AD9233 [ADI]

12-Bit, 80 MSPS/105 MSPS/125 MSPS, 1.8 V Analog-to-Digital Converter; 12位, 80 MSPS / 105 MSPS / 125 MSPS , 1.8 V模拟数字转换器
AD9233
型号: AD9233
厂家: ADI    ADI
描述:

12-Bit, 80 MSPS/105 MSPS/125 MSPS, 1.8 V Analog-to-Digital Converter
12位, 80 MSPS / 105 MSPS / 125 MSPS , 1.8 V模拟数字转换器

转换器
文件: 总44页 (文件大小:1243K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
12-Bit, 80 MSPS/105 MSPS/125 MSPS,  
1.8 V Analog-to-Digital Converter  
AD9233  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
AVDD  
DRVDD  
1.8 V analog supply operation  
1.8 V to 3.3 V output supply  
AD9233  
SNR = 69.5 dBc (70.5 dBFS) to 70 MHz input  
SFDR = 85 dBc to 70 MHz input  
Low power: 395 mW @ 125 MSPS  
Differential input with 650 MHz bandwidth  
On-chip voltage reference and sample-and-hold amplifier  
DNL = 0.15 LSB  
Flexible analog input: 1 V p-p to 2 V p-p range  
Offset binary, Gray code, or twos complement data format  
Clock duty cycle stabilizer  
VIN+  
VIN–  
8-STAGE  
MDAC1  
A/D  
3
SHA  
1 1/2-BIT PIPELINE  
4
8
A/D  
REFT  
REFB  
CORRECTION LOGIC  
OR  
13  
OUTPUT BUFFERS  
DCO  
D11 (MSB)  
D0 (LSB)  
VREF  
Data output clock  
Serial port control  
Built-in selectable digital test pattern generation  
Programmable clock and data alignment  
SENSE  
SCLK/DFS  
SDIO/DCS  
CSB  
CLOCK  
DUTY CYCLE  
STABILIZER  
0.5V  
MODE  
SELECT  
REF  
SELECT  
AGND  
CLK+ CLK–  
PDWN DRGND  
APPLICATIONS  
Ultrasound equipment  
Figure 1.  
IF sampling in communications receivers  
IS-95, CDMA-One, IMT-2000  
Battery-powered instruments  
Hand-held scopemeters  
The digital output data is presented in offset binary, Gray code, or  
twos complement formats. A data output clock (DCO) is provided  
to ensure proper latch timing with receiving logic.  
The AD9233 is available in a 48-lead LFCSP and is specified  
over the industrial temperature range (−40°C to +85°C).  
Low cost digital oscilloscopes  
GENERAL DESCRIPTION  
PRODUCT HIGHLIGHTS  
The AD9233 is a monolithic, single 1.8 V supply, 12-bit, 80 MSPS/  
105 MSPS/125 MSPS analog-to-digital converter (ADC), featuring  
a high performance sample-and-hold amplifier (SHA) and on-  
chip voltage reference. The product uses a multistage differential  
pipeline architecture with output error correction logic to  
provide 12-bit accuracy at 125 MSPS data rates and guarantees  
no missing codes over the full operating temperature range.  
1. The AD9233 operates from a single 1.8 V power supply  
and features a separate digital output driver supply to  
accommodate 1.8 V to 3.3 V logic families.  
2. The patented SHA input maintains excellent performance  
for input frequencies up to 225 MHz.  
The wide bandwidth, truly differential SHA allows a variety of  
user-selectable input ranges and offsets, including single-ended  
applications. It is suitable for multiplexed systems that switch  
full-scale voltage levels in successive channels and for sampling  
single-channel inputs at frequencies well beyond the Nyquist rate.  
Combined with power and cost savings over previously available  
ADCs, the AD9233 is suitable for applications in communications,  
imaging, and medical ultrasound.  
3. The clock DCS maintains overall ADC performance over a  
wide range of clock pulse widths.  
4. A standard serial port interface supports various product  
features and functions, such as data formatting (offset  
binary, twos complement, or Gray coding), enabling the  
clock DCS, power-down, and voltage reference mode.  
5. The AD9233 is pin compatible with the AD9246, allowing  
a simple migration from 12 bits to 14 bits.  
A differential clock input controls all internal conversion cycles. A  
duty cycle stabilizer (DCS) compensates for wide variations in the  
clock duty cycle while maintaining excellent overall ADC  
performance.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
AD9233  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Timing ......................................................................................... 22  
Serial Port Interface (SPI).............................................................. 23  
Configuration Using the SPI..................................................... 23  
Hardware Interface..................................................................... 23  
Configuration Without the SPI ................................................ 23  
Memory Map .................................................................................. 24  
Reading the Memory Map Table.............................................. 24  
Layout Considerations................................................................... 27  
Power and Ground Recommendations................................... 27  
CML ............................................................................................. 27  
RBIAS........................................................................................... 27  
Reference Decoupling................................................................ 27  
Evaluation Board ............................................................................ 28  
Power Supplies............................................................................ 28  
Input Signals................................................................................ 28  
Output Signals ............................................................................ 28  
Default Operation and Jumper Selection Settings................. 29  
Alternative Clock Configurations............................................ 29  
Alternative Analog Input Drive Configuration...................... 30  
Schematics....................................................................................... 31  
Evaluation Board Layouts ......................................................... 36  
Bill of Materials (BOM)............................................................. 39  
Outline Dimensions....................................................................... 42  
Ordering Guide .......................................................................... 42  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 3  
Specifications..................................................................................... 4  
DC Specifications ......................................................................... 4  
AC Specifications.......................................................................... 5  
Digital Specifications ................................................................... 6  
Switching Specifications .............................................................. 7  
Timing Diagram ........................................................................... 7  
Absolute Maximum Ratings............................................................ 8  
Thermal Resistance ...................................................................... 8  
ESD Caution.................................................................................. 8  
Pin Configuration and Function Descriptions............................. 9  
Equivalent Circuits......................................................................... 10  
Typical Performance Characteristics ........................................... 11  
Theory of Operation ...................................................................... 15  
Analog Input Considerations.................................................... 15  
Voltage Reference ....................................................................... 17  
Clock Input Considerations...................................................... 18  
Jitter Considerations .................................................................. 19  
Power Dissipation and Standby Mode..................................... 20  
Digital Outputs ........................................................................... 21  
Rev. A | Page 2 of 44  
AD9233  
REVISION HISTORY  
8/06—Rev. 0 to Rev. A  
4/06—Revision 0: Initial Version  
Updated Format.................................................................. Universal  
Added 80 MSPS.................................................................. Universal  
Deleted Figure 19, Figure 20, Figure 22, and Figure 23;  
Renumbered Sequentially ..............................................................11  
Deleted Figure 24, Figure 25, and Figure 27 to Figure 29;  
Renumbered Sequentially ..............................................................12  
Deleted Figure 31 and Figure 34; Renumbered Sequentially....13  
Deleted Figure 37, Figure 38, Figure 40, and Figure 41;  
Renumbered Sequentially ..............................................................14  
Deleted Figure 46; Renumbered Sequentially .............................15  
Deleted Figure 52; Renumbered Sequentially .............................16  
Changes to Figure 40 ......................................................................16  
Changes to Figure 46 ......................................................................18  
Inserted Figure 54; Renumbered Sequentially ............................20  
Changes to Digital Outputs Section .............................................21  
Changes to Timing Section............................................................22  
Added Data Clock Output (DCO) Section..................................22  
Changes to Configuration Using the SPI Section and  
Configuration Without the SPI Section.......................................23  
Changes to Table 15 ........................................................................25  
Changes to Table 16 ........................................................................39  
Changes to Ordering Guide...........................................................42  
Rev. A | Page 3 of 44  
 
AD9233  
SPECIFICATIONS  
DC SPECIFICATIONS  
AVDD = 1.8 V; DRVDD = 2.5 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS,  
DCS enabled, unless otherwise noted.  
Table 1.  
AD9233BCPZ-80  
AD9233BCPZ-105  
AD9233BCPZ-125  
Parameter  
Temp  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
RESOLUTION  
Full  
12  
12  
12  
Bits  
ACCURACY  
No Missing Codes  
Offset Error  
Gain Error  
Full  
Full  
Full  
Full  
2ꢀ°C  
Full  
2ꢀ°C  
Guaranteed  
Guaranteed  
Guaranteed  
±±.3  
±±.2  
±±.ꢀ  
±4.ꢂ  
±±.3  
±±.3  
±±.2  
±±.ꢁ  
±4.ꢃ  
±±.ꢀ  
±±.3  
±±.2  
±±.ꢁ  
±3.ꢃ  
±±.ꢀ  
% FSR  
% FSR  
LSB  
LSB  
LSB  
Differential Nonlinearity (DNL)1  
±±.2  
±±.ꢀ  
±±.2  
±±.ꢀ  
±±.2  
±±.ꢀ  
Integral Nonlinearity (INL)1  
±1.2  
±2±  
±1.2  
±3ꢀ  
±1.2  
±3ꢀ  
LSB  
TEMPERATURE DRIFT  
Offset Error  
Gain Error  
Full  
Full  
±1ꢀ  
±ꢃꢀ  
±1ꢀ  
±ꢃꢀ  
±1ꢀ  
±ꢃꢀ  
ppm/°C  
ppm/°C  
INTERNAL VOLTAGE REFERENCE  
Output Voltage Error (1 V Mode)  
Load Regulation @ 1.± mA  
INPUT REFERRED NOISE  
VREF = 1.± V  
Full  
Full  
±ꢀ  
±ꢀ  
±ꢀ  
mV  
mV  
2ꢀ°C  
±.34  
±.34  
±.34  
LSB rms  
ANALOG INPUT  
Input Span, VREF = 1.± V  
Input Capacitance2  
REFERENCE INPUT RESISTANCE  
POWER SUPPLIES  
Full  
Full  
Full  
2
6
2
6
2
6
V p-p  
pF  
kΩ  
Supply Voltage  
AVDD  
DRVDD  
Full  
Full  
1.ꢂ  
1.ꢂ  
1.ꢁ  
3.3  
1.ꢃ  
3.6  
1.ꢂ  
1.ꢂ  
1.ꢁ  
3.3  
1.ꢃ  
3.6  
1.ꢂ  
1.ꢂ  
1.ꢁ  
3.3  
1.ꢃ  
3.6  
V
V
Supply Current  
IAVDD1  
Full  
Full  
Full  
13ꢁ  
12  
1ꢀꢀ  
1ꢂꢁ  
14  
1ꢃ4  
22±  
1±  
1ꢂ  
236  
mA  
mA  
mA  
IDRVDD1 (DRVDD = 1.ꢁ V)  
IDRVDD1 (DRVDD = 3.3 V)  
POWER CONSUMPTION  
DC Input  
Full  
Full  
Full  
Full  
Full  
24ꢁ  
261  
2ꢁꢁ  
4±  
2ꢂꢃ  
32±  
33ꢀ  
36ꢀ  
4±  
3ꢀ±  
3ꢃꢀ  
41ꢀ  
4ꢀ2  
4±  
42ꢀ  
mW  
mW  
mW  
mW  
mW  
Sine Wave Input1 (DRVDD = 1.ꢁ V)  
Sine Wave Input1 (DRVDD = 3.3 V)  
Standby3  
Power-Down  
1.ꢁ  
1.ꢁ  
1.ꢁ  
1 Measured with a low input frequency, full-scale sine wave, with approximately ꢀ pF loading on each output bit.  
2 Input capacitance refers to the effective capacitance between one differential input pin and AGND. Refer to Figure 4 for the equivalent analog input structure.  
3 Standby power is measured with a dc input, the CLK pin inactive (set to AVDD or AGND).  
Rev. A | Page 4 of 44  
 
 
AD9233  
AC SPECIFICATIONS  
AVDD = 1.8 V; DRVDD = 2.5 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS,  
DCS enabled, unless otherwise noted.  
Table 2.  
AD9233BCPZ-80  
AD9233BCPZ-105  
AD9233BCPZ-125  
Parameter1  
Temp Min Typ  
Max  
Min Typ  
Max  
Min Typ  
Max  
Unit  
SIGNAL-TO-NOISE-RATIO (SNR)  
fIN = 2.4 MHz  
fIN = ꢂ± MHz  
2ꢀ°C  
2ꢀ°C  
Full  
2ꢀ°C  
2ꢀ°C  
6ꢃ.ꢀ  
6ꢃ.ꢀ  
6ꢃ.ꢀ  
6ꢃ.ꢀ  
6ꢃ.ꢀ  
6ꢃ.ꢀ  
dBc  
dBc  
dBc  
dBc  
dBc  
6ꢁ.ꢃ  
6ꢁ.ꢀ  
6ꢁ.3  
6ꢁ.3  
fIN = 1±± MHz  
fIN = 1ꢂ± MHz  
6ꢃ.4  
6ꢁ.ꢃ  
6ꢃ.4  
6ꢁ.ꢃ  
6ꢃ.4  
6ꢁ.ꢃ  
SIGNAL-TO-NOISE AND DISTORTION (SINAD)  
fIN = 2.4 MHz  
fIN = ꢂ± MHz  
2ꢀ°C  
2ꢀ°C  
Full  
2ꢀ°C  
2ꢀ°C  
6ꢃ.2  
6ꢃ.2  
6ꢃ.2  
6ꢃ.2  
6ꢃ.2  
6ꢃ.2  
dBc  
dBc  
dBc  
dBc  
dBc  
6ꢂ.3  
6ꢂ.3  
fIN = 1±± MHz  
fIN = 1ꢂ± MHz  
6ꢃ.1  
6ꢁ.6  
6ꢃ.1  
6ꢁ.6  
6ꢃ.1  
6ꢁ.6  
EFFECTIVE NUMBER OF BITS (ENOB)  
fIN = 2.4 MHz  
fIN = ꢂ± MHz  
fIN = 1±± MHz  
fIN = 1ꢂ± MHz  
2ꢀ°C  
2ꢀ°C  
2ꢀ°C  
2ꢀ°C  
11.4  
11.4  
11.4  
11.3  
11.4  
11.4  
11.4  
11.3  
11.4  
11.4  
11.4  
11.3  
Bits  
Bits  
Bits  
Bits  
WORST SECOND OR THIRD HARMONIC  
fIN = 2.4 MHz  
fIN = ꢂ± MHz  
2ꢀ°C  
2ꢀ°C  
Full  
2ꢀ°C  
2ꢀ°C  
−ꢃ±.±  
−ꢁꢀ.±  
−ꢃ±.±  
−ꢁꢀ.±  
−ꢃ±.±  
−ꢁꢀ.±  
dBc  
dBc  
−ꢂ3.± dBc  
dBc  
−ꢂ6.±  
−ꢂ3.±  
fIN = 1±± MHz  
fIN = 1ꢂ± MHz  
−ꢁꢀ.±  
−ꢁ3.ꢀ  
−ꢁꢀ.±  
−ꢁ3.ꢀ  
−ꢁꢀ.±  
−ꢁ3.ꢀ  
dBc  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)  
fIN = 2.4 MHz  
fIN = ꢂ± MHz  
2ꢀ°C  
2ꢀ°C  
Full  
2ꢀ°C  
2ꢀ°C  
ꢃ±.±  
ꢁꢀ.±  
ꢃ±.±  
ꢁꢀ.±  
ꢃ±.±  
ꢁꢀ.±  
dBc  
dBc  
dBc  
dBc  
dBc  
ꢂ6.±  
ꢂ3.±  
ꢂ3.±  
fIN = 1±± MHz  
fIN = 1ꢂ± MHz  
ꢁꢀ.±  
ꢁ3.ꢀ  
ꢁꢀ.±  
ꢁ3.ꢀ  
ꢁꢀ.±  
ꢁ3.ꢀ  
WORST OTHER (HARMONIC OR SPUR)  
fIN = 2.4 MHz  
fIN = ꢂ± MHz  
2ꢀ°C  
2ꢀ°C  
Full  
2ꢀ°C  
2ꢀ°C  
−ꢃ±.±  
−ꢃ±.±  
−ꢃ±.±  
−ꢃ±.±  
−ꢃ±.±  
−ꢃ±.±  
dBc  
dBc  
−ꢁ1.± dBc  
dBc  
−ꢁꢀ.±  
−ꢁ1.±  
fIN = 1±± MHz  
fIN = 1ꢂ± MHz  
−ꢃ±.±  
−ꢃ±.±  
−ꢃ±.±  
−ꢃ±.±  
−ꢃ±.±  
−ꢃ±.±  
dBc  
TWO-TONE SFDR  
fIN = 3± MHz (−ꢂ dBFS), 31 MHz (−ꢂ dBFS)  
fIN = 1ꢂ± MHz (−ꢂ dBFS), 1ꢂ1 MHz (−ꢂ dBFS)  
2ꢀ°C  
2ꢀ°C  
2ꢀ°C  
ꢁꢂ  
ꢁ3  
ꢁꢂ  
ꢁ3  
ꢁꢀ  
ꢁ4  
dBFS  
dBFS  
MHz  
ANALOG INPUT BANDWIDTH  
6ꢀ±  
6ꢀ±  
6ꢀ±  
1 See AN-ꢁ3ꢀ, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions.  
Rev. A | Page ꢀ of 44  
 
AD9233  
DIGITAL SPECIFICATIONS  
AVDD = 1.8 V; DRVDD = 2.5 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS,  
DCS enabled, unless otherwise noted.  
Table 3.  
AD9233BCPZ-80/105/125  
Parameter  
Temp  
Min  
Typ  
Max  
Unit  
DIFFERENTIAL CLOCK INPUTS (CLK+, CLK−)  
Logic Compliance  
CMOS/LVDS/LVPECL  
Internal Common-Mode Bias  
Differential Input Voltage  
Input Voltage Range  
Input Common-Mode Range  
High Level Input Voltage (VIH)  
Low Level Input Voltage (VIL)  
High Level Input Current (IIH)  
Low Level Input Current (IIL)  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
1.2  
V
V p-p  
V
V
V
±.2  
AVDD − ±.3  
6
AVDD + 1.6  
AVDD  
3.6  
1.1  
1.2  
±
−1±  
−1±  
±.ꢁ  
V
+1±  
+1±  
12  
μA  
μA  
kΩ  
pF  
1±  
4
Input Capacitance  
LOGIC INPUTS (SCLK/DFS, OE, PWDN)  
High Level Input Voltage (VIH)  
Low Level Input Voltage (VIL)  
High Level Input Current (IIH)  
Low Level Input Current (IIL)  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.2  
±
−ꢀ±  
−1±  
3.6  
±.ꢁ  
−ꢂꢀ  
+1±  
V
V
μA  
μA  
kΩ  
pF  
3±  
2
Input Capacitance  
LOGIC INPUTS (CSB)  
High Level Input Voltage (VIH)  
Low Level Input Voltage (VIL)  
High Level Input Current (IIH)  
Low Level Input Current (IIL)  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.2  
±
−1±  
+4±  
3.6  
±.ꢁ  
+1±  
+13ꢀ  
V
V
μA  
μA  
kΩ  
pF  
26  
2
Input Capacitance  
LOGIC INPUTS (SDIO/DCS)  
High Level Input Voltage (VIH)  
Low Level Input Voltage (VIL)  
High Level Input Current (IIH)  
Low Level Input Current (IIL)  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.2  
±
−1±  
+4±  
DRVDD + ±.3  
±.ꢁ  
+1±  
V
V
μA  
μA  
kΩ  
pF  
+13±  
26  
Input Capacitance  
DIGITAL OUTPUTS  
DRVDD = 3.3 V  
High Level Output Voltage (VOH, IOH = ꢀ± μA)  
High Level Output Voltage (VOH, IOH = ±.ꢀ mA)  
Low Level Output Voltage (VOL, IOL = 1.6 mA)  
Low Level Output Voltage (VOL, IOL = ꢀ± μA)  
DRVDD = 1.ꢁ V  
Full  
Full  
Full  
Full  
3.2ꢃ  
3.2ꢀ  
V
V
V
V
±.2  
±.±ꢀ  
High Level Output Voltage (VOH, IOH = ꢀ± μA)  
High Level Output Voltage (VOH, IOH = ±.ꢀ mA)  
Low Level Output Voltage (VOL, IOL = 1.6 mA)  
Low Level Output Voltage (VOL, IOL = ꢀ± μA)  
Full  
Full  
Full  
Full  
1.ꢂꢃ  
1.ꢂꢀ  
V
V
V
V
±.2  
±.±ꢀ  
Rev. A | Page 6 of 44  
 
AD9233  
SWITCHING SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 2.5 V, unless otherwise noted.  
Table 4.  
AD9233BCPZ-80  
AD9233BCPZ-105  
AD9233BCPZ-125  
Parameter1  
Temp  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
CLOCK INPUT PARAMETERS  
Conversion Rate, DCS Enabled  
Conversion Rate, DCS Disabled  
CLK Period  
CLK Pulse Width High, DCS Enabled  
CLK Pulse Width High, DCS Disabled  
DATA OUTPUT PARAMETERS  
Data Propagation Delay (tPD)2  
Full  
Full  
Full  
Full  
Full  
2±  
1±  
12.ꢀ  
3.ꢂꢀ  
ꢀ.63  
ꢁ±  
ꢁ±  
2±  
1±  
ꢃ.ꢀ  
2.ꢁꢀ  
4.2ꢁ  
1±ꢀ  
1±ꢀ  
2±  
1±  
2.4  
3.6  
12ꢀ  
12ꢀ  
MSPS  
MSPS  
ns  
ns  
ns  
6.2ꢀ  
6.2ꢀ  
ꢁ.ꢂꢀ  
6.ꢁꢁ  
4.ꢂꢀ  
4.ꢂꢀ  
6.6ꢀ  
ꢀ.23  
4
4
ꢀ.6  
4.4  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
3.1  
3.ꢃ  
4.4  
ꢀ.ꢂ  
6.ꢁ  
12  
±.ꢁ  
±.1  
3ꢀ±  
2
4.ꢁ  
3.1  
3.ꢃ  
4.4  
4.3  
ꢀ.3  
12  
±.ꢁ  
±.1  
3ꢀ±  
2
4.ꢁ  
3.1  
3.ꢃ  
4.4  
3.ꢀ  
4.ꢀ  
12  
±.ꢁ  
±.1  
3ꢀ±  
3
4.ꢁ  
ns  
ns  
ns  
ns  
cycles  
ns  
ps rms  
ms  
DCO Propagation Delay (tDCO  
)
Setup Time (tS)  
Hold Time (tH)  
Pipeline Delay (Latency)  
Aperture Delay (tA)  
Aperture Uncertainty (Jitter, tJ)  
Wake-Up Time3  
4.ꢃ  
ꢀ.ꢃ  
3.4  
4.4  
2.6  
3.ꢂ  
OUT-OF-RANGE RECOVERY TIME  
SERIAL PORT INTERFACE4  
cycles  
SCLK Period (tCLK  
)
Full  
Full  
Full  
Full  
Full  
Full  
Full  
4±  
16  
16  
2
4±  
16  
16  
2
4±  
16  
16  
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK Pulse Width High Time (tHI)  
SCLK Pulse Width Low Time (tLO)  
SDIO to SCLK Setup Time (tDS)  
SDIO to SCLK Hold Time (tDH)  
CSB to SCLK Setup Time (tS)  
CSB to SCLK Hold Time (tH)  
2
2
2
1 See AN-ꢁ3ꢀ, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions.  
2 Output propagation delay is measured from CLK ꢀ±% transition to DATA ꢀ±% transition, with ꢀ pF load.  
3 Wake-up time is dependant on the value of the decoupling capacitors, values shown with ±.1 μF capacitor across REFT and REFB.  
4 See Figure ꢀꢂ and the Serial Port Interface (SPI) section.  
TIMING DIAGRAM  
N + 2  
N + 1  
N + 3  
N
N + 4  
N + 8  
tA  
N + 5  
N + 7  
N + 6  
tCLK  
CLK+  
CLK–  
tPD  
N – 12  
DATA  
DCO  
N – 13  
tS  
N – 11  
tH  
N – 10  
N – 9  
tDCO  
N – 8  
N – 7  
tCLK  
N – 6  
N – 5  
N – 4  
Figure 2. Timing Diagram  
Rev. A | Page ꢂ of 44  
 
 
AD9233  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
Parameter  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rating  
ELECTRICAL  
AVDD to AGND  
−±.3 V to +2.± V  
−±.3 V to +3.ꢃ V  
−±.3 V to +±.3 V  
−3.ꢃ V to +2.± V  
−±.3V to DRVDD + ±.3V  
−±.3 V to DRVDD + ±.3 V  
−±.3V to DRVDD + ±.3V  
−±.3 V to +3.ꢃ V  
DRVDD to DRGND  
AGND to DRGND  
AVDD to DRVDD  
D± through D11 to DRGND  
DCO to DRGND  
OR to DRGND  
CLK+ to AGND  
CLK− to AGND  
VIN+ to AGND  
VIN− to AGND  
THERMAL RESISTANCE  
The exposed paddle must be soldered to the ground plane for  
the LFCSP package. Soldering the exposed paddle to the  
customer board increases the reliability of the solder joints,  
maximizing the thermal capability of the package.  
−±.3 V to +3.ꢃ V  
−±.3 V to AVDD + 1.3 V  
−±.3 V to AVDD + 1.3 V  
−±.3 V to AVDD + ±.2 V  
−±.3 V to AVDD + ±.2 V  
−±.3 V to AVDD + ±.2 V  
−±.3 V to AVDD + ±.2 V  
−±.3 V to DRVDD + ±.3 V  
−±.3 V to +3.ꢃ V  
VREF to AGND  
SENSE to AGND  
REFT to AGND  
Table 6.  
Package Type  
θJA  
θJC  
Unit  
4ꢁ-lead LFCSP (CP-4ꢁ-3)  
26.4  
2.4  
°C/W  
REFB to AGND  
SDIO/DCS to DRGND  
PDWN to AGND  
CSB to AGND  
SCLK/DFS to AGND  
OEB to AGND  
Typical θJA and θJC are specified for a 4-layer board in still air.  
Airflow increases heat dissipation, effectively reducing θJA. In  
addition, metal in direct contact with the package leads from  
metal traces, and through holes, ground, and power planes,  
reduces the θJA.  
−±.3 V to +3.ꢃ V  
−±.3 V to +3.ꢃ V  
−±.3 V to +3.ꢃ V  
ENVIRONMENTAL  
Storage Temperature Range  
Operating Temperature Range  
Lead Temperature  
(Soldering 1± Sec)  
–6ꢀ°C to +12ꢀ°C  
–4±°C to +ꢁꢀ°C  
3±±°C  
Junction Temperature  
1ꢀ±°C  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4±±± V readily accumulate on the  
human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. A | Page ꢁ of 44  
 
AD9233  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
(LSB) D0  
D1  
1
2
3
4
5
6
7
8
9
36 PDWN  
35 RBIAS  
34 CML  
PIN 1  
INDICATOR  
D2  
33 AVDD  
32 AGND  
31 VIN–  
D3  
D4  
AD9233  
D5  
DRGND  
DRVDD  
D6  
30 VIN+  
TOP VIEW  
(Not to Scale)  
29 AGND  
28 REFT  
27 REFB  
26 VREF  
25 SENSE  
D7 10  
D8 11  
D9 12  
PIN 0 (EXPOSED PADDLE): AGND  
NC = NO CONNECT  
Figure 3. Pin Configuration  
Table 7. Pin Function Description  
Pin No.  
Mnemonic  
Description  
±, 21, 23, 2ꢃ,  
32, 3ꢂ, 41  
AGND  
Analog Ground. (Pin ± is the exposed thermal pad on the bottom of the package.)  
1 to 6, ꢃ to 14  
ꢂ, 16, 4ꢂ  
ꢁ, 1ꢂ, 4ꢁ  
1ꢀ  
D± (LSB) to D11 (MSB)  
DRGND  
DRVDD  
Data Output Bits.  
Digital Output Ground.  
Digital Output Driver Supply (1.ꢁ V to 3.3 V).  
Out-of-Range Indicator.  
OR  
1ꢁ  
SDIO/DCS  
Serial Port Interface (SPI)® Data Input/Output (Serial Port Mode); Duty Cycle Stabilizer Select  
(External Pin Mode). See Table 1±.  
1ꢃ  
2±  
SCLK/DFS  
CSB  
SPI Clock (Serial Port Mode); Data Format Select Pin (External Pin Mode). See Table 1±.  
SPI Chip Select (Active Low).  
22, 24, 33, 4±, 42 AVDD  
Analog Power Supply.  
2ꢀ  
26  
2ꢂ  
2ꢁ  
3±  
31  
34  
3ꢀ  
SENSE  
VREF  
REFB  
REFT  
VIN+  
VIN–  
CML  
Reference Mode Selection. See Table ꢃ.  
Voltage Reference Input/Output.  
Differential Reference (−).  
Differential Reference (+).  
Analog Input Pin (+).  
Analog Input Pin (−).  
Common-Mode Level Bias Output.  
External Bias Resister Connection. A 1± kΩ resister must be connected between this pin and  
analog ground (AGND).  
RBIAS  
36  
3ꢁ  
3ꢃ  
43  
44  
4ꢀ, 46  
PDWN  
CLK+  
CLK–  
OEB  
DCO  
NC  
Power-Down Function Select.  
Clock Input (+).  
Clock Input (−).  
Output Enable (Active Low).  
Data Clock Output.  
No Connection.  
Rev. A | Page ꢃ of 44  
 
AD9233  
EQUIVALENT CIRCUITS  
1k  
30kΩ  
SCLK/DFS  
OEB  
VIN  
PDWN  
Figure 4. Equivalent Analog Input Circuit  
Figure 8. Equivalent SCLK/DFS, OEB, PDWN Input Circuit  
AVDD  
AVDD  
26k  
1kΩ  
1.2V  
CSB  
10k  
10kΩ  
CLK+  
CLK–  
Figure 9. Equivalent CSB Input Circuit  
Figure 5. Equivalent Clock Input Circuit  
1k  
DRVDD  
SENSE  
1k  
SDIO/DCS  
Figure 6. Equivalent SDIO/DCS Input Circuit  
Figure 10. Equivalent SENSE Circuit  
DRVDD  
AVDD  
VREF  
6k  
DRGND  
Figure 11. Equivalent VREF Circuit  
Figure 7. Equivalent Digital Output Circuit  
Rev. A | Page 1± of 44  
 
 
 
AD9233  
TYPICAL PERFORMANCE CHARACTERISTICS  
AVDD = 1.8 V; DRVDD = 2.5 V; maximum sample rate, DCS enabled, 1 V internal reference; 2 V p-p differential input; AIN =  
−1.0 dBFS; 64k sample; TA = 25°C, unless otherwise noted. All figures show typical performance for all speed grades.  
0
0
125MSPS  
125MSPS  
100.3MHz @ –1dBFS  
SNR = 69.4dBc (70.4dBFS)  
ENOB = 11.2 BITS  
SFDR = 85.0dBc  
2.3MHz @ –1dBFS  
SNR = 69.5dBc (70.5dBFS)  
ENOB = 11.2 BITS  
SFDR = 90.0dBc  
–20  
–20  
–40  
–60  
–40  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
15.625  
31.250  
46.875  
62.500  
0
15.625  
31.250  
46.875  
62.500  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 15. AD9233-125 Single-Tone FFT with FIN = 100.3 MHz  
Figure 12. AD9233-125 Single-Tone FFT with FIN = 2.3 MHz  
0
0
125MSPS  
140.3MHz @ –1dBFS  
SNR = 69.0dBc (70.0dBFS)  
ENOB = 11.1 BITS  
SFDR = 85.0dBc  
125MSPS  
30.3MHz @ –1dBFS  
–20  
–20  
SNR = 69.5dBc (70.5dBFS)  
ENOB = 11.2 BITS  
SFDR = 88.8dBc  
–40  
–60  
–40  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
15.625  
31.250  
46.875  
62.500  
0
15.625  
31.250  
46.875  
62.500  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 16. AD9233-125 Single-Tone FFT with FIN = 140.3 MHz  
Figure 13. AD9233-125 Single-Tone FFT with FIN = 30.3 MHz  
0
0
125MSPS  
70.3MHz @ –1dBFS  
125MSPS  
170.3MHz @ –1dBFS  
SNR = 69.5dBc (70.5dBFS)  
ENOB = 11.2 BITS  
SFDR = 85.0dBc  
–20  
–20  
SNR = 68.9dBc (69.9dBFS)  
ENOB = 11.1 BITS  
SFDR = 83.5dBc  
–40  
–60  
–40  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
15.625  
31.250  
FREQUENCY (MHz)  
46.875  
62.500  
0
15.625  
31.250  
FREQUENCY (MHz)  
46.875  
62.500  
Figure 14. AD9233-125 Single-Tone FFT with FIN = 70.3 MHz  
Figure 17. AD9233-125 Single-Tone FFT with FIN = 170.3 MHz  
Rev. A | Page 11 of 44  
 
 
AD9233  
100  
95  
90  
85  
80  
75  
70  
65  
60  
0
125MSPS  
225.3MHz @ –1dBFS  
SNR = 68.5dBc (69.5dBFS)  
ENOB = 11.0 BITS  
SFDR = 80.4dBc  
–20  
SFDR = –40°C  
–40  
–60  
SFDR = +25°C  
SFDR = +85°C  
–80  
SNR = +25°C  
SNR = –40°C  
–100  
–120  
SNR = +85°C  
50  
–140  
0
0
100  
150  
200  
250  
15.625  
31.250  
46.875  
62.500  
INPUT FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 18. AD9233-125 Single-Tone FFT with FIN = 225.3 MHz  
Figure 21. AD9233 Single-Tone SNR/SFDR vs.  
Input Frequency (FIN) and Temperature with 2 V p-p Full Scale  
100  
0
125MSPS  
300.3MHz @ –1dBFS  
95  
–20  
SNR = 67.8dBc (68.8dBFS)  
ENOB = 10.8 BITS  
SFDR = +85°C  
SFDR = 77.4dBc  
90  
85  
80  
75  
70  
65  
60  
SFDR = +25°C  
–40  
–60  
SFDR = –40°C  
SNR = –40°C  
–80  
–100  
–120  
–140  
SNR = +25°C  
SNR = +85°C  
50  
0
100  
150  
200  
250  
0
15.625  
31.250  
FREQUENCY (MHz)  
46.875  
62.500  
INPUT FREQUENCY (MHz)  
Figure 22. AD9233 Single-Tone SNR/SFDR vs.  
Figure 19. AD9233-125 Single-Tone FFT with FIN = 300.3 MHz  
Input Frequency (FIN) and Temperature with 1 V p-p Full Scale  
1.0  
120  
SFDR (dBFS)  
100  
0.8  
OFFSET ERROR  
0.5  
80  
60  
40  
20  
0
SNR (dBFS)  
0.3  
0
GAIN ERROR  
–0.3  
–0.5  
–0.8  
–1.0  
SFDR (dBc)  
85dB REFERENCE LINE  
SNR (dBc)  
–20  
0
20  
40  
60  
–40  
80  
–90  
0
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
TEMPERATURE (°C)  
INPUT AMPLITUDE (dBFS)  
Figure 23. AD9233 Gain and Offset vs. Temperature  
Figure 20. AD9233 Single-Tone SNR/SFDR vs.  
Input Amplitude (AIN) with FIN = 2.4 MHz  
Rev. A | Page 12 of 44  
AD9233  
0
0
–20  
–40  
125MSPS  
29.1MHz @ –7dBFS  
32.1MHz @ –7dBFS  
SFDR = 85dBc (92dBFS)  
–20  
SFDR (dBc)  
–40  
–60  
IMD3 (dBc)  
–60  
–80  
–80  
–100  
–120  
–140  
SFDR (dBFS)  
–100  
–120  
IMD3 (dBFS)  
–30  
0
15.625  
31.250  
46.875  
62.500  
–90  
–78  
–66  
–54  
–42  
–18  
–6  
FREQUENCY (MHz)  
ANALOG INPUT LEVEL (dBFS)  
Figure 24. AD9233-125 Two-Tone FFT with FIN1 = 29.1 MHz, FIN2 = 32.1 MHz  
Figure 27. AD9233 Two-Tone SFDR/IMD vs.  
Input Amplitude (AIN) with FIN1 = 29.1 MHz, FIN2 = 32.1 MHz  
0
0
125MSPS  
169.1MHz @ –7dBFS  
172.1MHz @ –7dBFS  
–20  
–20  
SFDR = 84dBc (91dBFS)  
SFDR (dBc)  
–40  
–60  
–40  
IMD3 (dBFS)  
–60  
–80  
–80  
SFDR (dBFS)  
–100  
–120  
–140  
–100  
IMD3 (dBFS)  
–66 –54  
INPUT AMPLITUDE (dBFS)  
–120  
–90  
0
15.625  
31.250  
FREQUENCY (MHz)  
46.875  
62.500  
–78  
–42  
–30  
–18  
–6  
Figure 28. AD9233 Two-Tone SFDR/IMD vs.  
Input Amplitude (AIN) with FIN1 = 169.1 MHz, FIN2 = 172.1 MHz  
Figure 25. AD9233-125 Two-Tone FFT with FIN1 = 169.1 MHz, FIN2 = 172.1 MHz  
0
0
–20  
NPR = 61.9dBc  
NOTCH @ 18.5MHz  
NOTCH WIDTH = 3MHz  
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
0
15.625  
31.250  
FREQUENCY (MHz)  
46.875  
62.500  
0
15.36  
30.72  
46.08  
61.44  
FREQUENCY (MHz)  
Figure 29. AD9233-125 Noise Power Ratio  
Figure 26. AD9233-125 Two 64k WCDMA Carriers  
with FIN = 215.04 MHz, FS = 122.88 MSPS  
Rev. A | Page 13 of 44  
AD9233  
100  
95  
90  
85  
80  
75  
70  
10  
8
0.34 LSB rms  
SFDR  
6
4
SNR  
2
65  
5
0
25  
45  
65  
85  
105  
125  
N–1  
N
N+1  
CLOCK FREQUENCY (MSPS)  
OUTPUT CODE  
Figure 33. AD9233 Grounded Input Histogram  
Figure 30. AD9233 Single-Tone SNR/SFDR vs.  
Clock Frequency (FS) with FIN = 2.4 MHz  
0.35  
0.25  
100  
SFDR DCS = ON  
90  
80  
70  
60  
50  
40  
0.15  
SFDR DCS = OFF  
0.05  
SNR DCS = ON  
–0.05  
–0.15  
–0.25  
–0.35  
SNR DCS = OFF  
60  
0
1024  
2048  
3072  
4096  
20  
40  
DUTY CYCLE (%)  
80  
OUTPUT CODE  
Figure 31. AD9233 SNR/SFDR vs. Duty Cycle with FIN = 10.3 MHz  
Figure 34. AD9233 INL with FIN = 10.3 MHz  
90  
0.15  
0.10  
0.05  
0
SFDR  
85  
80  
75  
–0.05  
–0.10  
–0.15  
70  
SNR  
65  
0.5  
0.7  
0.9  
1.1  
1.3  
0
1024  
2048  
3072  
4096  
INPUT COMMON-MODE VOLTAGE (V)  
OUTPUT CODE  
Figure 32. AD9233 SNR/SFDR vs.  
Input Common Mode (VCM) with FIN = 30 MHz  
Figure 35. AD9233 DNL with FIN = 10.3 MHz  
Rev. A | Page 14 of 44  
 
 
AD9233  
THEORY OF OPERATION  
S
The AD9233 architecture consists of a front-end SHA followed  
by a pipelined switched capacitor ADC. The quantized outputs  
from each stage are combined into a final 12-bit result in the  
digital correction logic. The pipelined architecture permits the  
first stage to operate on a new input sample, while the  
remaining stages operate on preceding samples. Sampling  
occurs on the rising edge of the clock.  
C
H
S
S
C
C
S
S
VIN+  
C
PIN, PAR  
H
VIN–  
C
C
H
PIN, PAR  
Each stage of the pipeline, excluding the last, consists of a low  
resolution flash ADC connected to a switched capacitor DAC  
and interstage residue amplifier (MDAC). The residue amplifier  
magnifies the difference between the reconstructed DAC output  
and the flash input for the next stage in the pipeline. One bit of  
redundancy is used in each stage to facilitate digital correction  
of flash errors. The last stage simply consists of a flash ADC.  
S
Figure 36. Switched-Capacitor SHA Input  
For best dynamic performance, the source impedances driving  
VIN+ and VIN− should match such that common-mode  
settling errors are symmetrical. These errors are reduced by the  
common-mode rejection of the ADC.  
The input stage contains a differential SHA that can be ac- or  
dc-coupled in differential or single-ended modes. The output-  
staging block aligns the data, carries out the error correction,  
and passes the data to the output buffers. The output buffers are  
powered from a separate supply, allowing adjustment of the  
output voltage swing. During power-down, the output buffers  
proceed into a high impedance state.  
An internal differential reference buffer creates two reference  
voltages used to define the input span of the ADC core. The  
span of the ADC core is set by the buffer to be 2 × VREF. The  
reference voltages are not available to the user. Two bypass  
points, REFT and REFB, are brought out for decoupling to  
reduce the noise contributed by the internal reference buffer. It  
is recommended that REFT be decoupled to REFB by a 0.1 μF  
capacitor, as described in the Layout Considerations section.  
ANALOG INPUT CONSIDERATIONS  
The analog input to the AD9233 is a differential switched  
capacitor SHA that has been designed for optimum  
performance while processing a differential input signal.  
Input Common Mode  
The analog inputs of the AD9233 are not internally dc-biased.  
In ac-coupled applications, the user must provide this bias  
externally. Setting the device such that VCM = 0.55 × AVDD is  
recommended for optimum performance; however, the device  
functions over a wider range with reasonable performance (see  
Figure 32). An on-board common-mode voltage reference is  
included in the design and is available from the CML pin.  
Optimum performance is achieved when the common-mode  
voltage of the analog input is set by the CML pin voltage  
(typically 0.55 × AVDD). The CML pin must be decoupled to  
ground by a 0.1 μF capacitor, as described in the Layout  
Considerations section.  
The clock signal alternately switches the SHA between sample  
mode and hold mode (see Figure 36). When the SHA is  
switched into sample mode, the signal source must be capable  
of charging the sample capacitors and settling within one-half  
of a clock cycle. A small resistor in series with each input can  
help reduce the peak transient current required from the output  
stage of the driving source.  
A shunt capacitor can be placed across the inputs to provide  
dynamic charging currents. This passive network creates a low-  
pass filter at the ADC input; therefore, the precise values are  
dependant upon the application.  
Differential Input Configurations  
In IF undersampling applications, any shunt capacitors should  
be reduced. In combination with the driving source impedance,  
these capacitors limit the input bandwidth. See Application  
Notes AN-742, Frequency Domain Response of Switched-  
Capacitor ADCs, and AN-827, A Resonant Approach To  
Interfacing Amplifiers to Switched-Capacitor ADCs, and the  
Analog Dialogue article, Transformer-Coupled Front-End for  
Wideband A/D Converters, for more information.  
Optimum performance is achieved by driving the AD9233 in a  
differential input configuration. For baseband applications, the  
AD8138 differential driver provides excellent performance and  
a flexible interface to the ADC. The output common-mode  
voltage of the AD8138 is easily set with the CML pin of the  
AD9233 (see Figure 37), and the driver can be configured  
in a Sallen-Key filter topology to provide band limiting of the  
input signal.  
Rev. A | Page 1ꢀ of 44  
 
 
 
AD9233  
At input frequencies in the second Nyquist zone and above, the  
noise performance of most amplifiers is not adequate to achieve  
the true SNR performance of the AD9233. For applications  
where SNR is a key parameter, transformer coupling is the  
recommended input. For applications where SFDR is a key  
parameter, differential double balun coupling is the recom-  
mended input configuration. An example is shown in Figure 39.  
1V p-p  
49.9  
499Ω  
R
R
VIN+  
VIN–  
AVDD  
499Ω  
523Ω  
C
AD9233  
AD8138  
0.1µF  
CML  
499Ω  
Figure 37. Differential Input Configuration Using the AD8138  
As an alternative to using a transformer-coupled input at  
frequencies in the second Nyquist zone, the AD8352 differential  
driver can be used. An example is shown in Figure 40.  
For baseband applications where SNR is a key parameter,  
differential transformer coupling is the recommended input  
configuration. An example is shown in Figure 38. The CML  
voltage can be connected to the center tap of the secondary  
winding of the transformer to bias the analog input.  
In any configuration, the value of the shunt capacitor, C, is  
dependent on the input frequency and source impedance  
and may need to be reduced or removed. Table 8 displays  
recommended values to set the RC network. However, these  
values are dependant on the input signal and should only be  
used as a starting guide.  
The signal characteristics must be considered when selecting a  
transformer. Most RF transformers saturate at frequencies  
below a few MHz, and excessive signal power can cause core  
saturation, which leads to distortion.  
Table 8. RC Network Recommended Values  
Frequency Range (MHz)  
R Series (Ω) C Differential (pF)  
R
VIN+  
± to ꢂ±  
ꢂ± to 2±±  
2±± to 3±±  
>3±±  
33  
33  
1ꢀ  
1ꢀ  
1ꢀ  
49.9  
C
AD9233  
2V p-p  
R
CML  
Open  
VIN–  
0.1µF  
Figure 38. Differential Transformer-Coupled Configuration  
0.1µF  
0.1µF  
0.1µF  
R
VIN+  
2V p-p  
25  
25Ω  
P
S
S
P
C
AD9233  
A
0.1µF  
R
CML  
VIN–  
Figure 39. Differential Double Balun Input Configuration  
V
CC  
0.1µF  
11  
0.1µF  
0  
16  
1
8, 13  
ANALOG INPUT  
0.1µF  
0.1µF  
R
R
2
VIN+  
200Ω  
200Ω  
AD8352  
R
R
C
AD9233  
D
G
C
D
3
4
5
10  
CML  
VIN–  
14  
0.1µF  
ANALOG INPUT  
0Ω  
0.1µF  
0.1µF  
Figure 40. Differential Input Configuration Using the AD8352  
Rev. A | Page 16 of 44  
 
 
 
 
 
AD9233  
Single-Ended Input Configuration  
This puts the reference amplifier in a noninverting mode with  
the VREF output defined as  
Although not recommended, it is possible to operate the  
AD9233 in a single-ended input configuration, as long as the  
input voltage swing is within the AVDD supply. Single-ended  
operation can provide adequate performance in cost-sensitive  
applications. In this configuration, SFDR and distortion  
performance degrade due to the large input common-mode  
swing. If the source impedances on each input are matched,  
there should be little effect on SNR performance. Figure 41  
details a typical single-ended input configuration.  
R2  
R1  
VREF = 0.5× 1+  
If the SENSE pin is connected to the AVDD pin, the reference  
amplifier is disabled, and an external reference voltage can be  
applied to the VREF pin (see the External Reference Operation  
section).  
The input range of the ADC always equals twice the voltage at  
the reference pin for either an internal or an external reference.  
AVDD  
10µF  
1k  
R
VIN+  
ADC  
VIN+  
CORE  
VIN–  
0.1µF  
49.9Ω  
1kΩ  
AVDD  
1V p-p  
REFT  
0.1µF  
ADC  
C
AD9233  
1kΩ  
R
VIN–  
10µF  
1kΩ  
0.1µF  
REFB  
VREF  
0.1µF  
Figure 41. Single-Ended Input Configuration  
0.1µF  
SELECT  
LOGIC  
VOLTAGE REFERENCE  
SENSE  
A stable and accurate voltage reference is built into the AD9233.  
The input range is adjustable by varying the reference voltage  
applied to the AD9233, using either the internal reference or an  
externally applied reference voltage. The input span of the ADC  
tracks reference voltage changes linearly. The various reference  
modes are summarized in the following sections. The Reference  
Decoupling section describes the best practices and requirements  
for PCB layout of the reference.  
0.5V  
AD9233  
Figure 42. Internal Reference Configuration  
VIN+  
ADC  
CORE  
VIN–  
REFT  
Internal Reference Connection  
A comparator within the AD9233 detects the potential at the  
SENSE pin and configures the reference into four possible  
states, which are summarized in Table 9. If SENSE is grounded,  
the reference amplifier switch is connected to the internal  
resistor divider (see Figure 42), setting VREF to 1 V.  
0.1µF  
REFB  
VREF  
0.1µF  
0.1µF  
R2  
SELECT  
LOGIC  
SENSE  
Connecting the SENSE pin to VREF switches the reference  
amplifier output to the SENSE pin, completing the loop and  
providing a 0.5 V reference output. If a resistor divider is  
connected external to the chip, as shown in Figure 43, the  
switch again sets to the SENSE pin.  
0.5V  
R1  
AD9233  
Figure 43. Programmable Reference Configuration  
If the internal reference of the AD9233 is used to drive multiple  
converters to improve gain matching, the loading of the  
reference by the other converters must be considered. Figure 44  
depicts how the internal reference voltage is affected by loading.  
Rev. A | Page 1ꢂ of 44  
 
 
 
 
 
AD9233  
Table 9. Reference Configuration Summary  
Selected Mode  
SENSE Voltage  
Resulting VREF (V)  
Resulting Differential Span (V p-p)  
External Reference  
AVDD  
N/A  
2 × External Reference  
Internal Fixed Reference  
Programmable Reference  
Internal Fixed Reference  
VREF  
±.2 V to VREF  
AGND to ±.2 V  
±.ꢀ  
1.±  
2 × VREF  
2.±  
±.ꢀ × (1 + R2/R1) (See Figure 43)  
1.±  
0
–0.25  
–0.50  
–0.75  
–1.00  
–1.25  
CLOCK INPUT CONSIDERATIONS  
VREF = 0.5V  
For optimum performance, the AD9233 sample clock inputs  
(CLK+ and CLK−) should be clocked with a differential signal.  
The signal is typically ac-coupled into the CLK+ pin and the  
CLK− pin via a transformer or capacitors. These pins are biased  
internally (see Figure 5) and require no external bias.  
VREF = 1V  
Clock Input Options  
The AD9233 has a very flexible clock input structure. The clock  
input can be a CMOS, LVDS, LVPECL, or sine wave signal.  
Regardless of the type of signal used, the jitter of the clock  
source is of the most concern, as described in the Jitter  
Considerations section.  
0
0.5  
1.0  
1.5  
2.0  
LOAD CURRENT (mA)  
Figure 46 shows one preferred method for clocking the  
AD9233. A low jitter clock source is converted from single-  
ended to a differential signal using an RF transformer. The  
back-to-back Schottky diodes across the transformer secondary  
limit clock excursions into the AD9233 to approximately  
0.8 V p-p differential. This helps prevent the large voltage  
swings of the clock from feeding through to other portions of  
the AD9233 while preserving the fast rise and fall times of the  
signal, which are critical to a low jitter performance.  
Figure 44. VREF Accuracy vs. Load  
External Reference Operation  
The use of an external reference may be necessary to enhance  
the gain accuracy of the ADC or improve thermal drift  
characteristics. Figure 45 shows the typical drift characteristics  
of the internal reference in both 1 V and 0.5 V modes.  
10  
VREF = 0.5V  
8
MIN-CIRCUITS  
ADT1–1WT, 1:1Z  
0.1µF  
0.1µF  
XFMR  
6
4
2
0
VREF = 1V  
CLOCK  
INPUT  
CLK+  
100Ω  
ADC  
AD9233  
CLK–  
50Ω  
0.1µF  
SCHOTTKY  
DIODES:  
0.1µF  
HSMS2812  
Figure 46. Transformer Coupled Differential Clock  
If a low jitter clock source is not available, another option is to  
ac-couple a differential PECL signal to the sample clock input  
pins, as shown in Figure 47. The AD9510/AD9511/AD9512/  
AD9513/AD9514/AD9515 family of clock drivers offers  
excellent jitter performance.  
–20  
0
20  
40  
60  
–40  
80  
TEMPERATURE (°C)  
Figure 45. Typical VREF Drift  
When the SENSE pin is tied to the AVDD pin, the internal  
reference is disabled, allowing the use of an external reference.  
An internal resistor divider loads the external reference with an  
equivalent 6 kΩ load (see Figure 11). In addition, an internal  
buffer generates the positive and negative full-scale references  
for the ADC core. Therefore, the external reference must be  
limited to a maximum of 1 V.  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK  
CLK+  
ADC  
AD9233  
AD951x  
100  
PECL DRIVER  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK–  
CLK  
240Ω  
240Ω  
50*  
50*  
*50RESISTORS ARE OPTIONAL  
Figure 47. Differential PECL Sample Clock  
Rev. A | Page 1ꢁ of 44  
 
 
 
 
 
 
 
AD9233  
A third option is to ac-couple a differential LVDS signal to the  
sample clock input pins, as shown in Figure 48. The AD9510/  
AD9511/AD9512/AD9513/AD9514/AD9515 family of clock  
drivers offers excellent jitter performance.  
and distortion performance are nearly flat for a wide range of  
duty cycles when the DCS is on, as shown in Figure 31.  
Jitter in the rising edge of the input is still of paramount  
concern and is not reduced by the internal stabilization circuit.  
The duty cycle control loop does not function for clock rates  
less than 20 MHz nominally. The loop has a time constant  
associated with it that needs to be considered in applications  
where the clock rate can change dynamically, which requires a  
wait time of 1.5 ꢀs to 5 ꢀs after a dynamic clock frequency  
increase (or decrease) before the DCS loop is relocked to the  
input signal. During the time the loop is not locked, the DCS  
loop is bypassed, and the internal device timing is dependant  
on the duty cycle of the input clock signal. In such an application,  
it can be appropriate to disable the duty cycle stabilizer. In all  
other applications, enabling the DCS circuit is recommended to  
maximize ac performance.  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
CLK  
ADC  
AD9233  
AD951x  
LVDS DRIVER  
100  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK–  
CLK  
50*  
50*  
*50RESISTORS ARE OPTIONAL  
Figure 48. Differential LVDS Sample Clock  
In some applications, it is acceptable to drive the sample clock  
inputs with a single-ended CMOS signal. In such applications,  
directly drive CLK+ from a CMOS gate, while bypassing the  
CLK− pin to ground with a 0.1 μF capacitor. Although the  
CLK+ input circuit supply is AVDD (1.8 V), this input is  
designed to withstand input voltages up to 3.6 V, making the  
selection of the drive logic voltage very flexible. When driving  
CLK+ with a 1.8 V CMOS signal, it is required to bias the  
CLK− pin with a 0.1 ꢀF capacitor in parallel with a 39 kΩ  
resistor (see Figure 49). The 39 kΩ resistor is not required when  
driving CLK+ with a 3.3 V CMOS signal (see Figure 50).  
The DCS can be enabled or disabled by setting the SDIO/DCS  
pin when operating in the external pin mode (see Table 10), or  
via the SPI, as described in the Table 15.  
Table 10. Mode Selection (External Pin Mode)  
Voltage at Pin  
SCLK/DFS  
SDIO/DCS  
AGND  
AVDD  
Binary (default)  
Twos complement  
DCS disabled  
DCS enabled (default)  
VCC  
JITTER CONSIDERATIONS  
OPTIONAL  
0.1µF  
0.1µF  
1k  
1kΩ  
AD951x  
100Ω  
CLOCK  
INPUT  
CLK+  
CMOS DRIVER  
High speed, high resolution ADCs are sensitive to the quality of  
the clock input. The degradation in SNR at a given input  
frequency (FIN) due to jitter (tJ) is calculated as  
50*  
ADC  
AD9233  
CLK–  
0.1µF  
39kΩ  
SNR = −20 log (2π × FIN × tJ)  
*50RESISTOR IS OPTIONAL  
In the equation, the rms aperture jitter (tJ) represents the root-  
mean-square of all jitter sources, which include the clock input,  
analog input signal, and ADC aperture jitter specification. IF  
undersampling applications are particularly sensitive to jitter, as  
shown in Figure 51.  
Figure 49. Single-Ended 1.8 V CMOS Sample Clock  
VCC  
OPTIONAL  
100Ω  
0.1µF  
0.1µF  
0.1µF  
50*  
1kΩ  
1kΩ  
CLOCK  
INPUT  
AD951x  
CMOS DRIVER  
CLK+  
ADC  
AD9233  
70  
0.05ps  
CLK–  
MEASURED  
65  
PERFORMANCE  
*50RESISTOR IS OPTIONAL  
0.20ps  
0.5ps  
Figure 50. Single-Ended 3.3 V CMOS Sample Clock  
60  
55  
50  
45  
40  
Clock Duty Cycle  
Typical high speed ADCs use both clock edges to generate a  
variety of internal timing signals. As a result, these ADCs may  
be sensitive to clock duty cycle. Commonly, a 5% tolerance is  
required on the clock duty cycle to maintain dynamic perform-  
ance characteristics.  
1.0ps  
1.50ps  
2.00ps  
2.50ps  
3.00ps  
The AD9233 contains a DCS that retimes the nonsampling, or  
falling edge, providing an internal clock signal with a nominal  
50% duty cycle. This allows a wide range of clock input duty  
cycles without affecting the performance of the AD9233. Noise  
1
10  
100  
1000  
INPUT FREQUENCY (MHz)  
Figure 51. SNR vs. Input Frequency and Jitter  
Rev. A | Page 1ꢃ of 44  
 
 
 
 
 
 
 
 
AD9233  
475  
450  
425  
400  
375  
350  
250  
200  
150  
100  
Treat the clock input as an analog signal in cases where aperture  
jitter may affect the dynamic range of the AD9233. Power  
supplies for clock drivers should be separated from the ADC  
output driver supplies to avoid modulating the clock signal with  
digital noise. The power supplies should also not be shared with  
analog input circuits such as buffers to avoid the clock  
modulating onto the input signal or vice versa. Low jitter,  
crystal-controlled oscillators make the best clock sources.  
If the clock is generated from another type of source (by  
gating, dividing, or other methods), it should be retimed by the  
original clock at the last step.  
IAVDD  
TOTAL POWER  
50  
0
IDRVDD  
75  
325  
Refer to Application Notes AN-501, Aperture Uncertainty and  
ADC System Performance, and AN-756, Sampled Systems and  
the Effects of Clock Phase Noise and Jitter for more in-depth  
information about jitter performance as it relates to ADCs.  
25  
50  
100  
0
125  
CLOCK FREQUENCY (MSPS)  
Figure 52. AD9233-125 Power and Current vs. Clock Frequency, FIN = 30 MHz  
410  
390  
370  
350  
330  
310  
290  
270  
200  
180  
160  
140  
120  
POWER DISSIPATION AND STANDBY MODE  
IAVDD  
As shown in Figure 52 and Figure 53, the power dissipated by  
the AD9233 is proportional to its sample rate. The digital power  
dissipation is determined primarily by the strength of the digital  
drivers and the load on each output bit. The maximum DRVDD  
current (IDRVDD) can be calculated as  
100  
80  
TOTAL POWER  
fCLK  
2
IDRVDD = VDRVDD ×CLOAD  
×
×N  
60  
40  
20  
where N is the number of output bits (12 in the case of the  
IDRVDD  
AD9233).  
250  
0
105  
30  
55  
80  
5
This maximum current occurs when every output bit switches  
on every clock cycle, that is, a full-scale square wave at the  
Nyquist frequency, fCLK/2. In practice, the DRVDD current is  
established by the average number of output bits switching,  
which is determined by the sample rate and the characteristics  
of the analog input signal. Reducing the capacitive load  
presented to the output drivers can minimize digital power  
consumption.  
CLOCK FREQUENCY (MSPS)  
Figure 53. AD9233-105 Power and Current vs. Clock Frequency, FIN = 30 MHz  
290  
275  
260  
245  
230  
150  
120  
90  
IAVDD  
TOTAL POWER  
The data used for Figure 52 and Figure 53 is based on the  
same operating conditions as used in the plots in the Typical  
Performance Characteristics section with a 5 pF load on each  
output driver.  
60  
30  
0
IDRVDD  
215  
20  
40  
CLOCK FREQUENCY (MSPS)  
60  
80  
0
Figure 54. AD9233-80 Power and Current vs. Clock Frequency, FIN = 30 MHz  
Rev. A | Page 2± of 44  
 
 
 
 
AD9233  
Power-Down Mode  
Out-of-Range (OR) Condition  
By asserting the PDWN pin high, the AD9233 is placed in  
power-down mode. In this state, the ADC typically dissipates  
1.8 mW. During power-down, the output drivers are placed in a  
high impedance state. Reasserting the PDWN pin low returns  
the AD9233 to its normal operational mode. This pin is both  
1.8 V and 3.3 V tolerant.  
An out-of-range condition exists when the analog input voltage  
is beyond the input range of the ADC. OR is a digital output  
that is updated along with the data output corresponding to the  
particular sampled input voltage. Thus, OR has the same pipeline  
latency as the digital data.  
+FS – 1 LSB  
OR DATA OUTPUTS  
1
0
0
1111 1111 1111  
1111 1111 1111  
1111 1111 1110  
OR  
Low power dissipation in power-down mode is achieved by  
shutting down the reference, reference buffer, biasing networks,  
and clock. The decoupling capacitors on REFT and REFB are  
discharged when entering power-down mode and then must be  
recharged when returning to normal operation. As a result, the  
wake-up time is related to the time spent in power-down mode;  
shorter power-down cycles result in proportionally shorter  
wake-up times. With the recommended 0.1 ꢀF decoupling  
capacitor on REFT and REFB, it takes approximately 0.25 ms  
to fully discharge the reference buffer decoupling capacitor and  
0.35 ms to restore full operation.  
–FS + 1/2 LSB  
0
0
1
0000 0000 0001  
0000 0000 0000  
0000 0000 0000  
–FS  
–FS – 1/2 LSB  
+FS  
+FS – 1/2 LSB  
Figure 55. OR Relation to Input Voltage and Output Data  
OR is low when the analog input voltage is within the analog  
input range and high when the analog input voltage exceeds the  
input range, as shown in Figure 55. OR remains high until the  
analog input returns to within the input range and another  
conversion is completed. By logically AND’ing the OR bit with  
the MSB and its complement, overrange high or underrange  
low conditions can be detected. Table 11 is a truth table for the  
overrange/underrange circuit in Figure 56, which uses NAND  
gates.  
Standby Mode  
When using the SPI port interface, the user can place the ADC  
in power-down or standby modes. Standby mode allows the  
user to keep the internal reference circuitry powered when  
faster wake-up times are required. See the Memory Map  
section for more details.  
MSB  
DIGITAL OUTPUTS  
OVER = 1  
OR  
The AD9233 output drivers can be configured to interface with  
1.8 V to 3.3 V logic families by matching DRVDD to the digital  
supply of the interfaced logic. The output drivers are sized to  
provide sufficient output current to drive a wide variety of logic  
families. However, large drive currents tend to cause current  
glitches on the supplies that can affect converter performance.  
Applications requiring the ADC to drive large capacitive loads  
or large fanouts can require external buffers or latches.  
UNDER = 1  
MSB  
Figure 56. Overrange/Underrange Logic  
Table 11. Overrange/Underrange Truth Table  
OR  
MSB  
Analog Input Is:  
Within Range  
Within Range  
Underrange  
±
±
1
1
±
1
±
1
The output data format can be selected for either offset binary  
or twos complement by setting the SCLK/DFS pin when  
operating in the external pin mode (see Table 10). As detailed in  
the Interfacing to High Speed ADCs via SPI User Manual, the  
data format can be selected for either offset binary, twos  
complement, or Gray code when using the SPI control.  
Overrange  
Digital Output Enable Function (OEB)  
The AD9233 has three-state ability. If the OEB pin is low, the  
output data drivers are enabled. If the OEB pin is high, the output  
data drivers are placed in a high impedance state. This is not  
intended for rapid access to the data bus. Note that OEB is  
referenced to the digital supplies (DRVDD) and should not  
exceed that supply voltage.  
Table 12. Output Data Format  
Condition (V)  
Binary Output Mode  
±±±± ±±±± ±±±±  
±±±± ±±±± ±±±±  
1±±± ±±±± ±±±±  
1111 1111 1111  
1111 1111 1111  
Twos Complement Mode  
Gray Code Mode (SPI Accessible)  
11±± ±±±± ±±±±  
11±± ±±±± ±±±±  
±±±± ±±±± ±±±±  
1±±± ±±±± ±±±±  
OR  
VIN+ − VIN− < –VREF – ±.ꢀ LSB  
VIN+ − VIN− = –VREF  
VIN+ − VIN− = ±  
VIN+ − VIN− = +VREF – 1.± LSB  
VIN+ − VIN− > +VREF – ±.ꢀ LSB  
1±±± ±±±± ±±±±  
1±±± ±±±± ±±±±  
±±±± ±±±± ±±±±  
±111 1111 1111  
±111 1111 1111  
1
±
±
±
1
1±±± ±±±± ±±±±  
Rev. A | Page 21 of 44  
 
 
 
 
AD9233  
Data Clock Output (DCO)  
TIMING  
The AD9233 provides a data clock output (DCO) intended for  
capturing the data in an external register. The data outputs are  
valid on the rising edge of DCO, unless the DCO clock polarity  
has been changed via the SPI. See Figure 2 for a graphical  
timing description.  
The lowest typical conversion rate of the AD9233 is 10 MSPS.  
At clock rates below 10 MSPS, dynamic performance can  
degrade.  
The AD9233 provides latched data outputs with a pipeline delay  
of 12 clock cycles. Data outputs are available one propagation  
delay (tPD) after the rising edge of the clock signal.  
The length of the output data lines and the loads placed on  
them should be minimized to reduce transients within the  
AD9233. These transients can degrade the dynamic performance  
of the converter.  
Rev. A | Page 22 of 44  
 
AD9233  
SERIAL PORT INTERFACE (SPI)  
The AD9233 SPI allows the user to configure the converter for  
specific functions or operations through a structured register  
space provided inside the ADC. This provides the user added  
flexibility and customization depending on the application.  
Addresses are accessed via the serial port and can be written to  
or read from via the port. Memory is organized into bytes that  
are further divided into fields, as documented in the Memory  
Map section. For detailed operational information, see the  
Interfacing to High Speed ADCs via SPI User Manual.  
In addition to word length, the instruction phase determines if  
the serial frame is a read or write operation, allowing the serial  
port to be used to both program the chip as well as read the  
contents of the on-chip memory. If the instruction is a readback  
operation, performing a readback causes the serial data input/  
output (SDIO) pin to change direction from an input to an  
output at the appropriate point in the serial frame.  
Data can be sent in MSB first or in LSB first mode. MSB first is  
the default on power up and can be changed via the  
configuration register. For more information, see the Interfacing  
to High Speed ADCs via SPI User Manual.  
CONFIGURATION USING THE SPI  
As summarized in Table 13, three pins define the SPI of this  
ADC. The SCLK/DFS pin synchronizes the read and write data  
presented to the ADC. The SDIO/DCS dual-purpose pin allows  
data to be sent and read from the internal ADC memory map  
registers. The CSB pin is an active low control that enables or  
disables the read and write cycles.  
Table 14. SPI Timing Diagram Specifications  
Name Description  
tDS  
tDH  
tCLK  
tS  
Setup time between data and rising edge of SCLK  
Hold time between data and rising edge of SCLK  
Period of the clock  
Setup time between CSB and SCLK  
Table 13. Serial Port Interface Pins  
Mnemonic Description  
tH  
Hold time between CSB and SCLK  
tHI  
tLO  
Minimum period that SCLK should be in a logic high state  
Minimum period that SCLK should be in a logic low state  
SCLK/DFS  
SCLK (Serial Clock) is the serial shift clock in. SCLK  
synchronizes serial interface reads and writes.  
SDIO/DCS  
SDIO (Serial Data Input/Output) is a dual-purpose  
pin. The typical role for this pin is an input and  
output depending on the instruction being sent  
and the relative position in the timing frame.  
HARDWARE INTERFACE  
The pins described in Table 13 comprise the physical interface  
between the users programming device and the serial port of  
the AD9233. The SCLK and CSB pins function as inputs when  
using the SPI interface. The SDIO pin is bidirectional, functioning  
as an input during write phases and as an output during readback.  
CSB  
CSB (Chip Select Bar) is an active low control that  
gates the read and write cycles.  
The falling edge of the CSB in conjunction with the rising edge  
of the SCLK determines the start of the framing. Figure 57 and  
Table 14 provide an example of the serial timing and its  
definitions.  
The SPI interface is flexible enough to be controlled by either  
PROM or PIC microcontrollers. This provides the user with the  
ability to use an alternate method to program the ADC. One  
method is described in detail in the Application Note AN-812.  
Other modes involving the CSB are available. The CSB can be  
held low indefinitely, permanently enabling the device (this is  
called streaming). The CSB can stall high between bytes to  
allow for additional external timing. When CSB is tied high  
during power up, SPI functions are placed in a high impedance  
mode. This mode turns on any SPI pin secondary functions. If  
CSB is high at power up and then brought low to activate the  
SPI, the SPI pin secondary functions are no longer available,  
unless the device power is cycled.  
When the SPI interface is not used, some pins serve a dual  
function. When strapped to AVDD or ground during device  
power on, the pins are associated with a specific function.  
CONFIGURATION WITHOUT THE SPI  
In applications that do not interface to the SPI control registers,  
the SDIO/DCS and SCLK/DFS pins serve as standalone CMOS-  
compatible control pins. When the device is powered up with  
the CSB chip select connected to AVDD, the serial port interface is  
disabled. In this mode, it is assumed that the user intends to use  
the pins as static control lines for the output data format and  
duty cycle stabilizer (see Table 10). For more information, see  
the Interfacing to High Speed ADCs via SPI User Manual.  
During an instruction phase, a 16-bit instruction is transmitted.  
Data follows the instruction phase and the length is determined  
by the W0 bit and the W1 bit. All data is composed of 8-bit  
words. The first bit of each individual byte of serial data indicates  
whether a read or write command is issued. This allows the  
serial data input/output (SDIO) pin to change direction from  
an input to an output.  
Rev. A | Page 23 of 44  
 
 
 
 
 
AD9233  
MEMORY MAP  
READING THE MEMORY MAP TABLE  
Logic Levels  
An explanation of two registers follows:  
Each row in the memory map table has eight address locations.  
The memory map is roughly divided into three sections: chip  
configuration registers map (Address 0x00 to Address 0x02),  
device index and transfer registers map (Address 0xFF), and  
ADC functions map (Address 0x08 to Address 0x18).  
Bit is set is synonymous with bit is set to Logic 1 or writing  
Logic 1 for the bit.  
Clear a bit is synonymous with bit is set to Logic 0 or  
writing Logic 0 for the bit.  
The memory map register in Table 15 displays the register  
address number in hexadecimal in the first column. The last  
column displays the default value for each hexadecimal address.  
The Bit 7 (MSB) column is the start of the default hexadecimal  
value given. For example, Hexadecimal Address 0x14,  
output_phase has a hexadecimal default value of 0x00. This  
means Bit 3 = 0, Bit 2 = 0, Bit 1 = 1, and Bit 0 = 1 or 0011 in  
binary. This setting is the default output clock or DCO phase  
adjust option. The default value adjusts the DCO phase 90°  
relative to the nominal DCO edge and 180° relative to the data  
edge. For more information on this function, consult the  
Interfacing to High Speed ADCs via SPI User Manual.  
SPI-Accessible Features  
A list of features accessible via the SPI and a brief description of  
what the user can do with these features follows. These features  
are described in detail in the Interfacing to High Speed ADCs via  
SPI User Manual.  
Modes: Set either power-down or standby mode.  
Clock: Access the DCS via the SPI.  
Offset: Digitally adjust the converter offset.  
Test I/O: Set test modes to have known data on output bits.  
Open Locations  
Locations marked as open are currently not supported for this  
device. When required, these locations should be written with  
0s. Writing to these locations is required only when part of an  
address location is open (for example, Address 0x14). If the  
entire address location is open (Address 0x13), then the address  
location does not need to be written.  
Output Mode: Setup outputs, vary the strength of the  
output drivers.  
Output Phase: Set the output clock polarity.  
VREF: Set the reference voltage.  
Default Values  
Coming out of reset, critical registers are loaded with default  
values. The default values for the registers are provided in Table 15.  
tDS  
tHI  
tCLK  
tH  
tS  
tDH  
tLO  
CSB  
SCLK DON’T CARE  
SDIO DON’T CARE  
DON’T CARE  
R/W  
W1  
W0  
A12  
A11  
A10  
A9  
A8  
A7  
D5  
D4  
D3  
D2  
D1  
D0  
DON’T CARE  
Figure 57. Serial Port Interface Timing Diagram  
Rev. A | Page 24 of 44  
 
 
 
 
 
AD9233  
Table 15. Memory Map Register  
Default Default  
Addr Parameter  
(Hex) Name  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Value  
(Hex)  
Notes/  
Comments  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Chip Configuration Registers  
±±  
chip_port_config  
±
LSB  
First  
Soft  
Reset  
1
1
Soft  
Reset  
LSB  
First  
±
±x1ꢁ  
The nibbles  
should be  
mirrored. See  
Interfacing to  
High Speed  
ADCs via SPI  
User Manual.  
± = Off  
(Default) (Default)  
1 = On  
± = Off  
± = Off  
(Default) (Default)  
1 = On  
± = Off  
1 = On  
1 = On  
±1  
±2  
chip_id  
ꢁ-Bit Chip ID Bits ꢂ:±  
(ADꢃ233 = ±x±±), (Default)  
Read-  
Only  
Default is  
unique chip ID,  
different for  
each device.  
chip_grade  
Open  
Open  
Open  
Open  
Child ID  
± =  
Open  
Open  
Open  
Read-  
Only  
Child ID used  
to differentiate  
speed grades.  
12ꢀ  
MSPS,  
1 =  
1±ꢀ  
MSPS  
Device Index and Transfer Registers  
FF  
device_update  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
SW Transfer ±x±±  
Synchronously  
transfers data  
from the  
master  
shift register to  
the slave.  
Global ADC Functions  
±ꢁ modes  
Open  
PDWN  
±—Full  
1—  
Internal Power-Down Mode  
±±±—Normal (Power-Up)  
±±1—Full Power-Down  
±1±—Standby  
±11—Normal (Power-Up)  
Note: External PDWN pin  
overrides this setting.  
±x±±  
Determines  
various generic  
modes of chip  
operation. See  
Power  
Dissipation  
and Standby  
Mode and  
Standby  
SPI-Accessible  
Features  
sections.  
±ꢃ  
clock  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Duty Cycle  
Stabilizer  
±—  
Disabled  
1—Enabled  
±x±1  
±x±±  
See Clock Duty  
Cycle and  
SPI-Accessible  
Features  
sections.  
Flexible ADC Functions  
1± offset  
Digital Offset Adjust <5:0>  
Offset in LSBs  
+ꢂ 3/4  
+ꢂ 1/2  
Adjustable for  
offset inherent  
in the  
converter.  
See SPI-  
±11111  
±1111±  
±111±1  
+ꢂ 1/4  
Accessible  
Features  
section.  
±±±±1±  
±±±±±1  
±±±±±±  
111111  
11111±  
1111±1  
...  
+1/2  
+1/4  
±
−1/4  
−1/2  
−3/4  
1±±±±1  
1±±±±±  
−ꢂ 3/4  
−ꢁ  
Rev. A | Page 2ꢀ of 44  
 
AD9233  
Default Default  
Addr Parameter  
(Hex) Name  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Value  
(Hex)  
Notes/  
Comments  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
±D  
test_io  
PN23  
± =  
Normal  
1 =  
PNꢃ  
± =  
Normal  
1 =  
Reset  
Global Output Test Options  
±±±—Off  
±±1—Midscale Short  
±1±— +FS Short  
±x±±  
See the  
Interfacing to  
High Speed  
ADCs via SPI  
User Manual.  
Reset  
±11— −FS Short  
1±±—Checker Board Output  
1±1—PN 23 Sequence  
11±—PN ꢃ  
111—One/Zero Word Toggle  
14  
output_mode  
Output Driver  
Configuration  
±± for DRVDD = 3.3 V  
1± for DRVDD = 1.ꢁ V  
Open  
Output  
Disable  
1—  
Open  
Output  
Data  
Invert  
1 =  
Data Format Select  
±±—Offset Binary  
(Default)  
±1—Twos  
Complement  
1±—Gray Code  
±x±±  
Configures the  
outputs and  
the format of  
the data and  
the output  
driver  
Disabled  
±—  
Invert  
Enabled1  
strength.  
16  
1ꢁ  
output_phase  
VREF  
DCO  
Polarity  
1 = Inverted  
± = Normal  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
±x±±  
±xC±  
See SPI-  
Accessible  
Features  
section.  
Internal Reference  
Resistor Divider  
±±—VREF = 1.2ꢀ V  
±1—VREF = 1.ꢀ V  
1±—VREF = 1.ꢂꢀ V  
11—VREF = 2.±± V  
Open  
Open  
See SPI-  
Accessible  
Features  
section.  
1 External Output Enable (OEB) pin must be high.  
Rev. A | Page 26 of 44  
 
AD9233  
LAYOUT CONSIDERATIONS  
POWER AND GROUND RECOMMENDATIONS  
When connecting power to the AD9233, it is recommended  
that two separate supplies be used: one for analog (AVDD, 1.8 V  
nominal) and one for digital (DRVDD, 1.8 V to 3.3 V nominal).  
If only a single 1.8 V supply is available, then it should be routed  
to AVDD first, then tapped off and isolated with a ferrite bead  
or filter choke with decoupling capacitors preceding its con-  
nection to DRVDD. The user can employ several different  
decoupling capacitors to cover both high and low frequencies.  
These should be located close to the point of entry at the PC  
board level and close to the parts with minimal trace length.  
SILKSCREEN PARTITION  
PIN 1 INDICATOR  
Figure 58. Typical PCB Layout  
CML  
The CML pin should be decoupled to ground with a 0.1 μF  
capacitor, as shown in Figure 38.  
A single PC board ground plane should be sufficient when  
using the AD9233. With proper decoupling and smart parti-  
tioning of the analog, digital, and clock sections of the board,  
optimum performance is easily achieved.  
RBIAS  
The AD9233 requires the user to place a 10 kΩ resistor between  
the RBIAS pin and ground. This resister sets the master current  
reference of the ADC core and should have at least a 1% tolerance.  
Exposed Paddle Thermal Heat Slug Recommendations  
It is required that the exposed paddle on the underside of the  
ADC is connected to analog ground (AGND) to achieve the  
best electrical and thermal performance of the AD9233. An  
exposed, continuous copper plane on the PCB should mate to  
the AD9233 exposed paddle, Pin 0. The copper plane should  
have several vias to achieve the lowest possible resistive thermal  
path for heat dissipation to flow through the bottom of the PCB.  
These vias should be solder filled or plugged.  
REFERENCE DECOUPLING  
The VREF pin should be externally decoupled to ground with a  
low ESR 1.0 μF capacitor in parallel with a 0.1 μF ceramic low  
ESR capacitor. In all reference configurations, REFT and REFB  
are bypass points provided for reducing the noise contributed  
by the internal reference buffer. It is recommended to place an  
external 0.1 ꢀF ceramic capacitor across REFT/REFB. While it is  
not required to place this 0.1 ꢀF capacitor, the SNR performance  
will degrade by approximately 0.1 dB without it. All reference  
decoupling capacitors should be placed as close to the ADC as  
possible with minimal trace lengths.  
To maximize the coverage and adhesion between the ADC and  
PCB, partition the continuous plane by overlaying a silkscreen  
on the PCB into several uniform sections. This provides several  
tie points between the two during the reflow process. Using one  
continuous plane with no partitions only guarantees one tie  
point between the ADC and PCB. See Figure 58 for a PCB  
layout example. For detailed information on packaging and the  
PCB layout of chip scale packages, see Application Note AN-772,  
A Design and Manufacturing Guide for the Lead Frame Chip  
Scale Package (LFCSP).  
Rev. A | Page 2ꢂ of 44  
 
 
 
 
AD9233  
EVALUATION BOARD  
The AD9233 evaluation board provides all of the support  
circuitry required to operate the ADC in its various modes and  
configurations. The converter can be driven differentially  
through a double balun configuration (default) or through the  
AD8352 differential driver. The ADC can also be driven in a  
single-ended fashion. Separate power pins are provided to  
isolate the DUT from the AD8352 drive circuitry. Each input  
configuration can be selected by proper connection of various  
components. Figure 59 shows the typical bench characterization  
setup used to evaluate the ac performance of the AD9233.  
Although at least one 1.8 V supply is needed with a 1 A current  
capability for AVDD_DUT and DRVDD_DUT, it is recom-  
mended that separate supplies be used for analog and digital.  
To operate the evaluation board using the AD8352 option, a  
separate 5.0 V analog supply is needed. The 5.0 V supply, or  
AMP_VDD, should have a 1 A current capability. To operate  
the evaluation board using the alternate SPI options, a separate  
3.3 V analog supply is needed in addition to the other supplies.  
The 3.3 V supply (AVDD_3.3V) should have a 1 A current  
capability as well. Solder Jumpers J501, J502, and J505 allow the  
user to combine these supplies. See Figure 64 for more details.  
It is critical that the signal sources used for the analog input and  
clock have very low phase noise (<1 ps rms jitter) to realize the  
optimum performance of the converter. Proper filtering of the  
analog input signal to remove harmonics and lower the inte-  
grated or broadband noise at the input is also necessary to achieve  
the specified noise performance.  
INPUT SIGNALS  
When connecting the clock and analog source, use clean signal  
generators with low phase noise, such as Rohde & Schwarz SMHU  
or Agilent HP8644 signal generators or the equivalent. Use one  
meter long, shielded, RG-58, 50 Ω coaxial cables for making  
connections to the evaluation board. Enter the desired frequency  
and amplitude for the ADC. Typically, most ADI evaluation  
boards can accept a ~2.8 V p-p or 13 dBm sine wave input for  
the clock. When connecting the analog input source, it is  
recommended to use a multipole, narrow-band, band-pass  
filter with 50 Ω terminations. Analog Devices uses TTE®, Allen  
Avionics, and K&L® types of band-pass filters. Connect the filter  
directly to the evaluation board, if possible.  
See Figure 60 to Figure 70 for the complete schematics and  
layout diagrams that demonstrate the routing and grounding  
techniques that should be applied at the system level.  
POWER SUPPLIES  
This evaluation board comes with a wall-mountable switching  
power supply that provides a 6 V, 2 A maximum output. Simply  
connect the supply to the rated 100 V ac to 240 V ac wall outlet  
at 47 Hz to 63 Hz. The other end is a 2.1 mm inner diameter  
jack that connects to the PCB at P500. Once on the PC board,  
the 6 V supply is fused and conditioned before connecting to  
five low dropout linear regulators that supply the proper bias to  
each of the various sections on the board. When operating the  
evaluation board in a nondefault condition, L501, L503, L504,  
L508, and L509 can be removed to disconnect the switching  
power supply. This enables the user to bias each section of the  
board independently. Use P501 to connect a different supply for  
each section.  
OUTPUT SIGNALS  
The parallel CMOS outputs interface directly with Analog  
Devices’ standard single-channel FIFO data capture board  
(HSC-ADC-EVALB-SC). For more information on the FIFO  
boards and their optional settings, visit www.analog.com/FIFO.  
WALL OUTLET  
100V TO 240V AC  
47Hz TO 63Hz  
6V DC  
2A MAX  
5.0V  
1.8V  
2.5V  
3.3V  
3.3V  
3.3V  
+
+
+
+
+
+
SWITCHING  
POWER  
SUPPLY  
PC  
RUNNING  
ADC  
ANALYZER  
AND SPI  
USER  
ROHDE & SCHWARZ,  
HSC-ADC-EVALB-SC  
FIFO DATA  
SMHU,  
2V p-p SIGNAL  
SYNTHESIZER  
BAND-PASS  
FILTER  
AIN  
CAPTURE  
BOARD  
AD9233  
12-BIT  
EVALUATION BOARD  
SOFTWARE  
PARALLEL  
CMOS  
USB  
CONNECTION  
ROHDE & SCHWARZ,  
SMHU,  
CLK  
2V p-p SIGNAL  
SYNTHESIZER  
SPI  
SPI  
SPI  
Figure 59. Evaluation Board Connection  
Rev. A | Page 2ꢁ of 44  
 
 
AD9233  
SCLK/DFS  
DEFAULT OPERATION AND JUMPER SELECTION  
SETTINGS  
If the SPI port is in external pin mode, the SCLK/DFS pin sets the  
data format of the outputs. If the pin is left floating, the pin is  
internally pulled down, setting the default condition to binary.  
Connecting JP2 Pin 2 and Pin 3 sets the format to twos  
complement. If the SPI port is in serial pin mode, connecting  
JP2 Pin 1 and Pin 2 connects the SCLK pin to the on board  
SPI circuitry. See the Serial Port Interface (SPI) section for  
more details.  
The following is a list of the default and optional settings or  
modes allowed on the AD9233 Rev. A evaluation board.  
POWER  
Connect the switching power supply that is supplied in the  
evaluation kit between a rated 100 V ac to 240 V ac wall outlet  
at 47 Hz to 63 Hz and P500.  
VIN  
SDIO/DCS  
The evaluation board is set up for a double balun configuration  
analog input with optimum 50 Ω impedance matching out to  
70 MHz. For more bandwidth response, the differential capacitor  
across the analog inputs can be changed or removed (see Table 8).  
The common mode of the analog inputs is developed from the  
center tap of the transformer via the CML pin of the ADC. See  
the Analog Input Considerations section for more information.  
If the SPI port is in external pin mode, the SDIO/DCS pin acts  
to set the duty cycle stabilizer. If the pin is left floating, the pin is  
internally pulled up, setting the default condition to DCS enabled.  
To disable the DCS, connect JP3 Pin 2 and Pin 3. If the SPI port  
is in serial pin mode, connecting JP3 Pin 1 and Pin 2 connects the  
SDIO pin to the on-board SPI circuitry. See the Serial Port  
Interface (SPI) section for more details.  
VREF  
ALTERNATIVE CLOCK CONFIGURATIONS  
VREF is set to 1.0 V by tying the SENSE pin to ground via  
JP507 (Pin 1 and Pin 2). This causes the ADC to operate in  
2.0 V p-p full-scale range. A separate external reference option  
is also included on the evaluation board. Simply connect JP507  
between Pin 2 and Pin 3, connect JP501, and provide an external  
reference at E500. Proper use of the VREF options is detailed in  
the Voltage Reference section.  
A differential LVPECL clock can also be used to clock the ADC  
input using the AD9515 (U500). When using this drive option,  
the components listed in Table 16 need to be populated.  
Consult the AD9515 data sheet for further information.  
To configure the analog input to drive the AD9515 instead of  
the default transformer option, the following components need  
to be added, removed, and/or changed.  
RBIAS  
Remove R507, R508, C532, and C533 in the default  
clock path.  
RBIAS requires a 10 kΩ (R503) to ground and is used to set the  
ADC core bias current.  
Populate R505 with a 0 Ω resistor and C531 in the default  
clock path.  
CLOCK  
The default clock input circuitry is derived from a simple  
transformer-coupled circuit using a high bandwidth 1:1  
impedance ratio transformer (T503) that adds a very low  
amount of jitter to the clock path. The clock input is 50 Ω  
terminated and ac-coupled to handle single-ended sine wave  
inputs. The transformer converts the single-ended input to a  
differential signal that is clipped before entering the ADC  
clock inputs.  
Populate R511, R512, R513, R515 to R524, U500, R580,  
R582, R583, R584, C536, C537, and R586.  
If using an oscillator, two oscillator footprint options are also  
available (OSC500) to check the performance of the ADC.  
JP508 provides the user flexibility in using the enable pin, which  
is common on most oscillators. Populate OSC500, R575, R587,  
and R588 to use this option.  
PDWN  
To enable the power-down feature, connect JP506, shorting the  
PDWN pin to AVDD.  
CSB  
The CSB pin is internally pulled-up, setting the chip into  
external pin mode, to ignore the SDIO and SCLK information.  
To connect the control of the CSB pin to the SPI circuitry on the  
evaluation board, connect JP1 Pin 1 and Pin 2. To set the chip  
into serial pin mode and to enable the SPI information on the  
SDIO and SCLK pins, tie JP1 low (connect Pin 2 and Pin 3) in  
the always enabled mode.  
Rev. A | Page 2ꢃ of 44  
 
AD9233  
To configure the analog input to drive the AD8352 instead of  
the default transformer option, the following components need  
to be added, removed and/or changed:  
ALTERNATIVE ANALOG INPUT DRIVE  
CONFIGURATION  
This section provides a brief description of the alternative  
analog input drive configuration using the AD8352 . When  
using this particular drive option, some components need to be  
populated as listed in Table 16. For more details on the AD8352  
differential driver, including how it works and its optional pin  
settings, consult the AD8352 data sheet.  
Remove C1 and C2 in the default analog input path.  
Populate R3 and R4 with 200 Ω resistors in the analog  
input path.  
Populate the optional amplifier input path with all  
components, except R594, R595, and C502. Note that to  
terminate the input path, only one of these components,  
(R9, R592, or R590 and R591) should be populated.  
Populate C529 with a 5 pF capacitor in the analog  
input path.  
Currently, R561 and R562 are populated with 0 Ω resistors to  
allow signal connection. This area allows the user to design a  
filter if additional requirements are necessary.  
Rev. A | Page 3± of 44  
 
AD9233  
SCHEMATICS  
8 5 0 2 - 4 9 0 5  
2 1 8 2 S M H S  
0 4 0 R 2 C  
2 1 8 2 S M H S  
0 4 0 R 2 C  
RC040  
2
RC0402  
0 4 0 R 2 C  
4 0 2 C R  
0 4 0 C 2 C  
4 0 2 C C 0  
0 2 0 4 C C  
0 4 0 C 2 C  
RC0603  
RC060  
3
RC060  
3
RC0603  
Figure 60. Evaluation Board Schematic, DUT Analog Inputs  
Rev. A | Page 31 of 44  
 
 
AD9233  
9
0 - 5 2 4 5 9 0  
RC060 3  
Figure 61. Evaluation Board Schematic, DUT, VREF, and Digital Output Interface  
Rev. A | Page 32 of 44  
AD9233  
0 5 7 5 4 0 9 2 -  
0 4 C 0 C 2  
4 0 2 C C  
0 2 0 4 C C  
0 4 C 0 C 2  
2
0 4 C 0 R  
4 0 2 C R  
0 4 C 0 R 2  
0 4 C 0 C 2  
2
0 4 C 0 C  
0 4 C 0 R 2  
S 1 0  
S 9  
2 5  
1 6  
1 5  
1 4  
1 3  
1 2  
1 1  
1 0  
9
S0  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
S9  
S 8  
S 7  
33  
31  
GND_PAD  
GN D  
S 6  
S 5  
S 4  
S 3  
S 2  
S 1  
8
S 0  
7
S10  
F E V R  
6
32  
RSET  
0 4 C 0 R 2  
2
0 4 C 0 R  
0 4 C 0 R 2  
4 0 2 C R  
0 4 C 0 R 2  
4 0 2 C R  
4 0 2 C R  
RC0603  
0 4 C 0 C 2  
2
0 4 C 0 C  
RC060 3  
RC060 3  
Figure 62. Evaluation Board Schematic, DUT Clock Inputs  
Rev. A | Page 33 of 44  
AD9233  
0 5 6 9 2 - 5 4  
3 0 6  
3 0 6  
R C 0  
R C 0  
RC0603  
3 0 6  
R C 0  
3
0 6 C 0 R  
0 3 0 6 C R  
3
0 6 C 0 R  
SDO_CHA  
3
3
3
0 6 C 0 R  
0 6 C 0 R  
0 6 C 0 R  
CSB1_CHA  
SDI_CHA  
SCLK_CHA  
PICVCC 1  
2
PICVCC  
3
4
GP1  
GP1  
5
6
GP0  
GP0  
MCLR-GP3 7  
9
8
MCLR-GP3  
10  
3
0 6 C 0 R  
Figure 63. Evaluation Board Schematic, SPI Circuitry  
Rev. A | Page 34 of 44  
AD9233  
5 0 5 9 2 - 0 5 4  
9 0 5 T P  
2 1 5 T P  
1 1 5 T P  
0 1 5 T P  
D
G N  
D G N  
1
1
D
G N  
D
G N  
D G N  
1
1
1
CR500  
1
2
Figure 64. Evaluation Board Schematic, Power Supply Inputs  
Rev. A | Page 3ꢀ of 44  
 
AD9233  
EVALUATION BOARD LAYOUTS  
Figure 65. Evaluation Board Layout, Primary Side  
Figure 66. Evaluation Board Layout, Secondary Side (Mirrored Image)  
Rev. A | Page 36 of 44  
 
AD9233  
Figure 67. Evaluation Board Layout, Ground Plane  
Figure 68. Evaluation Board Layout, Power Plane  
Rev. A | Page 3ꢂ of 44  
AD9233  
Figure 69. Evaluation Board Layout, Silkscreen Primary Side  
Figure 70. Evaluation Board Layout, Silkscreen Secondary Side (Mirrored Image)  
Rev. A | Page 3ꢁ of 44  
 
AD9233  
BILL OF MATERIALS (BOM)  
Table 16. Evaluation Board BOM  
Omit  
Item Qty. (DNI) Reference Designator  
Device  
PCB  
Package  
Description  
PCB  
Supplier/Part No.  
1
2
1
ADꢃ246CE_REVA  
Analog Devices, Inc.  
24  
C1, C2, Cꢀ±ꢃ, Cꢀ1±, Cꢀ11, Cꢀ12,  
Capacitors  
±4±2  
±.1 ꢄF  
Cꢀ14, Cꢀ1ꢀ, Cꢀ16, Cꢀ1ꢂ, Cꢀ2ꢁ, Cꢀ3±,  
Cꢀ32, Cꢀ33, Cꢀ3ꢁ, Cꢀ3ꢃ, Cꢀ4±, Cꢀ42,  
Cꢀ43, Cꢀ44, Cꢀ4ꢀ, Cꢀ46, Cꢀꢀ4, Cꢀꢀꢀ  
12  
C3, Cꢀ±±, Cꢀ±2, Cꢀ±3, Cꢀ±4, Cꢀ±ꢀ,  
Cꢀ31, Cꢀ34, Cꢀ3ꢀ, Cꢀ36, Cꢀ3ꢂ, Cꢀꢀꢂ  
3
4
1
2
Cꢀ±1  
Capacitor  
Resistors  
Capacitors  
±4±2  
±4±2  
±4±2  
±.3 pF  
± Ω  
C4, Cꢀ  
1±  
Cꢀ13, Cꢀ1ꢁ, Cꢀ1ꢃ, Cꢀ2±, Cꢀ21,  
Cꢀ22, Cꢀ23, Cꢀ24, Cꢀ2ꢀ, Cꢀ26  
1.± ꢄF  
6
1
Cꢀ2ꢂ  
Capacitor  
Capacitor  
Capacitors  
Capacitor  
Capacitors  
12±6  
±4±2  
ACASE  
±ꢁ±ꢀ  
±6±3  
1± ꢄF  
2± pF  
1± ꢄF  
1.± ꢄF  
±.1 ꢄF  
1
Cꢀ2ꢃ  
Cꢀ4ꢁ, Cꢀ4ꢃ, Cꢀꢀ±, Cꢀꢀ1, Cꢀꢀ2  
Cꢀꢀ3  
1
1±  
1ꢀ  
Cꢀꢀ6, Cꢀꢀꢁ, Cꢀꢀꢃ, Cꢀ64, Cꢀ6ꢀ,  
Cꢀ66, Cꢀ6ꢂ, Cꢀ6ꢁ, Cꢀ6ꢃ, Cꢀꢂ±,  
Cꢀꢂ2, Cꢀꢂ3, Cꢀꢂ4, Cꢀꢂꢀ, Cꢀꢃꢃ  
11  
12  
1
1
CRꢀ±±  
LED  
±6±3  
Green  
Panasonic  
LNJ314GꢁTRA  
Dꢀ±2  
Diode  
SOT-23  
3± V, 2± mA,  
HSMS2ꢁ12  
dual Schottky  
2
1
Dꢀ±±, Dꢀ±1  
Dꢀ±3  
Diodes  
Diode  
13  
14  
1
1
DO-214AB  
3 A, 3± V, SMC  
Micro Commercial Group  
SK33-TPMSCT-ND  
Dꢀ±4  
Diode  
DO-214AA 2 A, ꢀ± V, SMC  
Micro Commercial Group  
S2A-TPMSTR-ND  
1ꢀ  
16  
Dꢀ±ꢀ  
Fꢀ±±  
LED  
LN1461C  
121±  
AMB  
Amber LED  
1
1
Fuse  
6.± V, 2.2 A trip  
current resettable  
fuse  
Tyco, Raychem  
NANO SMDC11±F-2  
1ꢂ  
FERꢀ±±  
Choke  
2±2±  
Murata  
DLWꢀBSN1ꢃ1SQ2  
1ꢁ  
1ꢃ  
2±  
1
3
Jꢀ±±  
Jumper  
Solder jumper  
Solder jumper  
Male header  
Jꢀ±1, Jꢀ±2, Jꢀ±ꢀ  
Jꢀ±3  
Jumpers  
Connector  
1
12± Pin  
Samtec  
TSW-14±-±ꢁ-G-T-RA  
21  
22  
1
Jꢀ±4  
Connector  
Jumpers  
1± Pin  
3 Pin  
Male, 2 × ꢀ  
Samtec  
3
4
1
JP1, JP2, JP3  
Male, straight  
Samtec  
TSW-1±3-±ꢂ-G-S  
23  
24  
JPꢀ±±, JPꢀ±1, JPꢀ±2, JPꢀ±6  
JPꢀ±ꢂ  
Jumpers  
Jumpers  
2 Pin  
3 Pin  
Male, straight  
Male, straight  
Samtec  
TSW-1±2-±ꢂ-G-S  
Samtec  
TSW-1±3-±ꢂ-G-S  
2
JPꢀ±ꢁ, JPꢀ±ꢃ  
2ꢀ  
26  
1±  
1
Lꢀ±±, Lꢀ±1, Lꢀ±2, Lꢀ±3, Lꢀ±4,  
Lꢀ±ꢀ, Lꢀ±6, Lꢀ±ꢂ, Lꢀ±ꢁ, Lꢀ±ꢃ  
Ferrite Beads 3.2 mm ×  
2.ꢀ mm ×  
Digi-Key Pꢃꢁ11CT-ND  
CTS Reeves CB3LV-3C  
1.6 mm  
1
1
OSCꢀ±±  
Oscillator  
SMT  
12ꢀ MHz or  
1±ꢀ MHz  
2ꢂ  
2ꢁ  
Pꢀ±±  
Pꢀ±1  
Connector  
Connector  
PJ-1±2A  
1± Pin  
DC power jack  
Male, straight  
Digi-Key CP-1±2A-ND  
PTMICRO1±  
Rev. A | Page 3ꢃ of 44  
 
 
AD9233  
Omit  
Item Qty. (DNI) Reference Designator  
Device  
Package  
±4±2  
Description  
DNI  
Supplier/Part No.  
2ꢃ  
3±  
6
R1, R6, Rꢀ63, Rꢀ6ꢀ, Rꢀꢂ4, Rꢀꢂꢂ  
R2, Rꢀ, Rꢀ61, Rꢀ62, Rꢀꢂ1  
R1±, R11, R12, Rꢀ3ꢀ, Rꢀ36, Rꢀꢂꢀ  
R3, R4  
Resistors  
Resistors  
Resistors  
Resistors  
Resistors  
Resistors  
Resistors  
Resistor  
Resistor  
Resistors  
2
±4±2  
± Ω  
6
31  
32  
33  
34  
3ꢀ  
±4±2  
±6±3  
±4±2  
±6±3  
±6±3  
2ꢀ Ω  
DNI  
6
6
Rꢂ, Rꢁ, Rꢃ, Rꢀ±2, Rꢀ1±, Rꢀ11  
Rꢀ±±, Rꢀ±1, Rꢀꢂ6, Rꢀꢂꢁ, Rꢀꢂꢃ, Rꢀꢁ1  
Rꢀ±3, Rꢀ4ꢁ, Rꢀ4ꢃ, Rꢀꢀ±  
Rꢀ±4  
DNI  
4
1
1± kΩ  
4ꢃ.ꢃ Ω  
1
Rꢀ±ꢀ  
36  
Rꢀ±6, Rꢀ±ꢁ, Rꢀ±ꢃ, Rꢀ12, Rꢀꢀ4,  
Rꢀꢀꢀ, Rꢀꢀ6, Rꢀꢀꢂ, Rꢀ6±  
±6±3  
± Ω  
23  
Rꢀ±ꢂ, Rꢀ14, Rꢀ13, Rꢀ1ꢀ, Rꢀ16, Rꢀ1ꢂ,  
Rꢀ1ꢁ, Rꢀ1ꢃ, Rꢀ2±, Rꢀ21, Rꢀ22, Rꢀ23,  
Rꢀ24, Rꢀ2ꢀ, Rꢀ26, Rꢀ2ꢂ, Rꢀ2ꢁ, Rꢀ2ꢃ,  
Rꢀ3±, Rꢀ31, Rꢀ32, Rꢀ33, Rꢀ34  
3ꢂ  
3ꢁ  
3ꢃ  
4
1
Rꢀ4ꢀ, Rꢀ46, Rꢀ4ꢂ, Rꢀꢀꢁ  
Rꢀꢀ1, Rꢀꢀ2, Rꢀꢀ3  
Rꢀꢁꢃ  
Resistors  
Resistors  
Resistors  
±6±3  
±6±3  
±6±3  
4.ꢂ kΩ  
1 kΩ  
3
1
261 Ω  
Rꢀꢀꢃ  
4±  
41  
42  
43  
44  
4ꢀ  
46  
4ꢂ  
4ꢁ  
4ꢃ  
ꢀ±  
ꢀ1  
ꢀ2  
2
Rꢀ66, Rꢀ6ꢂ  
Rꢀꢁ2, Rꢀꢁꢀ, Rꢀꢃꢁ  
Rꢀꢁ3, Rꢀꢁ4  
Rꢀꢁ6  
Resistors  
Resistors  
Resistors  
Resistor  
Resistors  
Resistors  
Resistor  
Resistors  
Resistors  
Resistor  
Resistor  
Resistors  
Switch  
±4±2  
33 Ω  
3
2
1
3
2
1
2
2
1
±4±2  
1±± Ω  
24± Ω  
4.12 kΩ  
1± kΩ  
2ꢀ Ω  
±4±2  
±4±2  
Rꢀꢁ±, Rꢀꢁꢂ, Rꢀꢁꢁ  
Rꢀꢃ±, Rꢀꢃ1  
Rꢀꢃ2  
±4±2  
±4±2  
±4±2  
DNI  
Rꢀꢃ3, Rꢀꢃ6  
Rꢀꢃ4, Rꢀꢃꢀ  
Rꢀꢃꢂ  
±4±2  
± Ω  
±4±2  
1± kΩ  
4.3 kΩ  
22 Ω  
±4±2  
1
2
RPꢀ±±  
RCAꢂ42±4  
RCAꢂ42±ꢁ  
RPꢀ±1, RPꢀ±2  
S1  
22 Ω  
1
Momentary  
Panasonic  
(normally open)  
EVQ-PLDA1ꢀ  
ꢀ3  
2
Sꢀ±±, Sꢀ±1  
Connectors  
Connectors  
SMAEDGE  
SMA edge  
right angle  
2
2
Sꢀ±2, Sꢀ±3  
Sꢀ±4, Sꢀ±ꢀ  
ꢀ4  
ꢀꢀ  
SMA2±±UP SMA RF  
ꢀ-pin upright  
2
1
Tꢀ±±, Tꢀ±1  
T1  
Transformers SM-22  
M/A-Com ETC1-1-13  
1
ꢀ6  
ꢀꢂ  
Tꢀ±3  
Transformer  
IC  
CDꢀ42  
Mini-Circuits  
ADT1-1WT  
1
1
Tꢀ±2  
Uꢀ±±  
32-Lead  
LFCSP  
Clock distribution Analog Devices, Inc.  
ADꢃꢀ1ꢀBCPZ  
ꢀꢁ  
ꢀꢃ  
6±  
61  
1
1
1
2
Uꢀ±1  
IC  
SOT-223  
SOT-223  
SOT-223  
SOT-223  
Voltage regulator Analog Devices, Inc.  
ADP333ꢃAKCZ-ꢀ  
Uꢀ±2  
IC  
Voltage regulator Analog Devices, Inc.  
ADP333ꢃAKCZ-1.ꢁ  
Uꢀ±3  
IC  
Voltage regulator Analog Devices, Inc.  
ADP333ꢃAKCZ-2.ꢀ  
Uꢀ±4, Uꢀ±ꢀ  
ICs  
Voltage regulator Analog Devices, Inc.  
ADP333ꢃAKCZ-3.3  
Rev. A | Page 4± of 44  
AD9233  
Omit  
Item Qty. (DNI) Reference Designator  
Device  
Package  
Description  
Supplier/Part No.  
62  
1
Uꢀ±6  
IC  
ꢁ-pin SOIC  
ꢁ-bit  
Microchip PIC12F62ꢃ  
microcontroller  
63  
64  
6ꢀ  
1
1
1
Uꢀ±ꢂ  
Uꢀ±ꢁ  
Uꢀ±ꢃ  
IC  
IC  
IC  
SCꢂ±  
SCꢂ±  
Dual buffer  
Fairchild NCꢂWZ16  
Fairchild NCꢂWZ±ꢂ  
Fairchild ꢂ4VCX162244  
Dual buffer  
4ꢁ-Lead  
TSSOP  
Buffer/line driver  
66  
6ꢂ  
1
Uꢀ1±  
DUT  
(ADꢃ233)  
4ꢁ-Lead  
LFCSP  
ADC  
Analog Devices, Inc.  
ADꢃ233BCPZ  
1
Uꢀ11 (or Zꢀ±±)  
IC  
16-Lead  
LFCSP  
Differential  
amplifier  
Analog Devices, Inc.  
ADꢁ3ꢀ2ACPZ  
Total 128 107  
Rev. A | Page 41 of 44  
AD9233  
OUTLINE DIMENSIONS  
0.30  
0.23  
0.18  
7.00  
BSC SQ  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
37  
36  
48  
1
PIN 1  
INDICATOR  
EXPOSED  
PAD  
(BOTTOM VIEW)  
4.25  
4.10 SQ  
3.95  
TOP  
VIEW  
6.75  
BSC SQ  
0.50  
0.40  
0.30  
25  
24  
12  
13  
0.25 MIN  
5.50  
REF  
0.80 MAX  
0.65 TYP  
1.00  
0.85  
0.80  
12° MAX  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
0.50 BSC  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VKKD-2  
Figure 71. 48-Lead Frame Chip Scale Package [LFCSP_VQ]  
7 mm × 7 mm Body, Very Thin Quad  
(CP-48-3)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
–4±°C to +ꢁꢀ°C  
–4±°C to +ꢁꢀ°C  
–4±°C to +ꢁꢀ°C  
–4±°C to +ꢁꢀ°C  
–4±°C to +ꢁꢀ°C  
–4±°C to +ꢁꢀ°C  
Package Description  
Package Option1  
CP-4ꢁ-3  
CP-4ꢁ-3  
CP-4ꢁ-3  
CP-4ꢁ-3  
CP-4ꢁ-3  
CP-4ꢁ-3  
ADꢃ233BCPZ-12ꢀ2  
ADꢃ233BCPZRLꢂ–12ꢀ2  
ADꢃ233BCPZ-1±ꢀ2  
ADꢃ233BCPZRLꢂ–1±ꢀ2  
ADꢃ233BCPZ-ꢁ±2  
ADꢃ233BCPZRLꢂ–ꢁ±2  
ADꢃ233-12ꢀEB  
4ꢁ-Lead Lead Frame Chip Scale Package [LFSCP_VQ]  
4ꢁ-Lead Lead Frame Chip Scale Package [LFSCP_VQ]  
4ꢁ-Lead Lead Frame Chip Scale Package [LFSCP_VQ]  
4ꢁ-Lead Lead Frame Chip Scale Package [LFSCP_VQ]  
4ꢁ-Lead Lead Frame Chip Scale Package [LFSCP_VQ]  
4ꢁ-Lead Lead Frame Chip Scale Package [LFSCP_VQ]  
Evaluation Board  
ADꢃ233-1±ꢀEB  
Evaluation Board  
ADꢃ233-ꢁ±EB  
Evaluation Board  
1 It is required that the exposed paddle be soldered to the AGND plane to achieve the best electrical and thermal performance .  
2 Z = Pb-free part.  
Rev. A | Page 42 of 44  
 
 
AD9233  
NOTES  
Rev. A | Page 43 of 44  
AD9233  
NOTES  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05492-0-8/06(A)  
Rev. A | Page 44 of 44  

相关型号:

AD9233-105EB

12-Bit, 80 MSPS/105 MSPS/125 MSPS, 1.8 V Analog-to-Digital Converter
ADI

AD9233-125EB

12-Bit, 80 MSPS/105 MSPS/125 MSPS, 1.8 V Analog-to-Digital Converter
ADI

AD9233-80EB

12-Bit, 80 MSPS/105 MSPS/125 MSPS, 1.8 V Analog-to-Digital Converter
ADI

AD9233BCPZ-105

12-Bit, 80 MSPS/105 MSPS/125 MSPS, 1.8 V Analog-to-Digital Converter
ADI

AD9233BCPZ-125

12-Bit, 80 MSPS/105 MSPS/125 MSPS, 1.8 V Analog-to-Digital Converter
ADI

AD9233BCPZ-80

12-Bit, 80 MSPS/105 MSPS/125 MSPS, 1.8 V Analog-to-Digital Converter
ADI

AD9233BCPZRL7-105

12-Bit, 80 MSPS/105 MSPS/125 MSPS, 1.8 V Analog-to-Digital Converter
ADI

AD9233BCPZRL7-125

12-Bit, 80 MSPS/105 MSPS/125 MSPS, 1.8 V Analog-to-Digital Converter
ADI

AD9233BCPZRL7-80

12-Bit, 80 MSPS/105 MSPS/125 MSPS, 1.8 V Analog-to-Digital Converter
ADI

AD9234

Dual Analog-to-Digital Converter
ADI

AD9234-1000EBZ

Dual Analog-to-Digital Converter
ADI

AD9234-500EBZ

Dual Analog-to-Digital Converter
ADI