AD9245BCP-40EB [ADI]

14-Bit, 20 MSPS/40 MSPS/65 MSPS/80 MSPS, 3 V A/D Converter; 14位, 20 MSPS / 40 MSPS / 65 MSPS / 80 MSPS , 3 VA / D转换器
AD9245BCP-40EB
型号: AD9245BCP-40EB
厂家: ADI    ADI
描述:

14-Bit, 20 MSPS/40 MSPS/65 MSPS/80 MSPS, 3 V A/D Converter
14位, 20 MSPS / 40 MSPS / 65 MSPS / 80 MSPS , 3 VA / D转换器

转换器
文件: 总32页 (文件大小:883K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
14-Bit, 20 MSPS/40 MSPS/65 MSPS/80 MSPS,  
3 V A/D Converter  
AD9245  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
AVDD  
DRVDD  
Single 3 V supply operation (2.7 V to 3.6 V)  
SNR = 72.7 dBc to Nyquist  
AD9245  
SFDR = 83.0 dBc to Nyquist  
Low power  
366 mW at 80 MSPS  
VIN+  
VIN–  
8-STAGE  
1 1/2-BIT PIPELINE  
MDAC1  
A/D  
3
SHA  
4
16  
300 mW at 65 MSPS  
165 mW at 40 MSPS  
A/D  
REFT  
REFB  
CORRECTION LOGIC  
OTR  
90 mW at 20 MSPS  
14  
Differential input with 500 MHz bandwidth  
On-chip reference and sample-and-hold  
DNL = 0.5 LSB  
OUTPUT BUFFERS  
D13 (MSB)  
D0 (LSB)  
VREF  
Flexible analog input: 1 V p-p to 2 V p-p range  
Offset binary or twos complement data format  
Clock duty-cycle stabilizer  
SENSE  
CLOCK  
DUTY CYCLE  
STABILIZER  
0.5V  
MODE  
SELECT  
REF  
SELECT  
APPLICATIONS  
AGND  
CLK  
PDWN MODE DGND  
Medical imaging equipment  
Figure 1.  
IF sampling in communications receivers  
WCDMA, CDMA-One, CDMA-2000, and TDS-CDMA  
Battery-powered instruments  
Hand-held scopemeters  
Spectrum analyzers  
A single-ended clock input is used to control all internal con-  
version cycles. A duty cycle stabilizer (DCS) compensates for  
wide variations in the clock duty cycle while maintaining  
excellent overall ADC performance. The digital output data is  
presented in straight binary or twos complement formats. An  
out-of-range (OTR) signal indicates an overflow condition that  
can be used with the most significant bit to determine low or  
high overflow. Fabricated on an advanced CMOS process, the  
AD9245 is available in a 32-lead LFCSP and is specified over  
the industrial temperature range (–40°C to +85°C).  
Power-sensitive military applications  
GENERAL DESCRIPTION  
The AD9245 is a monolithic, single 3 V supply, 14-bit,  
20 MSPS/40 MSPS/65 MSPS/80 MSPS analog-to-digital  
converter (ADC) featuring a high performance sample-and-  
hold amplifier (SHA) and voltage reference. The AD9245 uses a  
multistage differential pipelined architecture with output error  
correction logic to provide 14-bit accuracy and guarantee no  
missing codes over the full operating temperature range.  
PRODUCT HIGHLIGHTS  
1. The AD9245 operates from a single 3 V power supply and  
features a separate digital output driver supply to  
accommodate 2.5 V and 3.3 V logic families.  
2. The patented SHA input maintains excellent performance for  
input frequencies up to 100 MHz and can be configured for  
single-ended or differential operation.  
3. The AD9245 is pin-compatible with the AD9215, AD9235,  
and AD9236. This allows a simplified migration from 10 bits  
to 14 bits and 20 MSPS to 80 MSPS.  
4. The clock DCS maintains overall ADC performance over a  
wide range of clock pulse widths.  
5. The OTR output bit indicates when the signal is beyond the  
selected input range.  
The wide bandwidth, truly differential SHA allows a variety of  
user-selectable input ranges and common modes, including  
single-ended applications. It is suitable for multiplexed systems  
that switch full-scale voltage levels in successive channels and  
for sampling single-channel inputs at frequencies well beyond  
the Nyquist rate. Combined with power and cost savings over  
previously available analog-to-digital converters, the AD9245 is  
suitable for applications in communications, imaging, and  
medical ultrasound.  
Rev. D  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
© 2006 Analog Devices, Inc. All rights reserved.  
 
AD9245  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Performance Characteristics ........................................... 13  
Theory of Operation ...................................................................... 18  
Analog Input and Reference Overview................................... 18  
Clock Input Considerations...................................................... 19  
Jitter Considerations .................................................................. 20  
Power Dissipation and Standby Mode .................................... 20  
Digital Outputs ........................................................................... 20  
Timing ......................................................................................... 21  
Voltage Reference ....................................................................... 21  
Internal Reference Connection ................................................ 21  
External Reference Operation .................................................. 22  
Operational Mode Selection..................................................... 22  
Evaluation Board........................................................................ 22  
Outline Dimensions....................................................................... 29  
Ordering Guide .......................................................................... 29  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
DC Specifications ......................................................................... 3  
AC Specifications.......................................................................... 5  
Digital Specifications ................................................................... 7  
Switching Specifications .............................................................. 8  
Absolute Maximum Ratings............................................................ 9  
Thermal Resistance ...................................................................... 9  
ESD Caution.................................................................................. 9  
Terminology .................................................................................... 10  
Pin Configuration and Function Descriptions........................... 11  
Equivalent Circuits......................................................................... 12  
REVISION HISTORY  
1/06—Rev. C to Rev. D  
Added Figure 32 to Figure 37; Renumbered Sequentially ........ 17  
Changes to Figure 39...................................................................... 18  
Changes to Clock Input Consideration Section......................... 19  
Changes to Figure 44...................................................................... 20  
Changes to Table 10 ....................................................................... 21  
Changes to Figure 51...................................................................... 25  
Changes to Table 12 ....................................................................... 28  
Changes to Ordering Guide.......................................................... 29  
Updated Outline Dimensions....................................................... 29  
Changes to Differential Input Configurations Section and  
Figure 40 .......................................................................................... 19  
Changes to Internal Reference Connection Section.................. 21  
Changes to Figure 49...................................................................... 23  
Changes to Figure 50...................................................................... 24  
Changes to Table 12........................................................................ 28  
Updated Outline Dimensions....................................................... 29  
Changes to Ordering Guide .......................................................... 29  
8/05—Rev. B to Rev. C  
10/03—Rev. A to Rev. B  
Updated Format..................................................................Universal  
Changes to Features, Applications, General Description, and  
Product Highlights ........................................................................... 1  
Added Table 1; Renumbered Sequentially .................................... 3  
Changes to Table 2............................................................................ 4  
Added Table 3; Renumbered Sequentially .................................... 5  
Changes to Table 4............................................................................ 6  
Changes to Table 5............................................................................ 7  
Changes to Table 6............................................................................ 8  
Deleted Explanation of Test Levels Table ...................................... 8  
Added Figure 26 to Figure 31; Renumbered Sequentially ........ 16  
Changes to Figure 33...................................................................... 17  
5/03—Rev. 0 to Rev. A  
Changes to Figure 30...................................................................... 15  
Changes to Figure 37...................................................................... 19  
Changes to Figure 38...................................................................... 20  
Changes to Figure 39...................................................................... 21  
Changes to Table 10 ....................................................................... 24  
Changes to the Ordering Guide ................................................... 25  
Rev. D | Page 2 of 32  
 
AD9245  
SPECIFICATIONS  
DC SPECIFICATIONS  
AVDD = 3 V, DRVDD = 2.5 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference, unless otherwise noted.  
Table 1.  
AD9245BCP-20  
AD9245BCP-40  
AD9245BCP-65  
Parameter  
Unit  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
RESOLUTION  
14  
14  
14  
Bits  
ACCURACY  
No Missing Codes Guaranteed  
Offset Error  
14  
14  
14  
Bits  
±±.3±  
±±.3±  
±±.ꢁ±  
±1.2±  
±1.ꢀ±  
±3.2ꢁ  
±1.±±  
±3.1±  
±±.ꢁ±  
±±.ꢁ±  
±±.ꢁ±  
±1.4±  
±1.ꢂꢁ  
±3.2ꢁ  
±1.±±  
±3.4±  
±±.ꢁ±  
±±.ꢁ±  
±±.ꢁ±  
±1.ꢀ±  
±1.ꢂꢁ  
±ꢀ.ꢃ±  
±1.±±  
±ꢁ.ꢁꢁ  
% FSR  
% FSR  
LSB  
Gain Error1  
Differential Nonlinearity (DNL)2  
Integral Nonlinearity (INL)2  
TEMPERATURE DRIFT1  
Offset Error  
LSB  
±2  
±12  
±2  
±12  
±3  
±12  
ppm/°C  
ppm/°C  
Gain Error  
INTERNAL VOLTAGE REFERENCE  
Output Voltage Error (1 V Mode)  
Load Regulation @ 1.± mA  
Output Voltage Error (±.ꢁ V Mode)  
Load Regulation @ ±.ꢁ mA  
INPUT REFERRED NOISE  
VREF = ±.ꢁ V  
±ꢁ  
±3ꢁ  
±ꢁ  
±3ꢁ  
±ꢁ  
±3ꢁ  
mV  
mV  
mV  
mV  
±.8  
±2.ꢁ  
±.1  
±.8  
±2.ꢁ  
±.1  
±.8  
±2.ꢁ  
±.1  
2.28  
1.±8  
2.28  
1.±8  
2.28  
1.±8  
LSB rms  
LSB rms  
VREF = 1.± V  
ANALOG INPUT  
Input Span, VREF = ±.ꢁ V  
Input Span, VREF = 1.± V  
Input Capacitance3  
REFERENCE INPUT RESISTANCE  
POWER SUPPLIES  
Supply Voltages  
1
2
1
2
1
2
V p-p  
V p-p  
pF  
kΩ  
AVDD  
DRVDD  
2.ꢂ  
2.2ꢁ  
3.±  
3.±  
3.ꢀ  
3.ꢀ  
2.ꢂ  
2.2ꢁ  
3.±  
3.±  
3.ꢀ  
3.ꢀ  
2.ꢂ  
2.2ꢁ  
3.±  
3.±  
3.ꢀ  
3.ꢀ  
V
V
Supply Current  
IAVDD2  
IDRVDD2  
3±  
2
ꢁꢁ  
1±±  
mA  
mA  
PSRR  
±±.±1  
±±.±1  
±±.±1  
% FSR  
POWER CONSUMPTION  
DC Input4  
Sine Wave Input2  
Standby Powerꢁ  
ꢃ±  
ꢃꢁ  
1.±  
1ꢀꢁ  
18±  
1.±  
3±±  
32±  
1.±  
mW  
mW  
mW  
12±  
22±  
3ꢂꢁ  
1 Gain errors and gain temperature coefficients are based on the ADC only (with a fixed 1.± V external reference).  
2 Measured at maximum clock rate, low input frequency, full-scale sine wave, with approximately ꢁ pF loading on each output bit.  
3 Input capacitance refers to the effective capacitance between one differential input pin and AGND.  
4 Measured with dc input at maximum clock rate.  
Standby power is measured with a dc input, the CLK pin inactive (that is, set to AVDD or AGND).  
Rev. D | Page 3 of 32  
 
 
 
AD9245  
AVDD = 3 V, DRVDD = 2.5 V, sample rate = 80 MSPS, 2 V p-p differential input, 1.0 V external reference, unless otherwise noted.  
Table 2.  
AD9245BCP-80  
Parameter  
Min  
Typ  
Max  
Unit  
RESOLUTION  
14  
Bits  
ACCURACY  
No Missing Codes  
Offset Error1  
Gain Error  
Gain Error1  
Differential Nonlinearity (DNL)2  
Integral Nonlinearity (INL)2  
TEMPERATURE DRIFT  
Offset Error1  
Gain Error  
Gain Error1  
Guaranteed  
±±.3±  
±±.28  
±±.ꢂ±  
±±.ꢁ  
±1.2  
% FSR  
% FSR  
% FSR  
LSB  
±4.1ꢀ  
±1.±  
±ꢁ.1ꢁ  
±1.4  
LSB  
±1±  
±12  
±1ꢂ  
ppm/°C  
ppm/°C  
ppm/°C  
INTERNAL VOLTAGE REFERENCE  
Output Voltage Error (1 V Mode)  
Load Regulation @ 1.± mA  
Output Voltage Error (±.ꢁ V Mode)  
Load Regulation @ ±.ꢁ mA  
INPUT REFERRED NOISE  
VREF = ±.ꢁ V  
±3  
±2  
±ꢀ  
±1  
±34  
mV  
mV  
mV  
mV  
1.8ꢀ  
1.1ꢂ  
LSB rms  
LSB rms  
VREF = 1.± V  
ANALOG INPUT  
Input Span, VREF = ±.ꢁ V  
Input Span, VREF = 1.± V  
Input Capacitance3  
REFERENCE INPUT RESISTANCE  
POWER SUPPLIES  
Supply Voltage  
1
2
V p-p  
V p-p  
pF  
kΩ  
AVDD  
DRVDD  
2.ꢂ  
2.2ꢁ  
3.±  
2.ꢁ  
3.ꢀ  
3.ꢀ  
V
V
Supply Current  
IAVDD2  
IDRVDD2  
122  
138  
mA  
mA  
PSRR  
±±.±1  
% FSR  
POWER CONSUMPTION  
Low Frequency Input4  
Standby Powerꢁ  
3ꢀꢀ  
1.±  
mW  
mW  
1 With a 1.± V internal reference.  
2 Measured at the maximum clock rate, low input frequency, full-scale sine wave, with approximately ꢁ pF loading on each output bit.  
3 Input capacitance refers to the effective capacitance between one differential input pin and AGND. See Figure 4 for the equivalent analog input structure.  
4 Measured at ac specification conditions without output drivers.  
Standby power is measured with a dc input, CLK pin inactive (that is, set to AVDD or AGND).  
Rev. D | Page 4 of 32  
 
 
 
AD9245  
AC SPECIFICATIONS  
AVDD = 3 V, DRVDD = 2.5 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference, AIN = –0.5 dBFS, DCS off,  
unless otherwise noted.  
Table 3.  
AD9245BCP-20  
AD9245BCP-40  
AD9245BCP-65  
Parameter  
Min  
Typ  
Max  
Min  
Typ  
ꢂ3.ꢁ  
ꢂ3.4  
ꢂ1.3  
ꢂ3.4  
ꢂ3.2  
ꢀꢃ.1  
Max  
Min  
Typ  
Max  
Unit  
SIGNAL-TO-NOISE RATIO (SNR)  
fINPUT = 2.4 MHz  
fINPUT = ꢃ.ꢂ MHz  
fINPUT = 1ꢃ.ꢀ MHz  
fINPUT = 32.ꢁ MHz  
ꢂ3.ꢁ  
ꢂ3.3  
ꢂ3.1  
dBc  
dBc  
dBc  
dBc  
dBc  
ꢂ±.ꢀ  
ꢀꢃ.4  
ꢂ±.ꢁ  
ꢂ±.±  
ꢂ±.3  
ꢀ8.4  
ꢂ2.ꢂ  
ꢂ±.2  
fINPUT = 1±± MHz  
ꢂ±.8  
SIGNAL-TO-NOISE RATIO AND DISTORTION (SINAD)  
fINPUT = 2.4 MHz  
fINPUT = ꢃ.ꢂ MHz  
fINPUT = 1ꢃ.ꢀ MHz  
fINPUT = 32.ꢁ MHz  
ꢂ3.4  
ꢂ3.2  
ꢂ3.±  
dBc  
dBc  
dBc  
dBc  
dBc  
ꢂ2.ꢀ  
ꢀꢂ.ꢃ  
fINPUT = 1±± MHz  
ꢀꢃ.ꢁ  
11.ꢃ  
EFFECTIVE NUMBER OF BITS (ENOB)  
fINPUT = ꢃ.ꢂ MHz  
fINPUT = 1ꢃ.ꢀ MHz  
Bits  
Bits  
Bits  
11.8  
–8ꢃ  
fINPUT = 32.ꢁ MHz  
11.ꢂ  
WORST HARMONIC (SECOND OR THIRD)  
fINPUT = ꢃ.ꢂ MHz  
fINPUT = 1ꢃ.ꢀ MHz  
–8ꢃ  
–8±  
dBc  
dBc  
dBc  
–8±  
fINPUT = 32.ꢁ MHz  
–83  
–ꢂ4  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)  
fINPUT = 2.4 MHz  
fINPUT = ꢃ.ꢂ MHz  
fINPUT = 1ꢃ.ꢀ MHz  
fINPUT = 32.ꢁ MHz  
ꢃ2.±  
8ꢃ.±  
ꢃ2.±  
8ꢃ.±  
8ꢁ.±  
ꢃ2.±  
dBc  
dBc  
dBc  
dBc  
dBc  
8±.±  
8±.±  
ꢂ4.±  
83.±  
8±.ꢁ  
fINPUT = 1±± MHz  
84.±  
Rev. D | Page ꢁ of 32  
 
AD9245  
AVDD = 3 V, DRVDD = 2.5 V, sample rate = 80 MSPS, 2 V p-p differential input, 1.0 V external reference, AIN = –0.5 dBFS, DCS off,  
unless otherwise noted.  
Table 4.  
AD9245BCP-80  
Parameter  
Min  
ꢂ1.1  
ꢂ±.ꢁ  
Typ  
Max  
Unit  
SIGNAL-TO-NOISE RATIO (SNR)  
fIN = 2.4 MHz  
fIN = 4± MHz  
fIN = ꢂ± MHz  
fIN = 1±± MHz  
ꢂ3.3  
ꢂ2.ꢂ  
ꢂ1.ꢂ  
ꢂ±.2  
dB  
dB  
dB  
dB  
SIGNAL-TO-NOISE AND DISTORTION (SINAD)  
fIN = 2.4 MHz  
fIN = 4± MHz  
fIN = ꢂ± MHz  
fIN = 1±± MHz  
ꢂ±.ꢂ  
ꢀꢃ.ꢃ  
ꢂ3.2  
ꢂ2.ꢁ  
ꢂ1.2  
ꢀꢃ.ꢀ  
dB  
dB  
dB  
dB  
EFFECTIVE NUMBER OF BITS (ENOB)  
fIN = 2.4 MHz  
fIN = 4± MHz  
fIN = ꢂ± MHz  
fIN = 1±± MHz  
11.ꢁ  
11.3  
11.ꢃ  
11.8  
11.ꢁ  
11.3  
Bits  
Bits  
Bits  
Bits  
WORST HARMONIC (SECOND OR THIRD)  
fIN = 2.4 MHz  
fIN = 4± MHz  
fIN = ꢂ± MHz  
fIN = 1±± MHz  
−ꢃ2.8  
–8ꢂ.ꢀ  
−81.ꢀ  
–ꢂꢃ.±  
–ꢂꢀ.ꢁ  
–ꢂꢁ.ꢂ  
dBc  
dBc  
dBc  
dBc  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)  
fIN = 2.4 MHz  
fIN = 4± MHz  
fIN = ꢂ± MHz  
fIN = 1±± MHz  
ꢂꢀ.ꢁ  
ꢂꢁ.ꢂ  
ꢃ2.8  
8ꢂ.ꢀ  
81.ꢀ  
ꢂꢃ.±  
dBc  
dBc  
dBc  
dBc  
Rev. D | Page ꢀ of 32  
AD9245  
DIGITAL SPECIFICATIONS  
AVDD = 3 V, DRVDD = 2.5 V, 1.0 V internal reference, unless otherwise noted.  
Table 5.  
AD9245BCP-20/AD9245BCP-40/AD9245BCP-65/AD9245BCP-801  
Parameter  
Min  
Typ  
Max  
Unit  
LOGIC INPUTS (CLK, PDWN)  
High Level Input Voltage  
2.±  
V
Low Level Input Voltage  
±.8  
V
High Level Input Current  
Low Level Input Current  
Input Capacitance  
–1±  
–1±  
+1±  
+1±  
μA  
μA  
pF  
2
DIGITAL OUTPUT BITS (D± to D13, OTR)2  
DRVDD = 3.3 V  
High Level Output Voltage (IOH = ꢁ± μA)  
High Level Output Voltage (IOH = ±.ꢁ mA)  
Low Level Output Voltage (IOH = 1.ꢀ mA)  
Low Level Output Voltage (IOH = ꢁ± μA)  
DRVDD = 2.ꢁ V  
3.2ꢃ  
3.2ꢁ  
V
V
V
V
±.2  
±.±ꢁ  
High Level Output Voltage (IOH = ꢁ± μA)  
High Level Output Voltage (IOH = ±.ꢁ mA)  
Low Level Output Voltage (IOH = 1.ꢀ mA)  
Low Level Output Voltage (IOH = ꢁ± μA)  
2.4ꢃ  
2.4ꢁ  
V
V
V
V
±.2  
±.±ꢁ  
1 ADꢃ24ꢁBCP-8± performance measured with 1.± V external reference.  
2 Output voltage levels measured with ꢁ pF load on each output.  
Rev. D | Page ꢂ of 32  
 
AD9245  
SWITCHING SPECIFICATIONS  
AVDD = 3 V, DRVDD = 2.5 V, unless otherwise noted.  
Table 6.  
AD9245BCP-20  
AD9245BCP-40  
AD9245BCP-65  
AD9245BCP-80  
Unit  
Parameter  
Min  
Typ Max  
Min Typ Max Min  
Typ Max Min  
Typ Max  
CLOCK INPUT PARAMETERS  
Maximum Conversion Rate  
Minimum Conversion Rate  
CLK Period  
CLK Pulse Width High1  
CLK Pulse Width Low1  
DATA OUTPUT PARAMETERS  
Output Delay2 (tPD)  
Pipeline Delay (Latency)  
Aperture Delay (tA)  
Aperture Uncertainty Jitter (tJ)  
Wake-Up Time3  
2±  
4±  
ꢀꢁ  
8±  
MSPS  
MSPS  
ns  
ns  
ns  
1
1
1
1
ꢁ±.±  
1ꢁ.±  
1ꢁ.±  
2ꢁ.±  
8.8  
8.8  
1ꢁ.4  
ꢀ.2  
ꢀ.2  
12.ꢁ  
4.ꢀ  
4.ꢀ  
3.ꢁ  
1.±  
±.ꢁ  
3.±  
1
3.ꢁ  
1.±  
±.ꢁ  
3.±  
1
3.ꢁ  
1.±  
±.ꢁ  
3.±  
2
4.2  
1.±  
±.3  
ꢂ.±  
2
ns  
Cycles  
ns  
ps rms  
ms  
OUT-OF-RANGE RECOVERY TIME  
Cycles  
1 For the ADꢃ24ꢁBCP-ꢀꢁ and ADꢃ24ꢁBCP-8± models only, with duty cycle stabilizer enabled. DCS function not applicable for ADꢃ24ꢁBCP-2± and ADꢃ24ꢁBCP-4±  
models.  
2 Output delay is measured from CLK ꢁ±% transition to DATA ꢁ±% transition, with ꢁ pF load on each output.  
3 Wake-up time is dependent on value of decoupling capacitors; typical values shown with ±.1 μF and 1± μF capacitors on REFT and REFB.  
N+1  
N
N+2  
N+8  
N–1  
N+3  
tA  
ANALOG  
INPUT  
N+7  
N+4  
N+6  
N+5  
CLK  
DATA  
OUT  
N–9  
N–8  
N–7  
N–6  
N–5  
N–4  
N–3  
N–2  
N–1  
N
tPD = 6.0ns MAX  
2.0ns MIN  
Figure 2. Timing Diagram  
Rev. D | Page 8 of 32  
 
 
 
AD9245  
ABSOLUTE MAXIMUM RATINGS  
Table 7.  
THERMAL RESISTANCE  
Parameter  
ELECTRICAL  
AVDD  
DRVDD  
AGND  
AVDD  
D± to D13  
CLK, MODE AGND  
VIN+, VIN–  
VREF  
With Respect to Min Max  
Unit  
θJA is specified for the worst-case conditions on a 4-layer board  
in still air, in accordance with EIA/JESD51-1.  
AGND  
DGND  
DGND  
DRVDD  
DGND  
–±.3 +3.ꢃ  
–±.3 +3.ꢃ  
–±.3 +±.3  
–3.ꢃ +3.ꢃ  
–±.3 DRVDD + ±.3  
–±.3 AVDD + ±.3  
–±.3 AVDD + ±.3  
–±.3 AVDD + ±.3  
–±.3 AVDD + ±.3  
–±.3 AVDD + ±.3  
–±.3 AVDD + ±.3  
V
V
V
V
V
V
V
V
V
V
V
Table 8. Thermal Resistance  
Package Type  
Unit  
θJA  
32.ꢁ  
θJC  
32.ꢂ1  
32-Lead LFCSP  
°C/W  
Airflow increases heat dissipation, effectively reducing θJA.  
In addition, more metal directly in contact with the package  
leads from metal traces, through holes, ground, and power  
planes reduces the θJA. It is recommended that the exposed  
paddle be soldered to the ground plane for the LFCSP package.  
There is an increased reliability of the solder joints, and  
maximum thermal capability of the package is achieved with  
the exposed paddle soldered to the customer board.  
AGND  
AGND  
AGND  
AGND  
AGND  
SENSE  
REFT, REFB  
PDWN  
ENVIRONMENTAL  
Storage Temperature Range  
Operating Temperature Range  
Lead Temperature  
(Soldering 1± sec)  
–ꢀꢁ +12ꢁ  
–4± +8ꢁ  
3±±  
°C  
°C  
°C  
Junction Temperature  
1ꢁ±  
°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4±±± V readily accumulate on the  
human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. D | Page ꢃ of 32  
 
AD9245  
TERMINOLOGY  
Analog Bandwidth (Full Power Bandwidth)  
The analog input frequency at which the spectral power of the  
fundamental frequency (as determined by the FFT analysis) is  
reduced by 3 dB.  
Signal-to-Noise and Distortion (SINAD)1  
The ratio of the rms input signal amplitude to the rms value of  
the sum of all other spectral components below the Nyquist  
frequency, including harmonics but excluding dc.  
Aperture Delay (tA)  
Effective Number of Bits (ENOB)  
The delay between the 50% point of the rising edge of the clock  
and the instant at which the analog input is sampled.  
The effective number of bits for a sine wave input at a given  
input frequency can be calculated directly from its measured  
SINAD using the following formula:  
Aperture Uncertainty (Jitter, tJ)  
(
SINAD 1.76  
)
The sample-to-sample variation in aperture delay.  
ENOB =  
6.02  
Integral Nonlinearity (INL)  
Signal-to-Noise Ratio (SNR)1  
The ratio of the rms input signal amplitude to the rms value of  
the sum of all other spectral components below the Nyquist  
frequency, excluding the first six harmonics and dc.  
The deviation of each individual code from a line drawn from  
negative full scale through positive full scale. The point used as  
negative full scale occurs ½ LSB before the first code transition.  
Positive full scale is defined as a level 1½ LSB beyond the last  
code transition. The deviation is measured from the middle of  
each particular code to the true straight line.  
Spurious-Free Dynamic Range (SFDR)1  
The difference in dB between the rms input signal amplitude  
and the peak spurious signal. The peak spurious component  
may or may not be a harmonic.  
Differential Nonlinearity (DNL, No Missing Codes)  
An ideal ADC exhibits code transitions that are exactly 1 LSB  
apart. DNL is the deviation from this ideal value. Guaranteed  
no missing codes to 14-bit resolution indicates that all 16,384  
codes must be present over all operating ranges.  
Two-Tone SFDR1  
The ratio of the rms value of either input tone to the rms value  
of the peak spurious component. The peak spurious component  
may or may not be an IMD product.  
Offset Error  
The major carry transition should occur for an analog value  
½ LSB below VIN+ = VIN–. Offset error is defined as the  
deviation of the actual transition from that point.  
Clock Pulse Width and Duty Cycle  
Pulse width high is the minimum amount of time that the clock  
pulse should be left in the Logic 1 state to achieve rated  
performance. Pulse width low is the minimum time the clock  
pulse should be left in the Logic 0 state. At a given clock rate,  
these specifications define an acceptable clock duty cycle.  
Gain Error  
The first code transition should occur at an analog value ½ LSB  
above negative full scale. The last transition should occur at an  
analog value 1½ LSB below the positive full scale. Gain error is  
the deviation of the actual difference between first and last code  
transitions and the ideal difference between first and last code  
transitions.  
Minimum Conversion Rate  
The clock rate at which the SNR of the lowest analog signal  
frequency drops by no more than 3 dB below the guaranteed limit.  
Maximum Conversion Rate  
The clock rate at which parametric testing is performed.  
Temperature Drift  
The temperature drift for offset error and gain error specifies  
the maximum change from the initial (25°C) value to the value  
Output Propagation Delay (tPD)  
The delay between the clock rising edge and the time when all  
bits are within valid logic levels.  
at TMIN or TMAX  
.
Power Supply Rejection Ratio  
The change in full scale from the value with the supply at the  
minimum limit to the value with the supply at its maximum limit.  
Out-of-Range Recovery Time  
The time it takes for the ADC to reacquire the analog input  
after a transition from 10% above positive full scale to 10%  
above negative full scale, or from 10% below negative full scale  
to 10% below positive full scale.  
Total Harmonic Distortion (THD)1  
The ratio of the rms input signal amplitude to the rms value of  
the sum of the first six harmonic components.  
1 AC specifications may be reported in dBc (degrades as signal levels are  
lowered) or in dBFS (always related back to converter full scale).  
Rev. D | Page 1± of 32  
 
 
AD9245  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
DNC 1  
CLK 2  
24 VREF  
23 SENSE  
22 MODE  
21 OTR  
DNC 3  
PDWN 4  
(LSB) D0 5  
D1 6  
AD9245  
CSP  
TOP VIEW  
20 D13 (MSB)  
19 D12  
(Not to Scale)  
D2 7  
18 D11  
D3 8  
17 D10  
Figure 3. LFCSP Pin Configuration  
Table 9. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1, 3  
DNC  
Do Not Connect  
2
CLK  
Clock Input Pin  
4
PDWN  
Power-Down Function Select  
Data Output Bits  
ꢁ to 14, 1ꢂ to 2±  
1ꢁ  
1ꢀ  
21  
22  
23  
24  
2ꢁ  
D± (LSB) to D13 (MSB)  
DGND  
DRVDD  
OTR  
MODE  
SENSE  
VREF  
REFB  
REFT  
AVDD  
AGND  
Digital Output Ground  
Digital Output Driver Supply  
Out-of-Range Indicator  
Data Format Select and DCS Mode Selection (See Table 11)  
Reference Mode Selection (See Table 1±)  
Voltage Reference Input/Output  
Differential Reference (–)  
Differential Reference (+)  
Analog Power Supply  
2ꢀ  
2ꢂ, 32  
28, 31  
2ꢃ  
Analog Ground  
Analog Input Pin (+)  
VIN+  
3±  
VIN–  
Analog Input Pin (–)  
Rev. D | Page 11 of 32  
 
AD9245  
EQUIVALENT CIRCUITS  
AVDD  
DRVDD  
D13-D0,  
OTR  
VIN+, VIN–  
Figure 4. Equivalent Analog Input Circuit  
Figure 6. Equivalent Digital Output Circuit  
AVDD  
AVDD  
CLK,  
PDWN  
MODE  
20kΩ  
Figure 5. Equivalent MODE Input Circuit  
Figure 7. Equivalent Digital Input Circuit  
Rev. D | Page 12 of 32  
 
AD9245  
TYPICAL PERFORMANCE CHARACTERISTICS  
DUT = AD9245-80, AVDD = 3.0 V, DRVDD = 2.5 V, maximum sample rate, DCS disabled, TA = 25°C, 2 V p-p differential input,  
AIN = −0.5 dBFS, VREF = 1.0 V external, unless otherwise noted.  
0
–10  
100  
90  
80  
70  
60  
50  
40  
SFDR (dBFS)  
AIN = –0.5dBFS  
SNR = 73.2dBc  
ENOB = 11.8 BITS  
SFDR = 92.8dBc  
–20  
SFDR (dBc)  
–30  
–40  
SNR (dBFS)  
–50  
–60  
SFDR = 90dBc  
REFERENCE LINE  
–70  
–80  
–90  
SNR (dBc)  
–100  
–110  
–120  
0
5
10  
15  
20  
25  
30  
35  
40  
–30  
–25  
–20  
–15  
–10  
–5  
0
FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 11. Single Tone SNR/SFDR vs. Input Amplitude (AIN) @ 2.5 MHz  
Figure 8. Single Tone 8K FFT @ 2.5 MHz  
0
–10  
100  
SFDR (dBFS)  
AIN = –0.5dBFS  
SNR = 72.7dBc  
ENOB = 11.8 BITS  
SFDR = 87.6dBc  
–20  
90  
SFDR (dBc)  
–30  
–40  
SNR (dBFS)  
80  
70  
60  
50  
40  
–50  
–60  
SFDR = 90dBc  
–70  
REFERENCE LINE  
–80  
–90  
SNR (dBc)  
–100  
–110  
–120  
0
5
10  
15  
20  
25  
30  
35  
40  
–30  
–25  
–20  
–15  
–10  
–5  
0
FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 9. Single Tone 8K FFT @ 39 MHz  
Figure 12. Single Tone SNR/SFDR vs. Input Amplitude (AIN) @ 39 MHz  
0
–10  
100  
AIN = –0.5dBFS  
SNR = 71.7dBc  
ENOB = 11.5 BITS  
SFDR = 81.6dBc  
SFDR (DIFF)  
–20  
90  
–30  
SNR (DIFF)  
SFDR (SE)  
–40  
80  
70  
–50  
–60  
–70  
–80  
SNR (SE)  
–90  
60  
–100  
–110  
–120  
50  
0
20  
40  
60  
80  
100  
0
5
10  
15  
20  
25  
30  
35  
40  
SAMPLE RATE (MSPS)  
FREQUENCY (MHz)  
Figure 13. SNR/SFDR vs. Sample Rate @ 40 MHz  
Figure 10. Single Tone 8K FFT @ 70 MHz  
Rev. D | Page 13 of 32  
 
 
 
AD9245  
100  
90  
80  
70  
60  
50  
40  
0
SFDR (dBFS)  
AIN = –6.5dBFS  
SNR = 73.4dBFS  
SFDR = 86.0dBFS  
–10  
–20  
SFDR (dBc)  
–30  
–40  
–50  
–60  
SNR (dBFS)  
–70  
SFDR = 90dBc  
REFERENCE LINE  
–80  
–90  
SNR (dBc)  
–100  
–110  
–120  
–30  
–27  
–24  
–21  
–18  
–15  
–12  
–9  
–6  
0
0
0
5
10  
15  
20  
25  
30  
35  
40  
INPUT AMPLITUDE (dBFS)  
FREQUENCY (MHz)  
Figure 17. Two-Tone SNR/SFDR vs. Input Amplitude @ 30 MHz and 31 MHz  
Figure 14. Two-Tone 8K FFT @ 30 MHz and 31 MHz  
100  
0
–10  
SFDR (dBFS)  
AIN = –6.5dBFS  
SNR = 72.7dBFS  
SFDR = 78.8dBFS  
90  
–20  
SFDR (dBc)  
–30  
80  
–40  
–50  
70  
–60  
SNR (dBFS)  
–70  
SFDR = 90dBc  
REFERENCE LINE  
60  
50  
40  
–80  
–90  
SNR (dBc)  
–100  
–110  
–120  
–30  
–27  
–24  
–21  
–18  
–15  
–12  
–9  
–6  
5
10  
15  
20  
25  
30  
35  
40  
INPUT AMPLITUDE (dBFS)  
FREQUENCY (MHz)  
Figure 15. Two-Tone 8K FFT @ 69 MHz and 70 MHz  
Figure 18. Two-Tone SNR/SFDR vs. Input Amplitude @ 69 MHz and 70 MHz  
1.5  
1.0  
1.0  
0.8  
0.6  
0.4  
0.5  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
0
2048  
4096  
6144  
8192 10240 12288 14336 16384  
CODE  
2048  
4096  
6144  
8192 10240 12288 14336 16384  
CODE  
Figure 16. Typical INL  
Figure 19. Typical DNL  
Rev. D | Page 14 of 32  
AD9245  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
100  
95  
90  
85  
80  
75  
70  
–40°C  
+85°C  
+25°C  
–40°C  
+25°C  
+85°C  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
INPUT FREQUENCY (MHz)  
INPUT FREQUENCY (MHz)  
Figure 20. SNR vs. Input Frequency  
Figure 23. SFDR vs. Input Frequency  
0
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
SFDR (DCS ON)  
–10  
–20  
–30  
–40  
SFDR (DCS OFF)  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
SNR (DCS OFF)  
SNR (DCS ON)  
50 55  
DUTY CYCLE (%)  
0
9.6  
19.2  
28.8  
38.4  
30  
35  
40  
45  
60  
65  
70  
FREQUENCY (MHz)  
Figure 21. SNR/SFDR vs. Clock Duty Cycle  
Figure 24. Two 32K FFT CDMA-2000 Carriers @  
FIN = 46.08 MHz; Sample Rate = 61.44 MSPS  
0
–10  
0
–10  
–20  
–30  
–20  
–30  
–40  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
0
9.6  
19.2  
28.8  
38.4  
0
9.6  
19.2  
28.8  
38.4  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 22. 32K FFT WCDMA Carrier @ FIN = 96 MHz; Sample Rate = 76.8 MSPS  
Figure 25. Two 32K FFT WCDMA Carriers @  
FIN = 76.8 MHz; Sample Rate = 61.44 MSPS  
Rev. D | Page 1ꢁ of 32  
 
AD9245  
0
0
AIN = –0.5dBFS  
SNR = 73.4dBc  
ENOB = 11.9 BITS  
SFDR = 88.3dBc  
AIN = –0.5dBFS  
SNR = 72.7dBc  
ENOB = 11.7 BITS  
SFDR = 81.3dBc  
–20  
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
0
5
10  
15  
20  
25  
30  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 29. AD9245-40 Single Tone 16K FFT @ 19.7 MHz  
Figure 26. AD9245-65 Single Tone 16K FFT @ 35 MHz  
1.0  
2.0  
1.5  
1.0  
0.8  
0.6  
0.4  
0.2  
0.5  
0
0
–0.2  
–0.5  
–0.4  
–0.6  
–0.8  
–1.0  
–1.0  
–1.5  
–2.0  
0
2048 4096  
6144 8192 10240 12288 14336 16384  
CODE  
0
2048  
4096 6144  
8192 10240 12288 14336 16384  
CODE  
Figure 27. AD9245-65 Typical INL  
Figure 30. AD9245-65 Typical DNL  
2.0  
1.5  
1.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0.5  
0
0
–0.2  
–0.5  
–0.4  
–0.6  
–0.8  
–1.0  
–1.0  
–1.5  
–2.0  
0
2048  
4096  
6144  
8192 10240 12288 14336 16384  
CODE  
0
2048  
4096 6144 8192 10240 12288 14336 16384  
CODE  
Figure 28. AD9245-40 Typical INL  
Figure 31. AD9245-40 Typical DNL  
Rev. D | Page 1ꢀ of 32  
AD9245  
2.0  
1.5  
1.0  
0.5  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
–0.2  
–0.5  
–0.4  
–0.6  
–0.8  
–1.0  
–1.0  
–1.5  
–2.0  
0
2048  
4096 6144 8192 10240 12288 14336 16384  
CODE  
0
2048 4096  
6144 8192 10240 12288 14336 16384  
CODE  
Figure 32. AD9245-20 Typical INL  
Figure 35. AD9245-20 Typical DNL  
0
0
AIN = –0.5dBFS  
AIN = –0.5dBFS  
SNR = 73.3dBc  
ENOB = 11.9 BITS  
SFDR = 92.6dBc  
SNR = 73.4dBc  
ENOB = 11.9 BITS  
SFDR = 95.0dBc  
–20  
–20  
–40  
–60  
–40  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 33. AD9245-20 Single Tone 16K FFT @ 5 MHz  
Figure 36. AD9245-20 Single Tone 16K FFT @ 9.7 MHz  
75  
70  
65  
10004707  
–0.5dBFS  
–6dBFS  
7996189  
7281624  
60  
55  
50  
3167101  
1755666  
547498  
N+3  
–20dBFS  
253625  
N–3  
N–2  
N–1  
N
N+1  
N+2  
1
10  
100  
CODE  
INPUT FREQUENCY (MHz)  
Figure 37. AD9245-20 Grounded-Input Histogram  
Figure 34. AD9245-20 SINAD vs. Input Frequency  
Rev. D | Page 1ꢂ of 32  
AD9245  
THEORY OF OPERATION  
The AD9245 architecture consists of a front-end sample-and-  
hold amplifier (SHA) followed by a pipelined switched capacitor  
ADC. The pipelined ADC is divided into three sections  
consisting of a 4-bit first stage followed by eight 1.5-bit stages,  
and a final 3-bit flash. Each stage provides sufficient overlap to  
correct for flash errors in the preceding stages. The quantized  
outputs from each stage are combined into a final 14-bit result  
in the digital correction logic. The pipelined architecture  
permits the first stage to operate on a new input sample, while  
the remaining stages operate on preceding samples. Sampling  
occurs on the rising edge of the clock.  
Referring to Figure 39, the clock signal alternately switches the  
SHA between sample mode and hold mode. When the SHA is  
switched into sample mode, the signal source must be capable  
of charging the sample capacitors and settling within one-half  
of a clock cycle. A small resistor in series with each input can  
help reduce the peak transient current required from the output  
stage of the driving source. In addition, a small shunt capacitor  
can be placed across the inputs to provide dynamic charging  
currents. This passive network creates a low-pass filter at the  
ADCs input; therefore, the precise values are dependent upon  
the application. In IF undersampling applications, any shunt  
capacitors should be reduced or removed. In combination with  
the driving source impedance, they would limit the input  
bandwidth.  
Each stage of the pipeline, excluding the last, consists of a low  
resolution flash ADC connected to a switched capacitor DAC  
and interstage residue amplifier (MDAC). The residue amplifier  
magnifies the difference between the reconstructed DAC output  
and the flash input for the next stage in the pipeline. One bit of  
redundancy is used in each stage to facilitate digital correction  
of flash errors. The last stage simply consists of a flash ADC.  
H
T
T
5pF  
5pF  
VIN+  
VIN–  
C
PAR  
The input stage contains a differential SHA that can be  
ac-coupled or dc-coupled in differential or single-ended modes.  
The output staging block aligns the data, carries out the error  
correction, and passes the data to the output buffers. The output  
buffers are powered from a separate supply, allowing adjustment of  
the output voltage swing. During power-down, the output  
buffers go into a high impedance state.  
T
C
PAR  
T
H
Figure 39. Switched-Capacitor SHA Input  
ANALOG INPUT AND REFERENCE OVERVIEW  
For best dynamic performance, the source impedances driving  
VIN+ and VIN– should be matched such that common-mode  
settling errors are symmetrical. These errors are reduced by the  
common-mode rejection of the ADC.  
The analog input to the AD9245 is a differential switched-  
capacitor SHA that has been designed for optimum performance  
while processing a differential input signal. The SHA input can  
support a wide common-mode range (VCM) and maintain  
excellent performance, as shown in Figure 38. An input  
common-mode voltage of midsupply minimizes signal-  
dependent errors and provides optimum performance.  
An internal differential reference buffer creates positive and  
negative reference voltages, REFT and REFB, that define the  
span of the ADC core. The output common mode of the  
reference buffer is set to midsupply, and the REFT and REFB  
voltages and span are defined as:  
100  
95  
SFDR (2.5MHz)  
90  
REFT = ½ (AVDD + VREF)  
REFB = ½ (AVDD VREF)  
85  
SFDR (39MHz)  
80  
Span = 2 × (REFT REFB) = 2 × VREF  
SNR (2.5MHz)  
SNR (39MHz)  
75  
70  
65  
60  
55  
50  
The previous equations show that the REFT and REFB voltages  
are symmetrical about the midsupply voltage, and, by definition,  
the input span is twice the value of the VREF voltage.  
The internal voltage reference can be pin strapped to fixed  
values of 0.5 V or 1.0 V, or adjusted within the same range as  
discussed in the Internal Reference Connection section.  
Maximum SNR performance is achieved with the AD9245 set  
to the largest input span of 2 V p-p. The relative SNR degradation  
is 3 dB when changing from 2 V p-p mode to 1 V p-p mode.  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
COMMON-MODE LEVEL (V)  
Figure 38. AD9245-80 SNR/SFDR vs. Common-Mode Level  
Rev. D | Page 18 of 32  
 
 
 
AD9245  
The SHA can be driven from a source that keeps the signal  
peaks within the allowable range for the selected reference  
voltage. The minimum and maximum common-mode input  
levels are defined as  
AVDD  
33Ω  
VIN+  
2V p-p  
49.9Ω  
20pF  
33Ω  
AD9245  
VREF  
2
VCMMIN  
VCMMAX  
=
VIN–  
AGND  
(
AVDD +VREF  
)
=
1kΩ  
1kΩ  
2
0.1μF  
The minimum common-mode input level allows the AD9245 to  
accommodate ground referenced inputs.  
Figure 41. Differential Transformer-Coupled Configuration  
Although optimum performance is achieved with a differential  
input, a single-ended source can be applied to VIN+ or VIN–.  
In this configuration, one input accepts the signal, while the  
opposite input is set to midscale by connecting it to an  
appropriate reference. For example, a 2 V p-p signal can be  
applied to VIN+ while a 1 V reference is applied to VIN–. The  
AD9245 then accepts an input signal varying between 2 V and  
0 V. In the single-ended configuration, distortion performance  
can degrade significantly as compared to the differential case.  
However, the effect is less noticeable at lower input frequencies.  
The signal characteristics must be considered when selecting  
a transformer. Most RF transformers saturate at frequencies  
below a few MHz, and excessive signal power can also cause  
core saturation, which leads to distortion.  
Single-Ended Input Configuration  
A single-ended input can provide adequate performance in  
cost-sensitive applications. In this configuration, there is a  
degradation in SFDR and distortion performance due to the  
large input common-mode swing (see Figure 13). However, if  
the source impedances on each input are matched, there should  
be little effect on SNR performance. Figure 42 details a typical  
single-ended input configuration.  
Differential Input Configurations  
As previously detailed, optimum performance is achieved while  
driving the AD9245 in a differential input configuration. For  
baseband applications, the AD8351 differential driver provides  
excellent performance and a flexible interface to the ADC. The  
output common-mode voltage of the AD8351 is easily set to  
AVDD/2, and the driver can be configured in a Sallen-Key filter  
topology to provide band limiting of the input signal.  
1k  
Ω
AVDD  
VIN+  
33  
Ω
0.33μF  
1k  
2V p-p  
49.9  
Ω
Ω
20pF  
33  
AD9245  
1k  
1k  
Ω
Ω
Ω
+
VIN–  
AGND  
1kΩ  
0.1μF  
1.2kΩ  
10  
μF  
0.1μ  
F
AVDD  
VIN+  
33Ω  
0.1μF  
25Ω  
2V p-p  
50Ω  
20pF  
25Ω  
AD8351  
AD9245  
Figure 42. Single-Ended Input Configuration  
0.1μF  
33Ω  
VIN–  
AGND  
0.1μF  
CLOCK INPUT CONSIDERATIONS  
1kΩ  
Typical high speed ADCs use both clock edges to generate a  
variety of internal timing signals, and as a result can be sensitive  
to clock duty cycle. Commonly a 5% tolerance is required on the  
clock duty cycle to maintain dynamic performance characteristics.  
The AD9245-80 and AD9245-65 contain a clock duty cycle  
stabilizer (DCS) that retimes the nonsampling edge, providing an  
internal clock signal with a nominal 50% duty cycle. This allows a  
wide range of clock input duty cycles without affecting the  
performance of the AD9245. As shown in Figure 21, noise and  
distortion performance is nearly flat for a 30% to 70% duty cycle  
with the DCS on.  
Figure 40. Differential Input Configuration Using the AD8351  
At input frequencies in the second Nyquist zone and above, the  
performance of most amplifiers is not adequate to achieve the  
true performance of the AD9245. This is especially true in IF  
undersampling applications where frequencies in the 70 MHz to  
100 MHz range are being sampled. For these applications,  
differential transformer coupling is the recommended input  
configuration. The value of the shunt capacitor is dependent on  
the input frequency and source impedance and should be  
reduced or removed. An example is shown in Figure 41.  
The duty cycle stabilizer uses a delay-locked loop (DLL) to  
create the nonsampling edge. As a result, any changes to the  
sampling frequency require approximately 100 clock cycles to  
allow the DLL to acquire and lock to the new rate.  
Rev. D | Page 1ꢃ of 32  
 
 
 
AD9245  
which is determined by the sample rate and the characteristics  
of the analog input signal.  
JITTER CONSIDERATIONS  
High speed, high resolution ADCs are sensitive to the quality  
of the clock input. The degradation in SNR at a given input  
frequency (fINPUT) due only to aperture jitter (tJ) can be  
calculated with the following equation:  
450  
400  
AD9245-80  
SNR = −20log10[2π fINPUT × tj]  
350  
In the equation, the rms aperture jitter represents the root-  
mean square of all jitter sources, which include the clock input,  
analog input signal, and ADC aperture jitter specification. IF  
undersampling applications are particularly sensitive to jitter  
(see Figure 43).  
300  
AD9245-65  
250  
200  
AD9245-40  
150  
The clock input should be treated as an analog signal in cases  
where aperture jitter can affect the dynamic range of the  
AD9245. Power supplies for clock drivers should be separated  
from the ADC output driver supplies to avoid modulating the  
clock signal with digital noise. Low jitter, crystal-controlled  
oscillators make the best clock sources. If the clock is generated  
from another type of source (by gating, dividing, or other  
methods), it should be retimed by the original clock at the last step.  
AD9245-20  
100  
50  
0
10  
20  
30  
40  
50  
60  
70  
80  
SAMPLE RATE (MSPS)  
Figure 44. AD9245 Power vs. Sample Rate @ 2.5 MHz  
Reducing the capacitive load presented to the output drivers can  
minimize digital power consumption. The data in Figure 44 was  
taken with the same operating conditions as those reported in  
the Typical Performance Characteristics section, and with a  
5 pF load on each output driver.  
75  
0.2ps  
70  
MEASURED SNR  
65  
By asserting the PDWN pin high, the AD9245 is placed in  
standby mode. In this state, the ADC typically dissipates  
1 mW if the CLK and analog inputs are static. During standby,  
the output drivers are placed in a high impedance state.  
Reasserting the PDWN pin low returns the AD9245 to its  
normal operational mode.  
0.5ps  
60  
1.0ps  
1.5ps  
55  
2.0ps  
2.5ps  
3.0ps  
50  
Low power dissipation in standby mode is achieved by shutting  
down the reference, reference buffer, and biasing networks. The  
decoupling capacitors on REFT and REFB are discharged when  
entering standby mode and then must be recharged when  
returning to normal operation. As a result, the wake-up time is  
related to the time spent in standby mode, and shorter standby  
cycles result in proportionally shorter wake-up times. With the  
recommended 0.1 μF and 10 μF decoupling capacitors on REFT  
and REFB, it takes approximately 1 second to fully discharge the  
reference buffer decoupling capacitors and 7 ms to restore full  
operation.  
45  
40  
1
10  
100  
1000  
INPUT FREQUENCY (MHz)  
Figure 43. SNR vs. Input Frequency and Jitter  
POWER DISSIPATION AND STANDBY MODE  
As shown in Figure 44, the power dissipated by the AD9245 is  
proportional to its sample rate. The digital power dissipation is  
determined primarily by the strength of the digital drivers and  
the load on each output bit. The maximum DRVDD current  
(IDRVDD) can be calculated as  
DIGITAL OUTPUTS  
The AD9245 output drivers can be configured to interface with  
2.5 V or 3.3 V logic families by matching DRVDD to the digital  
supply of the interfaced logic. The output drivers are sized to  
provide sufficient output current to drive a wide variety of logic  
families. However, large drive currents tend to cause current  
glitches on the supplies, which can affect converter performance.  
Applications requiring the ADC to drive large capacitive loads or  
large fanouts can require external buffers or latches.  
IDRVDD = VDRVDD ×CLOAD × fCLK ×N  
where N is the number of output bits, 14 in the case of the  
AD9245. This maximum current occurs when every output bit  
switches on every clock cycle, that is, a full-scale square wave at  
the Nyquist frequency, fCLK/2. In practice, the DRVDD current  
is established by the average number of output bits switching,  
Rev. D | Page 2± of 32  
 
 
 
AD9245  
As detailed in Table 11, the data format can be selected for either  
offset binary or twos complement.  
In all reference configurations, REFT and REFB drive the A/D  
conversion core and establish its input span. The input range of  
the ADC always equals twice the voltage at the reference pin for  
either an internal or an external reference.  
TIMING  
The AD9245 provides latched data outputs with a pipeline delay  
of seven clock cycles. Data outputs are available one propagation  
delay (tPD) after the rising edge of the clock signal. Refer to  
Figure 2 for a detailed timing diagram.  
VIN+  
VIN–  
REFT  
0.1μF  
The length of the output data lines and the loads placed on  
them should be minimized to reduce transients within the  
AD9245. These transients can degrade the converters dynamic  
performance.  
+
ADC  
CORE  
0.1μF  
10μF  
REFB  
0.1μF  
VREF  
0.1μF  
+
10μF  
The lowest typical conversion rate of the AD9245 is 1 MSPS. At  
clock rates below 1 MSPS, dynamic performance can degrade.  
SELECT  
LOGIC  
SENSE  
VOLTAGE REFERENCE  
A stable and accurate 0.5 V voltage reference is built into the  
AD9245. The input range can be adjusted by varying the  
reference voltage applied to the AD9245 using either the  
internal reference or an externally applied reference voltage.  
The input span of the ADC tracks reference voltage changes  
linearly. The various reference modes are summarized in Table 10  
and described in the following sections.  
0.5V  
AD9245  
Figure 45. Internal Reference Configuration  
If the internal reference of the AD9245 is used to drive multiple  
converters to improve gain matching, the loading of the reference  
by the other converters must be considered. Figure 46 depicts  
how the internal reference voltage is affected by loading. A  
2 mA load is the maximum recommended load.  
If the ADC is being driven differentially through a transformer,  
the reference voltage can be used to bias the center tap  
(common-mode voltage).  
0.05  
INTERNAL REFERENCE CONNECTION  
A comparator within the AD9245 detects the potential at the  
SENSE pin and configures the reference into one of four  
possible states, which are summarized in Table 10. If SENSE is  
grounded, the reference amplifier switch is connected to the  
internal resistor divider (see Figure 45), setting VREF to 1 V.  
Connecting the SENSE pin to VREF switches the reference  
amplifier output to the SENSE pin, completing the loop and  
providing a 0.5 V reference output. If a resistor divider is  
connected as shown in Figure 47, the switch is again set to the  
SENSE pin. This puts the reference amplifier in a noninverting  
mode with the VREF output defined as  
0
–0.05  
0.5V ERROR (%)  
–0.10  
1.0V ERROR (%)  
–0.15  
–0.20  
–0.25  
R2  
VREF = 0.5× 1+  
0
0.5  
1.0  
1.5  
LOAD (mA)  
2.0  
2.5  
3.0  
R1  
Figure 46. VREF Accuracy vs. Load  
Table 10. Reference Configuration Summary  
Selected Mode  
SENSE Voltage  
Resulting VREF (V)  
Resulting Differential Span (V p-p)  
External Reference  
Internal Fixed Reference  
Programmable Reference  
AVDD  
VREF  
±.2 V to VREF  
N/A  
±.ꢁ  
R2  
2 × External Reference  
1.±  
2 × VREF  
(See Figure 4ꢂ)  
0.5 × 1 +  
R1  
Internal Fixed Reference  
AGND to ±.2 V  
1.±  
2.±  
Rev. D | Page 21 of 32  
 
 
 
 
 
AD9245  
OPERATIONAL MODE SELECTION  
VIN+  
VIN–  
As discussed earlier, the AD9245 can output data in either  
offset binary or twos complement format. There is also a  
provision for enabling or disabling the clock DCS. The  
MODE pin is a multilevel input that controls the data format  
and DCS state. The input threshold values and corresponding  
mode selections are outlined in Table 11.  
REFT  
0.1μF  
0.1μF  
REFB  
+
ADC  
CORE  
10μF  
0.1μF  
VREF  
+
Table 11. Mode Selection  
10μF  
0.1μF  
SELECT  
LOGIC  
R2  
MODE Voltage  
Data Format  
Duty Cycle Stabilizer  
Disabled  
Enabled  
SENSE  
AVDD  
2/3 AVDD  
1/3 AVDD  
Twos Complement  
Twos Complement  
Offset Binary  
R1  
0.5V  
Enabled  
AGND (Default)  
Offset Binary  
Disabled  
AD9245  
Figure 47. Programmable Reference Configuration  
EVALUATION BOARD  
The AD9245 evaluation board provides the support circuitry  
required to operate the ADC in its various modes and  
configurations. Complete schematics and layout plots follow  
and demonstrate the proper routing and grounding techniques  
that should be applied at the system level.  
EXTERNAL REFERENCE OPERATION  
The use of an external reference can be necessary to enhance  
the gain accuracy of the ADC or improve thermal drift char-  
acteristics. When multiple ADCs track one another, a single  
reference (internal or external) can be necessary to reduce  
gain matching errors to an acceptable level. Figure 48 shows  
the typical drift characteristics of the internal reference in both  
1.0 V and 0.5 V modes.  
It is critical that signal sources with very low phase noise  
(<1 ps rms jitter) be used to realize the ultimate performance of  
the converter. Proper filtering of the input signal, to remove  
harmonics and lower the integrated noise at the input, is also  
necessary to achieve the specified noise performance.  
When the SENSE pin is tied to AVDD, the internal reference is  
disabled, allowing the use of an external reference. An internal  
reference buffer loads the external reference with an equivalent  
7 kΩ load. The internal buffer still generates the positive and  
negative full-scale references, REFT and REFB, for the ADC  
core. The input span is always twice the value of the reference  
voltage; therefore, the external reference must be limited to a  
maximum of 1.0 V.  
The AD9245 can be driven single-ended or differentially  
through a transformer. Separate power pins are provided to  
isolate the DUT from the support circuitry. Each input  
configuration can be selected by proper connection of  
various jumpers (refer to the schematics).  
An alternative differential analog input path using an  
AD8351 op amp is included in the layout but is not populated  
in production. Designers interested in evaluating the op amp  
with the ADC should remove C15, R12, and R3 and populate  
the op amp circuit. The passive network between the AD8351  
outputs and the AD9245 allows the user to optimize the  
frequency response of the op amp for the application.  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
VREF = 1.0V  
0.2  
0.1  
VREF = 0.5V  
0
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
Figure 48. Typical VREF Drift  
Rev. D | Page 22 of 32  
 
 
 
 
AD9245  
P 2  
5 . 0 V  
2 . 5 V  
V A M P  
V D L  
G N D  
2 . 5 V  
3 . 0 V  
V D D R  
G N D  
D D A V  
D 1 0  
D 1 1  
D 1 2  
D 1 3  
O T  
D 3  
1 7  
1 8  
8
D 2 7  
D 1  
1 9  
2 0  
2 1  
2 2  
2 3  
6
D 0  
5
R
P D W N  
4
D N C  
M O D E  
S E N S E  
V R E F  
3
C L K  
2
D N C  
1
2 4  
Figure 49. LFCSP Evaluation Board Schematic—Analog Inputs and DUT  
Rev. D | Page 23 of 32  
AD9245  
Figure 50. LFCSP Evaluation Board Schematic—Digital Path  
Rev. D | Page 24 of 32  
AD9245  
Figure 51. LFCSP Evaluation Board Schematic—Clock Input  
Rev. D | Page 2ꢁ of 32  
AD9245  
Figure 52. LFCSP Evaluation Board Layout, Primary Side  
Figure 54. LFCSP Evaluation Board Layout, Ground Plane  
Figure 53. LFCSP Evaluation Board Layout, Secondary Side  
Figure 55. LFCSP Evaluation Board Layout, Power Plane  
Rev. D | Page 2ꢀ of 32  
AD9245  
Figure 56. LFCSP Evaluation Board Layout, Primary Silkscreen  
Figure 57. LFCSP Evaluation Board Layout, Secondary Silkscreen  
Rev. D | Page 2ꢂ of 32  
AD9245  
Table 12. LFCSP Evaluation Board Bill of Materials  
Recommended  
Package Value Vendor/Part No.  
Supplied  
by ADI  
Item Qty. Omit1 Reference Designator  
Device  
1
18  
C1, Cꢁ, Cꢂ, C8, Cꢃ, C11, C12,  
C13, C1ꢁ, C1ꢀ, C31, C33, C34,  
C3ꢀ, C3ꢂ, C41, C43, C4ꢂ  
Chip Capacitors  
±ꢀ±3  
±.1 μF  
8
2
Cꢀ, C1ꢂ, C18, C2ꢂ,  
C28, C3ꢁ, C4ꢁ, C44  
2
3
8
8
C2, C3, C4, C1±, C2±,  
C22, C2ꢁ, C2ꢃ  
Tantalum Capacitors  
Chip Capacitors  
TAJC  
±ꢀ±3  
1± μF  
C24, C4ꢀ  
C14, C3±, C32, C38,  
C3ꢃ, C4±, C48, C4ꢃ  
±.±±1 μF  
4
1
1
C1ꢃ  
Chip Capacitors  
Chip Capacitors  
±ꢀ±3  
±ꢀ±3  
2± pF  
1± pF  
C2ꢀ  
2
2
C21, C23  
E31, E3ꢁ, E43, E44,  
Eꢁ±, Eꢁ1, Eꢁ2, Eꢁ3  
Headers  
EHOLE  
Jumper Blocks  
E1, E4ꢁ  
J1, J2  
L1  
8
2
1
SMA Connectors/ꢁ± Ω  
Inductor  
SMA  
±ꢀ±3  
1± nH  
± Ω  
Coilcraft/  
±ꢀ±3CS-1±NXGBU  
1
P2  
Terminal Block  
TBꢀ  
Wieland/2ꢁ.ꢀ±2.2ꢀꢁ3.±,  
zꢁ-ꢁ3±-±ꢀ2ꢁ-±  
1±  
11  
1
P12  
Header Dual 2±-Pin RT Angle HEADER4±  
Digi-Key S2131-2±-ND  
R3, R12, R23, R28, Rx  
R1ꢀ, R1ꢂ, R22, R2ꢂ, R42, R3ꢂ  
R4, R1ꢁ  
Chip Resistors  
±ꢀ±3  
1
12  
13  
2
Chip Resistors  
Chip Resistors  
±ꢀ±3  
±ꢀ±3  
33 Ω  
1 kΩ  
14  
Rꢁ, Rꢀ, Rꢂ, R8, R13, R2±, R21,  
R24, R2ꢁ, R2ꢀ, R3±, R31, R32, R3ꢀ  
14  
1ꢁ  
2
1
R1±, R11  
R2ꢃ  
Chip Resistors  
Chip Resistors  
±ꢀ±3  
±ꢀ±3  
3ꢀ Ω  
ꢁ± Ω  
R1ꢃ  
1ꢀ  
2
RP1, RP2  
Resistor Packs  
ADT1-1WT  
R_ꢂ42  
22± Ω Digi-Key  
CTS/ꢂ42C1ꢀ3221JTR  
1ꢂ  
18  
1ꢃ  
2±  
21  
22  
23  
24  
2ꢁ  
2ꢀ  
2ꢂ  
28  
Total  
1
1
1
1
1
T1  
AWT1-1T  
Mini-Circuits  
U1  
ꢂ4LVTH1ꢀ23ꢂ4 CMOS Register TSSOP-48  
U4  
ADꢃ24ꢁBCP ADC (DUT)  
ꢂ4VCX8ꢀM  
LFCSP-32  
SOIC-14  
PCB  
Analog Devices, Inc.  
Fairchild  
X
Uꢁ  
PCB  
ADꢃ2XXBCP/PCB  
AD83ꢁ1 Op Amp  
M/A-COM Transformer  
Chip Resistors  
Analog Devices, Inc.  
Analog Devices, Inc.  
X
X
1
1
3
2
1
1
U3  
MSOP-8  
T2  
ETC1-1-13 1-1 TX M/A-COM/ETC1-1-13  
R1, R2, Rꢃ, R38, R3ꢃ  
R14, R18, R3ꢁ  
R4±, R41  
±ꢀ±3  
±ꢀ±3  
±ꢀ±3  
SELECT  
2ꢁ Ω  
Chip Resistors  
Chip Resistors  
1± kΩ  
1.2 kΩ  
2ꢁ Ω  
R34  
Chip Resistor  
R33  
Chip Resistor  
81 3ꢁ  
1 These items are included in the PCB design, but are omitted at assembly.  
Rev. D | Page 28 of 32  
 
AD9245  
OUTLINE DIMENSIONS  
5.00  
BSC SQ  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
25  
24  
32  
1
PIN 1  
INDICATOR  
0.50  
BSC  
TOP  
VIEW  
3.25  
3.10 SQ  
2.95  
EXPOSED  
PAD  
(BOTTOM VIEW)  
4.75  
BSC SQ  
0.50  
0.40  
0.30  
17  
16  
8
9
0.25 MIN  
3.50 REF  
0.80 MAX  
0.65 TYP  
12° MAX  
0.05 MAX  
0.02 NOM  
1.00  
0.85  
0.80  
0.30  
0.23  
0.18  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VHHD-2  
Figure 58. 32-Lead Frame Chip Scale Package [LFCSP_VQ]  
5 mm × 5 mm Body, Very Thin Quad  
(CP-32-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
ADꢃ24ꢁBCP-8±  
Temperature Range  
–4±°C to +8ꢁ°C  
–4±°C to +8ꢁ°C  
–4±°C to +8ꢁ°C  
–4±°C to +8ꢁ°C  
–4±°C to +8ꢁ°C  
–4±°C to +8ꢁ°C  
–4±°C to +8ꢁ°C  
–4±°C to +8ꢁ°C  
–4±°C to +8ꢁ°C  
–4±°C to +8ꢁ°C  
Package Description1  
Package Option  
32-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
Evaluation Board  
CP-32-2  
CP-32-2  
CP-32-2  
CP-32-2  
CP-32-2  
CP-32-2  
CP-32-2  
CP-32-2  
CP-32-2  
CP-32-2  
ADꢃ24ꢁBCPRLꢂ–8±  
ADꢃ24ꢁBCPZ-8±2  
ADꢃ24ꢁBCPZRLꢂ-8±2  
ADꢃ24ꢁBCPZ-ꢀꢁ2  
ADꢃ24ꢁBCPZRLꢂ-ꢀꢁ2  
ADꢃ24ꢁBCPZ-4±2  
ADꢃ24ꢁBCPZRLꢂ-4±2  
ADꢃ24ꢁBCPZ-2±2  
ADꢃ24ꢁBCPZRLꢂ-2±2  
ADꢃ24ꢁBCP-8±EB  
ADꢃ24ꢁBCP-ꢀꢁEB  
ADꢃ24ꢁBCP-4±EB  
ADꢃ24ꢁBCP-2±EB  
Evaluation Board  
Evaluation Board  
Evaluation Board  
1 It is recommended that the exposed paddle be soldered to the ground plane for the LFCSP package. There is an increased reliability of the solder joints, and the  
maximum thermal capability of the package is achieved with the exposed paddle soldered to the customer board.  
2 Z = Pb-free part.  
Rev. D | Page 2ꢃ of 32  
 
 
AD9245  
NOTES  
Rev. D | Page 3± of 32  
AD9245  
NOTES  
Rev. D | Page 31 of 32  
AD9245  
NOTES  
©
2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C03583–0–1/06(D)  
Rev. D | Page 32 of 32  

相关型号:

AD9245BCP-65EB

14-Bit, 20 MSPS/40 MSPS/65 MSPS/80 MSPS, 3 V A/D Converter
ADI

AD9245BCP-80

14-Bit, 80 MSPS, 3 V A/D Converter
ADI

AD9245BCP-80EB

14-Bit, 20 MSPS/40 MSPS/65 MSPS/80 MSPS, 3 V A/D Converter
ADI

AD9245BCPRL7-80

14-Bit, 80 MSPS, 3 V A/D Converter
ADI

AD9245BCPZ-20

14-Bit, 20 MSPS/40 MSPS/65 MSPS/80 MSPS 3 V A/D Converter
ADI

AD9245BCPZ-202

14-Bit, 20 MSPS/40 MSPS/65 MSPS/80 MSPS, 3 V A/D Converter
ADI

AD9245BCPZ-40

14-Bit, 20 MSPS/40 MSPS/65 MSPS/80 MSPS 3 V A/D Converter
ADI

AD9245BCPZ-40

1-CH 14-BIT FLASH METHOD ADC, PARALLEL ACCESS, QCC32, ROHS COMPLIANT, EXPOSED PAD, MO-220-VHHD-2, LFCSP-32
ROCHESTER

AD9245BCPZ-402

14-Bit, 20 MSPS/40 MSPS/65 MSPS/80 MSPS, 3 V A/D Converter
ADI

AD9245BCPZ-65

14-Bit, 20 MSPS/40 MSPS/65 MSPS/80 MSPS 3 V A/D Converter
ADI

AD9245BCPZ-652

14-Bit, 20 MSPS/40 MSPS/65 MSPS/80 MSPS, 3 V A/D Converter
ADI

AD9245BCPZ-80

14-Bit, 80 MSPS, 3 V A/D Converter
ADI