AD9222ABCPZRL7-65 [ADI]

Octal, 12-Bit, 40/50/65 MSPS Serial LVDS 1.8 V A/D Converter; 八通道,12位, 40/50/65 MSPS串行LVDS 1.8 VA / D转换器
AD9222ABCPZRL7-65
型号: AD9222ABCPZRL7-65
厂家: ADI    ADI
描述:

Octal, 12-Bit, 40/50/65 MSPS Serial LVDS 1.8 V A/D Converter
八通道,12位, 40/50/65 MSPS串行LVDS 1.8 VA / D转换器

转换器 模数转换器
文件: 总60页 (文件大小:2533K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Octal, 12-Bit, 40/50/65 MSPS  
Serial LVDS 1.8 V A/D Converter  
Data Sheet  
AD9222  
FEATURES  
8 ADCs integrated into 1 package  
114 mW ADC power per channel at 65 MSPS  
SNR = 70 dB (to Nyquist)  
ENOB = 11.3 bits  
SFDR = 80 dBc  
FUNCTIONAL BLOCK DIAGRAM  
AVDD  
PDWN  
DRVDD  
DRGND  
AD9222  
12  
VIN + A  
VIN – A  
D + A  
D – A  
SERIAL  
LVDS  
ADC  
ADC  
12  
12  
VIN + B  
VIN – B  
D + B  
D – B  
SERIAL  
LVDS  
Excellent linearity: DNL = 0.3 LSB (typical),  
INL = 0.4 LSB (typical)  
VIN + C  
VIN – C  
D + C  
D – C  
SERIAL  
LVDS  
ADC  
Serial LVDS (ANSI-644, default)  
Low power, reduced signal option (similar IEEE 1596.3)  
Data and frame clock outputs  
325 MHz full-power analog bandwidth  
2 V p-p input voltage range  
12  
12  
VIN + D  
VIN – D  
D + D  
D – D  
SERIAL  
LVDS  
ADC  
ADC  
ADC  
VIN + E  
VIN – E  
SERIAL  
LVDS  
D + E  
D – E  
12  
12  
1.8 V supply operation  
Serial port control  
VIN + F  
VIN – F  
D + F  
D – F  
SERIAL  
LVDS  
Full-chip and individual-channel power-down modes  
Flexible bit orientation  
Built-in and custom digital test pattern generation  
Programmable clock and data alignment  
Programmable output resolution  
Standby mode  
VIN + G  
VIN – G  
D + G  
D – G  
SERIAL  
LVDS  
ADC  
ADC  
12  
VIN + H  
VIN – H  
D + H  
D – H  
SERIAL  
LVDS  
VREF  
FCO +  
FCO –  
SENSE  
0.5V  
DATA RATE  
REFT  
REFB  
REF  
SELECT  
MULTIPLIER  
APPLICATIONS  
SERIAL PORT  
INTERFACE  
DCO +  
DCO –  
Medical imaging and nondestructive ultrasound  
Portable ultrasound and digital beam-forming systems  
Quadrature radio receivers  
Diversity radio receivers  
SCLK/  
DTP  
RBIAS AGND CSB SDIO/  
ODM  
CLK+  
CLK–  
Figure 1.  
Tape drives  
Optical networking  
Test equipment  
The ADC contains several features designed to maximize  
flexibility and minimize system cost, such as programmable  
clock and data alignment and programmable digital test pattern  
generation. The available digital test patterns include built-in  
deterministic and pseudorandom patterns, along with custom user-  
defined test patterns entered via the serial port interface (SPI).  
GENERAL DESCRIPTION  
The AD9222 is an octal, 12-bit, 40/50/65 MSPS analog-to-  
digital converter (ADC) with an on-chip sample-and-hold  
circuit designed for low cost, low power, small size, and ease of  
use. The product operates at a conversion rate of up to 65 MSPS  
and is optimized for outstanding dynamic performance and low  
power in applications where a small package size is critical.  
The AD9222 is available in an RoHS compliant, 64-l e a d L F C S P. It i s  
specified over the industrial temperature range of −40°C to +85°C.  
PRODUCT HIGHLIGHTS  
1. Small Footprint. Eight ADCs are contained in a small,  
space-saving package.  
2. Low power of 114 mW/channel at 65 MSPS.  
3. Ease of Use. A data clock output (DCO) is provided that  
operates at frequencies of up to 390 MHz and supports  
double data rate (DDR) operation.  
4. User Flexibility. The SPI control offers a wide range of  
flexible features to meet specific system requirements.  
5. Pin-Compatible Family. This includes the AD9212 (10-bit)  
and AD9252 (14-bit).  
The ADC requires a single 1.8 V power supply and LVPECL-/  
CMOS-/LVDS-compatible sample rate clock for full performance  
operation. No external reference or driver components are  
required for many applications.  
The ADC automatically multiplies the sample rate clock for  
the appropriate LVDS serial data rate. A data clock output (DCO)  
for capturing data on the output and a frame clock output (FCO)  
for signaling a new output byte are provided. Individual-channel  
power-down is supported and typically consumes less than  
2 mW when all channels are disabled.  
Rev. F  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2006–2011 Analog Devices, Inc. All rights reserved.  
 
 
 
 
 
AD9222  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Analog Input Considerations ................................................... 21  
Clock Input Considerations...................................................... 24  
Serial Port Interface (SPI).............................................................. 33  
Hardware Interface..................................................................... 34  
Memory Map .................................................................................. 36  
Reading the Memory Map Table.............................................. 36  
Reserved Locations .................................................................... 36  
Default Values............................................................................. 36  
Logic Levels................................................................................. 36  
Evaluation Board ............................................................................ 40  
Power Supplies............................................................................ 40  
Input Signals................................................................................ 40  
Output Signals ............................................................................ 40  
Default Operation and Jumper Selection Settings................. 41  
Alternative Analog Input Drive Configuration...................... 42  
Outline Dimensions ....................................................................... 59  
Ordering Guide .......................................................................... 59  
Applications....................................................................................... 1  
General Description ......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
AC Specifications.......................................................................... 4  
Digital Specifications ................................................................... 5  
Switching Specifications .............................................................. 6  
Timing Diagrams.............................................................................. 7  
Absolute Maximum Ratings............................................................ 9  
Thermal Impedance..................................................................... 9  
ESD Caution.................................................................................. 9  
Pin Configuration and Function Descriptions........................... 10  
Equivalent Circuits ......................................................................... 12  
Typical Performance Characteristics ........................................... 14  
Theory of Operation ...................................................................... 21  
REVISION HISTORY  
12/11—Rev E to Rev. F  
Changes to Figure 86...................................................................... 41  
Changes to Ordering Guide .......................................................... 59  
Changes to Figure 2 to Figure 4.......................................................7  
Added Figure 21 to Figure 24, Figure 27, Figure 28, Figure 30,  
Figure 32, Figure 37, Figure 38, Figure 40, Figure 42, Figure 44,  
Figure 46, Figure 48, and Figure 51.............................................. 15  
Added Figure 56 and Figure 58 .................................................... 22  
Added Figure 70 ............................................................................. 25  
Added Figure 72 ............................................................................. 26  
Added Figure 74 ............................................................................. 27  
Added Figure 76 and Figure 78 .................................................... 28  
Changes to Digital Outputs and Timing Section....................... 28  
Changes to Table 9 Endnote.......................................................... 29  
Added Table 10 ............................................................................... 30  
Changes to RBIAS Pin Section ..................................................... 31  
Deleted Figure 56 and Figure 57................................................... 27  
Changes to Table 15 ....................................................................... 35  
Change to Input Signals Section................................................... 40  
Change to Output Signals Section................................................ 40  
Changes to Figure 86...................................................................... 40  
Changes to Default Operation and Jumper Selection  
11/11—Rev. D to Rev. E  
Changes to Output Signals Section.............................................. 41  
Changes to Figure 86...................................................................... 41  
Changes to Ordering Guide .......................................................... 60  
4/10—Rev. C to Rev. D  
Changes to Address 16 in Table 16............................................... 38  
Updated Outline Dimensions....................................................... 59  
Changes to Ordering Guide .......................................................... 59  
1/10—Rev. B to Rev. C  
Updated Outline Dimensions....................................................... 59  
Changes to Ordering Guide .......................................................... 60  
7/09—Rev. A to Rev. B  
Changes to Figure 5........................................................................ 10  
Changes to Figure 61 and Figure 62............................................. 23  
Changes to Figure 79 and Figure 80............................................. 31  
Updated Outline Dimensions....................................................... 59  
Changes to Ordering Guide .......................................................... 59  
Settings Section............................................................................... 41  
Changes to Alternative Analog Input Configuration Section......... 42  
Added Figure 88 and Figure 89 .................................................... 42  
Change to Figure 92 ....................................................................... 45  
Changes to Table 17 ....................................................................... 54  
Updated Outline Dimensions....................................................... 59  
Changes to Ordering Guide.......................................................... 60  
8/07—Rev. 0 to Rev. A  
Added 65 MSPS Models ....................................................Universal  
Changes to Features.......................................................................... 1  
Changes to Product Highlights....................................................... 1  
9/06—Revision 0: Initial Version  
Rev. F | Page 2 of 60  
 
Data Sheet  
AD9222  
SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, 2 V p-p differential input, 1.0 V internal reference, AIN = −0.5 dBFS, unless otherwise noted.  
Table 1.  
AD9222-40  
Temp Min Typ  
AD9222-50  
Min Typ  
AD9222-65  
Min Typ  
Parameter1  
Max  
Max  
Max  
Unit  
RESOLUTION  
12  
12  
12  
Bits  
ACCURACY  
No Missing Codes  
Offset Error  
Offset Matching  
Gain Error  
Gain Matching  
Differential Nonlinearity (DNL)  
Integral Nonlinearity (INL)  
TEMPERATURE DRIFT  
Offset Error  
Gain Error  
Reference Voltage (1 V Mode)  
REFERENCE  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Guaranteed  
±1  
±3  
±0.4  
±0.3  
Guaranteed  
Guaranteed  
±1  
±3  
±3.5  
±0.4  
±±  
±±  
±1.2  
±0.7  
±0.5  
±1  
±1  
±3  
±±  
±±  
±±  
±±  
±5  
±0.±  
±0.6  
±1  
mV  
mV  
% FS  
% FS  
LSB  
LSB  
±1.5  
±0.3  
±0.3  
±0.4  
±2.5  
±0.7  
±0.65  
±1  
±0.25  
±0.4  
±0.25  
±0.4  
Full  
Full  
Full  
±2  
±17  
±21  
±2  
±17  
±21  
±2  
±17  
±21  
ppm/°C  
ppm/°C  
ppm/°C  
Output Voltage Error (VREF = 1 V)  
Load Regulation @ 1.0 mA (VREF = 1 V)  
Input Resistance  
Full  
Full  
Full  
±2  
3
6
±30  
±2  
3
6
±30  
±2  
3
6
±30  
mV  
mV  
kΩ  
ANALOG INPUTS  
Differential Input Voltage Range  
(VREF = 1 V)  
Full  
2
2
2
V p-p  
Common-Mode Voltage  
Differential Input Capacitance  
Analog Bandwidth, Full Power  
POWER SUPPLY  
AVDD  
DRVDD  
IAVDD  
IDRVDD  
Total Power Dissipation  
Full  
Full  
Full  
AVDD/2  
7
325  
AVDD/2  
7
325  
AVDD/2  
7
325  
V
pF  
MHz  
Full  
Full  
Full  
Full  
Full  
1.7  
1.7  
1.±  
1.±  
33±  
51  
1.9  
1.9  
34±.5  
53.6  
722  
1.7  
1.7  
1.±  
1.±  
357.5  
53.5  
740  
1.9  
1.9  
367.5  
56.2  
760  
1.7  
1.7  
1.±  
1.±  
450  
56.6  
910  
1.9  
1.9  
470  
60.5  
V
V
mA  
mA  
700  
950.5 mW  
(Including Output Drivers)  
Power-Down Dissipation  
Standby Dissipation2  
Full  
Full  
Full  
Full  
2
±3  
11  
2
±9  
11  
2
11  
mW  
mW  
dB  
100  
−90  
−90  
CROSSTALK  
CROSSTALK (Overrange Condition)3  
−90  
−90  
−90  
−90  
dB  
1 See the AN-±35 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions and how these tests were completed.  
2 This can be controlled via SPI.  
3 Overrange condition is specific with 6 dB of the full-scale input range.  
Rev. F | Page 3 of 60  
 
 
AD9222  
Data Sheet  
AC SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, 2 V p-p differential input, 1.0 V internal reference, AIN = −0.5 dBFS, unless otherwise noted.  
Table 2.  
AD9222-40  
Typ  
AD9222-50  
Typ  
AD9222-65  
Max Min Typ Max  
Parameter1  
Temp Min  
Max Min  
Unit  
SIGNAL-TO-NOISE RATIO (SNR)  
fIN = 2.4 MHz  
fIN = 19.7 MHz  
fIN = 35 MHz  
fIN = 70 MHz  
Full  
70.3  
70.3  
69.9  
6±.±  
70.4  
70.3  
70.0  
69.0  
70.3  
6±.5 70.0  
69.±  
dB  
dB  
dB  
dB  
Full  
Full  
Full  
69.5  
6±.7  
69.5  
69.5  
SIGNAL-TO-NOISE AND DISTORTION RATIO (SINAD)  
fIN = 2.4 MHz  
fIN = 19.7 MHz  
fIN = 35 MHz  
fIN = 70 MHz  
Full  
Full  
Full  
Full  
70.0  
70.0  
69.5  
6±.0  
70.0  
70.0  
69.±  
6±.5  
69.5  
66.± 69.4  
69.3  
dB  
dB  
dB  
dB  
6±.5  
69  
EFFECTIVE NUMBER OF BITS (ENOB)  
fIN = 2.4 MHz  
fIN = 19.7 MHz  
fIN = 35 MHz  
fIN = 70 MHz  
Full  
Full  
Full  
Full  
11.3±  
11.25 11.3±  
11.32  
11.4  
11.25 11.3±  
11.33  
11.4  
11.1 11.34  
11.30  
Bits  
Bits  
Bits  
Bits  
11.14  
11.17  
11.25  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)  
fIN = 2.4 MHz  
fIN = 19.7 MHz  
fIN = 35 MHz  
fIN = 70 MHz  
Full  
Full  
Full  
Full  
±5  
±5  
±3  
70.5 ±0  
±0  
dBc  
dBc  
dBc  
dBc  
73  
±5  
±0  
76  
73  
±4  
±3  
77  
75  
WORST HARMONIC (Second or Third)  
fIN = 2.4 MHz  
fIN = 19.7 MHz  
fIN = 35 MHz  
fIN = 70 MHz  
Full  
Full  
Full  
Full  
−±5  
−±5  
−±0  
−76  
−±5  
−±4  
−±3  
−77  
−±3  
−±0  
−±0  
−75  
dBc  
−70.5 dBc  
dBc  
−74  
−±0  
−73  
−±0  
dBc  
WORST OTHER (Excluding Second or Third)  
fIN = 2.4 MHz  
fIN = 19.7 MHz  
fIN = 35 MHz  
fIN = 70 MHz  
Full  
Full  
Full  
Full  
−92  
−92  
−92  
−90  
−92  
−92  
−92  
−90  
−90  
−90  
−90  
−±5  
dBc  
−±0  
dBc  
dBc  
dBc  
TWO-TONE INTERMODULATION DISTORTION (IMD)—  
AIN1 AND AIN2 = −7.0 dBFS  
fIN1 = 15 MHz, fIN2 = 16 MHz  
fIN1 = 70 MHz, fIN2 = 71 MHz  
25°C  
25°C  
±0.0  
77.0  
±0.0  
77.0  
±0.0  
75.0  
dBc  
dBc  
1 See the AN-±35 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions and how these tests were completed.  
Rev. F | Page 4 of 60  
 
 
Data Sheet  
AD9222  
DIGITAL SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, 2 V p-p differential input, 1.0 V internal reference, AIN = −0.5 dBFS, unless otherwise noted.  
Table 3.  
AD9222-40  
AD9222-50  
Typ Max  
AD9222-65  
Typ Max  
Parameter1  
Temp Min  
Typ  
Max  
Min  
Min  
Unit  
CLOCK INPUTS (CLK+, CLK−)  
Logic Compliance  
Differential Input Voltage2  
Input Common-Mode Voltage  
Input Resistance (Differential)  
Input Capacitance  
CMOS/LVDS/LVPECL  
CMOS/LVDS/LVPECL  
CMOS/LVDS/LVPECL  
250  
Full  
Full  
25°C  
25°C  
250  
250  
mV p-p  
V
kΩ  
1.2  
20  
1.5  
1.2  
20  
1.5  
1.2  
20  
1.5  
pF  
LOGIC INPUTS (PDWN, SCLK/DTP)  
Logic 1 Voltage  
Logic 0 Voltage  
Input Resistance  
Input Capacitance  
Full  
Full  
25°C  
25°C  
1.2  
0
3.6  
0.3  
1.2  
1.2  
3.6  
0.3  
1.2  
1.2  
3.6  
0.3  
V
V
kΩ  
pF  
30  
0.5  
30  
0.5  
30  
0.5  
LOGIC INPUT (CSB)  
Logic 1 Voltage  
Logic 0 Voltage  
Full  
Full  
1.2  
0
3.6  
0.3  
3.6  
0.3  
3.6  
0.3  
V
V
Input Resistance  
Input Capacitance  
25°C  
25°C  
70  
0.5  
70  
0.5  
70  
0.5  
kΩ  
pF  
LOGIC INPUT (SDIO/ODM)  
Logic 1 Voltage  
Logic 0 Voltage  
Full  
Full  
1.2  
0
DRVDD + 0.3 1.2  
DRVDD + 0.3 1.2  
DRVDD+0.3  
0.3  
V
V
0.3  
0
0.3  
0
Input Resistance  
Input Capacitance  
25°C  
25°C  
30  
2
30  
2
30  
2
kΩ  
pF  
LOGIC OUTPUT (SDIO/ODM)3  
Logic 1 Voltage (IOH = ±00 μA)  
Logic 0 Voltage (IOL = 50 μA)  
Full  
Full  
1.79  
1.79  
1.79  
V
V
0.05  
0.05  
0.05  
DIGITAL OUTPUTS (D + x, D − x),  
(ANSI-644)1  
Logic Compliance  
LVDS  
LVDS  
LVDS  
Differential Output Voltage (VOD)  
Output Offset Voltage (VOS)  
Output Coding (Default)  
Full  
Full  
247  
1.125  
454  
1.375  
Offset binary  
247  
1.125  
454  
1.375  
Offset binary  
247  
1.125  
454  
1.375  
Offset binary  
mV  
V
DIGITAL OUTPUTS (D + x, D − x),  
(Low Power, Reduced Signal  
Option)1  
Logic Compliance  
LVDS  
LVDS  
LVDS  
250  
1.30  
Offset binary  
Differential Output Voltage (VOD)  
Output Offset Voltage (VOS)  
Output Coding (Default)  
Full  
Full  
150  
1.10  
250  
1.30  
150  
1.10  
250  
1.30  
150  
1.10  
mV  
V
Offset binary  
Offset binary  
1 See the AN-±35 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions and how these tests were completed.  
2 This is specified for LVDS and LVPECL only.  
3 This is specified for 13 SDIO pins sharing the same connection.  
Rev. F | Page 5 of 60  
 
 
AD9222  
Data Sheet  
SWITCHING SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, 2 V p-p differential input, 1.0 V internal reference, AIN = −0.5 dBFS, unless otherwise noted.  
Table 4.  
AD9222-40  
Typ  
AD9222-50  
Typ  
AD9222-65  
Typ  
Parameter1  
Temp Min  
Max  
Min  
Max  
Min  
Max  
Unit  
CLOCK2  
Maximum Clock Rate  
Minimum Clock Rate  
Clock Pulse Width High (tEH)  
Clock Pulse Width Low (tEL)  
OUTPUT PARAMETERS2, 3  
Propagation Delay (tPD)  
Rise Time (tR) (20% to ±0%)  
Fall Time (tF) (20% to ±0%)  
Full  
Full  
Full  
Full  
40  
50  
65  
MSPS  
MSPS  
ns  
10  
10  
10  
12.5  
12.5  
10.0  
10.0  
7.5  
7.5  
ns  
Full  
Full  
Full  
Full  
Full  
1.5  
1.5  
2.3  
3.1  
3.1  
1.5  
1.5  
2.3  
3.1  
3.1  
1.5  
1.5  
2.3  
3.1  
3.1  
ns  
ps  
ps  
ns  
ns  
300  
300  
2.3  
300  
300  
2.3  
300  
300  
2.3  
tFCO  
(tSAMPLE/24)  
FCO Propagation Delay (tFCO  
)
4
DCO Propagation Delay (tCPD  
)
tFCO  
+
tFCO  
(tSAMPLE/24)  
(tSAMPLE/24) (tSAMPLE/24) (tSAMPLE/24) (tSAMPLE/24) (tSAMPLE/24) (tSAMPLE/24) (tSAMPLE/24) ps  
+ 300 − 300 + 300 − 300 + 300  
(tSAMPLE/24) (tSAMPLE/24) (tSAMPLE/24) (tSAMPLE/24) (tSAMPLE/24) (tSAMPLE/24) (tSAMPLE/24) ps  
+
+
(tSAMPLE/24)  
4
DCO to Data Delay (tDATA  
)
Full  
Full  
Full  
(tSAMPLE/24) (tSAMPLE/24)  
− 300  
(tSAMPLE/24) (tSAMPLE/24)  
− 300  
4
DCO to FCO Delay (tFRAME  
)
+ 300  
±200  
− 300  
+ 300  
±200  
− 300  
+ 300  
±200  
Data to Data Skew  
±50  
±50  
±50  
ps  
(tDATA-MAX − tDATA-MIN  
)
Wake-Up Time (Standby)  
Wake-Up Time (Power-Down)  
Pipeline Latency  
25°C  
25°C  
Full  
600  
375  
±
600  
375  
±
600  
375  
±
ns  
μs  
CLK  
cycles  
APERTURE  
Aperture Delay (tA)  
25°C  
25°C  
750  
<1  
750  
<1  
750  
<1  
ps  
Aperture Uncertainty (Jitter)  
ps  
rms  
Out-of-Range Recovery Time 25°C  
1
1
1
CLK  
cycles  
1 See the AN-±35 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions and how these tests were completed.  
2 This can be adjusted via the SPI interface.  
3 Measurements were made using a part soldered to FR4 material.  
4 tSAMPLE/24 is based on the number of bits divided by 2 because the delays are based on half duty cycles.  
Rev. F | Page 6 of 60  
 
 
Data Sheet  
AD9222  
TIMING DIAGRAMS  
N – 1  
tA  
VIN ± x  
N
tEH  
tEL  
CLK–  
CLK+  
tCPD  
DCO–  
DCO+  
tFRAME  
tFCO  
FCO–  
FCO+  
tPD  
tDATA  
D – x  
D + x  
MSB  
N – 9  
D10  
N – 9  
D9  
N – 9  
D8  
N – 9  
D7  
N – 9  
D6  
N – 9  
D5  
N – 9  
D4  
N – 9  
D3  
N – 9  
D2  
N – 9  
D1  
N – 9  
D0  
N – 9  
MSB  
N – 8  
D10  
N – 8  
Figure 2. 12-Bit Data Serial Stream, MSB First (Default)  
N – 1  
VIN ± x  
tA  
N
tEH  
tEL  
CLK–  
CLK+  
tCPD  
DCO–  
DCO+  
tFRAME  
tFCO  
FCO–  
FCO+  
D – x  
tPD  
tDATA  
MSB  
N – 9  
D8  
N – 9  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
MSB  
D8  
D7  
D6  
D5  
N – 8  
N – 9 N – 9  
N – 9 N – 9 N – 9 N – 9  
N – 9 N – 9 N – 8 N – 8  
N – 8 N – 8  
D + x  
Figure 3. 10-Bit Data Serial Stream, MSB First  
Rev. F | Page 7 of 60  
 
 
 
 
AD9222  
Data Sheet  
N – 1  
VIN ± x  
tA  
N
tEH  
tEL  
CLK–  
CLK+  
tCPD  
DCO–  
DCO+  
tFRAME  
tFCO  
FCO–  
FCO+  
tPD  
tDATA  
D – x  
D + x  
LSB  
N – 9  
D0  
N – 9  
D1  
N – 9  
D2  
N – 9  
D3  
N – 9  
D4  
N – 9  
D5  
N – 9  
D6  
N – 9  
D7  
N – 9  
D8  
N – 9  
D9  
N – 9  
D10  
N – 9  
LSB  
N – 8  
D0  
N – 8  
Figure 4. 12-Bit Data Serial Stream, LSB First  
Rev. F | Page ± of 60  
 
Data Sheet  
AD9222  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
With  
Respect To  
Parameter  
ELECTRICAL  
AVDD  
DRVDD  
AGND  
AVDD  
Digital Outputs  
(D + x, D − x, DCO+,  
Rating  
AGND  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to +0.3 V  
−2.0 V to +2.0 V  
−0.3 V to +2.0 V  
DRGND  
DRGND  
DRVDD  
DRGND  
THERMAL IMPEDANCE  
DCO−, FCO+, FCO−)  
Table 6.  
CLK+, CLK−  
VIN + x, VIN − x  
SDIO/ODM  
PDWN, SCLK/DTP, CSB  
REFT, REFB, RBIAS  
VREF, SENSE  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
−0.3 V to +3.9 V  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to +3.9 V  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
Air Flow  
Velocity (m/s)  
1
θJA  
θJB  
θJC  
0.0  
1.0  
2.5  
17.7°C/W  
15.5°C/W  
13.9°C/W  
±.7°C/W  
0.6°C/W  
1 θJA for a 4-layer PCB with solid ground plane (simulated). Exposed pad  
soldered to PCB.  
ENVIRONMENTAL  
Operating Temperature  
Range (Ambient)  
Maximum Junction  
Temperature  
−40°C to +±5°C  
150°C  
ESD CAUTION  
Lead Temperature  
(Soldering, 10 sec)  
300°C  
Storage Temperature  
Range (Ambient)  
−65°C to +150°C  
Rev. F | Page 9 of 60  
 
 
 
 
AD9222  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PIN 1  
INDICATOR  
AVDD  
VIN + G  
VIN – G  
AVDD  
VIN – H  
VIN + H  
AVDD  
1
2
3
4
5
6
7
8
9
48 AVDD  
47 VIN + B  
46 VIN – B  
45 AVDD  
44 VIN – A  
43 VIN + A  
42 AVDD  
41 PDWN  
40 CSB  
39 SDIO/ODM  
38 SCLK/DTP  
37 AVDD  
EXPOSED PADDLE, PIN 0  
(BOTTOM OF PACKAGE)  
AD9222  
TOP VIEW  
(Not to Scale)  
AVDD  
CLK–  
CLK+ 10  
AVDD 11  
AVDD 12  
DRGND 13  
DRVDD 14  
D – H 15  
36 DRGND  
35 DRVDD  
34 D + A  
D + H 16  
33 D – A  
NOTES  
1. THE EXPOSED PAD MUST BE CONNECTED TO ANALOG GROUND  
Figure 5. 64-Lead LFCSP Pin Configuration, Top View  
Table 7. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
0
AGND  
AVDD  
Analog Ground (Exposed Paddle)  
1.± V Analog Supply  
1, 4, 7, ±, 11,  
12, 37, 42, 45,  
4±, 51, 59, 62  
13, 36  
14, 35  
2
3
5
DRGND  
DRVDD  
VIN + G  
VIN − G  
VIN − H  
VIN + H  
CLK−  
Digital Output Driver Ground  
1.± V Digital Output Driver Supply  
ADC G Analog Input True  
ADC G Analog Input Complement  
ADC H Analog Input Complement  
ADC H Analog Input True  
6
9
Input Clock Complement  
10  
15  
16  
17  
1±  
19  
20  
21  
22  
23  
24  
25  
26  
27  
2±  
29  
30  
31  
32  
CLK+  
Input Clock True  
ADC H Digital Output Complement  
ADC H Digital Output True  
ADC G Digital Output Complement  
ADC G Digital Output True  
ADC F Digital Output Complement  
ADC F Digital Output True  
D − H  
D + H  
D − G  
D + G  
D − F  
D + F  
D − E  
D + E  
DCO−  
DCO+  
FCO−  
FCO+  
D − D  
D + D  
D − C  
D + C  
D − B  
ADC E Digital Output Complement  
ADC E Digital Output True  
Data Clock Digital Output Complement  
Data Clock Digital Output True  
Frame Clock Digital Output Complement  
Frame Clock Digital Output True  
ADC D Digital Output Complement  
ADC D Digital Output True  
ADC C Digital Output Complement  
ADC C Digital Output True  
ADC B Digital Output Complement  
ADC B Digital Output True  
D + B  
Rev. F | Page 10 of 60  
 
Data Sheet  
AD9222  
Pin No.  
33  
34  
3±  
39  
40  
41  
43  
44  
46  
47  
49  
50  
52  
53  
54  
55  
56  
57  
5±  
60  
61  
63  
64  
Mnemonic  
D − A  
D + A  
SCLK/DTP  
SDIO/ODM  
CSB  
PDWN  
VIN + A  
VIN − A  
VIN − B  
VIN + B  
VIN + C  
VIN − C  
VIN − D  
VIN + D  
RBIAS  
SENSE  
VREF  
REFB  
REFT  
VIN + E  
VIN − E  
VIN − F  
VIN + F  
Description  
ADC A Digital Output Complement  
ADC A Digital Output True  
Serial Clock/Digital Test Pattern  
Serial Data Input-Output/Output Driver Mode  
Chip Select Bar  
Power Down  
ADC A Analog Input True  
ADC A Analog Input Complement  
ADC B Analog Input Complement  
ADC B Analog Input True  
ADC C Analog Input True  
ADC C Analog Input Complement  
ADC D Analog Input Complement  
ADC D Analog Input True  
External Resistor to Set the Internal ADC Core Bias Current  
Reference Mode Selection  
Voltage Reference Input/Output  
Differential Reference (Negative)  
Differential Reference (Positive)  
ADC E Analog Input True  
ADC E Analog Input Complement  
ADC F Analog Input Complement  
ADC F Analog Input True  
Rev. F | Page 11 of 60  
AD9222  
Data Sheet  
EQUIVALENT CIRCUITS  
DRVDD  
V
V
D–  
D+  
VIN ± x  
V
V
DRGND  
Figure 9. Equivalent Digital Output Circuit  
Figure 6. Equivalent Analog Input Circuit  
10Ω  
CLK+  
10kΩ  
10kΩ  
1.25V  
1kΩ  
SCLK/DTP AND PDWN  
10Ω  
CLK–  
30kΩ  
Figure 7. Equivalent Clock Input Circuit  
Figure 10. Equivalent SCLK/DTP and PDWN Input Circuit  
100Ω  
RBIAS  
350Ω  
SDIO/ODM  
30kΩ  
Figure 11. Equivalent RBIAS Circuit  
Figure 8. Equivalent SDIO/ODM Input Circuit  
Rev. F | Page 12 of 60  
 
Data Sheet  
AD9222  
AVDD  
70kΩ  
1kΩ  
CSB  
VREF  
6kΩ  
Figure 14. Equivalent VREF Circuit  
Figure 12. Equivalent CSB Input Circuit  
1kΩ  
SENSE  
Figure 13. Equivalent SENSE Circuit  
Rev. F | Page 13 of 60  
AD9222  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
0
–20  
0
AIN = –0.5dBFS  
AIN = –0.5dBFS  
SNR = 70.79dB  
SNR = 70.35dB  
ENOB = 11.40 BITS  
SFDR = 83.86dBc  
ENOB = 11.47 BITS  
–20  
SFDR = 84.71dBc  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
0
5
10  
15  
20  
25  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 18. Single-Tone 32k FFT with fIN = 35 MHz, AD9222-50  
Figure 15. Single-Tone 32k FFT with fIN = 2.3 MHz, AD9222-40  
0
0
AIN = –0.5dBFS  
SNR = 70.02dB  
ENOB = 11.45 BITS  
AIN = –0.5dBFS  
SNR = 70.32dB  
ENOB = 11.39 BITS  
–20  
–20  
–40  
SFDR = 86.3dBc  
SFDR = 84.28dBc  
–40  
–60  
–80  
–60  
–80  
–100  
–120  
–100  
–120  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
5
10  
15  
20  
25  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 16. Single-Tone 32k FFT with fIN = 19.7 MHz, AD9222-40  
Figure 19. Single-Tone 32k FFT with fIN = 70 MHz, AD9222-50  
0
0
AIN = –0.5dBFS  
SNR = 69.25dB  
ENOB = 11.21 BITS  
AIN = –0.5dBFS  
SNR = 70.72dB  
ENOB = 11.45 BITS  
–20  
–40  
SFDR = 72.85dBc  
–20  
–40  
SFDR = 85.79dBc  
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 20. Single-Tone 32k FFT with fIN = 120 MHz, AD9222-50  
Figure 17. Single-Tone 32k FFT with fIN = 2.3 MHz, AD9222-50  
Rev. F | Page 14 of 60  
 
Data Sheet  
AD9222  
0
0
–20  
AIN = –0.5dBFS  
AIN = –0.5dBFS  
SNR = 70.21dB  
ENOB = 11.31 BITS  
SFDR = 82.37dBc  
SNR = 68.67dB  
–20  
ENOB = 10.79 BITS  
SFDR = 71.49dBc  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–100  
–120  
–120  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 21. Single-Tone 32k FFT with fIN = 2.3 MHz, AD9222-65  
Figure 24. Single-Tone 32k FFT with fIN = 120 MHz, AD9222-65  
0
100  
95  
AIN = –0.5dBFS  
SNR = 69.8dB  
ENOB = 11.22 BITS  
SFDR = 80.61dBc  
–20  
–40  
2V p-p, SFDR  
90  
85  
80  
75  
–60  
–80  
2V p-p, SNR  
70  
–100  
–120  
65  
60  
10  
0
5
10  
15  
20  
25  
30  
15  
20  
25  
30  
35  
40  
45  
50  
FREQUENCY (MHz)  
ENCODE (MSPS)  
Figure 22. Single-Tone 32k FFT with fIN = 35 MHz, AD9222-65  
Figure 25. SNR/SFDR vs. fSAMPLE, fIN = 2.61 MHz, AD9222-50  
0
90  
AIN = –0.5dBFS  
SNR = 69.65dB  
–20  
–40  
ENOB = 11.07 BITS  
SFDR = 74.79dBc  
85  
80  
75  
70  
65  
60  
2V p-p, SFDR  
–60  
–80  
2V p-p, SNR  
–100  
–120  
0
5
10  
15  
20  
25  
30  
10  
15  
20  
25  
30  
35  
40  
45  
50  
FREQUENCY (MHz)  
ENCODE (MSPS)  
Figure 23. Single-Tone 32k FFT with fIN = 70 MHz, AD9222-65  
Figure 26. SNR/SFDR vs. fSAMPLE, fIN = 20.1 MHz, AD9222-50  
Rev. F | Page 15 of 60  
AD9222  
Data Sheet  
100  
95  
90  
85  
80  
75  
70  
65  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2V p-p, SFDR  
2V p-p, SFDR  
80dB  
REFERENCE  
LINE  
2V p-p, SNR  
2V p-p, SNR  
60  
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
–60  
–50  
–40  
–30  
–20  
–10  
0
ENCODE (MSPS)  
INPUT AMPLITUDE (dBFS)  
Figure 27. SNR/SFDR vs. fSAMPLE, fIN = 2.3 MHz, AD9222-65  
Figure 30. SNR/SFDR vs. Analog Input Level, fIN = 10.3 MHz, AD9222-65  
100  
90  
90  
2V p-p, SFDR  
85  
80  
75  
70  
65  
60  
80  
2V p-p, SFDR  
70  
80dB  
60  
REFERENCE  
50  
40  
2V p-p, SNR  
30  
2V p-p, SNR  
20  
10  
0
–60  
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
–50  
–40  
–30  
–20  
–10  
0
ENCODE (MSPS)  
INPUT AMPLITUDE (dBFS)  
Figure 31. SNR/SFDR vs. Analog Input Level, fIN = 35 MHz, AD9222-50  
Figure 28. SNR/SFDR vs. fSAMPLE, fIN = 19.7 MHz, AD9222-65  
100  
90  
80  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
70  
2V p-p, SFDR  
2V p-p, SFDR  
60  
50  
40  
30  
20  
10  
0
80dB  
REFERENCE  
LINE  
80dB  
REFERENCE  
2V p-p, SNR  
2V p-p, SNR  
–60  
–50  
–40  
–30  
–20  
–10  
0
–60  
–50  
–40  
–30  
–20  
–10  
0
INPUT AMPLITUDE (dBFS)  
INPUT AMPLITUDE (dBFS)  
Figure 29. SNR/SFDR vs. Analog Input Level, fIN = 10.3 MHz, AD9222-50  
Figure 32. SNR/SFDR vs. Analog Input Level, fIN = 35 MHz, AD9222-65  
Rev. F | Page 16 of 60  
Data Sheet  
AD9222  
0
0
–20  
AIN1 AND AIN2 = –7dBFS  
SFDR = 80.42dB  
AIN1 AND AIN2 = –7dBFS  
SFDR = 89.87dB  
IMD2 = 96.07dBc  
IMD3 = 90.16dBc  
IMD2 = 83.92dBc  
–20  
–40  
IMD3 = 80.60dBc  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
5
10  
15  
20  
25  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 33. Two-Tone 32k FFT with fIN1 = 15 MHz and fIN2 = 16 MHz,  
AD9222-40  
Figure 36. Two-Tone 32k FFT with fIN1 = 70 MHz and fIN2 = 71 MHz, AD9222-50  
0
0
AIN1 AND AIN2 = –7dBFS  
SFDR = 77.24dB  
IMD2 = 91.66dBc  
AIN1 AND AIN2 = –7dBFS  
SFDR = 79.5dB  
–20  
–40  
–20  
–40  
IMD2 = 80.0dBc  
IMD3 = 84.1dBc  
IMD3 = 77.72dBc  
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
0
5
10  
15  
20  
25  
30  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 34. Two-Tone 32k FFT with fIN1 = 70 MHz and fIN2 = 71 MHz,  
AD9222-40  
Figure 37. Two-Tone 32k FFT with fIN1 = 15 MHz and fIN2 = 16 MHz, AD9222-65  
0
0
AIN1 AND AIN2 = –7dBFS  
SFDR = 84.49dB  
IMD2 = 85.83dBc  
AIN1 AND AIN2 = –7dBFS  
SFDR = 75.2dB  
–20  
–20  
–40  
IMD2 = 79.3dBc  
IMD3 = 75.1dBc  
IMD3 = 84.54dBc  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 38. Two-Tone 32k FFT with fIN1 = 70 MHz and fIN2 = 71 MHz, AD9222-65  
Figure 35. Two-Tone 32k FFT with fIN1 = 15 MHz and fIN2 = 16 MHz, AD9222-50  
Rev. F | Page 17 of 60  
AD9222  
Data Sheet  
90  
85  
80  
75  
70  
65  
90  
85  
80  
75  
70  
65  
60  
2V p-p, SFDR  
SFDR  
SNR  
2V p-p, SINAD  
60  
1
10  
100  
1000  
1000  
80  
–40  
–20  
0
20  
40  
60  
80  
ANALOG INPUT FREQUENCY (MHz)  
TEMPERATURE (°C)  
Figure 39. SNR/SFDR vs. fIN, AD9222-50  
Figure 42. SINAD/SFDR vs. Temperature, fIN = 2.3 MHz, AD9222-65  
90  
85  
80  
75  
70  
65  
60  
55  
90  
85  
2V p-p, SFDR  
2V p-p, SNR  
2V p-p, SFDR  
80  
75  
2V p-p, SINAD  
70  
65  
60  
–40  
50  
1
10  
100  
–20  
0
20  
40  
60  
80  
FREQUENCY (MHz)  
TEMPERATURE (°C)  
Figure 40. SNR/SFDR vs. fIN, AD9222-65  
Figure 43. SINAD/SFDR vs. Temperature, fIN = 20.1 MHz, AD9222-50  
100  
95  
90  
85  
80  
75  
70  
65  
90  
2V p-p, SFDR  
85  
80  
75  
70  
65  
60  
2V p-p, SFDR  
2V p-p, SINAD  
2V p-p, SINAD  
60  
–40  
–20  
0
20  
40  
60  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 41. SINAD/SFDR vs. Temperature, fIN = 2.61 MHz, AD9222-50  
Figure 44. SINAD/SFDR vs. Temperature, fIN = 19.7 MHz, AD9222-65  
Rev. F | Page 1± of 60  
Data Sheet  
AD9222  
1.0  
1.0  
0.8  
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
500  
1000 1500 2000 2500 3000 3500 4000  
CODE  
0
500  
1000 1500 2000 2500 3000 3500 4000  
CODE  
Figure 48. DNL, fIN = 35 MHz, AD9222-65  
Figure 45. INL, fIN = 2.3 MHz, AD9222-50  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
1.0  
0.8  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
5
10  
15  
20  
25  
30  
35  
40  
0
500  
1000 1500 2000 2500 3000 3500 4000  
CODE  
FREQUENCY (MHz)  
Figure 49. CMRR vs. Frequency, AD9222-50  
Figure 46. INL, fIN = 35 MHz, AD9222-65  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
0.8  
0.27 LSB rms  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
500  
1000 1500 2000 2500 3000 3500 4000  
CODE  
N – 3  
N – 2  
N – 1  
N
N + 1  
N + 2  
N + 3  
CODE  
Figure 50. Input-Referred Noise Histogram, AD9222-50  
Figure 47. DNL, fIN = 2.3 MHz, AD9222-50  
Rev. F | Page 19 of 60  
AD9222  
Data Sheet  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0
–1  
0.3 LSB rms  
–3dB BANDWIDTH = 325MHz  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
–10  
–11  
N – 3  
N – 2  
N – 1  
N
N + 1  
N + 2  
N + 3  
0
50  
100 150 200 250 300 350 400 450 500  
FREQUENCY (MHz)  
CODE  
Figure 51. Input-Referred Noise Histogram, AD9222-65  
Figure 53. Full-Power Bandwidth vs. Frequency, AD9222-50  
0
–20  
NPR = 60.3dB  
NOTCH = 18.0MHz  
NOTCH WIDTH = 3.0MHz  
–40  
–60  
–80  
–100  
–120  
0
5
10  
15  
20  
25  
FREQUENCY (MHz)  
Figure 52. Noise Power Ratio (NPR), AD9222-50  
Rev. F | Page 20 of 60  
Data Sheet  
AD9222  
THEORY OF OPERATION  
The AD9222 architecture consists of a pipelined ADC divided  
into three sections: a 4-bit first stage followed by eight 1.5-bit  
stages and a final 3-bit flash. Each stage provides sufficient  
overlap to correct for flash errors in the preceding stage. The  
quantized outputs from each stage are combined into a final  
12-bit result in the digital correction logic. The pipelined  
architecture permits the first stage to operate with a new input  
sample while the remaining stages operate with preceding samples.  
Sampling occurs on the rising edge of the clock.  
The clock signal alternately switches the input circuit between  
sample mode and hold mode (see Figure 54). When the input  
circuit is switched into sample mode, the signal source must be  
capable of charging the sample capacitors and settling within  
one-half of a clock cycle. A small resistor in series with each  
input can help reduce the peak transient current injected from  
the output stage of the driving source. In addition, low-Q inductors  
or ferrite beads can be placed on each leg of the input to reduce  
high differential capacitance at the analog inputs and therefore  
achieve the maximum bandwidth of the ADC. Such use of low-  
Q inductors or ferrite beads is required when driving the converter  
front end at high IF frequencies. Either a shunt capacitor or two  
single-ended capacitors can be placed on the inputs to provide a  
matching passive network. This ultimately creates a low-pass  
filter at the input to limit unwanted broadband noise. See the  
AN-742 Application Note, the AN-827 Application Note, and the  
Analog Dialogue article Transformer-Coupled Front-End for  
Wideband A/D Converters(Volume 39, April 2005) for more  
information. In general, the precise values depend on the  
application.  
Each stage of the pipeline, excluding the last, consists of a low  
resolution flash ADC connected to a switched-capacitor DAC  
and an interstage residue amplifier (for example, a multiplying  
digital-to-analog converter (MDAC)). The residue amplifier  
magnifies the difference between the reconstructed DAC output  
and the flash input for the next stage in the pipeline. One bit of  
redundancy is used in each stage to facilitate digital correction  
of flash errors. The last stage simply consists of a flash ADC.  
The output staging block aligns the data, corrects errors, and  
passes the data to the output buffers. The data is then serialized  
and aligned to the frame and data clocks.  
The analog inputs of the AD9222 are not internally dc-biased.  
Therefore, in ac-coupled applications, the user must provide  
this bias externally. Setting the device so that VCM = AVDD/2 is  
recommended for optimum performance, but the device can  
function over a wider range with reasonable performance, as  
shown in Figure 55 and Figure 57.  
ANALOG INPUT CONSIDERATIONS  
The analog input to the AD9222 is a differential switched-capacitor  
circuit designed for processing differential input signals. This  
circuit can support a wide common-mode range while maintaining  
excellent performance. An input common-mode voltage of  
midsupply minimizes signal-dependent errors and provides  
optimum performance.  
H
CPAR  
H
VIN + x  
CSAMPLE  
S
S
S
S
CSAMPLE  
VIN – x  
H
CPAR  
H
Figure 54. Switched-Capacitor Input Circuit  
Rev. F | Page 21 of 60  
 
 
 
AD9222  
Data Sheet  
90  
85  
80  
75  
70  
65  
90  
85  
80  
75  
70  
65  
60  
SFDR (dBc)  
SFDR (dBc)  
SNR (dB)  
SNR (dB)  
60  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
ANALOG INPUT COMMON-MODE VOLTAGE (V)  
ANALOG INPUT COMMON-MODE VOLTAGE (V)  
Figure 55. SNR/SFDR vs. Common-Mode Voltage,  
Figure 57. SNR/SFDR vs. Common-Mode Voltage,  
f
IN = 2.3 MHz, AD9222-50  
f
IN = 35 MHz, AD9222-50  
90  
85  
80  
75  
70  
65  
90  
85  
80  
75  
70  
65  
60  
SFDR (dBc)  
SFDR (dBc)  
SNR (dB)  
SNR (dB)  
60  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
ANALOG INPUT COMMON-MODE VOLTAGE (V)  
ANALOG INPUT COMMON-MODE VOLTAGE (V)  
Figure 56. SNR/SFDR vs. Common-Mode Voltage,  
Figure 58. SNR/SFDR vs. Common-Mode Voltage,  
f
IN = 2.3 MHz, AD9222-65  
fIN = 35 MHz, AD9222-65  
Rev. F | Page 22 of 60  
 
Data Sheet  
AD9222  
ADT1–1WT  
1:1 Z RATIO  
For best dynamic performance, the source impedances driving  
VIN + x and VIN − x should be matched such that common-  
mode settling errors are symmetrical. These errors are reduced  
by the common-mode rejection of the ADC. An internal  
reference buffer creates the positive and negative reference  
voltages, REFT and REFB, respectively, that define the span of  
the ADC core. The output common-mode of the reference buffer  
is set to midsupply, and the REFT and REFB voltages and span  
are defined as  
C
1
R
VIN + x  
ADC  
AD9222  
2Vp-p  
49.9Ω  
C
DIFF  
R
AVDD  
1kΩ  
VIN – x  
AGND  
C
1kΩ  
0.1μF  
1
C
IS OPTIONAL.  
DIFF  
Figure 59. Differential Transformer-Coupled Configuration  
for Baseband Applications  
REFT = 1/2 (AVDD + VREF)  
REFB = 1/2 (AVDD VREF)  
Span = 2 × (REFT REFB) = 2 × VREF  
ADT1–1WT  
1:1 Z RATIO  
2Vp-p  
16nH  
16nH 0.1μF  
33Ω  
VIN + x  
It can be seen from these equations that the REFT and REFB  
voltages are symmetrical about the midsupply voltage and, by  
definition, the input span is twice the value of the VREF voltage.  
65Ω  
ADC  
499Ω  
16nH  
2.2pF  
1kΩ  
AD9222  
33Ω  
VIN – x  
AVDD  
1kΩ  
1kΩ  
Maximum SNR performance is achieved by setting the ADC to  
the largest span in a differential configuration. In the case of the  
AD9222, the largest input span available is 2 V p-p.  
0.1μF  
Figure 60. Differential Transformer-Coupled Configuration for IF Applications  
Differential Input Configurations  
Single-Ended Input Configuration  
There are several ways to drive the AD9222 either actively or  
passively; however, optimum performance is achieved by  
driving the analog input differentially. For example, using the  
AD8334 differential driver to drive the AD9222 provides  
excellent performance and a flexible interface to the ADC (see  
Figure 62) for baseband applications. This configuration is  
commonly used for medical ultrasound systems.  
A single-ended input may provide adequate performance in  
cost-sensitive applications. In this configuration, SFDR and  
distortion performance degrade due to the large input common-  
mode swing. If the application requires a single-ended input  
configuration, ensure that the source impedances on each input  
are well matched in order to achieve the best possible performance.  
A full-scale input of 2 V p-p can still be applied to the ADCs  
VIN + x pin while the VIN − x pin is terminated. Figure 61 details  
a typical single-ended input configuration.  
For applications where SNR is a key parameter, differential  
transformer coupling is the recommended input configuration  
(see Figure 59 and Figure 60) because the noise performance of  
most amplifiers is not adequate to achieve the true performance  
of the AD9222.  
AVDD  
C
1kΩ  
1kΩ  
R
VIN + x  
Regardless of the configuration, the value of the shunt capacitor,  
C, is dependent on the input frequency and may need to be  
reduced or removed.  
0.1µF  
AVDD  
2V p-p  
49.9Ω  
ADC  
AD9222  
1
C
DIFF  
1kΩ  
25Ω  
R
VIN – x  
C
0.1µF  
1kΩ  
1
C
IS OPTIONAL.  
DIFF  
Figure 61. Single-Ended Input Configuration  
0.1μF  
LOP  
VIP  
0.1μF  
187Ω  
374Ω  
R
R
VOH  
0.1μF 120nH  
INH  
VIN + x  
1V p-p  
AD8334  
1.0kΩ  
1.0kΩ  
22pF  
LNA  
ADC  
AD9222  
VGA  
C
LMD  
VIN – x  
AVDD  
0.1μF  
VOL  
187Ω  
0.1μF  
0.1μF  
10μF  
LON  
VIN  
1kΩ  
1kΩ  
274Ω  
18nF  
0.1μF  
Figure 62. Differential Input Configuration Using the AD8334  
Rev. F | Page 23 of 60  
 
 
 
 
AD9222  
Data Sheet  
In some applications, it is acceptable to drive the sample clock  
inputs with a single-ended CMOS signal. In such applications,  
CLK+ should be directly driven from a CMOS gate, and the  
CLK− pin should be bypassed to ground with a 0.1 μF capacitor  
in parallel with a 39 kΩ resistor (see Figure 66). Although the  
CLK+ input circuit supply is AVDD (1.8 V), this input is  
designed to withstand input voltages of up to 3.3 V, making the  
selection of the drive logic voltage very flexible.  
CLOCK INPUT CONSIDERATIONS  
For optimum performance, the AD9222 sample clock inputs  
(CLK+ and CLK−) should be clocked with a differential signal.  
This signal is typically ac-coupled to the CLK+ and CLK− pins  
via a transformer or capacitors. These pins are biased internally  
and require no additional biasing.  
Figure 63 shows a preferred method for clocking the AD9222. The  
low jitter clock source is converted from a single-ended signal  
to a differential signal using an RF transformer. The back-to-  
back Schottky diodes across the secondary transformer limit  
clock excursions into the AD9222 to approximately 0.8 V p-p  
differential. This helps prevent the large voltage swings of the  
clock from feeding through to other portions of the AD9222,  
and it preserves the fast rise and fall times of the signal, which  
are critical to low jitter performance.  
AD9510/AD9511/  
AD9512/AD9513/  
AD9514/AD9515  
0.1µF  
CLK  
CMOS DRIVER  
CLK  
CLK+  
OPTIONAL  
100Ω  
0.1µF  
1
50Ω  
CLK+  
ADC  
AD9222  
0.1µF  
CLK–  
0.1µF  
39kΩ  
1
50Ω RESISTOR IS OPTIONAL.  
®
MINI-CIRCUITS  
Figure 66. Single-Ended 1.8 V CMOS Sample Clock  
ADT1-1WT, 1:1Z  
0.1µF  
0.1µF  
XFMR  
AD9510/AD9511/  
AD9512/AD9513/  
CLK+  
CLK+  
100Ω  
ADC  
AD9222  
CLK–  
50Ω  
AD9514/AD9515  
0.1µF  
0.1µF  
CLK+  
CLK  
OPTIONAL  
100Ω  
0.1µF  
1
SCHOTTKY  
DIODES:  
HSM2812  
50Ω  
0.1µF  
CLK+  
CMOS DRIVER  
CLK  
ADC  
AD9222  
Figure 63. Transformer-Coupled Differential Clock  
0.1µF  
0.1µF  
CLK–  
Another option is to ac-couple a differential PECL signal to the  
sample clock input pins as shown in Figure 64. The AD9510/  
AD9511/AD9512/AD9513/AD9514/AD9515 family of clock  
drivers offers excellent jitter performance.  
1
50Ω RESISTOR IS OPTIONAL.  
Figure 67. Single-Ended 3.3 V CMOS Sample Clock  
Clock Duty Cycle Considerations  
AD9510/AD9511/  
AD9512/AD9513/  
AD9514/AD9515  
Typical high speed ADCs use both clock edges to generate a  
variety of internal timing signals. As a result, these ADCs may  
be sensitive to clock duty cycle. Commonly, a 5% tolerance is  
required on the clock duty cycle to maintain dynamic performance  
characteristics. The AD9222 contains a duty cycle stabilizer (DCS)  
that retimes the nonsampling edge, providing an internal clock  
signal with a nominal 50% duty cycle. This allows a wide range  
of clock input duty cycles without affecting the performance of  
the AD9222. When the DCS is on, noise and distortion perfor-  
mance are nearly flat for a wide range of duty cycles. However,  
some applications may require the DCS function to be off. If so,  
keep in mind that the dynamic range performance can be affected  
when operated in this mode. See the Memory Map section for  
more details on using this feature.  
0.1µF  
0.1µF  
CLK+  
CLK  
PECL DRIVER  
CLK  
CLK+  
ADC  
AD9222  
100Ω  
0.1µF  
0.1µF  
CLK–  
CLK–  
1
1
240Ω  
240Ω  
50Ω  
50Ω  
1
50Ω RESISTORS ARE OPTIONAL.  
Figure 64. Differential PECL Sample Clock  
AD9510/AD9511/  
AD9512/AD9513/  
AD9514/AD9515  
0.1µF  
0.1µF  
CLK+  
CLK–  
CLK+  
CLK  
ADC  
AD9222  
100Ω  
LVDS DRIVER  
CLK  
0.1µF  
0.1µF  
CLK–  
The duty cycle stabilizer uses a delay-locked loop (DLL) to  
create the nonsampling edge. As a result, any changes to the  
sampling frequency require approximately eight clock cycles  
to allow the DLL to acquire and lock to the new rate.  
1
1
50Ω  
50Ω  
1
50Ω RESISTORS ARE OPTIONAL.  
Figure 65. Differential LVDS Sample Clock  
Rev. F | Page 24 of 60  
 
 
 
 
Data Sheet  
AD9222  
Clock Jitter Considerations  
Power Dissipation and Power-Down Mode  
High speed, high resolution ADCs are sensitive to the quality of the  
clock input. The degradation in SNR at a given input frequency  
(fA) due only to aperture jitter (tJ) can be calculated by  
As shown in Figure 69, the power dissipated by the AD9222 is  
proportional to its sample rate. The digital power dissipation  
does not vary much because it is determined primarily by the  
DRVDD supply and bias current of the LVDS output drivers.  
SNR Degradation = 20 × log 10(1/2 × π × fA × tJ)  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.800  
0.750  
0.700  
0.650  
0.600  
0.550  
0.500  
In this equation, the rms aperture jitter represents the root mean  
square of all jitter sources, including the clock input, analog input  
signal, and ADC aperture jitter specifications. IF undersampling  
applications are particularly sensitive to jitter (see Figure 68).  
AVDD CURRENT  
The clock input should be treated as an analog signal in cases  
where aperture jitter may affect the dynamic range of the AD9222.  
Power supplies for clock drivers should be separated from the  
ADC output driver supplies to avoid modulating the clock signal  
with digital noise. Low jitter, crystal-controlled oscillators make  
the best clock sources. If the clock is generated from another  
type of source (by gating, dividing, or other methods), it should  
be retimed by the original clock at the last step.  
TOTAL POWER  
DRVDD CURRENT  
10  
15  
20  
25  
30  
35  
40  
45  
50  
ENCODE (MSPS)  
Refer to the AN-501 Application Note and the AN-756  
Application Note for more in-depth information about jitter  
performance as it relates to ADCs.  
Figure 69. Supply Current vs. fSAMPLE for fIN = 10.3 MHz, AD9222- 50  
950  
500  
450  
130  
RMS CLOCK JITTER REQUIREMENT  
120  
110  
900  
400  
350  
AVDD CURRENT  
16 BITS  
100  
90  
80  
70  
60  
50  
40  
30  
850  
800  
300  
250  
200  
TOTAL POWER  
14 BITS  
12 BITS  
150  
100  
10 BITS  
8 BITS  
750  
700  
0.125ps  
0.25ps  
0.5ps  
1.0ps  
2.0ps  
DRVDD CURRENT  
50  
0
10  
20  
30  
40  
50  
60  
ENCODE (MSPS)  
1
10  
100  
1000  
ANALOG INPUT FREQUENCY (MHz)  
Figure 70. Supply Current vs. fSAMPLE for fIN = 10.3 MHz, AD9222- 65  
Figure 68. Ideal SNR vs. Input Frequency and Jitter  
Rev. F | Page 25 of 60  
 
 
AD9222  
Data Sheet  
By asserting the PDWN pin high, the AD9222 is placed into  
power-down mode. In this state, the ADC typically dissipates  
11 m W. Du r i ng p owe r-down, the LVDS output drivers are placed  
in a high impedance state. The AD9222 returns to normal  
operating mode when the PDWN pin is pulled low. This pin is  
both 1.8 V and 3.3 V tolerant.  
placed as close to the receiver as possible. If there is no far-end  
receiver termination or there is poor differential trace routing,  
timing errors may result. To avoid such timing errors, it is  
recommended that the trace length be no longer than 24 inches  
and that the differential output traces be kept close together and  
at equal lengths. An example of the FCO and data stream with  
proper trace length and position is shown in Figure 71.  
In power-down mode, low power dissipation is achieved by  
shutting down the reference, reference buffer, PLL, and biasing  
networks. The decoupling capacitors on REFT and REFB are  
discharged when entering power-down mode and must be  
recharged when returning to normal operation. As a result, the  
wake-up time is related to the time spent in the power-down  
mode; shorter cycles result in proportionally shorter wake-up  
times. With the recommended 0.1 µF and 4.7 µF decoupling  
capacitors on REFT and REFB, approximately 1 sec is required  
to fully discharge the reference buffer decoupling capacitors,  
and approximately 375 µs is required to restore full operation.  
There are several other power-down options available when  
using the SPI. The user can individually power down each  
channel or put the entire device into standby mode. The latter  
option allows the user to keep the internal PLL powered when  
fast wake-up times (~600 ns) are required. See the Memory  
Map section for more details on using these features.  
5.0ns/DIV  
CH1 500mV/DIV = FCO  
CH2 500mV/DIV = DCO  
CH3 500mV/DIV = DATA  
Figure 71. LVDS Output Timing Example in ANSI-644 Mode (Default),  
AD9222-50  
Digital Outputs and Timing  
The AD9222 differential outputs conform to the ANSI-644 LVDS  
standard on default power-up. This can be changed to a low power,  
reduced signal option (similar to the IEEE 1596.3 standard) via the  
SDIO/ODM pin or SPI. This LVDS standard can further reduce  
the overall power dissipation of the device by approximately  
36 m W. See the SDIO/ODM Pin section or Table 16 in the  
Memory Map section for more information. The LVDS driver  
current is derived on chip and sets the output current at each  
output equal to a nominal 3.5 mA. A 100 Ω differential termination  
resistor placed at the LVDS receiver inputs results in a nominal  
350 mV swing at the receiver.  
5.0ns/DIV  
CH1 500mV/DIV = FCO  
CH2 500mV/DIV = DCO  
CH3 500mV/DIV = DATA  
The AD9222 LVDS outputs facilitate interfacing with LVDS  
receivers in custom ASICs and FPGAs for superior switching  
performance in noisy environments. Single point-to-point net  
topologies are recommended with a 100 Ω termination resistor  
Figure 72. LVDS Output Timing Example in ANSI-644 Mode (Default),  
AD9222-65  
Rev. F | Page 26 of 60  
 
 
Data Sheet  
AD9222  
600  
400  
200  
0
An example of the LVDS output using the ANSI-644 standard  
(default) data eye and a time interval error (TIE) jitter histogram  
with trace lengths less than 24 inches on standard FR-4 material is  
shown in Figure 73 and Figure 74. Figure 75 and Figure 76 show  
examples of trace lengths exceeding 24 inches on standard FR-4  
material. Notice that the TIE jitter histogram reflects the decrease  
of the data eye opening as the edge deviates from the ideal position.  
It is the user’s responsibility to determine if the waveforms meet  
the timing budget of the design when the trace lengths exceed  
24 inches. Additional SPI options allow the user to further increase  
the internal termination (increasing the current) of all eight outputs  
in order to drive longer trace lengths (see Figure 77 and Figure 78).  
Even though this produces sharper rise and fall times on the data  
edges and is less prone to bit errors, the power dissipation of the  
DRVDD supply increases when this option is used.  
EYE: ALL BITS  
ULS: 9596/15596  
–200  
–400  
–600  
–1.5ns  
–1.0ns  
–0.5ns  
0ns  
0.5ns  
1.0ns  
1.5ns  
140  
120  
100  
80  
In cases that require increased driver strength to the DCO and  
FCO outputs because of load mismatch, Register 0x15 allows  
the user to increase the drive strength by 2×. To do this, set the  
appropriate bit in Register 0x5. Note that this feature cannot be  
used with Bit 4 and Bit 5 in Register 0x15. Bit 4 and Bit 5 take  
precedence over this feature. See the Memory Map section for  
more details.  
60  
40  
20  
500  
EYE: ALL BITS  
ULS: 12071/12071  
0
400  
300  
–150ps  
–100ps  
–50ps  
0ps  
50ps  
100ps  
150ps  
Figure 74. Data Eye for LVDS Outputs in ANSI-644 Mode with Trace Lengths  
Less than 24 Inches on Standard FR-4, AD9222-65  
200  
100  
500  
0
EYE: ALL BITS  
ULS: 12067/12067  
400  
300  
–100  
–200  
–300  
–400  
–500  
200  
100  
0
–100  
–200  
–300  
–400  
–500  
–1.5ns  
–1.0ns  
–0.5ns  
0ns  
0.5ns  
1.0ns  
1.5ns  
90  
80  
70  
60  
50  
40  
30  
20  
10  
–1.5ns  
–1.0ns  
–0.5ns  
0ns  
0.5ns  
1.0ns  
1.5ns  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
–150ps  
–100ps  
–50ps  
0ps  
50ps  
100ps  
150ps  
Figure 73. Data Eye for LVDS Outputs in ANSI-644 Mode with Trace Lengths  
Less than 24 Inches on Standard FR-4, AD9222-50  
–200ps  
–100ps  
0ps  
100ps  
200ps  
Figure 75. Data Eye for LVDS Outputs in ANSI-644 Mode with Trace Lengths  
Greater than 24 Inches on Standard FR-4, AD9222-50  
Rev. F | Page 27 of 60  
 
 
 
AD9222  
Data Sheet  
500  
400  
500  
EYE: ALL BITS  
ULS: 8000/15600  
EYE: ALL BITS  
ULS: 7591/15591  
400  
300  
300  
200  
200  
100  
100  
0
0
–100  
–200  
–300  
–400  
–500  
–100  
–200  
–300  
–400  
–500  
–1.5ns  
–1.0ns  
–0.5ns  
0ns  
0.5ns  
1.0ns  
1.5ns  
–1.5ns  
–1.0ns  
–0.5ns  
0ns  
0.5ns  
1.0ns  
1.5ns  
140  
120  
100  
80  
140  
120  
100  
80  
60  
60  
40  
40  
20  
20  
0
0
–200ps  
–100ps  
0ps  
100ps  
200ps  
300ps  
–300ps  
–200ps  
–100ps  
0ps  
100ps  
200ps  
300ps  
Figure 76. Data Eye for LVDS Outputs in ANSI-644 Mode with Trace Lengths  
Greater than 24 Inches on Standard FR-4, AD9222-65  
Figure 78. Data Eye for LVDS Outputs in ANSI-644 Mode with 100 Ω Termination  
on and Trace Lengths Greater than 24 Inches on Standard FR-4, AD9222-65  
The format of the output data is offset binary by default. An  
example of the output coding format can be found in Table 8.  
To change the output data format to twos complement, see the  
Memory Map section.  
400  
EYE: ALL BITS  
ULS: 12072/12072  
300  
200  
100  
Table 8. Digital Output Coding  
(VIN + x) − (VIN − x),  
Code Input Span = 2 V p-p (V)  
0
Digital Output Offset Binary  
(D11 ... D0)  
–100  
–200  
–300  
–400  
4095  
204±  
2047  
0
+1.00  
0.00  
−0.0004±±  
−1.00  
1111 1111 1111  
1000 0000 0000  
0111 1111 1111  
0000 0000 0000  
–1.5ns  
–1.0ns  
–0.5ns  
0ns  
0.5ns  
1.0ns  
1.5ns  
Data from each ADC is serialized and provided on a separate  
channel. The data rate for each serial stream is equal to 12 bits  
times the sample clock rate, with a maximum of 780 Mbps  
(12 bits × 65 MSPS = 780 Mbps). The lowest typical conversion  
rate is 10 MSPS. However, if lower sample rates are required for  
a specific application, the PLL can be set up via the SPI to allow  
encode rates as low as 5 MSPS. See the Memory Map section to  
enable this feature.  
80  
70  
60  
50  
40  
30  
20  
10  
0
–150ps  
–100ps  
–50ps  
0ps  
50ps  
100ps  
150ps  
Figure 77. Data Eye for LVDS Outputs in ANSI-644 Mode with 100 Ω Termination  
on and Trace Lengths Greater than 24 Inches on Standard FR-4, AD9222-50  
Rev. F | Page 2± of 60  
 
 
 
 
Data Sheet  
AD9222  
Two output clocks are provided to assist in capturing data from  
the AD9222. The DCO is used to clock the output data and is  
equal to six times the sample clock (CLK) rate. Data is clocked  
out of the AD9222 and must be captured on the rising and  
falling edges of the DCO that supports double data rate (DDR)  
capturing. The FCO is used to signal the start of a new output  
byte and is equal to the sample clock rate. See the timing  
diagram shown in Figure 2 for more information.  
Table 9. Flexible Output Test Modes  
Output Test Mode  
Bit Sequence  
Subject to Data  
Format Select  
Pattern Name  
Off (default)  
Midscale short  
Digital Output Word 1  
Digital Output Word 2  
0000  
0001  
N/A  
N/A  
Same  
N/A  
Yes  
1000 0000 (±-bit)  
10 0000 0000 (10-bit)  
1000 0000 0000 (12-bit)  
10 0000 0000 0000 (14-bit)  
0010  
0011  
0100  
+Full-scale short  
−Full-scale short  
Checkerboard  
1111 1111 (±-bit)  
Same  
Same  
Yes  
Yes  
No  
11 1111 1111 (10-bit)  
1111 1111 1111 (12-bit)  
11 1111 1111 1111 (14-bit)  
0000 0000 (±-bit)  
00 0000 0000 (10-bit)  
0000 0000 0000 (12-bit)  
00 0000 0000 0000 (14-bit)  
1010 1010 (±-bit)  
0101 0101 (±-bit)  
10 1010 1010 (10-bit)  
1010 1010 1010 (12-bit)  
10 1010 1010 1010 (14-bit)  
01 0101 0101 (10-bit)  
0101 0101 0101 (12-bit)  
01 0101 0101 0101 (14-bit)  
0101  
0110  
0111  
PN sequence long1  
PN sequence short1  
One-/zero-word toggle  
N/A  
N/A  
N/A  
N/A  
Yes  
Yes  
No  
1111 1111 (±-bit)  
0000 0000 (±-bit)  
11 1111 1111 (10-bit)  
1111 1111 1111 (12-bit)  
11 1111 1111 1111 (14-bit)  
00 0000 0000 (10-bit)  
0000 0000 0000 (12-bit)  
00 0000 0000 0000 (14-bit)  
1000  
1001  
User input  
1-/0-bit toggle  
Register 0x19 to Register 0x1A  
1010 1010 (±-bit)  
10 1010 1010 (10-bit)  
1010 1010 1010 (12-bit)  
10 1010 1010 1010 (14-bit)  
Register 0x1B to Register 0x1C  
N/A  
No  
No  
1010  
1011  
1100  
1× sync  
0000 1111 (±-bit)  
N/A  
N/A  
N/A  
No  
No  
No  
00 0001 1111 (10-bit)  
0000 0011 1111 (12-bit)  
00 0000 0111 1111 (14-bit)  
One bit high  
Mixed frequency  
1000 0000 (±-bit)  
10 0000 0000 (10-bit)  
1000 0000 0000 (12-bit)  
10 0000 0000 0000 (14-bit)  
1010 0011 (±-bit)  
10 0110 0011 (10-bit)  
1010 0011 0011 (12-bit)  
10 1000 0110 0111 (14-bit)  
1 All test mode options except PN sequence short and PN sequence long can support ±- to 14-bit word lengths in order to verify data capture to the receiver.  
Rev. F | Page 29 of 60  
 
 
 
AD9222  
Data Sheet  
When the SPI is used, the DCO phase can be adjusted in 60°  
increments relative to the data edge. This enables the user to  
refine system timing margins if required. The default DCO+  
and DCO− timing, as shown in Figure 2, is 90° relative to the  
output data edge.  
SDIO/ODM Pin  
The SDIO/ODM pin is for use in applications that do not require  
SPI mode operation. This pin can enable a low power, reduced  
signal option (similar to the IEEE 1596.3 reduced range link  
output standard) if it and the CSB pin are tied to AVDD during  
device power-up. This option should only be used when the  
digital output trace lengths are less than 2 inches from the LVDS  
receiver. When this option is used, the FCO, DCO, and outputs  
function normally, but the LVDS signal swing of all channels is  
reduced from 350 mV p-p to 200 mV p-p, allowing the user to  
further reduce the power on the DRVDD supply.  
An 8-, 10-, and 14-bit serial stream can also be initiated from  
the SPI. This allows the user to implement and test compatibility  
with lower and higher resolution systems. When changing the  
resolution to an 8- or 10-bit serial stream, the data stream is  
shortened. See Figure 3 for the 10-bit example. However, when  
using the 14-bit option, the data stream stuffs two 0s at the end  
of the 14-bit serial data.  
For applications where this pin is not used, it should be tied low.  
In this case, the device pin can be left open, and the 30 kΩ  
internal pull-down resistor pulls this pin low. This pin is only  
1.8 V tolerant. If applications require this pin to be driven from a  
3.3 V logic level, insert a 1 kΩ resistor in series with this pin to  
limit the current.  
When the SPI is used, all of the data outputs can also be  
inverted from their nominal state. This is not to be confused  
with inverting the serial stream to an LSB-first mode. In default  
mode, as shown in Figure 2, the MSB is first in the data output  
serial stream. However, this can be inverted so that the LSB is  
first in the data output serial stream (see Figure 4).  
Table 11. Output Driver Mode Pin Settings  
There are 12 digital output test pattern options available that  
can be initiated through the SPI. This is a useful feature when  
validating receiver capture and timing. Refer to Table 9 for the  
output bit sequencing options available. Some test patterns have  
two serial sequential words and can be alternated in various  
ways, depending on the test pattern chosen. Note that some  
patterns may not adhere to the data format select option. In  
addition, user-defined test patterns can be assigned in the 0x19,  
0x1A, 0x1B, and 0x1C register addresses. All test mode options  
except PN sequence short and PN sequence long can support  
8- to 14-bit word lengths in order to verify data capture to the  
receiver.  
Resulting  
Output Standard FCO and DCO  
Resulting  
Selected ODM ODM Voltage  
Normal  
Operation  
10 kΩ to AGND ANSI-644  
ANSI-644  
(default)  
Low power,  
reduced signal  
option  
(default)  
Low power,  
reduced  
ODM  
AVDD  
signal option  
SCLK/DTP Pin  
The SCLK/DTP pin is for use in applications that do not require  
SPI mode operation. This pin can enable a single digital test  
pattern if it and the CSB pin are held high during device power-  
up. When the SCLK/DTP is tied to AVDD, the ADC channel  
outputs shift out the following pattern: 1000 0000 0000. The  
FCO and DCO function normally while all channels shift out the  
repeatable test pattern. This pattern allows the user to perform  
timing alignment adjustments among the FCO, DCO, and output  
data. For normal operation, this pin should be tied to AGND  
through a 10 kΩ resistor. This pin is both 1.8 V and 3.3 V tolerant.  
The PN sequence short pattern produces a pseudorandom bit  
sequence that repeats itself every 29 − 1 or 511 bits. A  
description of the PN sequence and how it is generated can be  
found in Section 5.1 of the ITU-T 0.150 (05/96) standard. The  
only difference is that the starting value must be a specific value  
instead of all 1s (see Table 10 for the initial values).  
The PN sequence long pattern produces a pseudorandom bit  
sequence that repeats itself every 223 − 1 or 8,388,607 bits. A  
description of the PN sequence and how it is generated can be  
found in section 5.6 of the ITU-T 0.150 (05/96) standard. The  
only differences are that the starting value must be a specific  
value instead of all 1s (see Table 10 for the initial values) and the  
AD9222 inverts the bit stream with relation to the ITU standard.  
Table 12. Digital Test Pattern Pin Settings  
Resulting  
Resulting  
Selected DTP DTP Voltage  
D + x and D − x FCO and DCO  
Normal  
Operation  
10 kΩ to AGND Normal Normal operation  
operation  
DTP  
AVDD  
1000 0000 0000 Normal operation  
Additional and custom test patterns can also be observed when  
commanded from the SPI port. Consult the Memory Map  
section for information about the options available.  
Table 10. PN Sequence  
Initial  
Value  
First Three Output Samples  
(MSB First)  
Sequence  
PN Sequence Short  
PN Sequence Long  
0x0df  
0x29b±0a  
0xdf9, 0x353, 0x301  
0x591, 0xfd7, 0x0a3  
Consult the Memory Map section for information on how  
to change these additional digital output timing features  
through the SPI.  
Rev. F | Page 30 of 60  
 
 
 
Data Sheet  
AD9222  
CSB Pin  
The REFT and REFB pins establish their input span of the ADC  
core from the reference configuration. The analog input full-  
scale range of the ADC equals twice the voltage at the reference  
pin for either an internal or an external reference configuration.  
The CSB pin should be tied to AVDD for applications that do  
not require SPI mode operation. By tying CSB high, all SCLK  
and SDIO information is ignored. This pin is both 1.8 V and  
3.3 V tolerant.  
If the reference of the AD9222 is used to drive multiple  
converters to improve gain matching, the loading of the refer-  
ence by the other converters must be considered. Figure 81  
depicts how the internal reference voltage is affected by loading.  
RBIAS Pin  
To set the internal core bias current of the ADC, place a resistor  
(nominally equal to 10.0 kΩ) to ground at the RBIAS pin. The  
resistor current is derived on-chip and sets the AVDD current of  
the ADC to a nominal 450 mA at 65 MSPS. Therefore, it is  
imperative that at least a 1% tolerance on this resistor be used to  
achieve consistent performance  
VIN + x  
VIN – x  
REFT  
0.1µF  
+
ADC  
CORE  
0.1µF  
4.7µF  
Voltage Reference  
REFB  
A stable, accurate 0.5 V voltage reference is built into the  
AD9222. This is gained up internally by a factor of 2, setting  
0.1µF  
VREF  
0.1µF  
1µF  
0.5V  
V
REF to 1.0 V, which results in a full-scale differential input span  
SELECT  
LOGIC  
of 2 V p-p. The VREF is set internally by default; however, the  
VREF pin can be driven externally with a 1.0 V reference to  
improve accuracy.  
SENSE  
When applying the decoupling capacitors to the VREF, REFT,  
and REFB pins, use ceramic low-ESR capacitors. These capacitors  
should be close to the ADC pins and on the same layer of the  
PCB as the AD9222. The recommended capacitor values and  
configurations for the AD9222 reference pin are shown in  
Figure 79.  
Figure 79. Internal Reference Configuration  
VIN + x  
VIN – x  
REFT  
Table 13. Reference Settings  
0.1µF  
0.1µF  
REFB  
+
ADC  
CORE  
4.7µF  
Resulting  
Differential  
Span (V p-p)  
EXTERNAL  
REFERENCE  
Selected Mode SENSE Voltage  
Resulting VREF (V)  
0.1µF  
VREF  
External  
AVDD  
N/A  
2 × external  
reference  
2.0  
Reference  
1
1
1µF  
0.1µF  
0.5V  
Internal,  
AGND to 0.2 V  
1.0  
SELECT  
LOGIC  
AVDD  
2 V p-p FSR  
SENSE  
Internal Reference Operation  
A comparator within the AD9222 detects the potential at the  
SENSE pin and configures the reference. If SENSE is grounded,  
the reference amplifier switch is connected to the internal  
resistor divider (see Figure 79), setting VREF to 1 V.  
1
OPTIONAL.  
Figure 80. External Reference Operation  
Rev. F | Page 31 of 60  
 
 
AD9222  
Data Sheet  
0.02  
0
External Reference Operation  
The use of an external reference may be necessary to enhance  
the gain accuracy of the ADC or improve thermal drift charac-  
teristics. Figure 82 shows the typical drift characteristics of the  
internal reference in 1 V mode.  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–0.12  
–0.14  
–0.16  
–0.18  
When the SENSE pin is tied to AVDD, the internal reference is  
disabled, allowing the use of an external reference. The external  
reference is loaded with an equivalent 6 kΩ load. An internal  
reference buffer generates the positive and negative full-scale  
references, REFT and REFB, for the ADC core. Therefore, the  
external reference must be limited to a nominal of 1.0 V.  
5
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
0
–5  
Figure 82. Typical VREF Drift, AD9222-50  
–10  
–15  
–20  
–25  
–30  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
CURRENT LOAD (mA)  
Figure 81. VREF Accuracy vs. Load, AD9222-50  
Rev. F | Page 32 of 60  
 
 
Data Sheet  
AD9222  
SERIAL PORT INTERFACE (SPI)  
CSB remains low until the communication cycle is complete.  
The AD9222 serial port interface allows the user to configure  
the converter for specific functions or operations through a  
structured register space provided inside the ADC. This gives  
the user added flexibility and customization, depending on the  
application. Addresses are accessed via the serial port and can  
be written to or read from via the port. Memory is organized  
into bytes that can be further divided down into fields, as doc-  
umented in the Memory Map section. Detailed operational  
information can be found in the AN-877 Application Note,  
Interfacing to High Speed ADCs via SPI.  
However, if connected to a slow device, CSB can be brought  
high between bytes, allowing older microcontrollers enough  
time to transfer data into shift registers. CSB can be stalled  
when transferring one, two, or three bytes of data. When W0 and  
W1 are set to 11, the device enters streaming mode and continues  
to process data, either reading or writing, until CSB is taken  
high to end the communication cycle. This allows complete  
memory transfers without requiring additional instructions.  
Regardless of the mode, if CSB is taken high in the middle of a  
byte transfer, the SPI state machine is reset and the device waits  
for a new instruction.  
There are three pins that define the SPI: SCLK, SDIO, and CSB  
(see Table 14). The SCLK pin is used to synchronize the read  
and write data presented to the ADC. The SDIO pin is a dual-  
purpose pin that allows data to be sent to and read from the  
internal ADC memory map registers. The CSB pin is an active  
low control that enables or disables the read and write cycles.  
In addition to the operation modes, the SPI port configuration  
influences how the AD9222 operates. For applications that do  
not require a control port, the CSB line can be tied and held high.  
This places the remainder of the SPI pins into their secondary  
modes, as defined in the SDIO/ODM Pin and SCLK/DTP Pin  
sections. CSB can also be tied low to enable 2-wire mode. When  
CSB is tied low, SCLK and SDIO are the only pins required for  
communication. Although the device is synchronized during  
power-up, the user should ensure that the serial port remains  
synchronized with the CSB line when using this mode. When  
operating in 2-wire mode, it is recommended to use a 1-, 2-, or  
3-byte transfer exclusively. Without an active CSB line, streaming  
mode can be entered but not exited.  
Table 14. Serial Port Pins  
Pin  
Function  
SCLK  
Serial Clock. The serial shift clock input. SCLK is used to  
synchronize serial interface reads and writes.  
SDIO  
CSB  
Serial Data Input/Output. A dual-purpose pin. The  
typical role for this pin is an input or output, depending  
on the instruction sent and the relative position in the  
timing frame.  
Chip Select Bar (Active Low). This control gates the read  
and write cycles.  
In addition to word length, the instruction phase determines if  
the serial frame is a read or write operation, allowing the serial  
port to be used to both program the chip and read the contents  
of the on-chip memory. If the instruction is a readback operation,  
performing a readback causes the SDIO pin to change from an  
input to an output at the appropriate point in the serial frame.  
The falling edge of the CSB in conjunction with the rising edge  
of the SCLK determines the start of the framing sequence. During  
an instruction phase, a 16-bit instruction is transmitted followed by  
one or more data bytes, which is determined by Bit Field W0 and  
Bit Field W1. An example of the serial timing and its definitions  
can be found in Figure 84 and Table 15. During normal operation,  
CSB is used to signal to the device that SPI commands are to be  
received and processed. When CSB is brought low, the device  
processes SCLK and SDIO to process instructions. Normally,  
Data can be sent in MSB- or LSB-first mode. MSB-first mode  
is the default at power-up and can be changed by adjusting the  
configuration register. For more information about this and  
other features, see the AN-877 Application Note, Interfacing to  
High Speed ADCs via SPI.  
Rev. F | Page 33 of 60  
 
 
AD9222  
Data Sheet  
This interface is flexible enough to be controlled by either serial  
PROMS or PIC mirocontrollers, providing the user with an  
alternative method, other than a full SPI controller, to program  
the ADC (see the AN-812 Application Note).  
HARDWARE INTERFACE  
The pins described in Table 14 compose the physical interface  
between the users programming device and the serial port of  
the AD9222. The SCLK and CSB pins function as inputs when  
using the SPI. The SDIO pin is bidirectional, functioning as an  
input during write phases and as an output during readback.  
If the user chooses not to use the SPI, these dual-function pins  
serve their secondary functions when the CSB is strapped to  
AVDD during device power-up. See the Theory of Operation  
section for details on which pin-strappable functions are  
supported on the SPI pins.  
If multiple SDIO pins share a common connection, care should  
be taken to ensure that proper VOH levels are met. Assuming the  
same load for each AD9222, Figure 83 shows the number of SDIO  
pins that can be connected together and the resulting VOH level.  
1.800  
1.795  
1.790  
1.785  
1.780  
1.775  
1.770  
1.765  
1.760  
1.755  
1.750  
1.745  
1.740  
1.735  
1.730  
1.725  
1.720  
1.715  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
NUMBER OF SDIO PINS CONNECTED TOGETHER  
Figure 83. SDIO Pin Loading  
Rev. F | Page 34 of 60  
 
 
Data Sheet  
AD9222  
tDS  
tHI  
tCLK  
tH  
tS  
tDH  
tLO  
CSB  
SCLK DON’T CARE  
SDIO DON’T CARE  
DON’T CARE  
R/W  
W1  
W0  
A12  
A11  
A10  
A9  
A8  
A7  
D5  
D4  
D3  
D2  
D1  
D0  
DON’T CARE  
Figure 84. Serial Timing Details  
Table 15. Serial Timing Definitions  
Parameter  
Timing (Minimum, ns)  
Description  
tDS  
5
2
40  
5
Setup time between the data and the rising edge of SCLK  
Hold time between the data and the rising edge of SCLK  
Period of the clock  
tDH  
tCLK  
tS  
Setup time between CSB and SCLK  
tH  
2
Hold time between CSB and SCLK  
tHI  
tLO  
tEN_SDIO  
16  
16  
10  
Minimum period that SCLK should be in a logic high state  
Minimum period that SCLK should be in a logic low state  
Minimum time for the SDIO pin to switch from an input to an output relative to the SCLK  
falling edge (not shown in Figure ±4)  
tDIS_SDIO  
10  
Minimum time for the SDIO pin to switch from an output to an input relative to the SCLK rising  
edge (not shown in Figure ±4)  
Rev. F | Page 35 of 60  
 
 
AD9222  
Data Sheet  
MEMORY MAP  
READING THE MEMORY MAP TABLE  
RESERVED LOCATIONS  
Undefined memory locations should not be written to except  
when writing the default values suggested in this data sheet.  
Addresses that have values marked as 0 should be considered  
reserved and have a 0 written into their registers during power-up.  
Each row in the memory map register table (Table 16) has eight  
address locations. The memory map is divided into three sections:  
the chip configuration register map (Address 0x00 to Address 0x02),  
the device index and transfer register map (Address 0x05 and  
Address 0xFF), and the ADC functions register map (Address 0x08  
to Address 0x22).  
DEFAULT VALUES  
When the AD9222 comes out of a reset, critical registers are  
preloaded with default values. These values are indicated in  
Table 16, where an X refers to an undefined feature.  
The leftmost column of the memory map indicates the register  
address number, and the default value is shown in the second right-  
most column. The (MSB) Bit 7 column is the start of the default  
hexadecimal value given. For example, Address 0x09, the clock  
register, has a default value of 0x01, meaning Bit 7 = 0, Bit 6 = 0,  
Bit 5 = 0, Bit 4 = 0, Bit 3 = 0, Bit 2 = 0, Bit 1 = 0, and Bit 0 = 1, or  
0000 0001 in binary. This setting is the default for the duty cycle  
stabilizer in the on condition. By writing a 0 to Bit 6 of this address,  
the duty cycle stabilizer turns off. For more information on this  
and other functions, consult the AN-877 Application Note,  
Interfacing to High Speed ADCs via SPI.  
LOGIC LEVELS  
An explanation of various registers follows: “Bit is set” is  
synonymous with “bit is set to Logic 1” or “writing Logic 1 for  
the bit.” Similarly, “clear a bit” is synonymous with “bit is set to  
Logic 0” or “writing Logic 0 for the bit.”  
Rev. F | Page 36 of 60  
 
 
 
 
 
Data Sheet  
AD9222  
Table 16. Memory Map Register  
Default  
Value  
(Hex)  
Addr.  
(MSB)  
(LSB)  
Bit 0  
Default Notes/  
Comments  
(Hex) Parameter Name Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Chip Configuration Registers  
LSB first  
1 = on  
0
0x1±  
The nibbles  
should be  
00  
chip_port_config  
0
LSB first  
1 = on  
Soft  
reset  
1
1
Soft  
reset  
0 = off  
(default)  
1 = on  
0 = off  
(default)  
1 = on  
0 = off  
(default)  
0 = off  
(default)  
mirrored so that  
LSB- or MSB-first  
mode is set cor-  
rectly regardless  
of shift mode.  
01  
02  
chip_id  
±-bit Chip ID Bits 7:0  
(AD9222 = 0x07), (default)  
Read  
only  
Default is unique  
chip ID, different  
for each device.  
This is a read-  
only register.  
chip_grade  
X
Child ID [6:4]  
X
X
X
X
Read  
only  
Child ID used to  
differentiate  
(identify device variants of Chip ID)  
graded devices.  
000 = 65 MSPS  
011 = 50 MSPS  
001 = 40 MSPS  
Device Index and Transfer Registers  
Data  
Data  
Data  
Data  
Channel  
E
0x0F  
0x0F  
0x00  
Bits are set to  
04  
05  
FF  
device_index_2  
device_index_1  
device_update  
X
X
X
X
X
X
X
X
Channel Channel Channel  
H
1 = on  
(default)  
0 = off  
determine which  
on-chip device  
receives the next  
write command.  
G
F
1 = on  
1 = on  
1 = on  
(default) (default) (default)  
0 = off  
0 = off  
0 = off  
Clock  
Clock  
Data  
Data  
Data  
Data  
Channel  
A
Bits are set to  
Channel Channel Channel Channel Channel  
determine which  
on-chip device  
receives the next  
write command.  
DCO  
1 = on  
0 = off  
FCO  
1 = on  
0 = off  
D
1 = on  
C
B
1 = on  
1 = on  
1 = on  
(default) (default) (default) (default)  
(default) (default) 0 = off  
0 = off  
0 = off  
0 = off  
X
X
X
X
X
SW  
Synchronously  
transfers data  
from the master  
shift register to  
the slave.  
transfer  
1 = on  
0 = off  
(default)  
ADC Functions  
0±  
09  
0D  
modes  
X
X
X
X
X
X
X
X
X
X
Internal power-down mode  
000 = chip run (default)  
001 = full power-down  
010 = standby  
0x00  
Determines  
various generic  
modes of chip  
operation.  
011 = reset  
clock  
X
X
Duty cycle 0x01  
Turns the  
stabilizer  
1 = on  
(default)  
0 = off  
internal duty  
cycle stabilizer  
on and off.  
User test mode  
00 = off (default)  
01 = on, single alternate 1 = on  
10 = on, single once  
11 = on, alternate once  
Reset PN Reset  
long gen PN short  
0x00  
When this reg-  
ister is set, the  
test data is placed  
on the output  
pins in place of  
normal data.  
test_io  
Output test mode—see Table 9 in the  
Digital Outputs and Timing section  
0000 = off (default)  
0001 = midscale short  
0010 = +FS short  
gen  
1 = on  
0 = off  
(default) 0 = off  
(default)  
0011 = −FS short  
0100 = checkerboard output  
0101 = PN 23 sequence  
0110 = PN 9 sequence  
0111 = one-/zero-word toggle  
1000 = user input  
1001 = 1-/0-bit toggle  
1010 = 1× sync  
1011 = one bit high  
1100 = mixed bit frequency  
(format determined by output_mode)  
Rev. F | Page 37 of 60  
 
AD9222  
Data Sheet  
Default  
Value  
(Hex)  
Addr.  
(MSB)  
(LSB)  
Bit 0  
Default Notes/  
Comments  
(Hex) Parameter Name Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
14  
output_mode  
X
0 = LVDS  
ANSI-644  
(default)  
1 = LVDS  
low power,  
(IEEE 1596.3  
similar)  
X
X
X
Output  
invert  
1 = on  
0 = off  
(default)  
00 = offset binary  
(default)  
01 = twos  
0x00  
Configures the  
outputs and the  
format of the data.  
complement  
Determines  
15  
output_adjust  
X
X
Output driver  
termination  
00 = none (default)  
01 = 200 Ω  
10 = 100 Ω  
11 = 100 Ω  
X
X
X
DCO and 0x00  
FCO  
2× Drive  
Strength  
1 = on  
LVDS or other  
output properties.  
Primarily func-  
tions to set the  
LVDS span and  
common-mode  
levels in place of  
an external  
0 = off  
(default)  
resistor.  
On devices that  
utilize global  
clock divide,  
determines  
16  
output_phase  
X
X
X
X
0011 = output clock phase adjust  
(0000 through 1010)  
0000 = 0° relative to data edge  
0001 = 60° relative to data edge  
0010 = 120° relative to data edge  
0x03  
which phase of  
0011 = 1±0° relative to data edge (default)  
0101 = 300° relative to data edge  
0110 = 360° relative to data edge  
1000 = 4±0° relative to data edge  
1001 = 540° relative to data edge  
1010 = 600° relative to data edge  
1011 to 1111 = 660° relative to data edge  
the divider  
output is used to  
supply the  
output clock.  
Internal latching  
is unaffected.  
19  
1A  
1B  
1C  
21  
user_patt1_lsb  
user_patt1_msb  
user_patt2_lsb  
user_patt2_msb  
serial_control  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B9  
B1  
B9  
B0  
B±  
B0  
B±  
0x00  
0x00  
0x00  
0x00  
0x00  
User-defined  
pattern, 1 LSB.  
B15  
B7  
B14  
B6  
B13  
B5  
B12  
B4  
B11  
B3  
B10  
B2  
User-defined  
pattern, 1 MSB.  
User-defined  
pattern, 2 LSB.  
B15  
B14  
X
B13  
X
B12  
X
B11  
B10  
User-defined  
pattern, 2 MSB.  
LSB first  
1 = on  
0 = off  
<10  
MSPS,  
low  
encode  
rate  
000 = 12 bits (default, normal bit  
stream)  
001 = ± bits  
010 = 10 bits  
011 = 12 bits  
Serial stream  
control. Default  
causes MSB first  
and the native  
bit stream  
(default)  
mode  
1 = on  
0 = off  
(default)  
100 = 14 bits  
(global).  
Used to power  
down individual  
sections of a  
22  
serial_ch_stat  
X
X
X
X
X
X
Channel  
output  
reset  
1 = on  
0 = off  
Channel  
power-  
down  
1 = on  
0 = off  
0x00  
converter (local).  
(default) (default)  
Rev. F | Page 3± of 60  
Data Sheet  
AD9222  
Power and Ground Recommendations  
Exposed Paddle Thermal Heat Slug Recommendations  
When connecting power to the AD9222, it is recommended  
that two separate 1.8 V supplies be used: one for analog (AVDD)  
and one for digital (DRVDD). If only one supply is available, it  
should be routed to the AVDD first and then tapped off and  
isolated with a ferrite bead or a filter choke preceded by  
decoupling capacitors for the DRVDD. The user can employ  
several different decoupling capacitors to cover both high and  
low frequencies. These should be located close to the point of  
entry at the PC board level and close to the parts, with minimal  
trace lengths.  
It is required that the exposed paddle on the underside of the  
ADC be connected to analog ground (AGND) to achieve the  
best electrical and thermal performance of the AD9222. An  
exposed continuous copper plane on the PCB should mate to  
the AD9222 exposed paddle, Pin 0. The copper plane should  
have several vias to achieve the lowest possible resistive thermal  
path for heat dissipation to flow through the bottom of the PCB.  
These vias should be solder-filled or plugged.  
To maximize the coverage and adhesion between the ADC and  
PCB, partition the continuous copper plane by overlaying a  
silkscreen on the PCB into several uniform sections. This provides  
several tie points between the ADC and PCB during the reflow  
process, whereas using one continuous plane with no partitions  
only guarantees one tie point. See Figure 85 for a PCB layout  
example. For detailed information on packaging and the PCB  
layout of chip scale packages, see the AN-772 Application Note,  
A Design and Manufacturing Guide for the Lead Frame Chip  
Scale Package (LFCSP).  
A single PC board ground plane should be sufficient when  
using the AD9222. With proper decoupling and smart parti-  
tioning of the PC board’s analog, digital, and clock sections,  
optimum performance can be easily achieved.  
SILKSCREEN PARTITION  
PIN 1 INDICATOR  
Figure 85. Typical PCB Layout  
Rev. F | Page 39 of 60  
 
AD9222  
Data Sheet  
EVALUATION BOARD  
The AD9222 evaluation board provides all of the support cir-  
cuitry required to operate the ADC in its various modes and  
configurations. The converter can be driven differentially using a  
transformer (default) or an AD8334 driver. The ADC can also be  
driven in a single-ended fashion. Separate power pins are provided  
to isolate the DUT from the drive circuitry of the AD8334. Each  
input configuration can be selected by changing the connection  
of various jumpers (see Figure 90 to Figure 94). Figure 86 shows  
the typical bench characterization setup used to evaluate the ac  
performance of the AD9222. It is critical that the signal sources  
used for the analog input and clock have very low phase noise  
(<1 ps rms jitter) to realize the optimum performance of the  
converter. Proper filtering of the analog input signal to remove  
harmonics and lower the integrated or broadband noise at the  
input is also necessary to achieve the specified noise performance.  
individually. Use P702 to connect a different supply for each  
section. At least one 1.8 V supply is needed for AVDD_DUT and  
DRVDD_DUT; however, it is recommended that separate supplies  
be used for both analog and digital signals and that each supply  
have a current capability of 1 A. To operate the evaluation board  
using the VGA option, a separate 5.0 V analog supply (AVDD_5 V)  
is needed. To operate the evaluation board using the SPI and alter-  
nate clock options, a separate 3.3 V analog supply (AVDD_3.3 V) is  
needed in addition to the other supplies.  
INPUT SIGNALS  
When connecting the clock and analog sources to the evalu-  
ation board, use clean signal generators with low phase noise,  
such as Rohde & Schwarz SMA or HP8644 signal generators or the  
equivalent, as well as a 1 m, shielded, RG-58, 50 Ω coaxial cable.  
Enter the desired frequency and amplitude from the ADC specifi-  
cations tables. Typically, most Analog Devices, Inc., evaluation  
boards can accept approximately 2.8 V p-p or 13 dBm sine wave  
input for the clock. When connecting the analog input source, it  
is recommended to use a multipole, narrow-band, band-pass  
filter with 50 Ω terminations. Good choices of such band-pass  
filters are available from TTE, Allen Avionics, and K&L  
Microwave, Inc. The filter should be connected directly to the  
evaluation board if possible.  
See Figure 90 to Figure 100 for the complete schematics and  
layout diagrams demonstrating the routing and grounding  
techniques that should be applied at the system level.  
POWER SUPPLIES  
This evaluation board has a wall-mountable switching power  
supply that provides a 6 V, 2 A maximum output. Connect the  
supply to the rated 100 V ac to 240 V ac wall outlet at 47 Hz to  
63 Hz. The other end of the supply is a 2.1 mm inner diameter  
jack that connects to the PCB at P701. Once on the PC board,  
the 6 V supply is fused and conditioned before connecting to  
three low dropout linear regulators that supply the proper bias  
to each of the various sections on the board.  
OUTPUT SIGNALS  
The default setup uses the Analog Devices HSC-ADC-FIFO5-  
INTZ to interface with the Analog Devices standard dual-channel  
FIFO data capture board (HCS-ADC-EVALCZ). Two of the eight  
channels can be evaluated at the same time. For more  
information on the channel settings and optional settings of these  
boards, www.analog.com/FIFO.  
When operating the evaluation board in a nondefault condition,  
L701 to L704 can be removed to disconnect the switching power  
supply. This enables the user to bias each section of the board  
WALL OUTLET  
100V TO 240V AC  
47Hz TO 63Hz  
6V DC  
2A MAX  
5.0V  
1.8V  
1.8V  
3.3V  
3.3V  
+
+
+
+
+
SWITCHING  
POWER  
SUPPLY  
PC  
RUNNING  
ADC  
ANALYZER  
AND SPI  
USER  
ROHDE & SCHWARZ,  
HSC-ADC-EVALCZ  
FIFO DATA  
CAPTURE  
SMA,  
BAND-PASS  
FILTER  
XFMR  
INPUT  
2V p-p SIGNAL  
SYNTHESIZER  
INTERPOSER  
BOARD  
AD9222  
EVALUATION BOARD  
BOARD  
CH A TO CH H  
12-BIT  
USB  
CONNECTION  
ROHDE & SCHWARZ,  
SMA,  
SOFTWARE  
CLK  
SERIAL  
LVDS  
2V p-p SIGNAL  
SYNTHESIZER  
SPI  
SPI  
SPI  
SPI  
Figure 86. Evaluation Board Connection  
Rev. F | Page 40 of 60  
 
 
 
 
 
Data Sheet  
AD9222  
A differential LVPECL clock can also be used to clock the  
ADC input using the AD9515 (U401). Populate R406 and  
R407 with 0 Ω resistors and remove R215 and R216 to  
disconnect the default clock path inputs. In addition, populate  
C205 and C206 with a 0.1 μF capacitor and remove C409 and  
C410 to disconnect the default clock path outputs. The  
AD9515 has many pin-strappable options that are set to a  
default mode of operation. Consult the AD9515 data sheet  
for more information about these and other options.  
DEFAULT OPERATION AND JUMPER SELECTION  
SETTINGS  
The following is a list of the default and optional settings or  
modes allowed on the AD9222 Rev. A evaluation board.  
POWER: Connect the switching power supply that is  
provided with the evaluation kit between a rated 100 V ac  
to 240 V ac wall outlet at 47 Hz to 63 Hz and P701.  
AIN: The evaluation board is set up for a transformer-  
coupled analog input with an optimum 50 Ω impedance  
match of 150 MHz of bandwidth (see Figure 87). For more  
bandwidth response, the differential capacitor across the  
analog inputs can be changed or removed. The common  
mode of the analog inputs is developed from the center  
tap of the transformer or AVDD_DUT/2.  
In addition, an on-board oscillator is available on the OSC401  
and can act as the primary clock source. The setup is quick  
and involves installing R403 with a 0 Ω resistor and setting  
the enable jumper (J401) to the on position. If the user wishes  
to employ a different oscillator, two oscillator footprint options  
are available (OSC401) to check the ADC performance.  
0
PDWN: To enable the power-down feature, short J301 to  
the on position (AVDD) on the PDWN pin.  
–2  
–3dB CUTOFF = 150MHz  
–4  
–6  
SCLK/DTP: To enable the digital test pattern on the digital  
outputs of the ADC, use J304. If J304 is tied to AVDD during  
device power-up, Test Pattern 1000 0000 0000 is enabled. See  
the SCLK/DTP Pin section for details.  
–8  
–10  
–12  
–14  
–16  
–18  
SDIO/ODM: To enable the low power, reduced signal option  
(similar to the IEEE 1595.3 reduced range link LVDS output  
standard), use J303. If J303 is tied to AVDD during device  
power-up, it enables the LVDS outputs in a low power,  
reduced signal option from the default ANSI-644 standard.  
This option changes the signal swing from 350 mV p-p to  
200 mV p-p, reducing the power of the DRVDD supply. See  
the SDIO/ODM Pin section for more details.  
0
50  
100 150 200 250 300 350 400 450 500  
FREQUENCY (MHz)  
Figure 87. Evaluation Board Full-Power Bandwidth, AD9222-50  
VREF: VREF is set to 1.0 V by tying the SENSE pin to ground,  
R317. This causes the ADC to operate in 2.0 V p-p full-scale  
range. A separate external reference option using the ADR510  
or ADR520 is also included on the evaluation board. Populate  
R312 and R313 and remove C307. Proper use of the VREF  
options is noted in the Voltage Reference section.  
CSB: To enable processing of the SPI information on the  
SDIO and SCLK pins, tie J302 low in the always enable mode.  
To ignore the SDIO and SCLK information, tie J302 to AVDD.  
Non-SPI Mode: For users who wish to operate the DUT  
without using SPI, remove Jumpers J302, J303, and J304.  
This disconnects the CSB, SCLK/DTP, and SDIO/ODM pins  
from the control bus, allowing the DUT to operate in its  
simplest mode. Each of these pins has internal termination  
and will float to its respective level.  
RBIAS: RBIAS has a default setting of 10 kΩ (R301) to  
ground and is used to set the ADC core bias current.  
CLOCK: The default clock input circuitry is derived from a  
simple transformer-coupled circuit using a high bandwidth  
1:1 impedance ratio transformer (T401) that adds a very  
low amount of jitter to the clock path. The clock input is  
50 Ω terminated and ac-coupled to handle single-ended  
sine wave types of inputs. The transformer converts the  
single-ended input to a differential signal that is clipped  
before entering the ADC clock inputs.  
D + x, D − x: If an alternative data capture method to the setup  
shown in Figure 90 is used, optional receiver terminations,  
R318 and R320 to R328, can be installed next to the high  
speed backplane connector.  
Rev. F | Page 41 of 60  
 
 
AD9222  
Data Sheet  
In this example, a 16 MHz, two-pole low-pass filter was applied  
to the AD8334 outputs. The following components need to be  
removed and/or changed:  
ALTERNATIVE ANALOG INPUT DRIVE  
CONFIGURATION  
The following is a brief description of the alternative analog  
input drive configuration using the AD8334 dual VGA. If this  
drive option is in use, some components may need to be  
populated, in which case all the necessary components are listed  
in Table 17. For more details on the AD8334 dual VGA,  
including how it works and its optional pin settings, consult the  
AD8334 data sheet.  
Remove L507, L508, L511, L512, L515, L516, L519, L520,  
L607, L608, L611, L612, L615, L616, L619, and L620 on the  
AD8334 analog outputs.  
Populate L507, L508, L511, L512, L515, L516, L519, L520,  
L607, L608, L611, L612, L615, L616, L619, and L620 with  
680 nH inductors.  
To configure the analog input to drive the VGA instead of the  
default transformer option, the following components need to  
be removed and/or changed.  
Populate C543, C547, C551, C555, C643, C647, C651, and  
C655 with a 68 pF capacitor.  
680nH  
68pF  
Remove R102, R115, R128, R141, R161, R162, R163, R164,  
R202, R208, R218, R225, R234, R241, R252, R259, T101,  
T102, T103, T104, T201, T202, T203, and T204 in the  
default analog input path.  
680nH  
Figure 88. Example Filter Configured for16 MHz, Two-Pole Low-Pass Filter  
0
fSAMPLE = 50MSPS  
AIN = 3.5MHz  
AD8334 = MAX GAIN SETTING  
Populate R101, R114, R127, R140, R201, R217, R233, and  
R251 with 0 Ω resistors in the analog input path.  
–20  
–40  
Populate R152, R153, R154, R155, R156, R157, R158, R159,  
R215, R216, R229, R230, R247, R248, R263, R264, C103,  
C105, C110, C112, C117, C119, C124, C126, C203, C205,  
C210, C212, C217, C219, C224, and C226 with 10 kΩ  
resistors to provide an input common-mode level to the  
ADC analog inputs.  
–60  
–80  
–100  
–120  
Populate R105, R113, R118, R124, R131, R137, R151, R160,  
R205, R213, R221, R222, R237, R238, R255, and R256 with  
0 Ω resistors in the ADC analog input path to connect the  
VGA outputs.  
0
2.5  
5.0  
7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0  
FREQUENCY (MHz)  
Figure 89. AD9222 FFT Example Results Using 16 MHz, Two-Pole Low-Pass  
Filter Applied to the AD8334 Outputs (fSAMPLE = 50 MSPS, AIN = 3.5 MHz,  
AD8334 = Maximum Gain Setting, Analog Input Signal = −1.03 dBFS, SNR =  
60.8 dBc, SFDR = 67.02 dBc)  
Remove R515, R520, R527, R532, R615, R620, R627, and  
R632 on the AD8334 analog outputs.  
Remove R512, R524, R612, and R624 to set the AD8334  
mode and AD8334 HILO pin low. Some applications may  
require this to be different. Consult the AD8334 data sheet  
for more information on these functions.  
In this configuration, L505 to L520 and L605 to L620 are  
populated with 0 Ω resistors to allow signal connection and use  
of a filter if additional requirements are necessary.  
Rev. F | Page 42 of 60  
 
Data Sheet  
AD9222  
0 7 2  
0 5 9 6 7 -  
Figure 90. Evaluation Board Schematic, DUT Analog Inputs  
Rev. F | Page 43 of 60  
 
AD9222  
Data Sheet  
0 7 3  
0 5 9 6 7 -  
Figure 91. Evaluation Board Schematic, DUT Analog Inputs (Continued)  
Rev. F | Page 44 of 60  
Data Sheet  
AD9222  
0 7 4 0 5  
2
2
2
2
R307  
10kΩ  
R306  
100kΩ  
AVDD_DUT  
R302  
DNP  
R305  
100kΩ  
CW  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
0
VIN+C  
VIN−C  
AVDD  
VIN−D  
VIN+D  
RBIAS  
SENSE  
VREF  
REFB  
REFT  
AVDD  
VIN+E  
VIN−E  
AVDD  
VIN−F  
VIN+F  
SLUG  
VIN_C  
VIN_C  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
CHB  
D+B  
D−B  
CHB  
CHC  
AVDD_DUT  
VIN_D  
D+C  
D−C  
CHC  
CHD  
GND  
R301  
10kΩ  
VIN_D  
D+D  
D−D  
CHD  
FCO  
VSENSE_DUT  
VREF_DUT  
FCO+  
FCO−  
DCO+  
DCO−  
D+E  
FCO  
DCO  
DCO  
AVDD_DUT  
VIN_E  
CHE  
CHE  
D−E  
VIN_E  
D+F  
CHF  
AVDD_DUT  
D−F  
CHF  
CHG  
VIN_F  
VIN_F  
D+G  
D−G  
CHG  
Figure 92. Evaluation Board Schematic, DUT, VREF, and Digital Output Interface  
Rev. F | Page 45 of 60  
AD9222  
Data Sheet  
0 7 5  
0
25  
16  
15  
14  
13  
12  
11  
10  
9
S0  
S1  
S2  
S3  
1
2
33  
31  
1
S4  
3
S5  
GND  
VS  
S6  
S7  
S8  
8
S9  
32  
7
RSET  
S10  
VREF  
6
Figure 93. Evaluation Board Schematic, Clock Circuitry  
Rev. F | Page 46 of 60  
Data Sheet  
AD9222  
0 7 6  
0
R524  
10kΩ  
R523  
10kΩ  
R513  
187Ω  
C512  
10µF  
C511  
0.1µF  
C533  
10µF  
C534  
0.1µF  
C535  
10µF  
C536  
0.1µF  
C510  
10µF  
C509  
0.1µF  
R512  
10kΩ  
R511  
10kΩ  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
VCM2  
VCM1  
EN34  
NC  
VCM3  
VCM4  
HILO  
R504  
10kΩ  
R505  
10kΩ  
AVDD_5V  
EN12  
CLMP12  
GAIN12  
VPS1  
VIN1  
CLMP34  
GAIN34  
VPS4  
VG34  
VG12  
AVDD_5V  
AVDD_5V  
VIN4  
VIP1  
VIP4  
LOP1  
LON1  
COM1X  
LMD1  
INH1  
LOP4  
LON4  
COM4X  
LMD4  
INH4  
R509  
274Ω  
C505  
0.1µF  
COM1  
COM2  
COM4  
COM3  
C527  
0.018µF  
C526  
22pF  
L504  
120nH  
0.1µF  
C525  
R503  
274Ω  
R508  
274Ω  
R507  
274Ω  
C502  
0.018µF  
C521  
0.018µF  
C515  
0.018µF  
C503  
22pF  
L501  
120nH  
C520  
22pF  
C514  
22pF  
0.1µF  
C501  
L503  
120nH  
L502  
120nH  
0.1µF  
C519  
0.1µF  
C513  
AVDD_5V  
AVDD_5V  
CW  
CW  
GND  
GND  
VG34  
VG12  
Variable Gain Circuit  
(01.0V DC)  
Variable Gain Circuit  
(01.0V DC)  
VG34  
VG12  
External  
Variable Gain Drive  
External  
Variable Gain Drive  
Figure 94. Evaluation Board Schematic, Optional DUT Analog Input Drive  
Rev. F | Page 47 of 60  
 
AD9222  
Data Sheet  
0 7 7  
0
R613  
187Ω  
C612  
10µF  
C611  
0.1µF  
C633  
10µF  
C634  
0.1µF  
C635  
10µF  
C636  
0.1µF  
C610  
10µF  
C609  
0.1µF  
VCM2  
NC  
VCM3  
VCM4  
HILO  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
VCM1  
EN34  
EN12  
10kΩ  
R604  
R612  
10kΩ  
R611  
10kΩ  
R605  
10kΩ  
AVDD_5V  
CLMP12  
GAIN12  
VPS1  
CLMP34  
GAIN34  
VPS4  
VG56  
VG78  
AVDD_5V  
AVDD_5V  
VIN1  
VIN4  
VIP1  
VIP4  
LOP1  
LOP4  
LON1  
COM1X  
LMD1  
INH1  
LON4  
COM4X  
LMD4  
INH4  
R609  
274Ω  
C605  
0.1µF  
62  
63  
COM1  
COM2  
COM4  
COM3  
64  
C627  
0.018µF  
C626  
22pF  
L604  
120nH  
0.1µF  
C625  
R603  
274Ω  
R608  
274Ω  
R607  
274Ω  
C602  
0.018µF  
C621  
0.018µF  
C615  
0.018µF  
C603  
22pF  
L601  
120nH  
C620  
22pF  
C614  
22pF  
0.1µF  
C601  
L603  
120nH  
L602  
120nH  
0.1µF  
C619  
0.1µF  
C613  
AVDD_5V  
AVDD_5V  
CW  
CW  
GND  
GND  
VG78  
VG56  
Variable Gain Circuit  
(01.0V DC)  
Variable Gain Circuit  
(01.0V DC)  
VG78  
VG56  
External  
Variable Gain Drive  
External  
Variable Gain Drive  
Figure 95. Evaluation Board Schematic, Optional DUT Analog Input Drive (Continued)  
Rev. F | Page 4± of 60  
Data Sheet  
AD9222  
CR702  
GREEN  
C702  
0.1µF  
C703  
0.1µF  
GND  
GND  
1
1
R709  
0Ω  
0Ω  
SDO_CHA  
SDI_CHA  
R708  
R707  
R706  
0Ω  
0Ω  
SCLK_CHA  
CSB1_CHA  
PICVCC  
1
3
5
7
9
2
4
PICVCC  
GP1  
GP1  
GP0  
6
GP0  
MCLR/GP3  
8
MCLR/GP3  
10  
GND  
GND  
CR701  
2
OPTIONAL GREEN  
Figure 96. Evaluation Board Schematic, Power Supply Inputs and SPI Interface Circuitry  
Rev. F | Page 49 of 60  
AD9222  
Data Sheet  
Figure 97. Evaluation Board Layout, Primary Side  
Rev. F | Page 50 of 60  
Data Sheet  
AD9222  
Figure 98. Evaluation Board Layout, Ground Plane  
Rev. F | Page 51 of 60  
AD9222  
Data Sheet  
Figure 99. Evaluation Board Layout, Power Plane  
Rev. F | Page 52 of 60  
Data Sheet  
AD9222  
Figure 100. Evaluation Board Layout, Secondary Side (Mirrored Image)  
Rev. F | Page 53 of 60  
 
AD9222  
Data Sheet  
Table 17. Evaluation Board Bill of Materials (BOM)1  
Qnty.  
per  
Reference  
Item Board Designator  
Device  
Pkg.  
PCB  
402  
Value  
Mfg.  
Mfg. Part Number  
1
2
1
11±  
AD9222-65EBZ  
PCB  
PCB  
C101, C102, C107, Capacitor  
C10±, C109, C114,  
C115, C116, C121,  
C122, C123, C12±,  
C201, C202, C207,  
C20±, C209, C214,  
C215, C216, C221,  
C222, C223, C22±,  
C301, C302, C304,  
C305, C306, C401,  
C402, C403, C409,  
C410, C411, C412,  
C413, C414, C415,  
C416, C417, C41±,  
C501, C504, C505,  
C506, C50±, C509,  
C511, C513, C51±,  
C519, C522, C523,  
C524, C525, C52±,  
C529, C530, C532,  
C534, C536, C537,  
C53±, C601, C604,  
C605, C606, C60±,  
C609, C611, C613,  
C616, C617, C61±,  
C619, C622, C623,  
C624, C625, C62±,  
C629, C630, C632,  
C634, C636, C701,  
C702, C703, C706,  
C70±, C710, C712,  
C723, C724, C725,  
C726, C727, C730,  
C731, C732, C733,  
C734, C735, C740,  
C741, C742, C743,  
C744, C745, C746,  
C747, C74±, C749,  
C750, C751, C752,  
C753  
0.1 μF, ceramic, X5R,  
10 V, 10% tol  
Murata  
GRM155R71C104KA±±D  
3
4
±
±
C104, C111, C11±, Capacitor  
C125, C204, C211,  
C21±, C225  
C510, C512, C533, Capacitor  
C535, C610, C612,  
402  
±05  
2.2 pF, ceramic, COG,  
0.25 pF tol, 50 V  
Murata  
Murata  
GRM1555C1H2R20CZ01D  
GRM219R60J106KE19D  
10 μF, 6.3 V ±10%  
ceramic, X5R  
C633, C635  
5
6
7
1
4
±
C303  
Capacitor  
603  
402  
402  
4.7 μF, ceramic, X5R,  
6.3 V, 10% tol  
1000 pF, ceramic, X7R,  
25 V, 10% tol  
0.01± μF, ceramic, X7R,  
16 V, 10% tol  
Murata  
Murata  
AVX  
GRM1±±R60J475KE19D  
GRM155R71H102KA01D  
0402YC1±3KAT2A  
C507, C531, C607, Capacitor  
C631  
C502, C515, C521, Capacitor  
C527, C602, C615,  
C621, C627  
Rev. F | Page 54 of 60  
 
Data Sheet  
AD9222  
Qnty.  
per  
Reference  
Item Board Designator  
Device  
Pkg.  
Value  
Mfg.  
Mfg. Part Number  
±
±
C503, C514, C520, Capacitor  
C526, C603, C614,  
402  
22 pF, ceramic, NPO,  
5% tol, 50 V  
Murata  
GRM1555C1H220JZ01D  
C620, C626  
9
1
9
C704  
Capacitor  
1206  
603  
10 μF, tantalum,  
16 V, 20% tol  
1 μF, ceramic, X5R,  
6.3 V, 10% tol  
Rohm  
TCA1C106M±R  
10  
C307, C714, C715, Capacitor  
C716, C717, C719,  
Murata  
GRM1±±R61C105KA93D  
C720, C721, C722  
11  
16  
C540, C541, C544, Capacitor  
C545, C54±, C549,  
C552, C553, C640,  
C641, C644, C645,  
C64±, C649, C652,  
C653  
±05  
0.1 μF, ceramic, X7R,  
50 V, 10% tol  
Murata  
Murata  
GRM21BR71H104KA01L  
12  
13  
4
1
C705, C707, C709, Capacitor  
C711  
603  
10 μF, ceramic, X5R,  
6.3 V, 20% tol  
30 V, 20 mA, dual  
Schottky  
GRM1±±R60J106ME47D  
HSMS-2±12-TR1G  
CR401  
Diode  
SOT-23  
603  
Avago  
Technologies  
Panasonic  
Micro  
14  
15  
2
1
CR701, CR702  
D702  
LED  
Diode  
Green, 4 V, 5 m candela  
LNJ314G±TRA  
SK33-TP  
DO-214AB 3 A, 30 V, SMC  
Commercial Co.  
16  
17  
1±  
19  
1
D701  
Diode  
DO-214AA 5 A, 50 V, SMC  
Micro  
Commercial Co.  
Tyco/Raychem  
S2A-TP  
1
F701  
Fuse  
1210  
2020  
603  
6.0 V, 2.2 A trip-current  
resettable fuse  
NANOSMDC110F-2  
DLW5BSN191SQ2L  
BLM1±BA100SN1D  
1
FER701  
Choke coil  
Ferrite bead  
10 μH, 5 A, 50 V, 190 Ω  
@ 100 MHz  
10 Ω, test frequency  
100 MHz, 25% tol,  
500 mA  
Murata  
24  
FB101, FB102,  
FB103, FB104,  
FB105, FB106,  
FB107, FB10±,  
FB109, FB110,  
FB111, FB112,  
FB201, FB202,  
FB203, FB204,  
FB205, FB206,  
FB207, FB20±,  
FB209, FB210,  
FB211, FB212  
Murata  
20  
21  
23  
4
6
1
JP501, JP502,  
JP601, JP602  
J301, J302, J303,  
J304, J401, J701  
Connector  
Connector  
Connector  
2-pin  
3-pin  
10-pin  
100 mil header jumper,  
2-pin  
100 mil header jumper,  
3-pin  
100 mil header, male,  
2 × 5 double row  
straight  
Samtec  
Samtec  
Samtec  
TSW-102-07-G-S  
TSW-103-07-G-S  
TSW-105-0±-G-D  
J702  
24  
25  
±
±
L701, L702, L703,  
L704, L705, L706,  
L707, L70±  
L501, L502, L503,  
L504, L601, L602,  
L603, L604  
Ferrite bead  
Inductor  
1210  
402  
10 μH, bead core 3.2 ×  
2.5 × 1.6 SMD, 2 A  
Murata  
Murata  
BLM31PG500SN1L  
LQG15HNR12J02D  
120 nH, test freq  
100 MHz, 5% tol,  
150 mA  
Rev. F | Page 55 of 60  
AD9222  
Data Sheet  
Qnty.  
per  
Reference  
Item Board Designator  
Device  
Pkg.  
Value  
Mfg.  
Mfg. Part Number  
26  
32  
L505, L506, L507,  
L50±, L509, L510,  
L511, L512, L513,  
L514, L515, L516,  
L517, L51±, L519,  
L520, L605, L606,  
L607, L60±, L609,  
L610, L611, L612,  
L613, L614, L615,  
L616, L617, L61±,  
L619, L620  
Resistor  
±05  
0 Ω, 1/± W, 5% tol  
NIC  
Components  
Corp.  
NRC04Z0TRF  
27  
2±  
29  
1
9
1
OSC401  
Oscillator  
Connector  
Connector  
SMT  
Clock oscillator,  
50.00 MHz, 3.3 V,  
±5% duty cycle  
Side-mount SMA for  
0.063" board thickness  
Valphey Fisher  
VFAC3H-L-50MHz  
142-0701-±51  
6469169-1  
P101, P103, P105,  
P107, P201, P203,  
P205, P207, P401  
SMA  
Johnson  
Components  
P301  
HEADER  
1469169-1, right angle  
2-pair, 25 mm, header  
assembly  
Tyco  
30  
31  
1
P701  
Connector  
Resistor  
0.1", PCMT RAPC722, power  
supply connector  
Switchcraft  
RAPC722X  
21  
R301, R307, R401,  
R402, R410, R413,  
R504, R505, R511,  
R512, R523, R524,  
R604, R605, R611,  
R612, R623, R624,  
R711, R714, R715  
402  
10 kΩ, 1/16 W,  
5% tol  
NIC  
Components  
Corp.  
NRC04J103TRF  
32  
1±  
R103, R117, R129,  
R142, R203, R219,  
R235, R253, R317,  
R405, R415, R416,  
R417, R41±, R706,  
R707, R70±, R709  
Resistor  
402  
0 Ω, 1/16 W,  
5% tol  
NIC  
Components  
Corp.  
NRC04Z0TRF  
33  
34  
35  
±
R102, R115, R12±,  
R141, R202, R21±,  
R234, R252  
R104, R116, R130,  
R143, R204, R220,  
R236, R254  
R109, R111, R112,  
R123, R125, R126,  
R135, R13±, R139,  
R14±, R149, R150,  
R211, R212, R214,  
R22±, R231, R232,  
R246, R249, R250,  
R262, R265, R266,  
R319, R710, R712,  
R713  
Resistor  
Resistor  
Resistor  
402  
603  
402  
64.9 Ω, 1/16 W,  
1% tol  
NIC  
Components  
Corp.  
NIC  
Components  
Corp.  
NIC  
Components  
Corp.  
NRC04F64R9TRF  
NRC06Z0TRF  
±
0 Ω, 1/10 W,  
5% tol  
2±  
1 kΩ, 1/16 W,  
1% tol  
NRC04F1001TRF  
36  
16  
R10±, R110, R121, Resistor  
R122, R134, R136,  
R146, R147, R209,  
R210, R226, R227,  
R242, R245, R260,  
R261  
402  
33 Ω, 1/16 W,  
5% tol  
NIC  
Components  
Corp.  
NRC04J330TRF  
Rev. F | Page 56 of 60  
Data Sheet  
AD9222  
Qnty.  
per  
Reference  
Item Board Designator  
Device  
Pkg.  
Value  
Mfg.  
Mfg. Part Number  
37  
3±  
39  
±
3
1
R161, R162, R163,  
R164, R20±, R225,  
R241, R259  
Resistor  
402  
499 Ω, 1/16 W,  
1% tol  
NIC  
Components  
Corp.  
NIC  
Components  
Corp.  
NIC  
Components  
Corp.  
NRC04F4990TRF  
NRC04F1003TRF  
NRC04F4121TRF  
R303, R305, R306  
Resistor  
Resistor  
402  
402  
100 kΩ, 1/16 W,  
1% tol  
R414  
4.12 kΩ, 1/16W,  
1% tol  
40  
41  
1
1
R404  
R309  
Resistor  
Resistor  
402  
402  
49.9 Ω, 1/16 W,  
0.5% tol  
4.99 kΩ, 1/16 W,  
5% tol  
Susumu  
RR0510R-49R9-D  
NRC04F4991TRF  
NIC  
Components  
Corp.  
42  
43  
44  
45  
5
R310, R501, R535,  
R601, R634  
Potentiometer  
Resistor  
3-lead  
402  
10 kΩ, Cermet trimmer  
potentiometer, 1± turn  
top adjust, 10%, 1/2 W  
470 kΩ, 1/16 W,  
5% tol  
COPAL  
ELECTRONICS  
CT94EW103  
1
R30±  
NIC  
Components  
Corp.  
NIC  
Components  
Corp.  
NIC  
Components  
Corp.  
NRC04J474TRF  
NRC04J393TRF  
NRC04F1±70TRF  
4
R502, R536, R602,  
R635  
Resistor  
402  
39 kΩ, 1/16 W,  
5% tol  
16  
R513, R514, R51±,  
R519, R525, R526,  
R530, R531, R613,  
R614, R61±, R619,  
R625, R626, R630,  
R631  
Resistor  
402  
1±7 Ω, 1/16 W,  
1% tol  
46  
47  
4±  
±
R515, R520, R527,  
R532, R615, R620,  
R627, R632  
R503, R507, R50±,  
R509, R603, R607,  
R60±, R609  
R425,R427, R429,  
R431, R433, R435,  
R436, R439, R441,  
R443, R445  
Resistor  
Resistor  
Resistor  
402  
402  
201  
374 Ω, 1/16 W,  
1% tol  
NIC  
Components  
Corp.  
NIC  
Components  
Corp.  
NIC  
Components  
Corp.  
NRC04F3740TRF  
NRC04F2740TRF  
NRC02Z0TRF  
±
274 Ω, 1/16 W,  
1% tol  
11  
0 Ω, 1/20 W,  
5% tol  
49  
50  
51  
52  
53  
54  
1
1
1
2
2
1
R701  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Switch  
402  
402  
603  
402  
402  
SMD  
4.7 kΩ, 1/16 W,  
1% tol  
NIC  
Components  
Corp.  
NIC  
Components  
Corp.  
NIC  
Components  
Corp.  
NIC  
Components  
Corp.  
NRC04J472TRF  
NRC04F2610TRF  
NRC06F261OTRF  
NRC04J241TRF  
NRC04F1000TRF  
EVQ-PLDA15  
R702  
261 Ω, 1/16 W,  
1% tol  
R716  
261 Ω, 1/16 W,  
1% tol  
R420, R421  
R422, R423  
S701  
240 Ω, 1/16 W,  
5% tol  
100 Ω, 1/16 W,  
1% tol  
NIC  
Components  
Corp.  
LIGHT TOUCH,  
100GE, 5 mm  
Panasonic  
Rev. F | Page 57 of 60  
AD9222  
Data Sheet  
Qnty.  
per  
Reference  
Item Board Designator  
Device  
Pkg.  
Value  
Mfg.  
Mfg. Part Number  
55  
56  
57  
9
2
2
T101, T102, T103,  
T104, T201, T202,  
T203, T204, T401  
Transformer  
CD542  
ADT1-1WT+,  
1:1 impedance ratio  
transformer  
ADP33339AKC-1.±-RL,  
1.5 A, 1.± V LDO  
regulator  
AD±334ACPZ-REEL,  
ultralow noise  
Mini-Circuits  
ADT1-1WT+  
U704, U707  
IC  
IC  
SOT-223  
CP-64-3  
Analog Devices  
Analog Devices  
ADP3339AKCZ-1.±-RL  
AD±334ACPZ-REEL  
U501, U601  
precision dual VGA  
5±  
59  
60  
1
1
1
U706  
U705  
U301  
IC  
IC  
IC  
SOT-223  
SOT-223  
CP-64-3  
ADP3339AKC-5-RL7  
ADP3339AKC-3.3-RL  
AD9222BCPZ-65, octal,  
12-bit, 50 MSPS serial  
LVDS 1.± V ADC  
Analog Devices  
Analog Devices  
Analog Devices  
ADP3339AKCZ-5-RL  
ADP3339AKCZ-3.3-RL  
AD9222BCPZ-65  
61  
1
U302  
IC  
SOT-23  
ADR510ARTZ, 1.0 V,  
precision low noise  
shunt voltage  
Analog Devices  
ADR510ARTZ  
reference  
62  
63  
64  
65  
1
1
1
1
U401  
U702  
U703  
U701  
IC  
IC  
IC  
IC  
LFCSP  
CP-32-2  
SC70,  
MAA06A  
SC70,  
MAA06A  
±-SOIC  
AD9515BCPZ, 1.6 GHz  
clock distribution IC  
NC7WZ07P6X_NL,  
UHS dual buffer  
NC7WZ16P6X_NL,  
UHS dual buffer  
Flash prog  
Analog Devices  
Fairchild  
AD9515BCPZ  
NC7WZ07P6X_NL  
NC7WZ16P6X_NL  
PIC12F629-I/SNG  
Fairchild  
Microchip  
mem 1kx14,  
RAM size 64 × ±,  
20 MHz speed, PIC12F  
controller series  
1 This BOM is RoHS compliant.  
Rev. F | Page 5± of 60  
 
Data Sheet  
AD9222  
OUTLINE DIMENSIONS  
0.60 MAX  
9.00  
BSC SQ  
0.60  
MAX  
PIN 1  
INDICATOR  
64  
49  
1
48  
PIN 1  
INDICATOR  
0.50  
BSC  
7.55  
7.50 SQ  
7.45  
EXPOSED PAD  
(BOTTOM VIEW)  
8.75  
BSC SQ  
0.50  
0.40  
0.30  
16  
17  
33  
32  
0.22 MIN  
TOP VIEW  
7.50  
REF  
0.80 MAX  
0.65 TYP  
12° MAX  
1.00  
0.85  
0.80  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
0.30  
0.23  
0.18  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-VMMD-4  
Figure 101. 64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
9 mm × 9 mm Body, Very Thin Quad  
(CP-64-6)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1, 2  
Temperature Range Package Description  
Package Option  
AD9222ABCPZ-40  
AD9222ABCPZRL7-40  
AD9222ABCPZ-50  
AD9222ABCPZRL7-50  
AD9222ABCPZ-65  
AD9222ABCPZRL7-65  
AD9222-65EBZ  
−40°C to +±5°C  
−40°C to +±5°C  
−40°C to +±5°C  
−40°C to +±5°C  
−40°C to +±5°C  
−40°C to +±5°C  
64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
CP-64-6  
64-Lead Lead Frame Chip Scale Package [LFCSP_VQ] 7" Tape and Reel CP-64-6  
64-Lead Lead Frame Chip Scale Package [LFCSP_VQ] CP-64-6  
64-Lead Lead Frame Chip Scale Package [LFCSP_VQ] 7" Tape and Reel CP-64-6  
64-Lead Lead Frame Chip Scale Package [LFCSP_VQ] CP-64-6  
64-Lead Lead Frame Chip Scale Package [LFCSP_VQ] 7" Tape and Reel CP-64-6  
Evaluation Board  
1 Z = RoHS Compliant Part.  
2 The interposer board (HSC-ADC-FIFO5-INTZ) is required to connect to the HSC-ADC-EVALCZ data capture board.  
Rev. F | Page 59 of 60  
 
 
 
AD9222  
NOTES  
Data Sheet  
©2006–2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05967-0-12/11(F)  
Rev. F | Page 60 of 60  

相关型号:

AD9222BCPZ-40

Octal, 12-Bit, 40/50 MSPS Serial LVDS 1.8 V A/D Converter
ADI

AD9222BCPZ-50

Octal, 12-Bit, 40/50 MSPS Serial LVDS 1.8 V A/D Converter
ADI

AD9222BCPZ-65

IC 8-CH 12-BIT PROPRIETARY METHOD ADC, SERIAL ACCESS, QCC64, 9 X 9 MM, ROHS COMPLIANT, MO-220VMMD-4, LFCSP-64, Analog to Digital Converter
ADI

AD9222BCPZRL7-40

Octal, 12-Bit, 40/50 MSPS Serial LVDS 1.8 V A/D Converter
ADI

AD9222BCPZRL7-50

Octal, 12-Bit, 40/50 MSPS Serial LVDS 1.8 V A/D Converter
ADI

AD9222BCPZRL7-65

IC 8-CH 12-BIT PROPRIETARY METHOD ADC, SERIAL ACCESS, QCC64, 9 X 9 MM, ROHS COMPLIANT, MO-220VMMD-4, LFCSP-64, Analog to Digital Converter
ADI

AD9223

Complete 12-Bit 1.5/3.0/10.0 MSPS Monolithic A/D Converters
ADI

AD9223-EB

Complete 12-Bit 1.5/3.0/10.0 MSPS Monolithic A/D Converters
ADI

AD9223AR

Complete 12-Bit 1.5/3.0/10.0 MSPS Monolithic A/D Converters
ADI

AD9223AR-REEL

1-CH 12-BIT FLASH METHOD ADC, PARALLEL ACCESS, PDSO28, 0.300 INCH, SOIC-28
ROCHESTER

AD9223ARS

Complete 12-Bit 1.5/3.0/10.0 MSPS Monolithic A/D Converters
ADI

AD9223ARS

1-CH 12-BIT FLASH METHOD ADC, PARALLEL ACCESS, PDSO28, MO-150AH, SSOP-28
ROCHESTER