AD9238 [ADI]

12-Bit, 20/40/65 MSPS Dual A/D Converter; 12位20/40/65 MSPS双通道A / D转换器
AD9238
型号: AD9238
厂家: ADI    ADI
描述:

12-Bit, 20/40/65 MSPS Dual A/D Converter
12位20/40/65 MSPS双通道A / D转换器

转换器
文件: 总24页 (文件大小:1704K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
12-Bit, 20/40/65 MSPS  
Dual A/D Converter  
AD9238  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Integrated Dual 12-Bit Analog-to-Digital Converters  
Single 3V Supply Operation (2.7V to 3.6V)  
SNR = 70 dBc (to Nyquist, AD9238-65)  
SFDR = 85 dBc (to Nyquist, AD9238-65)  
Low Power: 600 mW at 65 MSPS  
Differential Input with 500 MHz 3 dB Bandwidth  
On-Chip Reference and SHA  
Flexible Analog Input: 1V p-p to 2V p-p Range  
Offset Binary orTwos Complement Data Format  
Clock Duty Cycle Stabilizer  
AVDD  
DRVDD  
OEB_A  
OTR_A  
VIN+_A  
VIN–_A  
A/D  
SHA  
D11_A  
D0_A  
REFT_A  
REFB_A  
MUX_SELECT  
CLK_A  
CLOCK  
DUTY CYCLE  
STABILIZER  
VREF  
CLK_B  
DCS  
SENSE  
DFS  
0.5V  
PDWN_A  
PDWN_B  
SHARED_REF  
MODE  
SELECT  
APPLICATIONS  
Ultrasound Equipment  
IF Sampling in Communications Receivers:  
IS-95, CDMA One, IMT-2000  
Battery-Powered Instruments  
Hand-Held Scopemeters  
AGND  
REFB_B  
REFT_B  
OEB_B  
OTR_B  
D11_B  
D0_B  
VIN–_B  
VIN+_B  
A/D  
SHA  
Low Cost Digital Oscilloscopes  
AGND  
DRGND  
PRODUCT HIGHLIGHTS  
GENERAL DESCRIPTION  
1. Integrated, dual version of the AD9235—a 12-bit,  
20 MSPS/40 MSPS/65 MSPS ADC.  
The AD9238 is a dual, 3V, 12-bit, 20 MSPS/40 MSPS/65 MSPS  
analog-to-digital converter. It features dual high performance  
sample-and-hold amplifiers and an integrated voltage reference.  
The AD9238 uses a multistage differential pipelined architecture  
with output error correction logic to provide 12-bit accuracy and  
guarantee no missing codes over the full operating temperature  
range at data rates up to 65 MSPS.  
2. Speed grade options of 20 MSPS, 40 MSPS, and 65 MSPS  
allow flexibility between power, cost, and performance to suit  
an application.  
3. The AD9238 operates from a single 3V power supply and  
features a separate digital output driver supply to accommo-  
date 2.5V and 3.3V logic families.  
The wide bandwidth, differential SHA allows for a variety of  
user selectable input ranges and offsets including single-ended  
applications. It is suitable for various applications including multi-  
plexed systems that switch full-scale voltage levels in successive  
channels and for sampling inputs at frequencies well beyond the  
Nyquist rate.The AD9238 is suitable for applications in commu-  
nications, imaging, and medical ultrasound.  
4. Low power consumption:  
AD9238-20 operating at 20 MSPS consumes a low 180 mW.  
AD9238-40 operating at 40 MSPS consumes a low 330 mW.  
AD9238-65 operating at 65 MSPS consumes a low 600 mW.  
5. The patented SHA input maintains excellent performance for  
input frequencies up to 100 MHz and can be configured for  
single-ended or differential operation.  
Dual single-ended clock inputs are used to control all internal con-  
version cycles. A duty cycle stabilizer is available on the AD9238-65  
and can compensate for wide variations in the clock duty cycle,  
allowing the converters to maintain excellent performance.The  
digital output data is presented in either straight binary or twos  
complement format. Out-of-range signals indicate an overflow  
condition, which can be used with the most significant bit to deter-  
mine low or high overflow.  
6. Typical channel isolation of 80 dB @ fIN = 10 MHz.  
7. The clock duty cycle stabilizer (AD9238-65 only) maintains  
performance over a wide range of clock duty cycles.  
8. The OTR output bits indicate when either input signal is  
beyond the selected input range.  
9. Multiplexed data output option enables single-port operation  
from either data port A or data port B.  
Fabricated on an advanced CMOS process, the AD9238 is avail-  
able in a space saving 64-lead LQFP and is specified over the  
industrial temperature range (–40°C to +85°C).  
REV. A  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed byAnalog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
that may result from its use. No license is granted by implication or oth-  
erwise under any patent or patent rights of Analog Devices.Trademarks  
and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
AD9238–SPECIFICATIONS  
(AVDD = 3 V, DRVDD = 2.5 V, Maximum Sample Rate, CLK_A = CLK_B; AIN = –0.5 dBFS Differential Input,  
1.0 V Internal Reference, TMIN to TMAX, unless otherwise noted.)  
DC SPECIFICATIONS  
Test  
AD9238BST-20  
AD9238BST-40  
AD9238BST-65  
Parameter  
Temp Level Min Typ  
Max Min Typ  
Max Min Typ  
Max  
Unit  
RESOLUTION  
Full  
VI  
12  
12  
12  
12  
12  
12  
Bits  
ACCURACY  
No Missing Codes Guaranteed  
Offset Error  
Full  
Full  
Full  
Full  
2ꢀЊC  
Full  
2ꢀЊC  
VI  
VI  
IV  
V
I
V
I
Bits  
±±0.± ±102  
±±0.± ±202  
±±0.ꢀ  
±±0.ꢀ ±±0ꢂ  
±±0ꢁꢀ  
±±0ꢀ± ±101  
±±0ꢀ± ±20ꢁ  
±±0.ꢀ  
±±0.ꢀ ±±0ꢃ  
±±0ꢄ±  
±±0ꢀ± ±101  
±±0ꢀ± ±20ꢀ  
±±0.ꢀ  
±±0.ꢀ ±10±  
±±0ꢅ±  
% FSR  
% FSR  
LSB  
LSB  
LSB  
Gain Error1  
Differential Nonlinearity (DNL)2  
Integral Nonlinearity (INL)2  
±±0ꢁ± ±10ꢁ  
±±0ꢀ± ±10ꢁ  
±±0ꢀꢀ ±10ꢅꢀ LSB  
TEMPERATURE DRIFT  
Offset Error  
Full  
Full  
V
V
±2  
±12  
±2  
±12  
±.  
±12  
ppm/°C  
ppm/°C  
Gain Error1  
INTERNALVOLTAGE REFERENCE  
OutputVoltage Error (1V Mode)  
Load Regulation @ 10± mA  
OutputVoltage Error (±0V Mode)  
Load Regulation @ ±0ꢀ mA  
Full  
Full  
Full  
Full  
VI  
V
V
±ꢀ  
±.ꢀ  
±ꢀ  
±.ꢀ  
±ꢀ  
±.ꢀ  
mV  
mV  
mV  
mV  
±0ꢃ  
±20ꢀ  
±01  
±0ꢃ  
±20ꢀ  
±01  
±0ꢃ  
±20ꢀ  
±01  
V
INPUT REFERRED NOISE  
Input Span = 1V  
Input Span = 20±V  
2ꢀЊC  
2ꢀЊC  
V
V
±0ꢀꢁ  
±02ꢅ  
±0ꢀꢁ  
±02ꢅ  
±0ꢀꢁ  
±02ꢅ  
LSB rms  
LSB rms  
ANALOG INPUT  
Input Span = 10±V  
Input Span = 20±V  
Input Capacitance.  
Full  
Full  
Full  
IV  
IV  
V
1
2
1
2
1
2
V p-p  
V p-p  
pF  
REFERENCE INPUT RESISTANCE Full  
V
k⍀  
POWER SUPPLIES  
SupplyVoltages  
AVDD  
DRVDD  
Full  
Full  
IV  
IV  
20ꢅ .0±  
202ꢀ .0±  
.0ꢄ  
.0ꢄ  
20ꢅ  
202ꢀ .0±  
.0±  
.0ꢄ  
.0ꢄ  
20ꢅ .0±  
202ꢀ .0±  
.0ꢄ  
.0ꢄ  
V
V
Supply Current  
IAVDD2  
Full  
Full  
Full  
V
V
V
ꢄ±  
±±0±1  
11±  
1±  
±±0±1  
2±±  
1ꢁ  
±±0±1  
mA  
mA  
% FSR  
IDRVDD2  
PSRR  
POWER CONSUMPTION  
DC Inputꢁ  
Full  
Full  
Full  
V
VI  
V
1ꢃ±  
1ꢂ±  
20±  
..±  
.ꢄ±  
20±  
ꢄ±±  
ꢄꢁ±  
20±  
mW  
mW  
mW  
SineWave Input2  
Standby Powerꢀ  
212  
.ꢂꢅ  
ꢄꢂꢃ  
MATCHING CHARACTERISTICS  
Offset Error  
Gain Error  
Full  
Full  
V
V
±±01  
±±0±ꢀ  
±±01  
±±0±ꢀ  
±±01  
±±0±ꢀ  
% FSR  
% FSR  
NOTES  
1Gain error and gain temperature coefficient are based on the A/D converter only (with a fixed 10±V external reference)0  
2Measured at maximum clock rate with a low frequency sine wave input and approximately ꢀ pF loading on each output bit0  
.Input capacitance refers to the effective capacitance between one differential input pin and AVSS0 Refer to Figure 2 for the equivalent analog input structure0  
Measured with dc input at maximum clock rate0  
Standby power is measured with the CLK_A and CLK_B pins inactive (i0e0, set to AVDD or AGND)0  
Specifications subject to change without notice0  
–2–  
REV. A  
AD9238  
(continued)  
DC SPECIFICATIONS  
T
e
st  
AD9238BS
T
-
20  
AD9238BS
T
-
40  
AD9238BS
T
-
65  
Parameter  
Te
mp Level
 
Min  
Typ  
Max Min  
Typ  
Max  
Min
Typ  
Max Unit  
LOGIC INPUTS  
High Level InputVoltage  
Low Level InputVoltage  
High Level Input Current  
Low Level Input Current  
Input Capacitance  
Full  
Full  
Full  
Full  
Full  
IV  
IV  
IV  
IV  
V
2.0  
2.0  
2.0  
V
V
µA  
µA  
pF  
0.8  
+10  
+10  
0.8  
+10  
+10  
0.8  
+10  
+10  
–10  
–10  
–10  
–10  
–10  
–10  
2
2
2
LOGIC OUTPUTS
*  
DRVDD = 3.
3
V  
High Level OutputVoltage  
(IOH = 50 mA)  
High Level OutputVoltage  
(IOH = 0.5 mA)  
Low Level OutputVoltage  
(IOL = 50 mA)  
Low Level OutputVoltage  
(IOL = 1.6 mA)  
Full  
Full  
Full  
Full  
IV  
IV  
IV  
IV  
3.29  
3.25  
3.29  
3.25  
3.29  
3.25  
V
V
V
V
0.05  
0.2  
0.05  
0.2  
0.05  
0.2  
DRVDD = 2.
5
V  
High Level OutputVoltage  
(IOH = 50 mA)  
High Level OutputVoltage  
(IOH = 0.5 mA)  
Low Level OutputVoltage  
(IOL = 50 mA)  
Full  
Full  
Full  
Full  
IV  
IV  
IV  
IV  
2.49  
2.45  
2.49  
2.45  
2.49  
2.45  
V
V
V
V
0.05  
0.2  
0.05  
0.2  
0.05  
0.2  
Low Level OutputVoltage  
(IOL = 1.6 mA)  
*
OutputVoltage Levels measured with 5 pF load on each output.  
Specifications subject to change without notice.  
SWITCHING SPECIFICATIONS  
T
e
st  
AD9238BS
T
-
20  
AD9238BS
T
-
40  
AD9238BS
T
-
65  
Parameter  
Te
mp Level
 
Min  
Typ  
Max Min  
Typ  
Max  
Min
Typ  
Max Unit  
SWITCHING PERFORMANCE  
Max Conversion Rate  
Min Conversion Rate  
CLK Period  
Full  
Full  
Full  
Full  
Full  
VI  
V
V
V
V
20  
40  
65  
MSPS  
MSPS  
ns  
ns  
ns  
1
6
1
6
1
6
50.0  
15.0  
15.0  
25.0  
8.8  
8.8  
15.4  
6.2  
6.2  
CLK Pulsewidth High1  
CLK Pulsewidth Low
1  
DATA OUTPUT PARAMETERS  
Output Delay2 (tPD  
)
Full  
Full  
Full  
Full  
Full  
IV  
V
V
V
V
2
3.5  
7
1.0  
0.5  
2.5  
2
3.5  
7
1.0  
0.5  
2.5  
2
3.5  
7
1.0  
0.5  
2.5  
ns  
Cycles  
ns  
ps rms  
ms  
Pipeline Delay (Latency)  
Aperture Delay (tA)  
Aperture Uncertainty (t
J
)  
Wake-UpTime3  
OU
T
-
OF-RANGE RECOVER
Y
T
IME
 
Full  
V
1
1
2
Cycles  
NOTES  
1The AD9238-65 model has a duty cycle stabilizer circuit that, when enabled, corrects for a wide range of duty cycles (seeTPC 20).  
2Output delay is measured from CLOCK 50% transition to DATA 50% transition, with a 5 pF load on each output.  
3Wake-up time is dependent on the value of the decoupling capacitors; typical values shown with 0.1 µF and 10 µF capacitors on REFT and REFB.  
Specifications subject to change without notice.  
RE
V
. A  
–3–  
AD9238  
(AVDD = 3 V, DRVDD = 2.5 V, Maximum Sample Rate, CLK_A = CLK_B; AIN = –0.5 dBFS Differential Input,  
1.0 V Internal Reference, TMIN
to T
MAX, unless otherwise noted.)  
AC SPECIFICATIONS  
T
e
st  
AD9238BS
T
-
20  
AD9238BS
T
-
40  
AD9238BS
T
-
65  
Parameter  
Temp  
Level  
Min  
Typ  
Max  
Min
Typ  
Max  
Min
Typ  
Max Unit  
SIGNAL-TO-NOISE RATIO  
f
INPUT
= 2.4 MHz  
25°C  
Full  
25°C  
Full  
25°C  
Full  
25°C  
25°C  
V
V
IV  
V
IV  
V
70.4  
70.2  
70.4  
70.4  
70.3  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
f
INPUT
= 9.7 MHz  
69.7  
f
INPUT = 19.6 MHz  
f
INPUT = 32.5 MHz  
f
INPUT
= 100 MHz  
70.1  
69.7 70.3  
69.3  
68.7 69.5  
67.6  
IV  
V
68.7  
68.3  
70.2  
SIGNAL-TO-NOISE AND  
DISTORTION RATIO  
f
INPUT
= 2.4 MHz  
25°C  
Full  
25°C  
Full  
25°C  
Full  
25°C  
25°C  
V
V
IV  
V
IV  
V
70.2  
70.1  
70.2  
70.1  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
f
INPUT
= 9.7 MHz  
69.3  
f
INPUT
= 19.6 MHz  
f
INPUT
= 32.5 MHz  
f
INPUT
= 100 MHz  
69.9  
69.4 70.1  
68.9  
68.1 69.1  
66.6  
IV  
V
67.9  
67.9  
TOTAL HARMONIC  
DISTORTION  
f
INPUT
= 2.4 MHz  
f
INPUT
= 9.7 MHz  
25°C  
Full  
25°C  
Full  
25°C  
Full  
25°C  
25°C  
V
V
I
V
I
V
I
V
–83.0  
–81.0  
–83.0 –74.6  
–83.0  
–81.0  
–83.0  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
f
INPUT = 19.6 MHz  
f
INPUT = 32.5 MHz  
f
INPUT
= 100 MHz  
–83.0 –75.5  
–78.0  
–80.0 –71.7
 
dBc  
–74.0  
–77.0  
–84.0  
–79.0  
–85.0  
86.0  
dBc  
WORST HARMONIC  
(2nd or 3rd)  
f
INPUT
= 9.7 MHz  
f
INPUT
= 19.6 MHz  
fINPUT = 32.5 MHz  
Full  
Full  
Full  
V
V
V
dBc  
dBc  
dBc  
–80.0  
86.0  
SPURIOUS FREE  
DYNAMIC RANGE  
f
INPUT
= 2.4 MHz  
f
INPUT
= 9.7 MHz  
25°C  
Full  
25°C  
Full  
25°C  
Full  
25°C  
25°C  
V
V
I
V
I
V
I
V
86.0  
84.0  
86.0  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
76.1  
f
INPUT
= 19.6 MHz  
f
INPUT
= 32.5 MHz  
85.0  
76.7 86.0  
80.0  
72.5 83.0  
75.0  
f
INPUT
= 100 MHz  
CROSSTALK  
79.0  
–80  
81.0  
–80  
Full  
V
–80  
dB  
Specifications subject to change without notice.  
�ꢂꢁ  
�ꢂꢉ  
�ꢂꢃ  
�ꢀꢁ  
�ꢂꢄ  
ꢊ�ꢊꢋꢌꢍ  
ꢎ�ꢏꢐꢑ  
�ꢂꢈ  
�ꢂꢅ  
�ꢂꢇ  
�ꢂꢆ  
ꢒꢋꢌꢒꢓ  
ꢔꢊꢑꢊ  
�ꢀꢕ  
�ꢀꢉ  
�ꢀꢈ  
�ꢀꢇ  
�ꢀꢆ  
�ꢀꢅ  
�ꢀꢄ  
�ꢀꢃ  
�ꢀꢁ  
ꢌꢐꢑ  
ꢟꢠꢗꢡꢗꢖꢎ�ꢗꢃꢘꢙꢚꢛꢜꢗ  
ꢖꢊꢝꢗꢇꢘꢙꢚꢛ  
Figure 1. Timing Diagram  
–4–  
REV. A  
AD9238  
ABSOLUTE MAXIMUM RATINGS
1  
EXPLANATION O
F
T
EST LEVELS  
100% production tested.  
I
With  
Respect  
To  
II 100% production tested at 25°C and sample tested at specified  
temperatures.  
Pin Name  
Min  
Max  
Unit  
ELECTRICAL  
A
V
DD  
DRVDD  
AGND  
A
V
DD  
Digital Outputs  
CLK, DCS,  
MUX_SELECT,  
SHARED_REF,  
OEB, DFS  
VINA,VINB  
VREF  
SENSE  
REFB, REFT  
PDWN  
III Sample tested only.  
AGND  
–0.3  
+3.9  
+3.9  
+0.3  
+3.9  
V
V
V
V
IV Parameter is guaranteed by design and characterization testing.  
DRGND –0.3  
DRGND –0.3  
DRVDD –3.9  
DRGND –0.3  
V
Parameter is a typical value only.  
VI 100% production tested at 25°C; guaranteed by design and  
characterization testing for industrial temperature range; 100%  
production tested at temperature extremes for military devices.  
DRVDD + 0.3
 
V  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
A
V
DD + 0.3  
A
V
DD + 0.3  
A
V
DD + 0.3  
A
V
DD + 0.3  
A
V
DD + 0.3  
A
V
DD + 0.3  
V
V
V
V
V
V
ENVIRONMENTAL
2  
OperatingTemperature  
JunctionTemperature  
LeadTemperature (10 sec)  
StorageTemperature  
–45  
+85  
°C  
°C  
°C  
°C  
+150  
+300  
+150  
–65  
NOTES  
1 Absolute maximum ratings are limiting values to be applied individually,and beyond  
which the serviceability of the circuit may be impaired. Functional operability is  
not necessarily implied. Exposure to absolute maximum rating conditions for an  
extended period of time may affect device reliability.  
2 Typical thermal impedances (64-lead LQFP); JA
= 54°C/
W
.
T
hese measurements  
were taken on a 4-layer board in still air, in accordance with EIA/JESD51-7.  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
Package Option  
AD9238BS
T
-
20  
AD9238BS
T
-
40  
AD9238BS
T
-
65  
AD9238BSTRL-20 –40°C
 
to +85°C  
AD9238BSTRL-40 –40°C
 
to +85°C  
AD9238BSTRL-65 –40°C
 
to +85°C  
AD9238-20PCB  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
64-Lead Low Profile Quad Flat Pack (LQFP)  
64-Lead Low Profile Quad Flat Pack (LQFP)  
64-Lead Low Profile Quad Flat Pack (LQFP)  
64-Lead Low Profile Quad Flat Pack (LQFP)  
64-Lead Low Profile Quad Flat Pack (LQFP)  
64-Lead Low Profile Quad Flat Pack (LQFP)  
Evaluation Board with AD9238BS
T
-
20  
S
T
-
64-1  
S
T
-
64-1  
S
T
-
64-1  
S
T
-
64-1  
S
T
-
64-1  
S
T
-
64-1  
AD9238-40PCB  
AD9238-65PCB  
Evaluation Board with AD9238BS
T
-
40  
Evaluation Board with AD9238BS
T
-
65  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000V readily accumulate on  
the human body and test equipment and can discharge without detection. Although the AD9238 features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
REV. A  
–5–  
AD9238  
PIN CONFIGURATION  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
1
2
48  
47  
46  
45  
44  
AGND  
VIN+_A  
VIN–_A  
D4_A  
PIN 1  
IDENTIFIER  
D3_A  
D2_A  
3
4
AGND  
AVDD  
D1_A  
D0_A  
5
6
REFT_A  
REFB_A  
VREF  
43 DNC  
7
42  
DNC  
AD9238  
8
41  
DRVDD  
40 DRGND  
64-LEAD LQFP  
TOP VIEW  
9
SENSE  
REFB_B  
REFT_B  
AVDD  
10  
11  
12  
13  
(Not to Scale)  
39  
38  
37  
36  
35  
34  
33  
OTR_B  
D11_B (MSB)  
D10_B  
AGND  
D9_B  
VIN–_B 14  
D8_B  
D7_B  
D6_B  
15  
VIN+_B  
16  
AGND  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
DNC = DO NOT CONNECT  
PIN FUNCTION DESCRIPTIONS  
Pin Number
 
Mnemonic  
Description  
2
3
15  
14  
6
VIN+_A  
VIN–_A  
VIN+_B  
VIN–_B  
REFT_A  
REFB_A  
REFT_B  
REFB_B  
VREF  
Analog Input Pin (+) for Channel A  
Analog Input Pin (–) for Channel A  
Analog Input Pin (+) for Channel B  
Analog Input Pin (–) for Channel B  
Differential Reference (+) for Channel A  
Differential Reference (–) for Channel A  
Differential Reference (+) for Channel B  
Differential Reference (–) for Channel B  
Voltage Reference Input/Output  
7
11  
10  
8
9
SENSE  
CLK_B  
CLK_A  
DCS  
Reference Mode Selection  
Clock Input Pin for Channel B  
Clock Input Pin for Channel A  
Enable Duty Cycle Stabilizer (DCS) Mode  
Data Output Format Select Bit (Low for Offset Binary, High forTwos Complement)  
Power-Down Function Selection for Channel B (Active High)  
Power-Down Function Selection for Channel A (Active High)  
Output Enable Bit for Channel B  
18  
63  
19  
20  
21  
60  
22  
59  
DFS  
PDWN_B  
PDWN_A  
OEB_B  
OEB_A  
Output Enable Bit for Channel A (Low Setting Enables Channel A Output Data Bus)  
44–51, 54–57 D0_A (LSB)–D11_A (MSB) Channel A Data Output Bits  
25–27, 30–38 D0_B (LSB)–D11_B (MSB) Channel B Data Output Bits  
39  
58  
62  
OTR_B  
OTR_A  
SHARED_REF  
Out-of-Range Indicator for Channel B  
Out-of-Range Indicator for Channel A  
Shared Reference Control Bit (Low for Independent Reference Mode,  
High for Shared Reference Mode)  
61  
MUX_SELECT  
Data Multiplexed Mode. (See description for how to enable; high setting disables  
output data Multiplexed mode).  
5, 12, 17, 64  
1, 4, 13, 16  
28, 40, 53  
29, 41, 52  
A
V
DD  
AGND  
DRGND  
DRVDD  
Analog Power Supply  
Analog Ground  
Digital Output Ground  
Digital Output Driver Supply. Must be decoupled to DRGND with a minimum  
0.1 µF capacitor. Recommended decoupling is 0.1 µF capacitor in parallel with 10 µF.  
Do Not Connect Pins. Should be left floating.  
23, 24, 42, 43 DNC  
–6–  
REV. A  
AD9238  
TERMINOLOGY  
Effective Number of Bits (ENOB)  
Aperture Delay  
Using the following formula:  
Aperture delay is a measure of the sample-and-hold amplifier  
(SHA) performance and is measured from the rising edge of the  
clock input to when the input signal is held for conversion.  
ENOB = SINAD 1.76 /6.02  
(
)
effective number of bits for a device for sine wave inputs at a  
given input frequency can be calculated directly from its  
measured SINAD.  
Aperture Jitter  
The variation in aperture delay for successive samples, which is  
manifested as noise on the input to the A/D converter.  
Signal-to-Noise Ratio (SNR)  
The ratio of the rms value of the measured input signal to the rms  
sum of all other spectral components below the Nyquist frequency,  
excluding the first six harmonics and dc.The value for SNR is  
expressed in decibels relative to the peak carrier signal (dBc).  
Integral Nonlinearity (INL)  
INL refers to the deviation of each individual code from a line  
drawn from negative full scale through positive full scale.The  
point used as negative full scale occurs 1/2 LSB before the first  
code transition. Positive full scale is defined as a level 1 1/2 LSB  
beyond the last code transition.The deviation is measured from  
the middle of each particular code to the true straight line.  
Spurious Free Dynamic Range (SFDR)  
The difference in dB between the rms amplitude of the input  
signal and the peak spurious signal.  
Nyquist Sampling  
Differential Nonlinearity (DNL, No Missing Codes)  
An ideal ADC exhibits code transitions that are exactly 1 LSB  
apart. DNL is the deviation from this ideal value. Guaranteed no  
missing codes to 12-bit resolution indicates that all 4096 codes  
must be present over all operating ranges.  
When the frequency components of the analog input are below  
the Nyquist frequency (fCLOCK/2), this is often referred to as  
Nyquist sampling.  
IF Sampling  
Due to the effects of aliasing, an ADC is not necessarily limited  
to Nyquist sampling. Higher sampled frequencies will be aliased  
down into the first Nyquist zone (DC – fCLOCK/2) on the output  
of the ADC. Care must be taken that the bandwidth of the sam-  
pled signal does not overlap Nyquist zones and alias onto itself.  
Nyquist sampling performance is limited by the bandwidth of the  
input SHA and clock jitter (jitter adds more noise at higher input  
frequencies).  
Offset Error  
The major carry transition should occur for an analog value  
1/2 LSB belowVIN+ =VIN–. Offset error is defined as the  
deviation of the actual transition from that point.  
Gain Error  
The first code transition should occur at an analog value 1/2 LSB  
above negative full scale.The last transition should occur at an  
analog value 1 1/2 LSB below the nominal full scale. Gain error  
is the deviation of the actual difference between first and last code  
transitions and the ideal difference between first and last code  
transitions.  
Two-Tone SFDR  
The ratio of the rms value of either input tone to the rms value  
of the peak spurious component.The peak spurious component  
may or may not be an IMD product.  
Temperature Drift  
The temperature drift for zero error and gain error specifies the  
maximum change from the initial (25°C) value to the value at  
Out-of-Range RecoveryTime  
Out-of-range recovery time is the time it takes for the A/D con-  
verter to reacquire the analog input after a transient from 10%  
above positive full scale to 10% above negative full scale, or from  
10% below negative full scale to 10% below positive full scale.  
TMIN orTMAX  
.
Power Supply Rejection  
The specification shows the maximum change in full scale from  
the value with the supply at the minimum limit to the value with  
the supply at its maximum limit.  
Crosstalk  
Coupling onto one channel being driven by a (–0.5 dBFS) signal  
when the adjacent interfering channel is driven by a full-scale  
signal. Measurement includes all spurs resulting from both direct  
coupling and mixing components.  
Total Harmonic Distortion (THD)  
The ratio of the rms sum of the first six harmonic components  
to the rms value of the measured input signal, expressed as a  
percentage or in decibels relative to the peak carrier signal (dBc).  
Signal-to-Noise and Distortion (S/N+D, SINAD) Ratio  
The ratio of the rms value of the measured input signal to the rms  
sum of all other spectral components below the Nyquist frequency,  
including harmonics but excluding dc.The value for S/N+D is  
expressed in decibels relative to the peak carrier signal (dBc).  
REV. A  
–7–  
AD9238–Typical Performance Characteristics  
0
100  
95  
90  
85  
80  
75  
70  
65  
–20  
SFDR  
–40  
–60  
THIRD  
HARMONIC  
SECOND  
HARMONIC  
SNR  
–80  
–100  
–120  
CROSSTALK  
60  
55  
50  
0
5
10  
15  
20  
25  
30  
40  
45  
50  
55  
60  
65  
FREQUENCY – MHz  
ADC SAMPLE RATE – MSPS  
TPC 1. Single-Tone FFT of Channel A Digitizing  
fIN = 12.5 MHz while Channel B is Digitizing fIN = 10 MHz  
TPC 4. AD9238-65 Single-Tone SNR/SFDR vs. FS with  
fIN = 32.5 MHz  
100  
95  
�ꢁꢂ  
90  
SFDR  
85  
80  
75  
70  
65  
�ꢉꢂ  
ꢗꢌꢐꢖꢏꢜ  
�ꢈꢂ  
ꢔꢙꢋꢓꢖꢏꢝꢐ  
SNR  
ꢐꢋꢖꢗꢗꢘꢙꢚꢛ  
�ꢇꢂ  
�ꢀꢂꢂ  
�ꢀꢁꢂ  
60  
55  
50  
20  
25  
30  
ADC SAMPLE RATE – MSPS  
35  
40  
ꢀꢂ  
ꢀꢅ  
ꢁꢂ  
ꢁꢅ  
ꢆꢂ  
ꢊꢋꢌꢍꢎꢌꢏꢐꢑꢒ�ꢒꢓꢔꢕ  
TPC 2. Single-Tone FFT of Channel A Digitizing  
fIN = 70 MHz while Channel B is Digitizing fIN = 76 MHz  
TPC 5. AD9238-40 Single-Tone SNR/SFDR vs. FS with  
fIN = 20 MHz  
ꢗꢌꢌ  
ꢋꢍ  
�ꢁꢂ  
ꢋꢌ  
ꢃꢎꢀꢈ  
ꢔꢍ  
ꢔꢌ  
ꢕꢍ  
�ꢉꢂ  
ꢌꢒꢍꢊꢊꢛꢑꢜꢝ  
ꢊꢋꢌꢍꢎꢏ  
ꢐꢑꢒꢓꢍꢎꢔꢌ  
�ꢈꢂ  
ꢃꢐꢈ  
ꢕꢌ  
�ꢇꢂ  
�ꢀꢂꢂ  
�ꢀꢁꢂ  
ꢖꢍ  
ꢖꢌ  
ꢍꢍ  
ꢍꢌ  
ꢀꢂ  
ꢀꢅ  
ꢁꢂ  
ꢁꢅ  
ꢆꢂ  
ꢗꢌ  
ꢗꢍ  
ꢘꢌ  
ꢕꢒꢋꢖꢗꢋꢎꢌꢘꢙ�ꢙꢓꢐꢚ  
�ꢀꢁꢂꢃ�ꢄꢅꢆꢇꢂꢈ�ꢉꢇꢂꢊꢂꢄꢃꢅꢃꢂ  
TPC 3. Single-Tone FFT of Channel A Digitizing  
fIN = 120 MHz while Channel B is Digitizing fIN = 126 MHz  
TPC 6. AD9238-20 Single-Tone SNR/SFDR vs. FS with  
fIN = 10 MHz  
–8–  
REV. A  
AD9238  
100  
90  
95  
90  
SFDR  
80  
70  
60  
85  
80  
75  
SFDR  
SNR  
50  
40  
70  
65  
SNR  
–35  
–30  
–25  
–20  
–15  
–10  
–5  
0
0
20  
40  
60  
80  
100  
120  
140  
INPUT AMPLITUDE – dBFS  
INPUT FREQUENCY – MHz  
TPC 7. AD9238-65 Single-Tone SNR/SFDR vs. AIN  
with fIN = 32.5 MHz  
TPC 10. AD9238-65 Single-Tone SNR/SFDR vs. fIN  
95  
90  
100  
90  
SFDR  
85  
80  
75  
80  
70  
60  
SFDR  
SNR  
SNR  
60  
70  
65  
50  
40  
0
20  
40  
80  
100  
120  
140  
–35  
–30  
–25  
–20  
–15  
–10  
–5  
0
INPUT FREQUENCY – MHz  
INPUT AMPLITUDE – dBFS  
TPC 11. AD9238-40 Single-Tone SNR/SFDR vs. fIN  
with fIN = 20 MHz  
95  
90  
100  
90  
SFDR  
SFDR  
85  
80  
70  
60  
80  
75  
SNR  
SNR  
70  
50  
40  
65  
0
20  
40  
60  
80  
100  
120  
140  
–35  
–30  
–25  
–20  
–15  
–10  
–5  
0
INPUT FREQUENCY – MHz  
INPUT AMPLITUDE – dBFS  
TPC 12. AD9238-20 Single-Tone SNR/SFDR vs. fIN  
with f
IN
= 10 MHz  
REV. A  
–9–  
AD9238  
100  
95  
90  
85  
80  
75  
70  
0
SFDR  
–20  
–40  
–60  
–80  
SNR  
–18  
–100  
65  
60  
–120  
0
5
10  
15  
20  
25  
30  
–24  
–21  
–15  
–12  
–9  
–6  
INPUT AMPLITUDE – dBFS  
FREQUENCY – MHz  
TPC 13. Dual-Tone FFT with fIN1 = 45 MHz and  
fIN2 = 46 MHz  
TPC 16. Dual-Tone SNR/SFDR vs. AIN with  
fIN1 = 45 MHz and fIN2 = 46 MHz  
0
100  
95  
90  
85  
80  
75  
70  
SFDR  
–20  
–40  
–60  
–80  
SNR  
–18  
–100  
–120  
65  
60  
0
5
10  
15  
20  
25  
30  
–24  
–21  
–15  
–12  
–9  
–6  
INPUT AMPLITUDE – dBFS  
FREQUENCY – MHz  
TPC 14. Dual-Tone FFT with fIN1 = 70 MHz and  
fIN2 = 71 MHz  
TPC 17. Dual-Tone SNR/SFDR vs. AIN with  
fIN1 = 70 MHz and fIN2 = 71 MHz  
0
100  
95  
90  
85  
80  
75  
70  
–20  
SFDR  
–40  
–60  
–80  
SNR  
–18  
–100  
–120  
65  
60  
0
5
10  
15  
20  
25  
30  
–24  
–21  
–15  
–12  
–9  
–6  
FREQUENCY – MHz  
INPUT AMPLITUDE – dBFS  
TPC 18. Dual-Tone SNR/SFDR vs. AIN with  
fIN1 = 200 MHz and fIN2 = 201 MHz  
TPC 15. Dual-Tone FFT with fIN1 = 200 MHz and  
fIN2 = 201 MHz  
–10–  
REV. A  
AD9238  
74  
72  
12.0  
11.5  
11.0  
–65  
600  
500  
400  
–40  
SINAD –20  
300  
70  
68  
200  
100  
–20  
SINAD –40  
SINAD –65  
60  
0
20  
40  
CLOCK FREQUENCY  
0
10  
20  
30  
40  
50  
60  
SAMPLE RATE – MSPS  
TPC 19. SINAD vs. FS with Nyquist Input  
TPC 22. Analog Power Consumption vs. FS  
95  
90  
1.0  
0.8  
0.6  
0.4  
0.2  
0
DCS ON – SFDR  
85  
80  
75  
70  
65  
60  
55  
50  
DCS OFF – SFDR  
DCS ON – SINAD  
–0.2  
–0.4  
DCS OFF – SINAD  
–0.6  
–0.8  
–1.0  
30  
35  
40  
45  
50  
55  
60  
65  
0
500  
1000 1500  
2000  
2500  
3000 3500 4000  
DUTY CYCLE – %  
CODE  
TPC 20. SINAD/SFDR vs. Clock Duty Cycle  
TPC 23. AD9238-65Typical INL  
84  
1.0  
0.8  
0.6  
0.4  
0.2  
0
SFDR  
82  
80  
78  
76  
74  
72  
–0.2  
–0.4  
70  
–0.6  
–0.8  
–1.0  
SINAD  
68  
66  
–50  
0
50  
100  
0
500  
1000 1500  
2000  
2500  
3000 3500 4000  
TEMPERATURE – C  
CODE  
TPC 21. SINAD/SFDR vs.Temperature with fIN = 32.5 MHz  
TPC 24. AD9238-65Typical DNL  
REV. A  
11–  
AD9238  
Equivalent Circuits  
AVDD  
�ꢀꢁ��  
�ꢂꢂꢃꢄꢅꢆꢅ�ꢇꢃꢄ  
�ꢂꢂꢃꢈꢅꢆꢅ�ꢇꢃꢈ  
ꢉꢊꢀꢃꢄꢋꢅꢉꢊꢀꢃꢈ  
VIN+_A, VIN–_A,  
VIN+_B, VIN–_B,  
Figure 3. Equivalent Digital Output Circuit  
Figure 2. Equivalent Analog Input Circuit  
AVDD  
CLK_A, CLK_B  
DCS, DFS,  
MUX_SELECT  
SHARED_REF  
THEORY OF OPERATION  
The output-staging block aligns the data, carries out the error  
correction, and passes the data to the output buffers.The output  
buffers are powered from a separate supply, allowing adjustment  
of the output voltage swing.  
The AD9238 consists of two high performance analog-to-digital  
converters (ADCs) that are based on the AD9235 converter core.  
The dual ADC paths are independent, except for a shared internal  
band gap reference source,VREF. Each of the ADC’s paths consists  
of a proprietary front end sample-and-hold amplifier (SHA)  
followed by a pipelined switched capacitor ADC.The pipelined  
ADC is divided into three sections, consisting of a 4-bit first stage  
followed by eight 1.5-bit stages and a final 3-bit flash. Each stage  
provides sufficient overlap to correct for flash errors in the preced-  
ing stages.The quantized outputs from each stage are combined  
through the digital correction logic block into a final 12-bit result.  
The pipelined architecture permits the first stage to operate on a  
new input sample, while the remaining stages operate on preceding  
samples. Sampling occurs on the rising edge of the respective clock.  
ANALOG INPUT  
The analog input to the AD9238 is a differential switched capacitor,  
SHA, that has been designed for optimum performance while  
processing a differential input signal.The SHA input accepts inputs  
over a wide common-mode range. An input common-mode voltage  
of midsupply is recommended to maintain optimal performance.  
The SHA input is a differential switched capacitor circuit. In  
Figure 5, the clock signal alternatively switches the SHA between  
sample mode and hold mode.When the SHA is switched into  
sample mode, the signal source must be capable of charging the  
sample capacitors and settling within one-half of a clock cycle. A  
small resistor in series with each input can help reduce the peak  
transient current required from the output stage of the driving  
source. Also, a small shunt capacitor can be placed across the inputs  
to provide dynamic charging currents.This passive network will  
create a low-pass filter at the ADC’s input; therefore, the precise  
values are dependant on the application. In IF undersampling  
applications, any shunt capacitors should be removed. In combi-  
nation with the driving source impedance, they would limit the  
input bandwidth. For best dynamic performance, the source  
impedances drivingVIN+ andVIN– should be matched such that  
common-mode settling errors are symmetrical.These errors will  
be reduced by the common-mode rejection of the ADC.  
Each stage of the pipeline, excluding the last, consists of a low  
resolution flash ADC and a residual multiplier to drive the next  
stage of the pipeline.The residual multiplier uses the flash ADC  
output to control a switched capacitor digital-to-analog converter  
(DAC) of the same resolution.The DAC output is subtracted from  
the stage’s input signal and the residual is amplified (multiplied)  
to drive the next pipeline stage.The residual multiplier stage is  
also called a multiplying DAC (MDAC). One bit of redundancy  
is used in each one of the stages to facilitate digital correction of  
flash errors.The last stage simply consists of a flash ADC.  
The input stage contains a differential SHA that can be config-  
ured as ac- or dc-coupled in differential or single-ended modes.  
–12–  
REV. A  
AD9238  
H
The output common-mode voltage of the AD8138 is easily set to  
AVDD/2, and the driver can be configured in a Sallen-Key filter  
topology to provide band limiting of the input signal.  
T
T
5pF  
5pF  
At input frequencies in the second Nyquist zone and above, the  
performance of most amplifiers will not be adequate to achieve  
the true performance of the AD9238.This is especially true in  
IF undersampling applications where frequencies in the 70 MHz  
to 200 MHz range are being sampled. For these applications,  
differential transformer coupling is the recommended input con-  
figuration, as shown in Figure 6.  
VIN+  
VIN–  
C
PAR  
T
C
PAR  
T
AVDD  
50  
VINA  
H
10pF  
2V p-p  
49.9  
AD9238  
50  
Figure 5. Switched Capacitor Input  
VINB  
AGND  
An internal differential reference buffer creates positive and nega-  
tive reference voltages, REFT and REFB, respectively, that define  
the span of the ADC core.The output common-mode of the  
reference buffer is set to midsupply, and the REFT and REFB  
voltages and span are defined as follows:  
10pF  
1k  
1k  
0.1F  
Figure 6. DifferentialTransformer Coupling  
REFT = 1/2 AVDD +V  
(
)
)
REF  
The signal characteristics must be considered when selecting a  
transformer. Most RF transformers will saturate at frequencies  
below a few MHz, and excessive signal power can also cause core  
saturation, which leads to distortion.  
REFB = 1/2 AVDD V  
(
REF  
Span = 2 × REFT REFB = 2 ×V  
(
)
REF  
It can be seen from the equations above that the REFT and REFB  
voltages are symmetrical about the midsupply voltage and, by  
definition, the input span is twice the value of theVREF voltage.  
Single-Ended Input Configuration  
A single-ended input may provide adequate performance in  
cost-sensitive applications. In this configuration, there will be a  
degradation in SFDR and in distortion performance due to the  
large input common-mode swing. However, if the source imped-  
ances on each input are matched, there should be little effect on  
SNR performance.  
The internal voltage reference can be pin-strapped to fixed values  
of 0.5V or 1.0V, or adjusted within the same range as discussed  
in the Internal Reference Connection section. Maximum SNR  
performance will be achieved with the AD9238 set to the largest  
input span of 2V p-p.The relative SNR degradation will be 3 dB  
when changing from 2V p-p mode to 1V p-p mode.  
CLOCK INPUT AND CONSIDERATIONS  
The SHA may be driven from a source that keeps the signal  
peaks within the allowable range for the selected reference volt-  
age.The minimum and maximum common-mode input levels  
are defined as follows:  
Typical high speed ADCs use both clock edges to generate a  
variety of internal timing signals, and as a result may be sensitive  
to clock duty cycle. Commonly, a 5% tolerance is required on the  
clock duty cycle to maintain dynamic performance characteristics.  
VCMMIN =VREF  
VCMMAX =(AVDD +VREF ) 2  
2
The AD9238 provides separate clock inputs for each channel.The  
optimum performance is achieved with the clocks operated at the  
same frequency and phase. Clocking the channels asynchronously  
may degrade performance significantly. In some applications, it is  
desirable to skew the clock timing of adjacent channels.The AD9238’s  
separate clock inputs allow for clock timing skew (typically ±1 ns)  
between the channels without significant performance degradation.  
The minimum common-mode input level allows the AD9238  
to accommodate ground-referenced inputs. Although optimum  
performance is achieved with a differential input, a single-ended  
source may be driven intoVIN+ orVIN–. In this configuration,  
one input will accept the signal, while the opposite input should  
be set to midscale by connecting it to an appropriate reference.  
For example, a 2V p-p signal may be applied toVIN+ while a  
1V reference is applied toVIN–.The AD9238 will then accept  
an input signal varying between 2V and 0V. In the single-ended  
configuration, distortion performance may degrade significantly  
as compared to the differential case. However, the effect will be  
less noticeable at lower input frequencies and in the lower speed  
grade models (AD9238-40 and AD9238-20).  
The AD9238-65 contains two clock duty cycle stabilizers, one for  
each converter, that retime the nonsampling edge, providing an  
internal clock with a nominal 50% duty cycle (DCS is not avail-  
able on the –40 MSPS or –20 MSPS versions). Input clock rates  
of over 40 MHz can use the DCS so that a wide range of input  
clock duty cycles can be accommodated. Maintaining a 50% duty  
cycle clock is particularly important in high speed applications,  
when proper track-and-hold times for the converter are required  
to maintain high performance.The DCS can be enabled by tying  
the DCS pin high.  
Differential Input Configurations  
As previously detailed, optimum performance will be achieved  
while driving the AD9238 in a differential input configuration.  
For baseband applications, the AD8138 differential driver pro-  
vides excellent performance and a flexible interface to the ADC.  
The duty cycle stabilizer utilizes a delay locked loop to create the  
nonsampling edge. As a result, any changes to the sampling fre-  
quency will require approximately 2 µs to 3 µs to allow the DLL  
to acquire and settle to the new rate.  
REV. A  
–13–  
AD9238  
High speed, high resolution ADCs are sensitive to the quality of  
the clock input.The degradation in SNR at a given full-scale input  
frequency (fINPUT) due only to aperture jitter (tJ) can be calculated  
with the following equation:  
will result in a typical power consumption of 1 mW for the ADC.  
Note that if DCS is enabled, it is mandatory to disable the clock  
of an independently powered-down channel. Otherwise, sig-  
nificant distortion will result on the active channel. If the clock  
inputs remain active while in total standby mode, typical power  
dissipation of 12 mW will result.  
SNR degradation = 20 × log10 1/2 × p × f  
× tJ  
[
]
INPUT  
In the equation, the rms aperture jitter,
t
J, represents the root-sum-  
square of all jitter sources, which includes the clock input, analog  
input signal, and ADC aperture jitter specification. Undersampling  
applications are particularly sensitive to jitter.  
The minimum standby power is achieved when both channels are  
placed into full power-down mode (PDWN_A = PDWN_B =  
HI). Under this condition, the internal references are powered  
down.When either or both of the channel paths are enabled after a  
power-down, the wake-up time will be directly related to the  
recharging of the REFT and REFB decoupling capacitors and to  
the duration of the power-down.Typically, it takes approximately  
5 ms to restore full operation with fully discharged 0.1 µF and  
10 µF decoupling capacitors on REFT and REFB.  
For optimal performance, especially in cases where aperture jitter  
may affect the dynamic range of the AD9238, it is important to  
minimize input clock jitter.The clock input circuitry should use  
stable references, for example using analog power and ground  
planes to generate the valid high and low digital levels for the  
AD9238 clock input. Power supplies for clock drivers should be sep-  
arated from the ADC output driver supplies to avoid modulating  
the clock signal with digital noise. Low jitter crystal controlled  
oscillators make the best clock sources. If the clock is generated  
from another type of source (by gating, dividing, or other methods),  
it should be retimed by the original clock at the last step.  
A single channel can be powered down for moderate power savings.  
The powered-down channel shuts down internal circuits, but both  
the reference buffers and shared reference remain powered. Because  
the buffer and voltage reference remain powered, the wake-up  
time is reduced to several clock cycles.  
DIGITAL OUTPUTS  
POWER DISSIPATION AND STANDBY MODE  
The AD9238 output drivers can be configured to interface with  
2.5V or 3.3V logic families by matching DRVDD to the digital  
supply of the interfaced logic.The output drivers are sized to pro-  
vide sufficient output current to drive a wide variety of logic families.  
However, large drive currents tend to cause current glitches on  
the supplies that may affect converter performance. Applications  
requiring the ADC to drive large capacitive loads or large fan-outs  
may require external buffers or latches.  
The power dissipated by the AD9238 is proportional to its  
sampling rates.The digital (DRVDD) power dissipation is deter-  
mined primarily by the strength of the digital drivers and the load  
on each output bit.The digital drive current can be calculated by  
IDRVDD =VDRVDD × CLOAD × fCLOCK × N  
where
N
is the number of bits changing and
C
LOAD is the average  
load on the digital pins that changed.  
The data format can be selected for either offset binary or twos  
complement.This is discussed later in the Data Format section.  
The analog circuitry is optimally biased so that each speed grade  
provides excellent performance while affording reduced power  
consumption. Each speed grade dissipates a baseline power at low  
sample rates that increases with clock frequency.  
TIMING  
The AD9238 provides latched data outputs with a pipeline delay  
of seven clock cycles. Data outputs are available one propaga-  
tion delay (tPD) after the rising edge of the clock signal. Refer to  
Figure 1 for a detailed timing diagram.  
Either channel of the AD9238 can be placed into standby mode  
independently by asserting the PWDN_A or PDWN_B pins.  
It is recommended that the input clock(s) and analog input(s)  
remain static during either independent or total standby, which  
A
A
ANALOG INPUT  
ADC A  
A
1
0
8
A
2
A
–1  
A
A
7
3
A
A
6
4
A
5
B
B
B
1
0
8
B
ANALOG INPUT  
ADC B  
2
B
–1  
B
B
7
3
B
B
6
4
B
5
CLK_A = CLK_B =  
MUX_SELECT  
D0_A  
–D11_A  
B
A
B
–7  
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
1
–8  
–7  
–6  
–6  
–5  
–5  
–4  
–4  
–3  
–3  
–2  
–2  
–1  
–1  
0
0
tODF  
tODR  
Figure 7. Example of Multiplexed Data Format Using the Channel A Output and the Same ClockTied to CLK_A,  
CLK_B, and MUX_SELECT  
–14–  
REV. A  
AD9238  
The internal duty cycle stabilizer can be enabled on the AD9238-65  
using the DCS pin.This provides a stable 50% duty cycle to  
internal circuits.  
ences from the dual ADCs together externally for superior gain  
and offset matching performance. If the ADCs are to function  
independently, the reference decoupling can be treated inde-  
pendently and can provide superior isolation between the dual  
channels.To enable Shared Reference mode, the SHARED_REF  
pin must be tied high and external differential references must  
be externally shorted. (REFT_A must be externally shorted to  
REFT_B and REFB_A must be shorted to REFB_B.)  
The length of the output data lines and loads placed on them should  
be minimized to reduce transients within the AD9238
.
T
hese  
transients can detract from the converter’s dynamic performance.  
The lowest typical conversion rate of the AD9238 is 1 MSPS. At  
clock rates below 1 MSPS, dynamic performance may degrade.  
Internal Reference Connection  
A comparator within the AD9238 detects the potential at the  
SENSE pin and configures the reference into four possible states,  
which are summarized inTable I. If SENSE is grounded, the refer-  
ence amplifier switch is connected to the internal resistor divider  
(see Figure 8), settingVREF to 1V. Connecting the SENSE pin to  
V
REF switches the reference amplifier output to the SENSE pin,  
completing the loop and providing a 0.5V reference output. If a  
resistor divider is connected as shown in Figure 9, the switch will  
again be set to the SENSE pin.This will put the reference ampli-  
fier in a noninverting mode with theVREF output defined as follows:  
DATA FORMAT  
The AD9238 data output format can be configured for either  
twos complement or offset binary.This is controlled by the Data  
Format Select pin (DFS). Connecting DFS to AGND will pro-  
duce offset binary output data. Conversely, connecting DFS to  
AVDD will format the output data as twos complement.  
The output data from the dual A/D converters can be multiplexed  
onto a single 12-bit output bus.The multiplexing is accomplished  
by toggling the MUX_SELECT bit, which directs channel data  
to the same or opposite channel data port.When MUX_SELECT  
is logic high, the Channel A data is directed to Channel A output  
bus, and Channel B data is directed to the Channel B output bus.  
When MUX_SELECT is logic low, the channel data is reversed, i.e.,  
Channel A data is directed to the Channel B output bus and  
Channel B data is directed to the Channel A output bus. By  
toggling the MUX_SELECT bit, multiplexed data is available  
on either of the output data ports.  
VREF = 0.5×(1+ R2 R1)  
In all reference configurations, REFT and REFB drive the ADC  
core and establish its input span.The input range of the ADC  
always equals twice the voltage at the reference pin for either an  
internal or an external reference.  
VIN+  
If the ADCs are run with synchronized timing, this same clock can  
be applied to the MUX_SELECT bit. After the MUX_SELECT  
rising edge, either data port will have the data for its respective  
channel; after the falling edge, the alternate channel’s data will be  
placed on the bus.Typically, the other unused bus would be  
disabled by setting the appropriate OEB high to reduce power  
consumption and noise. Figure 7 shows an example of multiplex  
mode.When multiplexing data, the data rate is two times the  
sample rate. Note that both channels must remain active in this  
mode and that each channel's power-down pin must remain low.  
VIN–  
REFT  
0.1F  
ADC  
CORE  
0.1F  
10F  
REFB  
0.1F  
V
REF  
VOLTAGE REFERENCE  
A stable and accurate 0.5V voltage reference is built into the  
AD9238.The input range can be adjusted by varying the reference  
voltage applied to the AD9238, using either the internal reference  
with different external resistor configurations or an externally  
applied reference voltage.The input span of the ADC tracks refer-  
ence voltage changes linearly.  
10F  
SELECT  
LOGIC  
0.1F  
0.5V  
SENSE  
If the ADC is being driven differentially through a transformer,  
the reference voltage can be used to bias the center tap (common-  
mode voltage).  
AD9238  
Figure 8. Internal Reference Configuration  
The Shared Reference mode allows the user to connect the refer-  
Table I. Reference Configuration Summary  
Resulting Differential  
Span (V p-p)  
Selected Mode  
SENSEVoltage  
ResultingVREF (V)  
External Reference  
A
V
DD  
V
REF  
0.
2
V
t
o
V
REF  
AGND to 0.
2
V  
N/A  
0.5  
2
External Reference  
1.0  
2
V
REF (See Figure 9)  
2.0  
Internal Fixed Reference  
Programmable Reference  
Internal Fixed Reference  
0.5
(1 + R2/R1)  
1.0  
REV. A  
–15–  
AD9238  
1.2  
1.0  
External Reference Operation  
The use of an external reference may be necessary to enhance the  
gain accuracy of the ADC or to improve thermal drift character-  
istics.When multiple ADCs track one another, a single reference  
(internal or external) may be necessary to reduce gain matching  
errors to an acceptable level. A high precision external reference  
may also be selected to provide lower gain and offset temperature  
drift. Figure 10 shows the typical drift characteristics of the inter-  
nal reference in both
1
V
a
nd 0.
5
V
m
odes.  
V
= 1V  
REF  
0.8  
0.6  
0.4  
V
= 0.5V  
REF  
When the SENSE pin is tied to AVDD, the internal reference will  
be disabled, allowing the use of an external reference. An internal  
reference buffer will load the external reference with an equiva-  
lent 7 k
load.The internal buffer will still generate the positive  
and negative full-scale references, REFT and REFB, for the ADC  
core.The input span will always be twice the value of the refer-  
ence voltage; therefore, the external reference must be limited to  
a maximum of
1
V
.  
0.2  
0
0
–40 –30 –20 –10  
10 20 30 40 50 60 70 80  
TEMPERATURE – C  
Figure 10. Typical VREF Drift  
If the internal reference of the AD9238 is used to drive multiple  
converters to improve gain matching, the loading of the reference  
by the other converters must be considered. Figure 11 depicts  
how the internal reference voltage is affected by loading.  
0.05  
0
–0.05  
–0.10  
–0.15  
0.5V ERROR  
VIN+  
VIN–  
1V ERROR  
REFT  
0.1F  
ADC  
CORE  
–0.20  
–0.25  
0.1F  
10F  
REFB  
0.1F  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
LOAD – mA  
Figure 11. VREF Accuracy vs. Load  
V
REF  
10F  
10F  
SENSE  
R2  
SELECT  
LOGIC  
0.5V  
R1  
AD9238  
Figure 9. Programmable Reference Configuration  
–16–  
REV. A  
AD9238  
E
V
A
LUATION BOARD DIAGRAMS  
Figure 12. Evaluation Board Schematic  
REV. A  
–17–  
AD9238  
Figure 13. Evaluation Board Schematic (continued)  
–18–  
REV. A  
AD9238  
Figure 14. Evaluation Board Schematic (continued)  
REV. A  
–19–  
ꢋꢆꢓꢌꢌ  
                                                                                                               
                                                                                                               
ꢌ�  
                                                                                                                
                                                                                                                 
ꢌꢌꢌꢌꢌꢌꢌꢌꢌꢌꢌꢌꢌ  
AD9238  
ꢉꢊ�  
ꢉꢋꢌ  
ꢀꢅꢆ  
ꢃꢇꢄꢈ  
ꢉꢄ  
ꢊꢋꢅꢌ  
ꢉꢃ  
ꢊꢋꢅꢌ  
ꢉꢅꢊ  
ꢊꢋꢅꢌ  
ꢉꢍ  
ꢊꢋꢅꢌ  
ꢀꢅꢆ  
ꢃꢇꢄꢈ  
DVDD  
1
20  
10  
ꢁꢏꢅ  
ꢊꢊꢀ  
ꢖꢀ  
ꢖꢊ  
ꢈꢉꢉ  
ꢖꢗꢐ  
ꢐꢑꢒꢑꢉꢓꢔꢑ  
��ꢀ  
19  
U10  
ꢋꢏꢈꢙꢉꢌꢏꢀ  
ꢁꢂꢀ ��ꢀ  
ꢁꢂꢍ  
2
18  
ꢑꢀ  
ꢑꢊ  
ꢑꢄ  
ꢑꢏ  
ꢑꢌ  
ꢑꢃ  
ꢑꢋ  
ꢑ�  
ꢘꢀ  
ꢁꢂꢅ ��ꢀ  
ꢁꢂꢅ ��ꢀ  
ꢁꢂꢅ ��ꢀ  
ꢁꢂ� ��ꢀ  
ꢁꢂ� ��ꢀ  
ꢁꢂ� ��ꢀ  
ꢁꢂ� ��ꢀ  
ꢁꢂꢃ ��ꢀ  
RP3 ��ꢀ  
RP3 ��ꢀ  
RP3 ��ꢀ  
ꢁꢂꢆ ��ꢀ  
RP4 ��ꢀ  
RP4 ��ꢀ  
ꢁꢂꢆ ��ꢀ  
ꢁꢂꢍ ��ꢀ  
ꢁꢂꢍ ��ꢀ  
ꢁꢂꢍ ��ꢀ  
ꢁꢂꢅꢊ ��ꢀ  
ꢁꢂꢅꢊ ��ꢀ  
3
4
3
17  
16  
15  
14  
13  
12  
11  
3
4
2
3
6
5
7
6
ꢘꢊ  
ꢘꢄ  
ꢘꢏ  
ꢘꢌ  
ꢘꢃ  
ꢘꢋ  
ꢘ�  
ꢏꢐꢁꢑ  
DA13  
DA12  
DA11  
DA10  
DA9  
4
5
6
7
8
9
ꢐꢃ  
ꢐ�  
ꢐꢒ  
ꢐꢚ  
ꢐꢄ  
�ꢃ  
��  
�ꢒ  
�ꢚ  
�ꢄ  
ꢑꢃ  
ꢑ�  
ꢑꢒ  
ꢑꢚ  
ꢑꢄ  
ꢒꢃ  
ꢐꢐ  
ꢐꢑ  
ꢐꢔ  
ꢐꢓ  
ꢐꢕ  
�ꢐ  
�ꢑ  
�ꢔ  
�ꢓ  
�ꢕ  
ꢑꢐ  
ꢑꢑ  
ꢑꢔ  
ꢑꢓ  
ꢑꢕ  
��ꢀ  
RP10  
6
RP10 ��ꢀ  
DA8  
20  
10  
1
ꢖꢀ  
ꢖꢊ  
ꢈꢉꢉ  
ꢖꢗꢐ  
19  
U7  
ꢋꢏꢈꢙꢉꢌꢏꢀ  
RP11 ��ꢀ  
ꢁꢂꢀꢀ ��ꢀ  
ꢁꢂꢀꢀ ��ꢀ  
ꢁꢂꢀꢀ ��ꢀ  
ꢁꢂꢅ� ��ꢀ  
ꢁꢂꢅ� ��ꢀ  
ꢁꢂꢅ� ��ꢀ  
ꢁꢂꢅ� ��ꢀ  
2
4
2
2
ꢐꢄ  
17  
16  
15  
ꢑꢀ  
ꢑꢊ  
ꢑꢄ  
ꢑꢏ  
ꢑꢌ  
ꢑꢃ  
ꢑꢋ  
ꢑ�  
ꢘꢀ  
ꢘꢊ  
ꢘꢄ  
ꢘꢏ  
ꢘꢌ  
ꢘꢃ  
ꢘꢋ  
ꢘ�  
DA7  
DA6  
DA5  
DA4  
DA3  
DA2  
DA1  
ꢒꢑꢊ  
3
4
5
6
7
8
9
14  
13  
12  
11  
ꢍꢀ  
ꢀꢁꢂꢃꢄꢃꢅꢆꢂ  
ꢍꢂꢄꢅ  
ꢗ�ꢓ  
ꢐꢃꢙ  
ꢚꢘꢑꢖ  
ꢗꢓꢚ  
ꢐꢃꢙ  
ꢚꢘꢑꢖ  
ꢗꢓ  
ꢃꢘꢐꢙ  
ꢗꢚ  
ꢃꢘꢐꢙ  
ꢗꢒ  
ꢃꢘꢐꢙ  
ꢗꢔ  
ꢃꢘꢐꢙ  
ꢊꢖꢊꢊ  
�ꢃ  
ꢐꢃ  
ꢖꢗꢗ  
ꢝꢎꢊ  
ꢝꢐ  
ꢝ�  
ꢐꢕ  
ꢒ�  
ꢒꢐ  
ꢒꢑ  
ꢒꢔ  
ꢒꢓ  
ꢒꢕ  
ꢔꢐ  
ꢔꢑ  
ꢔꢔ  
ꢔꢓ  
ꢔꢕ  
ꢚꢐ  
ꢚꢑ  
ꢚꢔ  
ꢚꢓ  
ꢚꢕ  
ꢓꢐ  
ꢓꢑ  
ꢓꢔ  
ꢓꢓ  
ꢓꢕ  
ꢅ�  
ꢋꢆꢐꢑꢌ ��ꢀ  
ꢋꢆꢐꢑ ��ꢀ  
ꢒꢒ  
ꢒꢚ  
ꢒꢄ  
ꢔꢃ  
ꢔ�  
ꢔꢒ  
ꢔꢚ  
ꢔꢄ  
ꢚꢃ  
ꢚ�  
ꢚꢒ  
ꢚꢚ  
ꢚꢄ  
ꢓꢃ  
ꢓ�  
ꢓꢒ  
ꢓꢒꢖꢈꢗꢔꢒꢐ  
ꢋꢆꢔ ��ꢀ  
ꢐꢄ  
ꢐꢓ  
ꢐꢚ  
ꢐꢔ  
ꢐꢒ  
ꢐꢑ  
ꢐ�  
ꢐꢐ  
ꢁꢐ  
ꢁ�  
ꢁꢑ  
ꢁꢒ  
ꢁꢔ  
ꢁꢚ  
ꢁꢓ  
ꢁꢄ  
ꢇꢐ  
ꢇ�  
ꢇꢑ  
ꢇꢒ  
ꢇꢔ  
ꢇꢚ  
ꢇꢓ  
ꢇꢄ  
ꢏꢛꢋꢜ  
ꢊꢁꢐꢑ  
ꢊꢁꢐ�  
ꢊꢁꢐꢐ  
ꢊꢁꢐꢃ  
ꢊꢁꢕ  
ꢋꢆꢔ ��ꢀ  
ꢋꢆꢔ ��ꢀ  
ꢋꢆꢔ ��ꢀ  
ꢋꢆꢚ ��ꢀ  
ꢋꢆꢚ ��ꢀ  
ꢋꢆꢚ ��ꢀ  
ꢋꢆꢚ ��ꢀ  
ꢋꢆꢓ ��ꢀ  
ꢋꢆꢓ ��ꢀ  
��ꢀ  
��ꢀ  
��ꢀ  
��ꢀ  
��ꢀ  
��ꢀ  
��ꢀ  
ꢋꢆꢐꢑ  
ꢋꢆꢐꢑ  
ꢋꢆꢐꢒ  
ꢋꢆꢐꢒ  
ꢋꢆꢐꢒ  
ꢋꢆꢐꢒ  
ꢋꢆꢐꢔ  
ꢊꢁꢄ  
ꢊꢁꢓ  
ꢋꢆꢓ ��ꢀ  
ꢋꢆꢄ ��ꢀ  
ꢋꢆꢄ ��ꢀ  
ꢋꢆꢄ ��ꢀ  
�ꢃ  
ꢐꢃ  
ꢐꢕ  
ꢝꢐ  
ꢝ�  
ꢖꢗꢗ  
ꢝꢎꢊ  
ꢅꢑ  
ꢓꢒꢖꢈꢗꢔꢒꢐ  
ꢋꢆꢐꢔ ��ꢀ  
ꢋꢆꢐꢔ ��ꢀ  
ꢋꢆꢐꢔ ��ꢀ  
ꢋꢆꢐꢚ ��ꢀ  
ꢋꢆꢐꢚ ��ꢀ  
ꢋꢆꢐꢚ ��ꢀ  
ꢐꢄ  
ꢐꢓ  
ꢐꢚ  
ꢐꢔ  
ꢐꢒ  
ꢐꢑ  
ꢐ�  
ꢐꢐ  
ꢁꢐ  
ꢁ�  
ꢁꢑ  
ꢁꢒ  
ꢁꢔ  
ꢁꢚ  
ꢁꢓ  
ꢁꢄ  
ꢇꢐ  
ꢇ�  
ꢇꢑ  
ꢇꢒ  
ꢇꢔ  
ꢇꢚ  
ꢊꢁꢚ  
ꢊꢁꢔ  
ꢊꢁꢒ  
ꢊꢁꢑ  
ꢊꢁ�  
ꢊꢁꢐ  
ꢊꢁꢃ  
ꢓꢚ  
ꢓꢄ  
ꢄꢃ  
ꢋꢆꢄ ��ꢀ  
ꢎꢅ  
ꢀꢁꢂꢃꢄꢃꢅꢆꢂ  
ꢋꢆꢐꢚ ��ꢀ  
ꢇꢓ  
ꢇꢄ  
ꢁꢄꢎ  
ꢊꢊꢀ  
ꢐꢑꢒꢑꢉꢓꢔꢕ  
Figure 15. Evaluation Board Schematic (continued)  
–20–  
REV. A  
AD9238  
Figure 16. PCBTop Layer  
Figure 17. PCB Bottom Layer  
REV. A  
–21–  
AD9238  
Figure 18. PCB Ground Plane  
Figure 19. PCB Split Power Plane  
–22–  
REV. A  
AD9238  
Figure 20. PCBTop Silkscreen  
Figure 21. PCB Bottom Silkscreen  
REV. A  
–23–  
AD9238  
OUTLINE DIMENSIONS  
64-Lead Low Profile Quad Flat Package [LQFP]  
(ST-64-1)  
Dimensions shown in millimeters  
0.75  
0.60  
0.45  
9.00 BSC  
SQ  
1.60  
MAX  
64  
49  
1
48  
SEATING  
PLANE  
PIN 1  
7.00  
BSC SQ  
TOP VIEW  
(PINS DOWN)  
10  
6  
2  
1.45  
1.40  
1.35  
0.20  
0.09  
7  
3.5  
0  
VIEW A  
0.15  
0.05  
16  
33  
SEATING  
PLANE  
0.10 MAX  
COPLANARITY  
17  
32  
0.23  
0.18  
0.13  
0.40  
BSC  
VIEW A  
ROTATED 90CCW  
COMPLIANT TO JEDEC STANDARDS MS-026BBD  
Revision History  
Location  
Page  
9/03—Data Sheet changed from REV. 0 to REV. A.  
Changes to DC SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Changes to SWITCHING SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Changes to AC SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Changes to Figure 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Changes to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Changes toTPCs 2, 3, and 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Changes to CLOCK INPUT AND CONSIDERATIONS section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Added text to DATA FORMAT section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Changes to Figure 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Added EVALUATION BOARD DIAGRAMS section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
–24–  
REV. A  

相关型号:

AD9238BCP-20EB

High Speed ADC USB FIFO Evaluation Kit
ADI

AD9238BCP-40EB

High Speed ADC USB FIFO Evaluation Kit
ADI

AD9238BCP-65EB

High Speed ADC USB FIFO Evaluation Kit
ADI

AD9238BCP-65EBZ

Dual A/D Converter
ADI

AD9238BCPZ-20

12-Bit, 20 MSPS/40 MSPS/65 MSPS Dual A/D Converter
ADI

AD9238BCPZ-20EB

12-Bit, 20 MSPS/40 MSPS/65 MSPS Dual A/D Converter
ADI

AD9238BCPZ-40

12-Bit, 20 MSPS/40 MSPS/65 MSPS Dual A/D Converter
ADI

AD9238BCPZ-40EB

12-Bit, 20 MSPS/40 MSPS/65 MSPS Dual A/D Converter
ADI

AD9238BCPZ-65

12-Bit, 20 MSPS/40 MSPS/65 MSPS Dual A/D Converter
ADI

AD9238BCPZ-65EB

12-Bit, 20 MSPS/40 MSPS/65 MSPS Dual A/D Converter
ADI

AD9238BCPZRL-20

12-Bit, 20 MSPS/40 MSPS/65 MSPS Dual A/D Converter
ADI

AD9238BCPZRL-40

12-Bit, 20 MSPS/40 MSPS/65 MSPS Dual A/D Converter
ADI