing diagram.  
If the ADCs are run with synchronized timing, this same clock  
can be applied to the MUX_SELECT pin. Any skew between  
CLK_A, CLK_B, and MUX_SELECT can degrade ac perform-  
ance. It is recommended to keep the clock skew < 100 pHs.  
After the MUX_SELECT rising edge, either data port has  
the data for its respective channel; after the falling edge, the  
alternate channel’s data is placed on the bus. Typically, the  
other unused bus is disabled by setting the appropriate OEB  
high to reduce power consumption and noise. Figure 46 shows  
an example of multiplex mode. When multiplexing data, the  
data rate is two times the sample rate. Note that both channels  
must remain active in this mode and that each channels power-  
down pin must remain low.  
The length of the output data lines and loads placed on them  
should be minimized to reduce transients within the AD9216.  
These transients can detract from the converter’s dynamic  
performance. The lowest conversion rate of the AD9216 is  
10 MSPS. At clock rates below 10 MSPS, dynamic perform-  
ance may degrade.  
A
A
ANALOG INPUT  
ADC A  
A
1
0
8
A
2
A
B
–1  
A
7
A
3
A
A
6
4
A
5
B
B
B
1
0
8
B
ANALOG INPUT  
ADC B  
2
–1  
B
7
B
3
B
B
6
4
B
5
CLK_A = CLK_B =  
MUX_SELECT  
D0_A  
–D11_A  
B
A
B
–6  
A
B
A
B
A
B
A
B
A
B
A
B
A
B
1
–7  
–6  
–5  
–5  
–4  
–4  
–3  
–3  
–2  
–2  
–1  
–1  
0
0
1
Figure 46. Example of Multiplexed Data Format Using the Channel A Output and the Same Clock Tied to CLK_A, CLK_B, and MUX_SELECT  
Rev. A | Page 23 of 40  
 
 
 
AD9216  
Note: The optimum performance is obtained with VREF =  
1.0 V; performance degrades as VREF (and full scale) reduces  
(see Figure 25). In all reference configurations, REFT and REFB  
drive the ADC core and establish its input span. The input  
range of the ADC always equals twice the voltage at the refer-  
ence pin for either an internal or an external reference.  
VOLTAGE REFERENCE  
A stable and accurate 0.5 V voltage reference is built into  
the AD9216. The input range can be adjusted by varying the  
reference voltage applied to the AD9216, using either the inter-  
nal reference with different external resistor configurations or  
an externally applied reference voltage. The input span of the  
ADC tracks reference voltage changes linearly.  
VIN+  
Internal Reference Connection  
VIN–  
REFT  
A comparator within the AD9216 detects the potential at the  
SENSE pin and configures the reference into three possible  
states, which are summarized in Table 9. If SENSE is grounded,  
the reference amplifier switch is connected to the internal resistor  
divider (see Figure 47), setting VREF to 1 V. If a resistor divider  
is connected, as shown in Figure 48, the switch is again set to the  
SENSE pin. This puts the reference amplifier in a noninverting  
mode with the VREF output defined as  
0.1µF  
ADC  
CORE  
0.1µF  
10µF  
REFB  
0.1µF  
VREF  
10µF  
SELECT  
0.1µF  
0.5V  
LOGIC  
SENSE  
VREF = 0.5 × (1 + R2/R1)  
AD9216  
Figure 47. Internal Reference Configuration (One Channel Shown)  
Table 9. Reference Configuration Summary  
Selected Mode  
SENSE Voltage  
Resulting VREF (V)  
Resulting Differential Span (V p-p)  
2 × External Reference  
2 × VREF (see Figure 48)  
2.0  
External Reference  
Programmable Reference  
Internal Fixed Reference  
AVDD  
0.2 V to VREF  
AGND to 0.2 V  
N/A  
0.5 × (1 + R2/R1)  
1.0  
Rev. A | Page 24 of 40  
 
 
 
AD9216  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
External Reference Operation  
The use of an external reference may be necessary to enhance  
the gain accuracy of the ADC or to improve the thermal drift  
characteristics. When multiple ADCs track one another, a single  
reference (internal or external) may be necessary to reduce gain  
matching errors to an acceptable level. A high precision external  
reference may also be selected to provide lower gain and offset  
temperature drift. Figure 49 shows the typical drift  
VREF = 1.0V  
characteristics of the internal reference.  
When the SENSE pin is tied to AVDD, the internal reference is  
disabled, allowing the use of an external reference. An internal  
reference buffer loads the external reference with an equivalent  
7 kΩ load. The internal buffer still generates the positive and  
negative full-scale references, REFT and REFB, for the ADC  
core. The input span is always twice the value of the reference  
voltage; therefore, the external reference must be limited to a  
maximum of 1 V. If the internal reference of the AD9216 is  
used to drive multiple converters to improve gain matching,  
the loading of the reference by the other converters must be  
considered. Figure 50 depicts how the internal reference  
voltage is affected by loading.  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
Figure 49. Typical VREF Drift  
0.05  
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
VREF = 1.0V  
VIN+  
VIN–  
REFT  
0.1µF  
ADC  
CORE  
0.1µF  
10µF  
0
0.5  
1.0  
1.5  
(mA)  
2.0  
2.5  
3.0  
REFB  
0.1µF  
I
LOAD  
Figure 50. VREF Accuracy vs. Load  
V
REF  
Shared Reference Mode  
10µF  
10µF  
SENSE  
R2  
SELECT  
LOGIC  
The shared reference mode allows the user to connect  
the references from the dual ADCs together externally for  
superior gain and offset matching performance. If the ADCs  
are to function independently, the reference decoupling can  
be treated independently and can provide superior isolation  
between the dual channels. To enable shared reference mode,  
the SHARED_REF pin must be tied high, and the external  
differential references must be externally shorted. (REFT_A  
must be externally shorted to REFT_B, and REFB_A must  
be shorted to REFB_B.)  
0.5V  
R1  
AD9216  
Figure 48. Programmable Reference Configuration (one channel shown)  
Rev. A | Page 25 of 40  
 
 
 
AD9216  
DUAL ADC LFCSP PCB  
The PCB requires a low jitter clock source, analog sources,  
and power supplies. The PCB interfaces directly with ADIs  
standard dual-channel data capture board (HSC-ADC-EVAL-  
DC), which together with ADI’s ADC Analyzer™ software  
allows for quick ADC evaluation.  
CLOCK  
The single-clock input is at J5; the input clock is buffered and  
drives both channel input clocks from Pin 3 at U8 through R79,  
R40, and R85. Jumper E11 to E19 allows for inverting the input  
clock. U8 also provides CLKA and CLKB outputs, which are  
buffered by U6 and U5, which drive the DRA and DRB signals  
(these are the data-ready clocks going off card). DRA and DRB  
can also be inverted at their respective jumpers.  
POWER CONNECTOR  
Power is supplied to the board via three detachable  
4-lead power strips.  
Table 11. Jumpers  
Terminal  
Table 10. Power Connector  
Comments  
Terminal  
VCC1 3.0 V  
VDD1 2.5 V  
VDL1 2.5 V  
VCLK 3.0 V  
+5 V  
Comments  
OEB A  
PWDN A  
MUX  
SHARED REF  
DRA  
LATA  
ENC A  
OEB B  
PWDN B  
DFS  
SHARED REF  
DRB  
Output Enable for A Side  
Power-Down A  
Mux Input  
Shared Reference Input  
Invert DRA  
Invert A Latch Clock  
Invert Encode A  
Output Enable for B Side  
Power-Down B  
Data Format Select  
Shared Reference Input  
Invert DRB  
Invert B Latch Clock  
Invert Encode B  
Analog supply for ADC  
Output supply for ADC  
Buffer supply  
Supply for XOR Gates  
Optional op amp supply  
Optional op amp supply  
−5 V  
1VCC, VDD, and VDL are the minimum required power connections.  
ANALOG INPUTS  
The evaluation board accepts a 2 V p-p analog input signal  
centered at ground at two SMB connectors, Input A and  
Input B. These signals are terminated at their respective  
primary side transformer. T1 and T2 are wideband RF  
transformers that provide the single-ended-to-differential  
conversion, allowing the ADC to be driven differentially,  
minimizing even-order harmonics. The analog signals can  
be low-pass filtered at the secondary transformer to reduce  
high frequency aliasing.  
LATB  
ENC B  
VOLTAGE REFERENCE  
The ADC SENSE pin is brought out to E41, and the internal  
reference mode is selected by placing a jumper from E41 to  
ground (E27). External reference mode is selected by placing a  
jumper from E41 to E25 and E30 to E2. R56 and R45 allow for  
programmable reference mode selection.  
OPTIONAL OPERATIONAL AMPLIFIER  
The PCB has been designed to accommodate an optional  
AD8139 op amp that can serve as a convenient solution  
for dc-coupled applications. To use the AD8139 op amp,  
remove C14, R4, R5, C13, R37, and R36, and place R22, R23,  
R30, and R24.  
DATA OUTPUTS  
The ADC outputs are buffered on the PCB at U2, U4. The ADC  
outputs have the recommended series resistors in line to limit  
switching transient effects on ADC performance.  
Rev. A | Page 26 of 40  
 
 
AD9216  
LFCSP EVALUATION BOARD BILL OF MATERIALS (BOM)  
Table 12. Dual CSP PCB Rev. B  
No. Quan. Reference Designator  
Device  
Package  
0201  
0805  
Value  
20 pF  
10 µF  
1
2
3
2
±
44  
C1, C3  
Capacitors  
Capacitors  
C2, C5, C±, C9, C10, C22, C36  
C4, C6, C8, C11 to C15, C20, C21, C24 to C2±, C29 to Capacitors  
C35, C39 to C66  
0402  
0.1 µF, (C59, C61 NP1)  
4
5
6
±
2
40  
C16 to C19, C3±, C38,C6±  
C23, C28  
E1 to E±, E9 to E22, E24 to E2±, E29 to E31, E33 to  
E38, E40 to E43, E49, E61  
Capacitors  
Capacitors  
Jumpers  
TAJD  
0201  
10 µF  
0.1 µF  
±
8
9
10  
6
3
3
1
J1 to J6  
P1, P4, P11  
P1, P4, P11  
SMA  
Power Connector Posts  
Detachable Connectors  
Connector  
Z5.531.3425.0 Wieland  
25.602.5453.0 Wieland  
P3, P8 (implemented as one 80 pin connector)  
TSW-140-08-  
L-D-RA  
0402  
0402  
0402  
Samtec  
11  
12  
13  
14  
15  
4
6
4
4
R1, R2, R32, R34  
R3, R±, R11, R14, R51, R61  
R6, R8, R33, R42  
R4, R5, R36, R3±  
R9, R12, R20, R35, R40, R43, R50, R53, R84, R85  
Resistors  
Resistors  
Resistors  
Resistors  
Resistors  
36 Ω (All NP1)  
50 Ω, (R11, R51 NP1)  
100 Ω, (All NP1)  
33 Ω  
0402  
0402  
10  
Zero Ω (R9, R12, R35,  
R43, R50, R84 NP1)  
16  
1±  
18  
6
2
34  
R15, R16, R18, R26, R29, R31  
R1±, R25  
R19, R21, R2±, R28, R39, R41, R44, R46 to R49, R52,  
R54, R55, R5± to R60, R62 to R±3, R±5, R±±, R±8, R81  
to R83  
Resistors  
Resistors  
Resistors  
0402  
0402  
0402  
499 Ω (R16, R29 NP1)  
525 Ω  
1 kΩ (R64, R±8, R81, R82,  
R83 NP1)  
19  
4
R22 to R24, R30  
Resistors  
0402  
40 Ω (R22, R23, R24, R30  
NP1)  
20  
21  
22  
2
±
8
R45, R56  
Resistors  
Resistor  
Resistor Pack  
0402  
0402  
CTS  
10 kΩ (R45, R56 NP1)  
R10, R13, R38, R±4, R±6, R±9, R80  
RZ1, RZ2, RZ3, RZ4, RZ5, RZ6, RZ9, RZ10  
22 Ω  
4± Ω  
±42C1634±0J  
24  
25  
2
1
T1, T2  
U1  
Transformers  
T1-1WT  
Minicircuits  
AD9216/AD9238/AD9248 LFCSP-64  
26  
2±  
2
2
U2, U4  
U3, U±  
Transparent Latch/Buffer  
Inverter  
TSSOP-48  
SC-±0  
SN±4LVCH163±3ADGGR  
SN±4LVC1G04DCKT  
(U3, U± NP1)  
28  
29  
3
2
U5, U6, U8  
U11, U12  
XOR  
Amp  
SO-14  
SO-8/EP  
SN±4VCX86  
AD8139  
30  
14  
P2, P5 to P±, P9, P10, P12 to P18, P21  
Solder Bridge  
1 Not Populated.  
Rev. A | Page 2± of 40  
 
 
AD9216  
LFCSP PCB SCHEMATICS  
3 2  
3 1  
3 0  
2 9  
A 7 D  
A D 8  
A 9 D  
7 _ D A  
8 _ D A  
9 _ D A  
D D 2 D R V  
B D 7  
B D 6  
B D 5  
7 _ D B  
6 _ D B  
5 _ D B  
4 9  
5 0  
5 1  
5 2  
5 3  
5 4  
5 5  
5 6  
5 7  
5 8  
5 9  
6 0  
6 1  
6 2  
6 3  
6 4  
D D D R V  
2 8  
D R G N D  
2 7  
D R G N D 2  
1 0 D A  
1 1 D A  
1 2 D A  
1 3 D A  
T R O A  
1 0 D _ A  
1 1 D _ A  
1 2 D _ A  
1 3 D _ A  
O T R _ A  
O E B _ A  
D N W _ P  
X _ U S M E L  
E F _ R S H  
C L K _  
D D A 5 V  
B D 4  
B D 3  
B D 2  
B D 1  
B D 0  
4 _ D B  
2 6  
2 5  
2 4  
2 3  
2 2  
3 _ D B  
2 _ D B  
1 _ D B  
0 _ D B  
O E B _ B  
2 1  
A
_ B W N P D  
2 0  
D F S  
1 9  
D C S  
1 8  
A
B
C L K _  
1 7  
ENCA  
ENCB  
VD  
D D A 3 V  
VD  
D
E P A  
6 5  
Figure 51. PCB Schematic (1 of 3)  
Rev. A | Page 28 of 40  
 
AD9216  
Figure 52. PCB Schematic (2 of 3)  
Rev. A | Page 29 of 40  
AD9216  
E N C A  
E N C B  
Figure 53. PCB Schematic (3 of 3)  
Rev. A | Page 30 of 40  
 
AD9216  
LFCSP PCB LAYERS  
Figure 54. PCB Top-Side Silkscreen  
Rev. A | Page 31 of 40  
 
AD9216  
Figure 55. PCB Top-Side Copper Routing  
Rev. A | Page 32 of 40  
AD9216  
Figure 56. PCB Ground Layer  
Rev. A | Page 33 of 40  
AD9216  
Figure 57. PCB Split Power Plane  
Rev. A | Page 34 of 40  
AD9216  
Figure 58. PCB Bottom-Side Copper Routing  
Rev. A | Page 35 of 40  
AD9216  
Figure 59. PCB Bottom-Side Silkscreen  
Rev. A | Page 36 of 40  
AD9216  
THERMAL CONSIDERATIONS  
The AD9216 LFCSP package has an integrated heat slug that  
improves the thermal and electrical properties of the package  
when locally attached to a ground plane at the PCB. A thermal  
(filled) via array to a ground plane beneath the part provides  
a path for heat to escape the package, lowering junction  
temperature. Improved electrical performance also results  
from the reduction in package parasitics due to proximity  
of the ground plane. Recommended array is 0.3 mm vias  
on 1.2 mm pitch. θJA = 26.4°C/W with this recommended  
configuration. Soldering the slug to the PCB is a require-  
ment for this package.  
Figure 60. Thermal Via Array  
Rev. A | Page 3± of 40  
 
AD9216  
OUTLINE DIMENSIONS  
0.30  
0.25  
0.18  
9.00  
BSC SQ  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
64  
49  
48  
1
PIN 1  
INDICATOR  
*
4.85  
4.70 SQ  
4.55  
8.75  
BSC SQ  
TOP  
VIEW  
EXPOSED PAD  
(BOTTOM VIEW)  
0.45  
0.40  
0.35  
33  
32  
16  
17  
7.50  
REF  
0.80 MAX  
0.65 TYP  
1.00  
0.85  
0.80  
12° MAX  
0.05 MAX  
0.02 NOM  
0.50 BSC  
0.20 REF  
SEATING  
PLANE  
*
COMPLIANT TO JEDEC STANDARDS MO-220-VMMD  
EXCEPT FOR EXPOSED PAD DIMENSION  
Figure 61. 64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
9 × 9 mm Body, Very Thin Quad (CP-64-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
CP-64-1  
CP-64-1  
CP-64-1  
CP-64-1  
AD9216BCPZ-651  
AD9216BCPZRL±-651  
AD9216BCPZ-801  
AD9216BCPZRL±-801  
AD9216BCPZ-1051  
AD9216BCPZRL±-1051  
AD9216-80PCB2  
64-Lead Lead Frame Chip Scale Package (LFCSP-VQ)  
64-Lead Lead Frame Chip Scale Package (LFCSP-VQ)  
64-Lead Lead Frame Chip Scale Package (LFCSP-VQ)  
64-Lead Lead Frame Chip Scale Package (LFCSP-VQ)  
64-Lead Lead Frame Chip Scale Package (LFCSP-VQ)  
64-Lead Lead Frame Chip Scale Package (LFCSP-VQ)  
Evaluation Board with AD9216BCPZ-80  
CP-64-1  
CP-64-1  
AD9216-105PCB  
Evaluation Board with AD9216BCPZ-105  
1 Z = Pb-free part.  
2 Supports AD9216-65 and AD9216-80 Evaluation.  
Rev. A | Page 38 of 40  
 
 
AD9216  
NOTES  
Rev. A | Page 39 of 40  
AD9216  
NOTES  
©
2005 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D04775–0–6/05(A)  
Rev. A | Page 40 of 40  

相关型号:

AD9216BCPZ-80

10-Bit, 65/80/105 MSPS Dual A/D Converter
ADI

AD9216BCPZ-80

2-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, QCC64, 9 X 9 MM, LEAD FREE, MO-220-VMMD, LFCSP-64
ROCHESTER

AD9216BCPZRL7-105

10-Bit, 65/80/105 MSPS Dual A/D Converter
ADI

AD9216BCPZRL7-105

2-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, QCC64, 9 X 9 MM, LEAD FREE, MO-220-VMMD, LFCSP-64
ROCHESTER

AD9216BCPZRL7-120

IC 2-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, QCC64, 9 X 9 MM, MO-220-VMMD, LFCSP-64, Analog to Digital Converter
ADI

AD9216BCPZRL7-65

10-Bit, 65/80/105 MSPS Dual A/D Converter
ADI

AD9216BCPZRL7-65

2-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, QCC64, 9 X 9 MM, LEAD FREE, MO-220-VMMD, LFCSP-64
ROCHESTER

AD9216BCPZRL7-80

10-Bit, 65/80/105 MSPS Dual A/D Converter
ADI

AD9216BCPZRL7-80

2-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, QCC64, 9 X 9 MM, LEAD FREE, MO-220-VMMD, LFCSP-64
ROCHESTER

AD9218

10-Bit, 40/65/80/105 MSPS 3 V Dual A/D Converter
ADI

AD9218-105PCB

10-Bit, 40/65/80/105 MSPS 3 V Dual A/D Converter
ADI

AD9218-65PCB

10-Bit, 40/65/80/105 MSPS 3 V Dual A/D Converter
ADI