AD9255-105EBZ [ADI]

14-Bit, 125 MSPS/105 MSPS/80 MSPS; 14位, 125 MSPS / 105 MSPS / 80 MSPS
AD9255-105EBZ
型号: AD9255-105EBZ
厂家: ADI    ADI
描述:

14-Bit, 125 MSPS/105 MSPS/80 MSPS
14位, 125 MSPS / 105 MSPS / 80 MSPS

文件: 总44页 (文件大小:1757K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
14-Bit, 125 MSPS/105 MSPS/80 MSPS,  
1.8 V Analog-to-Digital Converter  
Data Sheet  
AD9255  
FEATURES  
APPLICATIONS  
SNR = 78.3 dBFS at 70 MHz and 125 MSPS  
SFDR = 93 dBc at 70 MHz and 125 MSPS  
Low power: 371 mW at 125 MSPS  
Communications  
Multimode digital receivers (3G)  
GSM, EDGE, W-CDMA, LTE, CDMA2000, WiMAX, and  
TD-SCDMA  
1.8 V analog supply operation  
1.8 V CMOS or LVDS output supply  
Smart antenna systems  
Integer 1-to-8 input clock divider  
General-purpose software radios  
Broadband data applications  
Ultrasound equipment  
IF sampling frequencies to 300 MHz  
−153.4 dBm/Hz small signal input noise with 200 Ω input  
impedance at 70 MHz and 125 MSPS  
Optional on-chip dither  
PRODUCT HIGHLIGHTS  
1. On-chip dither option for improved SFDR performance  
with low power analog input.  
2. Proprietary differential input that maintains excellent SNR  
performance for input frequencies up to 300 MHz.  
3. Operation from a single 1.8 V supply and a separate digital  
output driver supply accommodating 1.8 V CMOS or  
LVDS outputs.  
4. Standard serial port interface (SPI) that supports various  
product features and functions, such as data formatting  
(offset binary, twos complement, or gray coding), enabling  
the clock DCS, power-down, test modes, and voltage  
reference mode.  
Programmable internal ADC voltage reference  
Integrated ADC sample-and-hold inputs  
Flexible analog input range: 1 V p-p to 2 V p-p  
Differential analog inputs with 650 MHz bandwidth  
ADC clock duty cycle stabilizer  
Serial port control  
User-configurable, built-in self-test (BIST) capability  
Energy-saving power-down modes  
5. Pin compatibility with the AD9265, allowing a simple  
migration up to 16 bits.  
FUNCTIONAL BLOCK DIAGRAM  
SENSE RBIAS PDWN  
AGND AVDD (1.8V)  
LVDS LVDS_RS  
REFERENCE  
VREF  
AD9255  
VCM  
DRVDD (1.8V)  
D13 TO D0  
VIN+  
TRACK-AND-HOLD  
VIN–  
OUTPUT  
ADC  
14  
STAGING  
CMOS OR  
LVDS  
14  
14-BIT  
DITHER  
CORE  
(DDR)  
CLK+  
CLOCK  
MANAGEMENT  
OR  
CLK–  
OEB  
SYNC  
SERIAL PORT  
DCO  
SVDD SCLK/ SDIO/ CSB  
DFS DCS  
Figure 1.  
Rev. C  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2009–2013 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
AD9255  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Voltage Reference ....................................................................... 28  
Clock Input Considerations...................................................... 29  
Power Dissipation and Standby Mode .................................... 31  
Digital Outputs ........................................................................... 32  
Timing ......................................................................................... 32  
Built-In Self-Test (BIST) and Output Test .................................. 33  
Built-In Self-Test (BIST)............................................................ 33  
Output Test Modes..................................................................... 33  
Serial Port Interface (SPI).............................................................. 34  
Configuration Using the SPI..................................................... 34  
Hardware Interface..................................................................... 34  
Configuration Without the SPI ................................................ 35  
SPI Accessible Features.............................................................. 35  
Memory Map .................................................................................. 36  
Reading the Memory Map Register Table............................... 36  
Memory Map Register Table..................................................... 37  
Memory Map Register Descriptions........................................ 39  
Applications Information .............................................................. 40  
Design Guidelines ...................................................................... 40  
Outline Dimensions....................................................................... 41  
Ordering Guide .......................................................................... 41  
Applications....................................................................................... 1  
Product Highlights ........................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
General Description......................................................................... 3  
Specifications..................................................................................... 4  
ADC DC Specifications................................................................. 4  
ADC AC Specifications ................................................................. 5  
Digital Specifications ................................................................... 6  
Switching Specifications ................................................................ 8  
Timing Specifications .................................................................. 9  
Absolute Maximum Ratings.......................................................... 10  
Thermal Characteristics ............................................................ 10  
ESD Caution................................................................................ 10  
Pin Configurations and Function Descriptions ......................... 11  
Typical Performance Characteristics ........................................... 15  
Equivalent Circuits......................................................................... 23  
Theory of Operation ...................................................................... 25  
ADC Architecture ...................................................................... 25  
Analog Input Considerations.................................................... 25  
REVISION HISTORY  
7/13—Rev. B to Rev. C  
Changes to Data Clock Output (DCO) Section......................... 32  
3/13—Rev. A to Rev. B  
Changes to Table 17.......................................................................... 1  
Updated Outline Dimensions ....................................................... 41  
1/10—Rev. 0 to Rev. A  
Changes to Worst Other (Harmonic or Spur) Parameter,  
Table 2 ................................................................................................ 6  
Changes to Figure 77...................................................................... 29  
Changes to Input Clock Divider Section..................................... 30  
Changes to Table 17........................................................................ 37  
Updated Outline Dimensions ....................................................... 41  
10/09—Revision 0: Initial Version  
Rev. C | Page 2 of 44  
 
Data Sheet  
AD9255  
GENERAL DESCRIPTION  
The AD9255 is a 14-bit, 125 MSPS analog-to-digital converter  
(ADC). The AD9255 is designed to support communications  
applications where high performance combined with low cost,  
small size, and versatility is desired.  
A differential clock input controls all internal conversion cycles. A  
duty cycle stabilizer provides the means to compensate for vari-  
ations in the ADC clock duty cycle, allowing the converters to  
maintain excellent performance over a wide range of input  
clock duty cycles. An integrated voltage reference eases design  
considerations.  
The ADC core features a multistage, differential pipelined  
architecture with integrated output error correction logic to  
provide 14-bit accuracy at 125 MSPS data rates and guarantees  
no missing codes over the full operating temperature range.  
The ADC output data format is either parallel 1.8 V CMOS or  
LVDS (DDR). A data output clock is provided to ensure proper  
latch timing with receiving logic.  
The ADC features a wide bandwidth differential sample-and-  
hold analog input amplifier supporting a variety of user-selectable  
input ranges. It is suitable for multiplexed systems that switch  
full-scale voltage levels in successive channels and for sampling  
single-channel inputs at frequencies well beyond the Nyquist rate.  
Combined with power and cost savings over previously available  
ADCs, the AD9255 is suitable for applications in communications,  
instrumentation, and medical imaging.  
Programming for setup and control is accomplished using a 3-wire  
SPI-compatible serial interface. Flexible power-down options  
allow significant power savings, when desired. An optional on-  
chip dither function is available to improve SFDR performance  
with low power analog input signals.  
The AD9255 is available in a Pb-free, 48-lead LFCSP and is  
specified over the industrial temperature range of −40°C to +85°C.  
Rev. C | Page 3 of 44  
 
AD9255  
Data Sheet  
SPECIFICATIONS  
ADC DC SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, SVDD = 1.8 V, maximum sample rate, VIN = −1.0 dBFS differential input, 1.0 V internal reference, DCS  
enabled, unless otherwise noted.  
Table 1.  
AD9255BCPZ-801  
Temp Min Typ Max  
AD9255BCPZ-1051  
AD9255BCPZ-1251  
Parameter  
Min Typ  
Max  
Min Typ  
Max  
Unit  
RESOLUTION  
Full  
14  
14  
14  
Bits  
ACCURACY  
No Missing Codes  
Offset Error  
Gain Error  
Full  
Full  
Full  
Full  
ꢀ0°C  
Full  
ꢀ0°C  
Guaranteed  
±±.±0 ±±.ꢀ0  
Guaranteed  
±±.±0  
Guaranteed  
±±.ꢀ0  
±ꢀ.0  
±±.4  
±±.±0  
±±.4  
±±.ꢀ0 ꢁ FSR  
±ꢀ.0 ꢁ FSR  
±±.ꢀ  
±±.ꢀ  
±±.ꢃ0  
±ꢀ.0  
±±.4  
±±.ꢀ  
±±.ꢀ  
±±.40  
Differential Nonlinearity (DNL)ꢀ  
±±.40 LSB  
LSB  
±1.ꢀ  
±±.ꢀ0  
±±.ꢄ  
Integral Nonlinearity (INL)ꢀ  
±±.ꢂ  
±±.ꢂ  
LSB  
LSB  
TEMPERATURE DRIFT  
Offset Error  
Gain Error  
Full  
Full  
±ꢀ  
±10  
±ꢀ  
±10  
±ꢀ  
±10  
ppm/°C  
ppm/°C  
INTERNAL VOLTAGE REFERENCE  
Output Voltage Error (1 V Mode)  
Load Regulation at 1.± mA  
INPUT REFERRED NOISE  
VREF = 1.± V  
Full  
Full  
+8  
±1ꢀ  
+8  
±1ꢀ  
+8  
±1ꢀ  
mV  
mV  
ꢀ0°C  
±.6ꢀ  
±.6ꢃ  
±.61  
LSB rms  
ANALOG INPUT  
8
±.ꢂ  
6
8
±.ꢂ  
6
Input Span, VREF = 1.± V  
Input Capacitanceꢃ  
Input Common-Mode Voltage  
REFERENCE INPUT RESISTANCE  
POWER SUPPLIES  
Supply Voltage  
Full  
Full  
Full  
Full  
8
±.ꢂ  
6
V p-p  
pF  
V
kΩ  
1.ꢄ  
1.ꢄ  
1.ꢄ  
1.8  
1.8  
1.ꢂ  
1.ꢂ  
ꢃ.0  
1.ꢄ  
1.ꢄ  
1.ꢄ  
1.8  
1.8  
1.ꢂ  
1.ꢂ  
ꢃ.0  
AVDD  
DRVDD  
SVDD  
Full  
Full  
Full  
1.ꢄ  
1.ꢄ  
1.ꢄ  
1.8  
1.8  
1.ꢂ  
1.ꢂ  
ꢃ.0  
V
V
V
Supply Current  
IAVDDꢀ  
Full  
Full  
Full  
1ꢂ4  
ꢀꢃ  
44  
ꢀ±ꢀ  
ꢃ8ꢀ  
mA  
mA  
mA  
1ꢀ6  
1ꢃ  
ꢃꢂ  
1ꢃ1  
16ꢂ  
1ꢂ  
4ꢀ  
1ꢄ6  
IDRVDD(1.8 V CMOS)  
IDRVDD(1.8 V LVDS)  
POWER CONSUMPTION  
DC Input  
ꢀꢃꢂ  
ꢀ48  
ꢃꢀ1  
ꢃꢃꢀ  
Full  
ꢃꢄ1  
mW  
Sine Wave Inputꢀ  
CMOS Output Mode  
LVDS Output Mode  
Standby Power4  
ꢀ0ꢀ  
ꢃ±6  
04  
ꢃꢃ8  
ꢃ84  
04  
Full  
Full  
Full  
Full  
ꢃꢂ1  
4ꢃꢄ  
04  
mW  
mW  
mW  
mW  
±.±0  
±.10  
±.±0  
±.10  
Power-Down Power  
±.±0  
±.10  
1 The suffix following the part number refers to the model found in the Ordering Guide section.  
Measured with a low input frequency, full-scale sine wave, with approximately 0 pF loading on each output bit.  
Input capacitance refers to the effective capacitance between one differential input pin and AGND.  
4 Standby power is measured with a dc input, the CLK pins (CLK+, CLK−) inactive (set to AVDD or AGND).  
Rev. C | Page 4 of 44  
 
 
 
 
Data Sheet  
AD9255  
ADC AC SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, SVDD = 1.8 V, maximum sample rate, VIN = −1.0 dBFS differential input, 1.0 V internal reference, DCS  
enabled, unless otherwise noted.  
Table 2.  
AD9255BCPZ-802  
AD9255BCPZ-1052  
AD9255BCPZ-1252  
Parameter1  
Temp Min  
Typ  
Max Min  
Typ  
Max Min  
Typ  
Max Unit  
SIGNAL-TO-NOISE-RATIO (SNR)  
fIN = 2.4 MHz  
fIN = 70 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
79.2  
78.9  
78.9  
78.5  
78.3  
78.3  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
78.1  
77.9  
77.6  
77.3  
76.9  
76.7  
fIN = 140 MHz  
fIN = 200 MHz  
78.0  
76.9  
77.7  
76.4  
77.1  
75.5  
SIGNAL-TO-NOISE-AND DISTORTION (SINAD)  
fIN = 2.4 MHz  
fIN = 70 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
78.7  
78.7  
78.6  
78.0  
78.0  
78.0  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
fIN = 140 MHz  
fIN = 200 MHz  
76.8  
75.8  
77.0  
75.3  
76.7  
74.3  
EFFECTIVE NUMBER OF BITS (ENOB)  
fIN = 2.4 MHz  
fIN = 70 MHz  
fIN = 140 MHz  
fIN = 200 MHz  
12.8  
12.8  
12.5  
12.3  
12.8  
12.7  
12.5  
12.2  
12.7  
12.7  
12.4  
12.0  
Bits  
Bits  
Bits  
Bits  
25°C  
25°C  
25°C  
25°C  
WORST SECOND OR THIRD HARMONIC  
fIN = 2.4 MHz  
fIN = 70 MHz  
dBc  
dBc  
dBc  
dBc  
dBc  
25°C  
25°C  
Full  
25°C  
25°C  
−88  
−94  
−90  
−89  
−88  
−93  
−91  
−88  
−85  
fIN = 140 MHz  
fIN = 200 MHz  
−82  
−81  
−86  
−81  
−89  
−80  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)  
fIN = 2.4 MHz  
fIN = 70 MHz  
dBc  
dBc  
dBc  
dBc  
dBc  
25°C  
25°C  
Full  
25°C  
25°C  
88  
94  
90  
89  
88  
93  
91  
88  
85  
fIN = 140 MHz  
fIN = 200 MHz  
82  
81  
86  
81  
89  
80  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)  
Without Dither (AIN at −23 dBFS)  
fIN = 2.4 MHz  
dBFS  
dBFS  
dBFS  
dBFS  
25°C  
25°C  
25°C  
25°C  
102  
103  
104  
102  
99  
97  
97  
101  
96  
99  
98  
97  
fIN = 70 MHz  
fIN = 140 MHz  
fIN = 200 MHz  
With On-Chip Dither (AIN at −23 dBFS)  
fIN = 2.4 MHz  
fIN = 70 MHz  
fIN = 140 MHz  
fIN = 200 MHz  
dBFS  
dBFS  
dBFS  
dBFS  
25°C  
25°C  
25°C  
25°C  
110  
110  
110  
110  
109  
108  
108  
109  
108  
109  
109  
109  
Rev. C | Page 5 of 44  
 
AD9255  
Data Sheet  
AD9255BCPZ-802  
AD9255BCPZ-1052  
AD9255BCPZ-1252  
Parameter1  
Temp Min  
Typ  
Max Min  
Typ  
Max Min  
Typ  
Max Unit  
WORST OTHER (HARMONIC OR SPUR)  
Without Dither  
dBc  
dBc  
dBc  
dBc  
dBc  
fIN = 2.4 MHz  
fIN = 70 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
−106  
−106  
−105  
−104  
−101  
−104  
−94  
−97  
−95  
−99  
−91  
−98  
fIN = 140 MHz  
fIN = 200 MHz  
With On-Chip Dither  
fIN = 2.4 MHz  
−104  
−102  
−104  
−103  
−103  
−100  
dBc  
dBc  
dBc  
dBc  
dBc  
25°C  
25°C  
Full  
25°C  
25°C  
−105  
−106  
−106  
−105  
−101  
−104  
fIN = 70 MHz  
fIN = 140 MHz  
fIN = 200 MHz  
−103  
−100  
−103  
−101  
−103  
−100  
TWO-TONE SFDR  
Without Dither  
93  
80  
90  
78  
dBc  
dBc  
MHz  
fIN = 29 MHz (−7 dBFS ), 32 MHz (−7 dBFS )  
fIN = 169 MHz (−7 dBFS ), 172 MHz (−7 dBFS )  
ANALOG INPUT BANDWIDTH  
25°C  
25°C  
25°C  
95  
79  
650  
650  
650  
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions.  
2 The suffix following the part number refers to the model found in the Ordering Guide section.  
DIGITAL SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, SVDD = 1.8 V, maximum sample rate, VIN = −1.0 dBFS differential input, 1.0 V internal reference, and DCS  
enabled, unless otherwise noted.  
Table 3.  
Parameter  
Temperature  
Min  
Typ  
Max  
Unit  
DIFFERENTIAL CLOCK INPUTS (CLK+, CLK−)  
Logic Compliance  
CMOS/LVDS/LVPECL  
Internal Common-Mode Bias  
Differential Input Voltage  
Input Voltage Range  
Input Common-Mode Range  
High Level Input Current  
Low Level Input Current  
Input Capacitance  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
0.9  
3.6  
V
V p-p  
V
0.3  
AGND  
0.9  
−100  
−100  
AVDD  
1.4  
+100  
+100  
V
μA  
μA  
pF  
kΩ  
4
Input Resistance  
8
10  
12  
SYNC INPUT  
Logic Compliance  
Internal Bias  
CMOS  
0.9  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
V
Input Voltage Range  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Capacitance  
AGND  
1.2  
AGND  
−100  
−100  
AVDD  
AVDD  
0.6  
V
V
V
+100  
+100  
μA  
μA  
pF  
 
1
16  
Input Resistance  
12  
20  
Rev. C | Page 6 of 44  
 
 
 
 
 
 
 
Data Sheet  
AD9255  
Parameter  
LOGIC INPUT (CSB)1  
Temperature  
Min  
Typ  
Max  
Unit  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.22  
0
SVDD  
0.6  
V
V
−10  
40  
+10  
132  
µA  
µA  
kΩ  
pF  
26  
2
Input Capacitance  
LOGIC INPUT (SCLK/DFS)2  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current (VIN = 1.8 V)  
Low Level Input Current  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.22  
0
−92  
−10  
SVDD  
0.6  
−135  
+10  
V
V
µA  
µA  
kΩ  
pF  
26  
2
Input Capacitance  
LOGIC INPUT/OUTPUT (SDIO/DCS)1  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
1.22  
0
−10  
38  
SVDD  
0.6  
+10  
128  
V
V
µA  
µA  
kΩ  
pF  
V
26  
5
Input Capacitance  
High Level Output Voltage  
Low Level Output Voltage  
LOGIC INPUTS (OEB, PDWN, DITHER, LVDS, LVDS_RS)2  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current (VIN = 1.8 V)  
Low Level Input Current  
Input Resistance  
1.70  
0.2  
V
Full  
Full  
Full  
Full  
Full  
Full  
1.22  
0
−90  
−10  
2.1  
0.6  
−134  
+10  
V
V
µA  
µA  
kΩ  
pF  
26  
5
Input Capacitance  
DIGITAL OUTPUTS (DRVDD = 1.8 V)  
CMOS Mode  
High Level Output Voltage  
IOH = 50 µA  
IOH = 0.5 mA  
Full  
Full  
1.79  
1.75  
V
V
Low Level Output Voltage  
IOL = 1.6 mA  
IOL = 50 µA  
Full  
Full  
0.2  
0.05  
V
V
LVDS Mode  
ANSI Mode  
Differential Output Voltage (VOD)  
Output Offset Voltage (VOS)  
Reduced Swing Mode  
Differential Output Voltage (VOD)  
Output Offset Voltage (VOS)  
Full  
Full  
290  
1.15  
345  
1.25  
400  
1.35  
mV  
V
Full  
Full  
160  
1.15  
200  
1.25  
230  
1.35  
mV  
V
1 Pull-up.  
2 Pull-down.  
Rev. C | Page 7 of 44  
 
 
AD9255  
Data Sheet  
SWITCHING SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, SVDD = 1.8 V, maximum sample rate, VIN = −1.0 dBFS differential input, 1.0 V internal reference, and  
DCS enabled, unless otherwise noted.  
Table 4.  
AD9255BCPZ-801  
Temp Min Typ Max Min Typ  
AD9255BCPZ-1051 AD9255BCPZ-1251  
Max Min Typ Max Unit  
Parameter  
CLOCK INPUT PARAMETERS  
Input Clock Rate  
Conversion Rate2  
DCS Enabled  
DCS Disabled  
CLK Period—Divide-by-1 Mode (tCLK  
Full  
625  
625  
625  
MHz  
Full  
Full  
Full  
20  
10  
12.5  
80  
80  
20  
10  
9.5  
105  
105  
20  
10  
8
125  
125  
MSPS  
MSPS  
ns  
)
CLK Pulse Width High (tCH  
)
Divide-by-1 Mode  
DCS Enabled  
DCS Disabled  
Divide-by-3 Mode, Divide-by-5 Mode, and  
Divide-by-7 Mode, DCS Enabled3  
Divide-by-2 Mode, Divide-by-4 Mode, Divide-  
by-6 Mode, and Divide-by-8 Mode, DCS  
Enabled or DCS Disabled3  
Full  
3.75 6.25 8.75 2.85 4.75 6.65  
2.4  
3.8  
0.8  
4
4
5.6  
4.2  
ns  
ns  
ns  
5.9  
0.8  
6.25 6.6  
4.5  
0.8  
4.75 5.0  
Full  
Full  
0.8  
0.8  
0.8  
ns  
Aperture Delay (tA)  
Aperture Uncertainty (Jitter, tJ)  
DATA OUTPUT PARAMETERS  
CMOS Mode  
Full  
Full  
1.0  
0.07  
1.0  
0.07  
1.0  
0.07  
ns  
ps rms  
Data Propagation Delay (tPD  
DCO Propagation Delay (tDCO  
)
Full  
Full  
Full  
Full  
2.4  
2.7  
0.3  
2.8  
3.4  
0.6  
12  
3.4  
4.2  
0.9  
2.4  
2.7  
0.3  
2.8  
3.4  
0.6  
12  
3.4  
4.2  
0.9  
2.4  
2.7  
0.3  
2.8  
3.4  
0.6  
12  
3.4  
4.2  
0.9  
ns  
ns  
ns  
Cycles  
4
)
DCO to Data Skew (tSKEW  
)
Pipeline Delay (Latency)  
LVDS Mode  
Data Propagation Delay (tPD  
DCO Propagation Delay (tDCO  
)
Full  
Full  
2.6  
3.3  
3.4  
3.8  
4.2  
4.3  
2.6  
3.3  
3.4  
3.8  
4.2  
4.3  
2.6  
3.3  
3.4  
3.8  
4.2  
4.3  
ns  
ns  
4
)
DCO to Data Skew (tSKEW  
)
−0.3 +0.4 +1.2 −0.3 +0.4 +1.2  
−0.3 +0.4 +1.2  
Pipeline Delay (Latency)  
Wake-Up Time5  
Full  
Full  
Full  
12.5  
500  
2
12.5  
500  
2
12.5  
500  
2
Cycles  
μs  
OUT-OF-RANGE RECOVERY TIME  
Cycles  
1 The suffix following the part number refers to the model found in the Ordering Guide section.  
2 Conversion rate is the clock rate after the divider.  
3 See the Input Clock Divider section for additional information on using the DCS with the input clock divider.  
4 Additional DCO delay can be added by writing to Bit 0 through Bit 4 in SPI Register 0x17 (see Table 17).  
5 Wake-up time is defined as the time required to return to normal operation from power-down mode.  
Rev. C | Page 8 of 44  
 
 
 
 
 
Data Sheet  
AD9255  
TIMING SPECIFICATIONS  
Table 5.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
SYNC TIMING REQUIREMENTS  
tSSYNC  
tHSYNC  
SYNC to rising edge of CLK setup time  
SYNC to rising edge of CLK hold time  
0.30  
0.40  
ns  
ns  
SPI TIMING REQUIREMENTS1  
tDS  
tDH  
tCLK  
tS  
tH  
tHIGH  
tLOW  
tEN_SDIO  
Setup time between the data and the rising edge of SCLK  
Hold time between the data and the rising edge of SCLK  
Period of the SCLK  
Setup time between CSB and SCLK  
Hold time between CSB and SCLK  
SCLK pulse width high  
SCLK pulse width low  
Time required for the SDIO pin to switch from an input to an  
output relative to the SCLK falling edge  
2
2
40  
2
2
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDIS_SDIO  
Time required for the SDIO pin to switch from an output to an  
input relative to the SCLK rising edge  
10  
ns  
1 Refer to Figure 84 for a detailed timing diagram.  
Timing Diagrams  
N – 1  
N + 4  
tA  
N + 5  
N
N + 3  
VIN  
N + 1  
N + 2  
tCH  
tCL  
tCLK  
CLK+  
CLK–  
tDCO  
DCO/DCO+  
DCO–  
tSKEW  
LVDS (DDR) MODE  
CMOS MODE  
tPD  
D0/1+ TO D12/D13+  
D0/1– TO D12/D13–  
DEx  
– 12  
DOx  
– 12  
DEx  
– 11  
DOx  
– 11  
DEx  
– 10  
DOx  
– 10  
DEx  
– 9  
DOx  
– 9  
DEx  
– 8  
DOx  
– 8  
D0 TO D13  
NOTES  
1. DEx DENOTES EVEN BIT.  
2. DOx DENOTES ODD BIT.  
Dx – 12  
Dx – 11  
Dx – 10  
Dx – 9  
Dx – 8  
Figure 2. LVDS (DDR) and CMOS Output Mode Data Output Timing  
CLK+  
SYNC  
tSSYNC  
tHSYNC  
Figure 3. SYNC Input Timing Requirements  
Rev. C | Page 9 of 44  
 
 
 
 
AD9255  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 6.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
Electrical  
AVDD to AGND  
DRVDD to AGND  
SVDD to AGND  
VIN+, VIN− to AGND  
CLK+, CLK− to AGND  
SYNC to AGND  
VREF to AGND  
SENSE to AGND  
VCM to AGND  
RBIAS to AGND  
CSB to AGND  
SCLK/DFS to AGND  
SDIO/DCS to AGND  
OEB to AGND  
PDWN to AGND  
LVDS to AGND  
LVDS_RS to AGND  
DITHER to AGND  
D0 through D13 to AGND  
DCO to AGND  
−0.3 V to +2.0 V  
−0.3 V to +2.0V  
−0.3 V to +3.6 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to SVDD +0.3 V  
−0.3 V to SVDD +0.3 V  
−0.3V to SVDD + 0.3 V  
−0.3 V to DRVDD + 0.2 V  
−0.3 V to DRVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to DRVDD + 0.2 V  
−0.3 V to DRVDD + 0.2 V  
THERMAL CHARACTERISTICS  
The exposed paddle must be soldered to the ground plane for  
the LFCSP package. Soldering the exposed paddle to the customer  
board increases the reliability of the solder joints and maximizes  
the thermal capability of the package.  
Typical θJA is specified for a 4-layer PCB with a solid ground  
plane. As shown, airflow improves heat dissipation, which  
reduces θJA. In addition, metal in direct contact with the package  
leads from metal traces, through holes, ground, and power  
planes, reduces the θJA.  
Table 7. Thermal Resistance  
Airflow  
Velocity  
(m/s)  
1, 2  
1, 3  
1, 4  
Package Type  
θJA  
θJC  
θJB  
Unit  
48-Lead LFCSP  
(CP-48-8)  
0
24.5 1.3  
21.4  
12.7 °C/W  
°C/W  
Environmental  
1.0  
2.5  
Operating Temperature Range  
(Ambient)  
Maximum Junction Temperature  
Under Bias  
−40°C to +85°C  
150°C  
19.2  
°C/W  
1 Per JEDEC 51-7, plus JEDEC 25-5 2S2P test board.  
2 Per JEDEC JESD51-2 (still air) or JEDEC JESD51-6 (moving air).  
3 Per MIL-Std 883, Method 1012.1.  
4 Per JEDEC JESD51-8 (still air).  
Storage Temperature Range  
(Ambient)  
−65°C to +150°C  
ESD CAUTION  
Rev. C | Page 10 of 44  
 
 
 
 
 
 
 
 
Data Sheet  
AD9255  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
SYNC  
CLK+  
CLK–  
AVDD  
AVDD  
OEB  
1
2
3
4
5
6
7
8
9
36 AVDD  
35 DITHER  
34 AVDD  
33 SVDD  
32 CSB  
PIN 1  
INDICATOR  
AD9255  
PARALLEL  
31 SCLK/DFS  
30 SDIO/DCS  
29 DRVDD  
28 DNC  
DNC  
CMOS  
DCO  
TOP VIEW  
(Not to Scale)  
DNC  
DNC 10  
D0 (LSB) 11  
D1 12  
27 OR  
26 D13 (MSB)  
25 D12  
NOTES  
1. DNC = DO NOT CONNECT.  
2. THE EXPOSED THERMAL PAD ON THE BOTTOM OF THE PACKAGE  
PROVIDES THE ANALOG GROUND FOR THE INPUT. THIS EXPOSED  
PAD MUST BE CONNECTED TO GROUND FOR PROPER OPERATION.  
Figure 4. LFCSP Parallel CMOS Pin Configuration (Top View)  
Table 8. Pin Function Descriptions (Parallel CMOS Mode)  
Pin No.  
Mnemonic  
Type  
Description  
ADC Power Supplies  
13, 20, 29  
4, 5, 34, 36, 45  
33  
DRVDD  
AVDD  
SVDD  
Supply  
Supply  
Supply  
Digital Output Driver Supply (1.8 V Nominal).  
Analog Power Supply (1.8 V Nominal).  
SPI Input/Output Voltage  
7, 9, 10, 28, 39, 40 DNC  
Do Not Connect.  
0
AGND  
Ground  
Analog Ground. The exposed thermal pad on the bottom of the package provides  
the analog ground for the input. This exposed pad must be connected to ground for  
proper operation.  
ADC Analog  
42  
43  
38  
37  
47  
46  
2
3
VIN+  
VIN−  
VREF  
SENSE  
RBIAS  
VCM  
Input  
Input  
Differential Analog Input Pin (+).  
Differential Analog Input Pin (−).  
Input/output Voltage Reference Input/Output.  
Input  
Input/output External Reference Bias Resistor.  
Output  
Input  
Voltage Reference Mode Select. See Table 11 for details.  
Common-Mode Level Bias Output for Analog Inputs.  
ADC Clock Input—True.  
ADC Clock Input—Complement.  
CLK+  
CLK−  
Input  
Digital Input  
1
SYNC  
Input  
Digital Synchronization Pin. Slave mode only.  
Digital Outputs  
11  
12  
14  
15  
16  
17  
18  
19  
21  
D0 (LSB)  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
CMOS Output Data.  
CMOS Output Data.  
CMOS Output Data.  
CMOS Output Data.  
CMOS Output Data.  
CMOS Output Data.  
CMOS Output Data.  
CMOS Output Data.  
CMOS Output Data.  
Rev. C | Page 11 of 44  
 
AD9255  
Data Sheet  
Pin No.  
Mnemonic  
D9  
D10  
D11  
D12  
D13 (MSB)  
OR  
DCO  
Type  
Description  
22  
23  
24  
25  
26  
27  
8
Output  
Output  
Output  
Output  
Output  
Output  
Output  
CMOS Output Data.  
CMOS Output Data.  
CMOS Output Data.  
CMOS Output Data.  
CMOS Output Data.  
Overrange Output.  
Data Clock Output.  
SPI Control  
31  
30  
32  
SCLK/DFS  
SDIO/DCS  
CSB  
Input  
SPI Serial Clock/Data Format Select Pin in External Pin Mode.  
Input/output SPI Serial Data I/O/Duty Cycle Stabilizer Pin in External Pin Mode.  
Input  
SPI Chip Select (Active Low).  
ADC Configuration  
6
35  
OEB  
DITHER  
Input  
Input  
Output Enable Input (Active Low).  
In external pin mode, this pin sets dither to on (active high). Pull low for control via  
SPI in SPI mode.  
41  
44  
48  
LVDS_RS  
LVDS  
Input  
Input  
Input  
In external pin mode, this pin sets LVDS reduced swing output mode (active high).  
Pull low for control via SPI in SPI mode.  
In external pin mode, this pin sets LVDS output mode (active high). Pull low for  
control via SPI in SPI mode.  
Power-down input in external pin mode. In SPI mode, this input can be configured  
as power-down or standby.  
PDWN  
Rev. C | Page 12 of 44  
Data Sheet  
AD9255  
SYNC  
CLK+  
CLK–  
AVDD  
AVDD  
OEB  
1
2
3
4
5
6
7
8
9
36 AVDD  
PIN 1  
35 DITHER  
34 AVDD  
INDICATOR  
33 SVDD  
32 CSB  
AD9255  
INTERLEAVED  
31 SCLK/DFS  
30 SDIO/DCS  
29 DRVDD  
28 OR+  
DCO–  
DCO+  
DNC  
LVDS  
TOP VIEW  
(Not to Scale)  
DNC 10  
D0/1– 11  
D0/1+ 12  
27 OR–  
26 D12/13+  
25 D12/13–  
NOTES  
1. DNC = DO NOT CONNECT.  
2. THE EXPOSED THERMAL PAD ON THE BOTTOM OF THE PACKAGE  
PROVIDES THE ANALOG GROUND FOR THE PART. THIS EXPOSED PAD  
MUST BE CONNECTED TO GROUND FOR PROPER OPERATION.  
Figure 5. LFCSP Interleaved Parallel LVDS Pin Configuration (Top View)  
Table 9. Pin Function Descriptions (Interleaved Parallel LVDS Mode)  
Pin No.  
Mnemonic  
Type  
Description  
ADC Power Supplies  
13, 20, 29  
DRVDD  
Supply  
Supply  
Supply  
Digital Output Driver Supply (1.8 V Nominal).  
Analog Power Supply (1.8 V Nominal).  
SPI Input/Output Voltage.  
4, 5, 34, 36, 45 AVDD  
33  
SVDD  
DNC  
9, 10, 39, 40  
0
Do Not Connect.  
AGND  
Ground  
Analog Ground. The exposed thermal pad on the bottom of the package provides the  
analog ground for the input. This exposed pad must be connected to ground for proper  
operation.  
ADC Analog  
42  
43  
38  
37  
47  
46  
2
3
VIN+  
VIN−  
VREF  
SENSE  
RBIAS  
VCM  
Input  
Input  
Differential Analog Input Pin (+).  
Differential Analog Input Pin (−).  
Input/output Voltage Reference Input/Output.  
Input  
Input/output External Reference Bias Resistor.  
Output  
Input  
Voltage Reference Mode Select. See Table 11 for details.  
Common-Mode Level Bias Output for Analog Inputs.  
ADC Clock Input—True.  
ADC Clock Input—Complement.  
CLK+  
CLK−  
Input  
Digital Input  
1
SYNC  
Input  
Digital Synchronization Pin. Slave mode only.  
Digital Outputs  
12  
11  
15  
14  
17  
16  
19  
18  
22  
21  
D0/1+  
D0/1−  
D2/3+  
D2/3−  
D4/5+  
D4/5−  
D6/7+  
D6/7−  
D8/9+  
D8/9−  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
LVDS Output Data Bit 0/Bit 1 (LSB)—True.  
LVDS Output Data Bit 0/Bit 1 (LSB)—Complement.  
LVDS Output Data Bit 2/Bit 3—True.  
LVDS Output Data Bit 2/Bit 3—Complement.  
LVDS Output Data Bit 4/Bit 5—True.  
LVDS Output Data Bit 4/Bit 5—Complement.  
LVDS Output Data Bit 6/Bit 7—True.  
LVDS Output Data Bit 6/Bit 7—Complement.  
LVDS Output Data Bit 8/Bit 9 —True.  
LVDS Output Data Bit 8/Bit 9—Complement.  
Rev. C | Page 13 of 44  
AD9255  
Data Sheet  
Pin No.  
Mnemonic  
D10/11+  
D10/11−  
D12/13+ (MSB) Output  
D12/13− (MSB) Output  
OR+  
OR−  
DCO+  
DCO−  
Type  
Description  
24  
23  
26  
25  
28  
27  
8
7
Output  
Output  
LVDS Output Data Bit 10/Bit 11—True.  
LVDS Output Data Bit 10/Bit 11—Complement.  
LVDS Output Data Bit 12/Bit 13—True.  
LVDS Output Data Bit 12/Bit 13—Complement.  
LVDS Overrange Output—True.  
LVDS Overrange Output—Complement.  
LVDS Data Clock Output—True.  
LVDS Data Clock Output—Complement.  
Output  
Output  
Output  
Output  
SPI Control  
31  
30  
32  
SCLK/DFS  
SDIO/DCS  
CSB  
Input  
SPI Serial Clock/Data Format Select Pin in External Pin Mode.  
Input/output SPI Serial Data I/O/Duty Cycle Stabilizer Pin in External Pin Mode.  
Input  
SPI Chip Select (Active Low).  
ADC Configuration  
6
35  
OEB  
Input  
Input  
Output Enable Input (Active Low).  
In external pin mode, this pin sets dither to on (active high). Pull low for control via SPI  
in the SPI mode.  
In external pin mode, this pin sets LVDS reduced swing output mode (active high). Pull  
low for control via SPI in the SPI mode.  
In external pin mode, this pin sets LVDS output mode (active high). Pull low for control  
via SPI in the SPI mode.  
DITHER  
LVDS_RS  
LVDS  
41  
44  
48  
Input  
Input  
Input  
PDWN  
Power-Down Input in External Pin Mode. In SPI mode, this input can be configured as  
power-down or standby.  
Rev. C | Page 14 of 44  
Data Sheet  
AD9255  
TYPICAL PERFORMANCE CHARACTERISTICS  
AVDD = 1.8 V, DRVDD = 1.8 V, SVDD = 1.8 V, sample rate = 125 MSPS, DCS enabled, 1.0 V internal reference, 2 V p-p differential input,  
VIN = −1.0 dBFS, and 32k sample, TA = 25°C, unless otherwise noted.  
0
–20  
0
80MSPS  
80MSPS  
2.4MHz @ –1dBFS  
SNR = 78.2dB (79.2dBFS)  
SFDR = 89dBc  
200.3MHz @ –1dBFS  
SNR = 75.9dB (76.9dBFS)  
SFDR = 81dBc  
–20  
–40  
–40  
–60  
–60  
THIRD  
HARMONIC  
SECOND  
HARMONIC  
–80  
–80  
THIRD  
HARMONIC  
SECOND  
HARMONIC  
–100  
–120  
–140  
–100  
–120  
–140  
0
10  
20  
FREQUENCY (MHz)  
30  
40  
0
10  
20  
FREQUENCY (MHz)  
30  
40  
Figure 6. AD9255-80 Single-Tone FFT with fIN = 2.4 MHz  
Figure 9. AD9255-80 Single-Tone FFT with fIN = 200.3 MHz  
0
–20  
0
80MSPS  
80MSPS  
70.1MHz @ –1dBFS  
SNR = 77.8dB (78.8dBFS)  
SFDR = 93.6dBc  
70.1MHz @ –6dBFS  
SNR = 73.2dB (79.2dBFS)  
–20  
SFDR = 99dBc  
–40  
–40  
–60  
–60  
THIRD  
HARMONIC  
–80  
–80  
THIRD  
HARMONIC  
SECOND  
HARMONIC  
SECOND  
HARMONIC  
–100  
–120  
–140  
–100  
–120  
–140  
0
10  
20  
30  
40  
0
10  
20  
30  
40  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 7. AD9255-80 Single-Tone FFT with fIN = 70.1 MHz  
Figure 10. AD9255-80 Single-Tone FFT with fIN = 70.1 MHz at −6 dBFS with  
Dither Enabled  
120  
0
80MSPS  
SFDR (dBFS)  
140.1MHz @ –1dBFS  
SNR = 77.0dB (78.0dBFS)  
SFDR = 82.1dBc  
–20  
–40  
100  
SNR (dBFS)  
80  
–60  
THIRD  
HARMONIC  
60  
SFDR (dBc)  
SECOND  
HARMONIC  
–80  
40  
–100  
–120  
–140  
SNR (dBc)  
20  
0
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
0
10  
20  
FREQUENCY (MHz)  
30  
40  
INPUT AMPLITUDE (dBFS)  
Figure 11. AD9255-80 Single-Tone SNR/SFDR vs. Input Amplitude (AIN) with  
fIN = 98.12 MHz  
Figure 8. AD9255-80 Single-Tone FFT with fIN = 140.1 MHz  
Rev. C | Page 15 of 44  
 
AD9255  
Data Sheet  
120  
110  
100  
90  
1.6M  
1.4M  
1.2M  
1.0M  
800k  
600k  
400k  
200k  
0
0.62 LSB RMS  
SFDRFS (DITHER ON)  
SFDRFS (DITHER OFF)  
SNRFS (DITHER OFF)  
SNRFS (DITHER ON)  
80  
70  
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
N – 3  
N – 2  
N – 1  
N
N + 1  
N + 2  
N + 3  
INPUT AMPLITUDE (dBFS)  
OUTPUT CODE  
Figure 12. AD9255-80 Single-Tone SNR/SFDR vs. Input Amplitude (AIN) with  
fIN = 30 MHz with and without Dither Enabled  
Figure 15. AD9255-80 Grounded Input Histogram  
100  
1.0  
0.8  
SFDR @ –40°C  
INL WITHOUT DITHER  
INL WITH DITHER  
95  
SFDR @ +25°C  
0.6  
90  
0.4  
SFDR @ +85°C  
0.2  
85  
SNR @ –40°C  
0
80  
–0.2  
–0.4  
–0.6  
–0.8  
75  
70  
65  
SNR @ +25°C  
SNR @ +85°C  
–1.0  
0
0
50  
100  
150  
200  
250  
300  
2000 4000 6000 8000 10,000 12,000 14,000 16,000  
OUTPUT CODE  
INPUT FREQUENCY (MHz)  
Figure 13. AD9255-80 Single-Tone SNR/SFDR vs.  
Input Frequency (fIN) and Temperature with 2 V p-p Full Scale  
Figure 16. AD9255-80 INL with fIN = 12.5 MHz  
105  
0.50  
0.25  
0
100  
95  
90  
SFDR  
85  
80  
–0.25  
SNR  
75  
25  
–0.50  
0
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
2000 4000 6000 8000 10,000 12,000 14,000 16,000  
OUTPUT CODE  
SAMPLE RATE (MSPS)  
Figure 14. AD9255-80 Single-Tone SNR/SFDR vs. Sample Rate (fS)  
with fIN = 70.1 MHz  
Figure 17. AD9255-80 DNL with fIN = 12.5 MHz  
Rev. C | Page 16 of 44  
Data Sheet  
AD9255  
0
–20  
–40  
–60  
0
–20  
105MSPS  
105MSPS  
2.4MHz @ –1dBFS  
SNR = 77.9dB (78.9dBFS)  
SFDR = 91dBc  
200.3MHz @ –1dBFS  
SNR = 75.4dB (76.4dBFS)  
SFDR = 81.6dBc  
–40  
–60  
THIRD  
HARMONIC  
SECOND  
HARMONIC  
SECOND  
HARMONIC  
–80  
–100  
–120  
–140  
–80  
THIRD  
HARMONIC  
–100  
–120  
–140  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 18. AD9255-105 Single-Tone FFT with fIN = 2.4 MHz  
Figure 21. AD9255-105 Single-Tone FFT with fIN = 200.3 MHz  
0
0
105MSPS  
105MSPS  
70.1MHz @ –1dBFS  
70.1MHz @ –6dBFS  
SNR = 77.4dB (78.4dBFS)  
SFDR = 88.7dBc  
SNR = 72.9dB (78.9dBFS)  
SFDR = 91dBc  
–20  
–40  
–20  
–40  
–60  
–60  
SECOND  
HARMONIC  
–80  
–80  
SECOND  
HARMONIC  
THIRD  
HARMONIC  
THIRD  
HARMONIC  
–100  
–120  
–140  
–100  
–120  
–140  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 19. AD9255-105 Single-Tone FFT with fIN = 70.1 MHz  
Figure 22. AD9255-105 Single-Tone FFT with fIN = 70.1 MHz at −6 dBFS with  
Dither Enabled  
120  
0
105MSPS  
SFDR (dBFS)  
140.1MHz @ –1dBFS  
SNR = 76.7dB (77.7dBFS)  
SFDR = 86.4dBc  
–20  
–40  
100  
SNR (dBFS)  
80  
–60  
THIRD  
HARMONIC  
SECOND  
HARMONIC  
60  
SFDR (dBc)  
–80  
40  
–100  
–120  
–140  
SNR (dBc)  
20  
0
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
0
10  
20  
30  
40  
50  
INPUT AMPLITUDE (dBFS)  
FREQUENCY (MHz)  
Figure 23. AD9255-105 Single-Tone SNR/SFDR vs. Input Amplitude (AIN) with  
fIN = 98.12 MHz  
Figure 20. AD9255-105 Single-Tone FFT with fIN = 140.1 MHz  
Rev. C | Page 17 of 44  
AD9255  
Data Sheet  
120  
110  
100  
90  
1.4M  
1.2M  
1.0M  
800k  
600k  
400k  
200k  
0
0.63 LSB RMS  
SFDRFS (DITHER ON)  
SFDRFS (DITHER OFF)  
SNRFS (DITHER OFF)  
SNRFS (DITHER ON)  
80  
70  
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
N – 3  
N – 2  
N – 1  
N
N + 1  
N + 2  
N + 3  
INPUT AMPLITUDE (dBFS)  
OUTPUT CODE  
Figure 24. AD9255-105 Single-Tone SNR/SFDR vs. Input Amplitude (AIN) with  
fIN = 30 MHz with and without Dither Enabled  
Figure 27. AD9255-105 Grounded Input Histogram  
100  
1.0  
0.8  
SFDR @ –40°C  
INL WITHOUT DITHER  
INL WITH DITHER  
SFDR @ +25°C  
95  
0.6  
SFDR @ +85°C  
90  
0.4  
0.2  
85  
SNR @ –40°C  
80  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
75  
70  
65  
SNR @ +25°C  
SNR @ +85°C  
0
50  
100  
150  
200  
250  
300  
0
2000 4000 6000 8000 10,000 12,000 14,000 16,000  
OUTPUT CODE  
INPUT FREQUENCY (MHz)  
Figure 25. AD9255-105 Single-Tone SNR/SFDR vs.  
Input Frequency (fIN) and Temperature with 2 V p-p Full Scale  
Figure 28. AD9255-105 INL with fIN = 12.5 MHz  
105  
0.50  
0.25  
0
100  
SFDR  
95  
90  
85  
–0.25  
–0.50  
80  
SNR  
75  
25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105  
0
2000 4000 6000 8000 10,000 12,000 14,000 16,000  
OUTPUT CODE  
SAMPLE RATE (MSPS)  
Figure 26. AD9255-105 Single-Tone SNR/SFDR vs. Sample Rate (fS)  
with fIN = 70.1 MHz  
Figure 29. AD9255-105 DNL with fIN = 12.5 MHz  
Rev. C | Page 18 of 44  
Data Sheet  
AD9255  
0
–20  
–40  
–60  
0
–20  
125MSPS  
125MSPS  
2.4MHz @ –1dBFS  
SNR = 77.2dB (78.2dBFS)  
SFDR = 88dBc  
140.1MHz @ –1dBFS  
SNR = 76.2dB (77.2dBFS)  
SFDR = 88.9dBc  
–40  
–60  
SECOND  
HARMONIC  
SECOND  
HARMONIC  
THIRD  
HARMONIC  
–80  
–100  
–120  
–140  
–80  
THIRD  
HARMONIC  
–100  
–120  
–140  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 30. AD9255-125 Single-Tone FFT with fIN = 2.4 MHz  
Figure 33. AD9255-125 Single-Tone FFT with fIN = 140.1 MHz  
0
0
125MSPS  
125MSPS  
30.3MHz @ –1dBFS  
200.3MHz @ –1dBFS  
SNR = 77.7dB (78.7dBFS)  
SFDR = 95dBc  
SNR = 74.5dB (75.5dBFS)  
SFDR = 80.0dBc  
–20  
–40  
–20  
–40  
–60  
–60  
THIRD  
HARMONIC  
SECOND  
HARMONIC  
THIRD  
HARMONIC  
–80  
–80  
SECOND  
HARMONIC  
–100  
–120  
–140  
–100  
–120  
–140  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 31. AD9255-125 Single-Tone FFT with fIN = 30.3 MHz  
Figure 34. AD9255-125 Single-Tone FFT with fIN = 200.3 MHz  
0
0
125MSPS  
125MSPS  
70.1MHz @ –1dBFS  
220.1MHz @ –1dBFS  
SNR = 77.3dB (78.3dBFS)  
SFDR = 93.9dBc  
SNR = 74.2dB (75.2dBFS)  
SFDR = 79.8dBc  
–20  
–40  
–20  
–40  
–60  
–60  
THIRD  
HARMONIC  
SECOND  
HARMONIC  
–80  
–80  
SECOND  
HARMONIC  
THIRD  
HARMONIC  
–100  
–120  
–140  
–100  
–120  
–140  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 32. AD9255-125 Single-Tone FFT with fIN = 70.1 MHz  
Figure 35. AD9255-125 Single-Tone FFT with fIN = 220.1 MHz  
Rev. C | Page 19 of 44  
AD9255  
Data Sheet  
0
120  
100  
80  
60  
40  
20  
0
125MSPS  
SFDR (dBFS)  
70.1MHz @ –6dBFS  
SNR = 72.6dB (78.6dBFS)  
SFDR = 99.7dBc  
–20  
–40  
SNR (dBFS)  
–60  
SFDR (dBc)  
–80  
SECOND  
HARMONIC  
THIRD  
HARMONIC  
–100  
–120  
–140  
SNR (dBc)  
0
10  
20  
30  
40  
50  
60  
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 36. AD9255-125 Single-Tone FFT with fIN = 70.1 MHz at −6 dBFS with  
Dither Enabled  
Figure 39. AD9255-125 Single-Tone SNR/SFDR vs. Input Amplitude (AIN) with  
fIN = 2.4 MHz  
120  
125MSPS  
70.1MHz @ –23dBFS  
0
SFDR (dBFS)  
SNR = 56.4dBc (79.4dBFS)  
SFDR = 75.8dBc  
–30  
–15  
100  
SNR (dBFS)  
80  
–45  
–60  
–75  
60  
SFDR (dBc)  
–90  
2
40  
5
–105  
3
+
6
SNR (dBc)  
4
–120  
–135  
20  
0
6
12  
18  
24  
30  
36  
42  
48  
54  
60  
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 40. AD9255-125 Single-Tone SNR/SFDR vs. Input Amplitude (AIN) with  
fIN = 98.12 MHz  
Figure 37. AD9255-125 Single-Tone FFT with fIN = 70.1 MHz at −23 dBFS with  
Dither Disabled, 1M Sample  
120  
125MSPS  
70.1MHz @ –23dBFS  
0
SFDRFS (DITHER ON)  
SNR = 55.9dBc (78.9dBFS)  
–15  
SFDR = 86.6dBc  
–30  
110  
100  
–45  
–60  
–75  
SFDRFS (DITHER OFF)  
90  
–90  
–105  
2
4
+
3
SNRFS (DITHER OFF)  
80  
5
6
–120  
–135  
SNRFS (DITHER ON)  
70  
6
12  
18  
24  
30  
36  
42  
48  
54  
60  
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 38. AD9255-125 Single-Tone FFT with fIN = 70.1 MHz at −23 dBFS with  
Dither Enabled, 1M Sample  
Figure 41. AD9255-125 Single-Tone SNR/SFDR vs. Input Amplitude (AIN) with  
fIN = 30 MHz With and Without Dither Enabled  
Rev. C | Page 20 of 44  
Data Sheet  
AD9255  
100  
0
–20  
SFDR @ –40°C  
95  
SFDR (dBc)  
SFDR @ +25°C  
SFDR @ +85°C  
90  
–40  
IMD3 (dBc)  
85  
–60  
SNR @ –40°C  
80  
75  
70  
65  
–80  
–100  
–120  
–140  
SNR @ +25°C  
SFDR (dBFS)  
IMD3 (dBFS)  
SNR @ +85°C  
0
50  
100  
150  
200  
250  
300  
–90  
–78  
–66  
–54  
–42  
–30  
–18  
–6  
INPUT FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 42. AD9255-125 Single-Tone SNR/SFDR vs.  
Figure 45. AD9255-125 Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN  
)
Input Frequency (fIN) and Temperature with 2 V p-p Full Scale  
with fIN1 = 169.1 MHz, fIN2 = 172.1 MHz, fS = 125 MSPS  
95  
0
125MSPS  
29.1MHz @ –7dBFS  
32.1MHz @ –7dBFS  
SFDR = 94.4dBc  
(101.4dBFS)  
–20  
–40  
90  
85  
SFDR  
–60  
80  
–80  
75  
–100  
–120  
–140  
SNR  
70  
65  
0
50  
100  
150  
200  
250  
300  
0
10  
20  
30  
40  
50  
60  
INPUT FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 43. AD9255-125 Single-Tone SNR/SFDR vs.  
Input Frequency (fIN) with 1 V p-p Full Scale  
Figure 46. AD9255-125 Two-Tone FFT with fIN1 = 29.1 MHz and fIN2 = 32.1 MHz  
0
–20  
0
125MSPS  
169.1MHz @ –7dBFS  
172.1MHz @ –7dBFS  
SFDR = 79.5dBc (86.5dBFS)  
SFDR (dBc)  
IMD3 (dBc)  
–20  
–40  
–40  
–60  
–60  
–80  
–80  
SFDR (dBFS)  
–100  
–120  
–140  
–100  
–120  
–140  
IMD3 (dBFS)  
–90  
–78  
–66  
–54  
–42  
–30  
–18  
–6  
0
10  
20  
30  
40  
50  
60  
INPUT AMPLITUDE (dBFS)  
FREQUENCY (MHz)  
Figure 44. AD9255-125 Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN  
)
Figure 47. AD9255-125 Two-Tone FFT with fIN1 = 169.1 MHz and  
IN2 = 172.1 MHz  
with fIN1 = 29.1 MHz, fIN2 = 32.1 MHz, fS = 125 MSPS  
f
Rev. C | Page 21 of 44  
AD9255  
Data Sheet  
105  
100  
95  
0.50  
0.25  
0
90  
SFDR  
85  
–0.25  
–0.50  
80  
SNR  
75  
75  
25  
35  
45  
55  
65  
85  
95  
105 115 125  
0
2000 4000 6000 8000 10,000 12,000 14,000 16,000  
SAMPLE RATE (MSPS)  
OUTPUT CODE  
Figure 48. AD9255-125 Single-Tone SNR/SFDR vs. Sample Rate (fS)  
with fIN = 70.1 MHz  
Figure 51. AD9255-125 DNL with fIN = 12.5 MHz  
100  
90  
80  
70  
60  
50  
40  
1.4M  
0.63 LSB RMS  
SFDR (dBc)  
1.2M  
1.0M  
800k  
600k  
400k  
200k  
0
SFDR (dBFS)  
0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20  
N – 3  
N – 2  
N – 1  
N
N + 1  
N + 2  
N + 3  
INPUT COMMON-MODE VOLTAGE (V)  
OUTPUT CODE  
Figure 52. AD9255-125 SNR/SFDR vs. Input Common Mode (VCM)  
with fIN = 30 MHz  
Figure 49. AD9255-125 Grounded Input Histogram  
1.0  
0.8  
INL WITHOUT DITHER  
INL WITH DITHER  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
2000 4000 6000 8000 10,000 12,000 14,000 16,000  
OUTPUT CODE  
Figure 50. AD9255-125 INL with fIN = 12.5 MHz  
Rev. C | Page 22 of 44  
 
Data Sheet  
AD9255  
EQUIVALENT CIRCUITS  
DRVDD  
VIN+ OR  
VIN–  
PAD  
Figure 57. Digital Output  
Figure 53. Equivalent Analog Input Circuit  
AVDD  
SVDD  
0.9V  
26kΩ  
10kΩ  
10kΩ  
350Ω  
CLK–  
CLK+  
SDIO/DCS  
Figure 58. Equivalent SDIO/DCS Circuit  
Figure 54. Equivalent Clock Input Circuit  
AVDD  
SVDD  
350Ω  
VREF  
SCLK/DFS  
6kΩ  
26kΩ  
Figure 55. Equivalent VREF Circuit  
Figure 59. Equivalent SCLK/DFS Input Circuit  
AVDD  
SVDD  
26kΩ  
350Ω  
350Ω  
SENSE  
CSB  
Figure 56. Equivalent SENSE Circuit  
Figure 60. Equivalent CSB Input Circuit  
Rev. C | Page 23 of 44  
 
 
AD9255  
Data Sheet  
AVDD  
DITHER,  
LVDS OR  
LVDS_RS  
350Ω  
350Ω  
PDWN  
26kΩ  
26kΩ  
Figure 61. Equivalent PDWN Circuit  
Figure 63. Equivalent DITHER, LVDS, and LVDS_RS Input Circuit  
DRVDD  
26kΩ  
350Ω  
OEB  
Figure 62. Equivalent OEB Input Circuit  
Rev. C | Page 24 of 44  
Data Sheet  
AD9255  
THEORY OF OPERATION  
A small resistor in series with each input can help reduce the  
With the AD9255, the user can sample any fS/2 frequency  
segment from dc to 200 MHz, using appropriate low-pass or  
band-pass filtering at the ADC inputs with little loss in ADC  
performance. Operation to 300 MHz analog input is permitted,  
but occurs at the expense of increased ADC noise and distortion.  
peak transient current required from the output stage of the  
driving source. A shunt capacitor can be placed across the  
inputs to provide dynamic charging currents. This passive  
network creates a low-pass filter at the ADC input; therefore,  
the precise values are dependent on the application.  
Synchronization capability is provided to allow synchronized  
timing between multiple devices.  
In intermediate frequency (IF) undersampling applications, any  
shunt capacitors should be reduced. In combination with the  
driving source impedance, the shunt capacitors limit the input  
bandwidth. Refer to AN-742 Application Note, Frequency  
Domain Response of Switched-Capacitor ADCs; AN-827  
Application Note, A Resonant Approach to Interfacing Amplifiers to  
Switched-Capacitor ADCs; and the Analog Dialogue article,  
Transformer-Coupled Front-End for Wideband A/D Converters,”  
for more information on this subject (see www.analog.com).  
BIAS  
Programming and control of the AD9255 are accomplished  
using a 3-wire SPI-compatible serial interface.  
ADC ARCHITECTURE  
The AD9255 architecture consists of a front-end sample-and-  
hold input network, followed by a pipelined, switched-capacitor  
ADC. The quantized outputs from each stage are combined into  
a final 14-bit result in the digital correction logic. The pipelined  
architecture permits the first stage to operate on a new input  
sample and the remaining stages to operate on the preceding  
samples. Sampling occurs on the rising edge of the clock.  
S
S
C
C
FB  
S
VIN+  
Each stage of the pipeline, excluding the last, consists of a low  
resolution flash ADC connected to a switched-capacitor digital-  
to-analog converter (DAC) and an interstage residue amplifier.  
The residue amplifier magnifies the difference between the  
reconstructed DAC output and the flash input for the next stage  
in the pipeline. One bit of redundancy is used in each stage to  
facilitate digital correction of flash errors. The last stage simply  
consists of a flash ADC.  
C
C
PAR1  
PAR2  
H
S
S
S
C
S
VIN–  
C
FB  
C
C
PAR1  
PAR2  
S
BIAS  
Figure 64. Switched-Capacitor Input  
The input stage can be ac- or dc-coupled in differential or  
single-ended modes. The output staging block aligns the data,  
corrects errors, and passes the data to the output buffers. The  
output buffers are powered from a separate supply, allowing  
adjustment of the output voltage swing. During power-down,  
the output buffers go into a high impedance state.  
For best dynamic performance, the source impedances driving  
VIN+ and VIN− should be matched, and the inputs should be  
differentially balanced.  
An internal differential reference buffer creates positive and  
negative reference voltages that define the input span of the ADC  
core. The span of the ADC core is set by this buffer to 2 × VREF.  
ANALOG INPUT CONSIDERATIONS  
Input Common Mode  
The analog input to the AD9255 is a differential switched-  
capacitor network that has been designed for optimum  
performance while processing a differential input signal.  
The analog inputs of the AD9255 are not internally dc biased.  
In ac-coupled applications, the user must provide this bias  
externally. Setting the device so that VCM = 0.5 × AVDD is  
recommended for optimum performance, but the device  
functions over a wider range with reasonable performance (see  
Figure 52). An on-board common-mode voltage reference is  
included in the design and is available from the VCM pin.  
Optimum performance is achieved when the common-mode  
voltage of the analog input is set by the VCM pin voltage  
(typically 0.5 × AVDD). The VCM pin must be decoupled to  
ground by a 0.1 µF capacitor, as described in the Applications  
Information section.  
The clock signal alternatively switches between sample mode  
and hold mode (see Figure 64). When the input is switched into  
sample mode, the signal source must be capable of charging the  
sample capacitors and settling within 1/2 of a clock cycle.  
Rev. C | Page 25 of 44  
 
 
 
 
AD9255  
Data Sheet  
Static Linearity  
Dither  
The AD9255 has an optional dither mode that can be selected  
either using the DITHER pin or using the SPI bus. Dithering is  
the act of injecting a known but random amount of white noise,  
commonly referred to as dither, into the input of the ADC.  
Dithering has the effect of improving the local linearity at  
various points along the ADC transfer function. Dithering can  
significantly improve the SFDR when quantizing small signal  
inputs, typically when the input level is below −6 dBFS.  
Dithering also removes sharp local discontinuities in the INL  
transfer function of the ADC and reduces the overall peak-to-  
peak INL.  
In receiver applications, utilizing dither helps to reduce DNL errors  
that cause small signal gain errors. Often, this issue is overcome  
by setting the input noise at 5 dB to 10 dB above the converter  
noise. By utilizing dither within the converter to correct the  
DNL errors, the input noise requirement can be reduced.  
As shown in Figure 65, the dither that is added to the input of  
the ADC through the dither DAC is precisely subtracted out  
digitally to minimize SNR degradation. When dithering is  
enabled, the dither DAC is driven by a pseudorandom number  
generator (PN gen). In the AD9255, the dither DAC is precisely  
calibrated to result in only a very small degradation in SNR and  
SINAD. The typical SNR and SINAD degradation values, with  
dithering enabled, are only 1 dB and 0.8 dB, respectively.  
Differential Input Configurations  
Optimum performance is achieved while driving the AD9255 in a  
differential input configuration. For baseband applications, the  
AD8138, ADA4937-2, and ADA4938-2 differential drivers provide  
excellent performance and a flexible interface to the ADC.  
The output common-mode voltage of the ADA4938-2 is easily  
set with the VCM pin of the AD9255 (see Figure 66), and the  
driver can be configured in the filter topology shown to provide  
band limiting of the input signal.  
VIN  
DOUT  
ADC CORE  
15pF  
200Ω  
33Ω  
5pF  
15Ω  
15Ω  
90Ω  
VIN–  
VIN+  
DITHER  
DAC  
AVDD  
ADC  
VCM  
76.8Ω  
VIN  
ADA4938-2  
0.1µF  
33Ω  
PN GEN  
DITHER ENABLE  
120Ω  
15pF  
200Ω  
Figure 65. Dither Block Diagram  
Large Signal FFT  
Figure 66. Differential Input Configuration Using the ADA4938-2  
In most cases, dithering does not improve SFDR for large signal  
inputs close to full scale, for example, with a −1 dBFS input. For  
large signal inputs, the SFDR is typically limited by front-end  
sampling distortion, which dithering cannot improve. However,  
even for such large signal inputs, dithering may be useful for  
certain applications because it makes the noise floor whiter.  
As is common in pipeline ADCs, the AD9255 contains small  
DNL errors caused by random component mismatches that  
produce spurs or tones that make the noise floor somewhat  
randomly colored part-to-part. Although these tones are typically  
at very low levels and do not limit SFDR when the ADC is  
quantizing large-signal inputs, dithering converts these tones to  
noise and produces a whiter noise floor.  
For baseband applications where SNR is a key parameter,  
differential transformer coupling is the recommended input  
configuration. An example is shown in Figure 67. To bias the  
analog input, the VCM voltage can be connected to the center  
tap of the secondary winding of the transformer.  
C2  
R2  
VIN+  
R1  
2V p-p  
49.9Ω  
C1  
R1  
ADC  
VCM  
R2  
VIN–  
0.1µF  
C2  
Figure 67. Differential Transformer-Coupled Configuration  
Small Signal FFT  
The signal characteristics must be considered when selecting  
a transformer. Most RF transformers saturate at frequencies  
below a few megahertz (MHz). Excessive signal power can also  
cause core saturation, which leads to distortion.  
For small signal inputs, the front-end sampling circuit typically  
contributes very little distortion, and, therefore, the SFDR is likely  
to be limited by tones caused by DNL errors due to random com-  
ponent mismatches. Therefore, for small signal inputs (typically,  
those below −6 dBFS), dithering can significantly improve  
SFDR by converting these DNL tones to white noise.  
At input frequencies in the second Nyquist zone and above, the  
noise performance of most amplifiers is not adequate to achieve  
the true SNR performance of the AD9255. For applications in  
Rev. C | Page 26 of 44  
 
 
 
Data Sheet  
AD9255  
which SNR is a key parameter, differential double balun coupling  
is the recommended input configuration (see Figure 68). In this  
configuration, the input is ac-coupled and the CML is provided  
to each input through a 33 Ω resistor. These resistors compensate  
for losses in the input baluns to provide a 50 Ω impedance to  
the driver.  
Table 10. Example RC Network  
Frequency  
Range  
(MHz)  
R1 Series C1 Differential R2 Series C2 Shunt  
(Ω Each) (pF)  
(Ω Each)  
(pF Each)  
Open  
10  
0 to 100  
100 to 300 10  
15  
18  
10  
15  
10  
An alternative to using a transformer-coupled input at frequencies  
in the second Nyquist zone and higher is to use the ADL5562  
differential driver. The ADL5562 provides three selectable gain  
options up to 15.5 dB. An example circuit is shown in Figure 69;  
additional filtering between the ADL5562 output and the AD9255  
input may be required to reduce out-of-band noise. See the  
ADL5562 data sheet for more information.  
In the double balun and transformer configurations, the value of  
the input capacitors and resistors is dependent on the input fre-  
quency and source impedance and may need to be reduced or  
removed. Table 10 displays recommended values to set the RC  
network. However, these values are dependent on the input  
signal and should be used only as a starting guide.  
C2  
0.1µF  
0.1µF  
0.1µF  
R1  
R2  
R2  
VIN+  
VIN–  
2V p-p  
33Ω  
33Ω  
P
A
S
S
P
C1  
R1  
ADC  
0.1µF  
VCM  
C2  
Figure 68. Differential Double Balun Input Configuration  
V
CC  
10pF  
0.1µF  
0.1µF  
5, 6, 7, 8  
0Ω  
2
1
0.1µF  
0.1µF  
ANALOG INPUT  
ANALOG INPUT  
20Ω  
15Ω  
15Ω  
11  
VIN+  
100Ω  
5pF  
AD9255  
ADL5562  
10  
100Ω  
4
3
15Ω  
15Ω  
VCM  
VIN–  
20Ω  
9
0Ω  
0.1µF  
0.1µF  
10pF  
0.1µF  
Figure 69. Differential Input Configuration Using the ADL5562  
Rev. C | Page 27 of 44  
 
 
 
AD9255  
Data Sheet  
the reference amplifier in a noninverting mode with the VREF  
output defined as follows:  
VOLTAGE REFERENCE  
A stable and accurate voltage reference is built into the AD9255.  
The input range can be adjusted by varying the reference voltage  
applied to the AD9255, using either the internal reference or an  
externally applied reference voltage. The input span of the ADC  
tracks reference voltage changes linearly. The various reference  
modes are summarized in the sections that follow. The Reference  
Decoupling section describes the best practices PCB layout of  
the reference.  
R2  
R1  
VREF = 0.5× 1+  
The input range of the ADC always equals twice the voltage at  
the reference pin for either an internal or an external reference.  
VIN+  
VIN–  
Internal Reference Connection  
ADC  
CORE  
A comparator within the AD9255 detects the potential at the  
SENSE pin and configures the reference into four possible modes,  
which are summarized in Table 11. If SENSE is grounded, the  
reference amplifier switch is connected to the internal resistor  
divider (see Figure 70), setting VREF to 1.0 V for a 2.0 V p-p full-  
scale input. In this mode, with SENSE grounded, the full scale can  
also be adjusted through the SPI port by adjusting Bit 6 and Bit 7 of  
Register 0x18. These bits can be used to change the full scale to  
1.25 V p-p, 1.5 V p-p, 1.75 V p-p, or to the default of 2.0 V p-p,  
as shown in Table 17.  
VREF  
1.0µF  
0.1µF  
R2  
SELECT  
LOGIC  
SENSE  
0.5V  
R1  
ADC  
Figure 71. Programmable Reference Configuration  
Connecting the SENSE pin to the VREF pin switches the reference  
amplifier output to the SENSE pin, completing the loop and  
providing a 0.5 V reference output for a 1 V p-p full-scale input.  
If the internal reference of the AD9255 is used to drive multiple  
converters to improve gain matching, the loading of the reference  
by the other converters must be considered. Figure 72 shows  
how the internal reference voltage is affected by loading.  
VIN+  
VIN–  
0
ADC  
CORE  
–0.5  
VREF = 0.5V  
VREF  
–1.0  
1.0µF  
0.1µF  
SELECT  
LOGIC  
VREF = 1V  
–1.5  
SENSE  
0.5V  
ADC  
–2.0  
–2.5  
–3.0  
Figure 70. Internal Reference Configuration  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
If a resistor divider is connected external to the chip, as shown  
in Figure 71, the switch again sets to the SENSE pin. This puts  
LOAD CURRENT (mA)  
Figure 72. VREF Accuracy vs. Load  
Table 11. Reference Configuration Summary  
Selected Mode  
SENSE Voltage  
Resulting VREF (V)  
Resulting Differential Span (V p-p)  
External Reference  
AVDD  
N/A  
2 × external reference  
Internal Fixed Reference  
Programmable Reference  
Internal Fixed Reference  
VREF  
0.5  
1.0  
R2  
R1  
(see Figure 71)  
0.5× 1+  
0.2 V to VREF  
AGND to 0.2 V  
2 × VREF  
2.0  
1.0  
Rev. C | Page 28 of 44  
 
 
 
 
 
Data Sheet  
AD9255  
External Reference Operation  
Clock Input Options  
The use of an external reference may be necessary to enhance  
the gain accuracy of the ADC or improve thermal drift charac-  
teristics. Figure 73 shows the typical drift characteristics of the  
internal reference in 1.0 V mode.  
The AD9255 has a very flexible clock input structure. Clock input  
can be a CMOS, LVDS, LVPECL, or sine wave signal. Regardless of  
the type of signal being used, clock source jitter is of the most  
concern, as described in the Jitter Considerations section.  
2.0  
Figure 75 and Figure 76 show two preferred methods for clocking  
the AD9255. A low jitter clock source is converted from a single-  
ended signal to a differential signal using either an RF  
transformer or an RF balun.  
1.5  
VREF = 1.0V  
1.0  
0.5  
0
The RF balun configuration is recommended for clock frequencies  
at 625 MHz and the RF transformer is recommended for clock  
frequencies from 10 MHz to 200 MHz. The back-to-back  
Schottky diodes across the transformer/balun secondary limit  
clock excursions into the AD9255 to approximately 0.8 V p-p  
differential.  
–0.5  
–1.0  
–1.5  
–2.0  
This limit helps prevent the large voltage swings of the clock  
from feeding through to other portions of the AD9255 while  
preserving the fast rise and fall times of the signal that are critical  
to low jitter performance.  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
Figure 73. Typical VREF Drift  
When the SENSE pin is tied to AVDD, the internal reference is  
disabled, allowing the use of an external reference. An internal  
reference buffer loads the external reference with an equivalent  
6 kΩ load (see Figure 55). The internal buffer generates the  
positive and negative full-scale references for the ADC core.  
Therefore, the external reference must be limited to a maximum  
of 1.0 V.  
®
Mini-Circuits  
ADC  
ADT1-1WT, 1:1Z  
AD9255  
0.1µF  
0.1µF  
XFMR  
CLOCK  
INPUT  
CLK+  
CLK–  
100Ω  
50Ω  
0.1µF  
SCHOTTKY  
DIODES:  
HSMS2822  
0.1µF  
Figure 75. Transformer-Coupled Differential Clock (Up to 200 MHz)  
CLOCK INPUT CONSIDERATIONS  
For optimum performance, the AD9255 sample clock inputs,  
CLK+ and CLK−, should be clocked with a differential signal.  
The signal is typically ac-coupled into the CLK+ and CLK− pins  
via a transformer or capacitors. These pins are biased internally  
(see Figure 74) and require no external bias.  
ADC  
AD9255  
1nF  
50Ω  
1nF  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
CLK–  
AVDD  
SCHOTTKY  
DIODES:  
HSMS2822  
Figure 76. Balun-Coupled Differential Clock (625 MHz)  
0.9V  
If a low jitter clock source is not available, another option is to  
ac couple a differential PECL signal to the sample clock input  
pins, as shown in Figure 77. The AD9510/AD9511/AD9512/  
AD9513/AD9514/AD9515/AD9516/AD9517/AD9518/AD9520/  
AD9522 clock drivers offer excellent jitter performance.  
CLK+  
CLK–  
4pF  
4pF  
Figure 74. Equivalent Clock Input Circuit  
0.1µF  
0.1µF  
CLK+  
CLOCK  
INPUT  
ADC  
AD9255  
AD95xx  
PECL DRIVER  
100Ω  
0.1µF  
0.1µF  
CLOCK  
CLK–  
INPUT  
240Ω  
240Ω  
50kΩ  
50kΩ  
Figure 77. Differential PECL Sample Clock (Up to Rated Sample Rate)  
Rev. C | Page 29 of 44  
 
 
 
 
 
 
AD9255  
Data Sheet  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
ADC  
AD9255  
AD95xx  
LVDS DRIVER  
100Ω  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK–  
50kΩ  
50kΩ  
Figure 78. Differential LVDS Sample Clock (Up to the Rated Sample Rate)  
also be disabled in some cases when using the input clock  
A third option is to ac couple a differential LVDS signal to the  
sample clock input pins, as shown in Figure 78. The AD9510/  
AD9511/AD9512/AD9513/AD9514/AD9515/AD9516/AD9517/  
AD9518/AD9520/AD9522 clock drivers offer excellent jitter  
performance.  
divider circuit, see the Input Clock Divider section for addi-  
tional information. In all other applications, enabling the DCS  
circuit is recommended to maximize ac performance.  
The DCS is enabled by setting the SDIO/DCS pin high when  
operating in the external pin mode (see Table 12). If the SPI  
mode is enabled, the DCS is enabled by default and can be  
disabled by writing a 0x00 to Address 0x09.  
In some applications, it may be acceptable to drive the sample  
clock inputs with a single-ended CMOS signal. In such applica-  
tions, drive the CLK+ pin directly from a CMOS gate, and bypass  
the CLK− pin to ground with a 0.1 μF capacitor (see Figure 79).  
Input Clock Divider  
The AD9255 contains an input clock divider with the ability to  
divide the input clock by integer values between 2 and 8. For  
clock divide ratios of 2, 4, 6, or 8, the duty cycle stabilizer (DCS)  
is not required because the output of the divider inherently pro-  
duces a 50% duty cycle. Enabling the DCS with the clock divider in  
these divide modes may cause a slight degradation in SNR so  
disabling the DCS is recommended. For other divide ratios,  
divide-by-3, divide-by-5, and divide-by-7 the duty cycle output  
from the clock divider is related to the input clocks duty cycle.  
In these modes, if the input clock has a 50% duty cycle, the DCS  
is again not required. However, if a 50% duty cycle input clock  
is not available the DCS must be enabled for proper part  
operation.  
V
CC  
OPTIONAL  
100Ω  
0.1µF  
1
0.1µF  
1kΩ  
1kΩ  
AD95xx  
CMOS DRIVER  
CLOCK  
INPUT  
CLK+  
ADC  
AD9255  
50Ω  
CLK–  
0.1µF  
1
50Ω RESISTOR IS OPTIONAL.  
Figure 79. Single-Ended 1.8 V CMOS Input Clock (Up to 200 MHz)  
Clock Duty Cycle  
Typical high speed ADCs use both clock edges to generate  
a variety of internal timing signals and, as a result, may be  
sensitive to clock duty cycle. Commonly, a 5% tolerance is  
required on the clock duty cycle to maintain dynamic  
performance characteristics.  
To synchronize the AD9255 clock divider, use an external sync  
signal applied to the SYNC pin. Bit 1 and Bit 2 of Register 0x100  
allow the clock divider to be resynchronized on every SYNC  
signal or only on the first SYNC signal after the register is written.  
A valid signal at the SYNC pin causes the clock divider to reset  
to its initial state. This synchronization feature allows multiple  
parts to have their clock dividers aligned to guarantee simulta-  
neous input sampling. If the SYNC pin is not used, it should be  
tied to AGND.  
The AD9255 contains a duty cycle stabilizer (DCS) that retimes  
the nonsampling (falling) edge, providing an internal clock  
signal with a nominal 50% duty cycle. This allows the user to  
provide a wide range of clock input duty cycles without affecting  
the performance of the AD9255. Noise and distortion perform-  
ance are nearly flat for a wide range of duty cycles with the DCS  
enabled. Jitter in the rising edge of the input is still of paramount  
concern and is not easily reduced by the internal stabilization  
circuit.  
Jitter Considerations  
High speed, high resolution ADCs are sensitive to the quality  
of the clock input. The degradation in SNR from the low fre-  
quency SNR (SNRLF) at a given input frequency (fINPUT) due to  
jitter (tJRMS) can be calculated by  
The duty cycle control loop does not function for clock rates  
less than 20 MHz nominally. The loop has a time constant  
associated with it that must be considered in applications in  
which the clock rate can change dynamically. A wait time of  
1.5 µs to 5 µs is required after a dynamic clock frequency increase  
or decrease before the DCS loop is relocked to the input signal.  
During the time period that the loop is not locked, the DCS loop is  
bypassed, and the internal device timing is dependent on the duty  
cycle of the input clock signal. In such applications, it may be  
appropriate to disable the duty cycle stabilizer. The DCS can  
SNRHF = −10 log[(2π × fINPUT × tJRMS)2 + 10 (/SNR /10)  
]
LF  
In this equation, the rms aperture jitter represents the clock  
input jitter specification. IF undersampling applications are  
particularly sensitive to jitter, as illustrated in Figure 80.  
Rev. C | Page 30 of 44  
 
 
 
 
Data Sheet  
AD9255  
80  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.20  
0.05ps  
IAVDD  
75  
0.16  
0.12  
0.08  
0.04  
MEASURED  
70  
0.20ps  
0.50ps  
TOTAL  
POWER  
65  
60  
55  
50  
1.00ps  
1.50ps  
IDRVDD  
0
125  
1
10  
100  
1k  
25  
50  
75  
100  
INPUT FREQUENCY (MHz)  
CLOCK FREQUENCY (MSPS)  
Figure 80. SNR vs. Input Frequency and Jitter  
Figure 81. AD9255-125 Power and Current vs. Sample Rate  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.20  
Treat the clock input as an analog signal in cases in which  
aperture jitter may affect the dynamic range of the AD9255. To  
avoid modulating the clock signal with digital noise, separate  
power supplies for clock drivers from the ADC output driver  
supplies. Low jitter, crystal controlled oscillators make the best  
clock sources. If the clock is generated from another type of source  
(by gating, dividing, or another method), the output clock should  
be retimed by the original clock at the last step.  
0.16  
0.12  
0.08  
0.04  
0
IAVDD  
TOTAL  
POWER  
Refer to AN-501 Application Note, Aperture Uncertainty and ADC  
System Performance, and AN-756 Application Note, Sampled  
Systems and the Effects of Clock Phase Noise and Jitter (see  
www.analog.com) for more information about jitter performance  
as it relates to ADCs.  
IDRVDD  
65  
25  
35  
45  
55  
75  
85  
95  
105  
CLOCK FREQUENCY (MSPS)  
POWER DISSIPATION AND STANDBY MODE  
Figure 82. AD9255-105 Power and Current vs. Sample Rate  
As shown in Figure 81, the power dissipated by the AD9255 is  
proportional to its sample rate. In CMOS output mode, the digital  
power dissipation is determined primarily by the strength of the  
digital drivers and the load on each output bit.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.15  
0.12  
0.09  
0.06  
0.03  
0
IAVDD  
The maximum DRVDD current (IDRVDD) can be approximately  
calculated as  
TOTAL  
POWER  
IDRVDD = VDRVDD × CLOAD × fCLK × N  
where N is the number of output bits (14 output bits plus  
one DCO).  
This maximum current occurs when every output bit switches on  
every clock cycle, that is, a full-scale square wave at the Nyquist  
frequency of fCLK/2. In practice, the DRVDD current is established  
by the average number of output bits switching, which is deter-  
mined by the sample rate and the characteristics of the analog  
input signal.  
IDRVDD  
55  
25  
35  
45  
65  
75  
ENCODE FREQUENCY (MSPS)  
Figure 83. AD9255-80 Power and Current vs. Sample Rate  
By asserting PDWN (either through the SPI port or by asserting  
the PDWN pin high), the AD9255 is placed in power-down  
mode. In this state, the ADC typically dissipates 0.05 m W.  
During power-down, the output drivers are placed in a high  
impedance state; asserting the PDWN pin low returns the  
AD9255 to its normal operating mode.  
Reducing the capacitive load presented to the output drivers  
can minimize digital power consumption. The data in Figure 81,  
Figure 82, and Figure 83 was taken using a 70 MHz analog input  
signal, with a 5 pF load on each output driver.  
Rev. C | Page 31 of 44  
 
 
 
 
 
AD9255  
Data Sheet  
Low power dissipation in power-down mode is achieved by  
shutting down the reference, reference buffer, biasing networks,  
and clock. Internal capacitors are discharged when entering power-  
down mode and then must be recharged when returning to normal  
operation.  
Table 12. SCLK/DFS Mode Selection (External Pin Mode)  
Voltage  
at Pin  
AGND  
SVDD  
SCLK/DFS  
Offset binary (default) DCS disabled  
Twos complement DCS enabled (default)  
SDIO/DCS  
Digital Output Enable Function (OEB)  
When using the SPI port interface, the user can place the ADC  
in power-down mode or standby mode. Standby mode allows  
the user to keep the internal reference circuitry powered when  
faster wake-up times are required. In addition, when using the SPI  
mode, the user can change the function of the external PDWN pin  
to either place the part in power-down or standby mode. See the  
Memory Map Register Descriptions section for more details.  
The AD9255 has a flexible three-state ability for the digital output  
pins. The three-state mode is enabled using the OEB pin or  
through the SPI interface. If the OEB pin is low, the output data  
drivers and DCOs are enabled. If the OEB pin is high, the output  
data drivers and DCOs are placed in a high impedance state. This  
OEB function is not intended for rapid access to the data bus.  
Note that OEB is referenced to the digital output driver supply  
(DRVDD) and should not exceed that supply voltage.  
DIGITAL OUTPUTS  
The AD9255 output drivers can be configured to interface with  
1.8 V CMOS logic families. The AD9255 can also be configured  
for LVDS outputs using a DRVDD supply voltage of 1.8 V. The  
AD9255 defaults to CMOS output mode but can be placed into  
LVDS mode either by setting the LVDS pin high or by using the  
SPI port to place the part into LVDS mode. Because most users do  
not toggle between CMOS and LVDS mode during operation, use  
of the LVDS pin is recommended to avoid any power-up loading  
issues on the CMOS configured outputs.  
When using the SPI interface, the data and DCO outputs can be  
three-stated by using the output enable bar bit in Register 0x14.  
TIMING  
The AD9255 provides latched data with a pipeline delay of  
12 clock cycles (12.5 clock cycles in LVDS mode). Data outputs  
are available one propagation delay (tPD) after the rising edge of  
the clock signal.  
Minimize the length of the output data lines and loads placed  
on them to reduce transients within the AD9255. These tran-  
sients can degrade converter dynamic performance.  
In CMOS output mode, the output drivers are sized to provide  
sufficient output current to drive a wide variety of logic families.  
However, large drive currents tend to cause current glitches on  
the supplies, which may affect converter performance. Applications  
requiring the ADC to drive large capacitive loads or large  
fanouts may require external buffers or latches.  
The lowest typical conversion rate of the AD9255 is 10 MSPS.  
At clock rates below 10 MSPS, dynamic performance can degrade.  
Data Clock Output (DCO)  
In LVDS output mode, two output drive levels can be selected,  
either ANSI LVDS or reduced swing LVDS mode. Using the  
reduced swing LVDS mode lowers the DRVDD current and  
reduces power consumption. The reduced swing LVDS mode  
can be selected by asserting the LVDS_RS pin or by selecting  
this mode via the SPI port.  
The AD9255 provides a single data clock output (DCO) pin in  
CMOS output mode and two differential data clock output (DCO)  
pins in LVDS mode intended for capturing the data in an external  
register. In CMOS output mode, the data outputs are valid on the  
rising edge of DCO, unless the DCO clock polarity has been  
changed via the SPI. In LVDS output mode, data is output as  
double data rate with the odd numbered output bits transitioning  
near the rising edge of DCO and the even numbered output bits  
transitioning near the falling edge of DCO. See Figure 2 for a  
graphical timing description.  
The output data format is selected for either offset binary or  
twos complement by setting the SCLK/DFS pin when operating in  
the external pin mode (see Table 12).  
As detailed in AN-877 Application Note, Interfacing to High  
Speed ADCs via SPI, the data format can be selected for offset  
binary, twos complement, or gray code when using the SPI control.  
Table 13. Output Data Format  
Input (V)  
Condition (V)  
< −VREF − 0.5 LSB  
= −VREF  
Offset Binary Output Mode  
00 0000 0000 0000  
00 0000 0000 0000  
10 0000 0000 0000  
11 1111 1111 1111  
11 1111 1111 1111  
Twos Complement Mode  
10 0000 0000 0000  
10 0000 0000 0000  
00 0000 0000 0000  
01 1111 1111 1111  
01 1111 1111 1111  
OR  
1
0
0
0
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
= 0  
= +VREF − 1.0 LSB  
> +VREF − 0.5 LSB  
1
Rev. C | Page 32 of 44  
 
 
 
Data Sheet  
AD9255  
BUILT-IN SELF-TEST (BIST) AND OUTPUT TEST  
The AD9255 includes built-in self-test features designed to  
enable verification of the integrity of the part as well as facilitate  
board level debugging. A built-in self-test (BIST) feature is included  
that verifies the integrity of the digital datapath of the AD9255.  
Various output test options are also provided to place predictable  
values on the outputs of the AD9255.  
continued from its last value or reset from the beginning, based  
on the value programmed in Register 0x0E, Bit 2. The BIST  
signature result varies based on the part configuration.  
OUTPUT TEST MODES  
The output test options are shown in Table 17. When an output  
test mode is enabled, the analog section of the ADC is discon-  
nected from the digital back end blocks and the test pattern is run  
through the output formatting block. Some of the test patterns are  
subject to output formatting, and some are not. The seed value for  
the PN sequence tests can be forced if the PN reset bits are used  
to hold the generator in reset mode by setting Bit 4 or Bit 5 of  
Register 0x0D. These tests can be performed with or without  
an analog signal (if present, the analog signal is ignored), but  
they do require an encode clock. For more information, see  
AN-877 Application Note, Interfacing to High Speed ADCs via SPI.  
BUILT-IN SELF-TEST (BIST)  
The BIST is a thorough test of the digital portion of the selected  
AD9255 signal path. When enabled, the test runs from an internal  
pseudorandom noise (PN) source through the digital datapath  
starting at the ADC block output. The BIST sequence runs for  
512 cycles and stops. The BIST signature value is placed in  
Register 0x24 and Register 0x25.  
The outputs are not disconnected during this test, so the PN  
sequence can be observed as it runs. The PN sequence can be  
Rev. C | Page 33 of 44  
 
 
 
AD9255  
Data Sheet  
SERIAL PORT INTERFACE (SPI)  
The AD9255 serial port interface (SPI) allows the user to configure  
the converter for specific functions or operations through a  
structured register space provided inside the ADC. The SPI  
gives the user added flexibility and customization, depending on  
the application. Addresses are accessed via the serial port and  
can be written to, or read from, via the port. Memory is organized  
into bytes that can be further divided into fields, which are docu-  
mented in the Memory Map section. For detailed operational  
information, see AN-877Application Note, Interfacing to High  
Speed ADCs via SPI.  
All data is composed of 8-bit words. The first bit of the first byte in  
a multibyte serial data transfer frame indicates whether a read  
command or a write command is issued. This allows the serial  
data input/output (SDIO) pin to change direction from an input  
to an output.  
In addition to word length, the instruction phase determines  
whether the serial frame is a read or write operation, allowing  
the serial port to be used both to program the chip and to read  
the contents of the on-chip memory. If the instruction is a readback  
operation, performing a readback causes the serial data input/  
output (SDIO) pin to change direction from an input to an output  
at the appropriate point in the serial frame.  
CONFIGURATION USING THE SPI  
Three pins define the SPI of this ADC: the SCLK/DFS pin, the  
SDIO/DCS pin, and the CSB pin (see Table 14). The SCLK/DFS  
(a serial clock) is used to synchronize the read and write data  
presented from and to the ADC. The SDIO/DCS (serial data  
input/output) is a dual-purpose pin that allows data to be sent  
and read from the internal ADC memory map registers. The  
CSB (chip select bar) is an active low control that enables or  
disables the read and write cycles.  
Data can be sent in MSB-first mode or in LSB-first mode. MSB  
first is the default on power-up and can be changed via the SPI  
port configuration register. For more information about this  
and other features, see AN-877 Application Note, Interfacing to  
High Speed ADCs via SPI.  
HARDWARE INTERFACE  
The pins described in Table 14 comprise the physical interface  
between the user programming device and the serial port of the  
AD9255. When using the SPI interface, the SCLK pin and the  
CSB pin function as inputs. The SDIO pin is bidirectional, func-  
tioning as an input during write phases and as an output during  
readback.  
Table 14. Serial Port Interface Pins  
Pin Mnemonic Function  
SCLK/DFS  
Serial clock. The SCLK function of the pin is for  
the serial shift clock input, which is used to  
synchronize serial interface reads and writes.  
SDIO is the serial data input/output function  
of the pin. A dual-purpose pin that typically  
serves as an input or an output, depending on  
the instruction being sent and the relative  
position in the timing frame.  
SDIO/DCS  
The AD9255 has a separate supply pin for the SPI interface, SVDD.  
The SVDD pin can be set at any level between 1.8 V and 3.3 V  
to enable operation with a SPI bus at these voltages without  
requiring level translation. If the SPI port is not used, SVDD  
can be tied to the DRVDD voltage.  
CSB  
Chip select bar. An active low control that  
gates the read and write cycles.  
The SPI interface is flexible enough to be controlled by either  
FPGAs or microcontrollers. One method for SPI configuration  
is described in detail in AN-812 Application Note, Microcontroller-  
Based Serial Port Interface (SPI) Boot Circuit.  
The falling edge of the CSB, in conjunction with the rising edge  
of the SCLK, determines the start of the framing. See Figure 84  
and Table 5 for an example of the serial timing and its definitions.  
Other modes involving the CSB are available. The CSB can be  
held low indefinitely, which permanently enables the device;  
this is called streaming. The CSB can stall high between bytes  
to allow for additional external timing. When CSB is tied high  
at power-up, SPI functions are placed in high impedance mode.  
This mode turns on any SPI pin secondary functions. When  
CSB is toggled low after power-up, the part remains in SPI  
mode and does not revert back to pin mode.  
The SPI port should not be active during periods when the full  
dynamic performance of the converter is required. Because the  
SCLK signal, the CSB signal, and the SDIO signal are typically  
asynchronous to the ADC clock, noise from these signals can  
degrade converter performance. If the on-board SPI bus is used for  
other devices, it may be necessary to provide buffers between  
this bus and the AD9255 to prevent these signals from transi-  
tioning at the converter inputs during critical sampling periods.  
During an instruction phase, a 16-bit instruction is transmitted.  
Data follows the instruction phase, and its length is determined  
by the W0 and W1 bits.  
Some pins serve a dual function when the SPI interface is not  
being used. When the pins are tied to AVDD or ground during  
device power-on, they are associated with a specific function.  
The Digital Outputs section describes the alternate functions  
that are supported on the AD9255.  
Rev. C | Page 34 of 44  
 
 
 
 
Data Sheet  
AD9255  
CONFIGURATION WITHOUT THE SPI  
SPI ACCESSIBLE FEATURES  
In applications that do not interface to the SPI control registers,  
the SDIO/DCS pin and the SCLK/DFS pin serve as standalone  
CMOS-compatible control pins. When the device is powered  
up, it is assumed that the user intends to use the pins as static  
control lines for the duty cycle stabilizer and output data format  
feature control. In this mode, connect the CSB chip select to  
AVDD, which disables the serial port interface.  
Table 16 provides a brief description of the general features that  
are accessible via the SPI. These features are described in detail  
in AN-877 Application Note, Interfacing to High Speed ADCs via  
SPI. The AD9255 part-specific features are described in detail  
following Table 17, the external memory map register table.  
Table 16. Features Accessible Using the SPI  
Feature Name  
Description  
The OEB pin, the DITHER pin, the LVDS pin, the LVDS_RS  
pin, and the PDWN pin are active control lines in both external  
pin mode and SPI mode. The input from these pins or the SPI  
register setting (the logical OR of the SPI bit and the pin function)  
is used to determine the mode of operation for the part.  
Mode  
Allows the user to set either power-down mode  
or standby mode  
Allows the user to access the DCS, set the  
clock divider, set the clock divider phase, and  
enable the SYNC input  
Clock  
Offset  
Allows the user to digitally adjust the  
converter offset  
Table 15. Mode Selection  
External  
Voltage  
Test I/O  
Allows the user to set test modes to have  
known data on output bits  
Pin  
Configuration  
SDIO/DCS  
SVDD (default) Duty cycle stabilizer enabled  
Output Mode  
Output Phase  
Output Delay  
VREF  
Allows the user to set the output mode  
Allows the user to set the output clock polarity  
Allows the user to vary the DCO delay  
Allows the user to set the reference voltage  
AGND  
SVDD  
Duty cycle stabilizer disabled  
Twos complement enabled  
SCLK/DFS  
OEB  
AGND (default) Offset binary enabled  
DRVDD Outputs in high impedance  
AGND (default) Outputs enabled  
AVDD  
Chip in power-down or  
standby mode  
PDWN  
AGND (default) Normal operation  
AGND (default) CMOS output mode  
LVDS  
AVDD  
LVDS output mode  
LVDS_RS  
AGND (default) ANSI LVDS output levels  
AVDD  
Reduced swing LVDS  
output levels  
DITHER  
AGND (default) Dither disabled  
AVDD  
Dither enabled  
tHIGH  
tDS  
tCLK  
tH  
tS  
tDH  
tLOW  
CSB  
SCLK DON’T CARE  
SDIO DON’T CARE  
DON’T CARE  
R/W  
W1  
W0  
A12  
A11  
A10  
A9  
A8  
A7  
D5  
D4  
D3  
D2  
D1  
D0  
DON’T CARE  
Figure 84. Serial Port Interface Timing Diagram  
Rev. C | Page 35 of 44  
 
 
 
 
AD9255  
Data Sheet  
MEMORY MAP  
valid address location should be written with 0s. Writing to these  
locations is required only when part of an address location is  
open (for example, Address 0x18). If the entire address location  
is open (for example, Address 0x13), this address location should  
not be written.  
READING THE MEMORY MAP REGISTER TABLE  
Each row in the memory map register table has eight bit locations.  
The memory map is roughly divided into four sections: the chip  
configuration registers (Address 0x00 to Address 0x02); the  
transfer register (Address 0xFF); the ADC functions registers,  
including setup, control, and test (Address 0x08 to Address 0x30);  
and the digital feature control registers (Address 0x100).  
Default Values  
After the AD9255 is reset, critical registers are loaded with  
default values. The default values for the registers are given in  
the memory map register table, Table 17.  
The memory map register table (see Table 17) documents the  
default hexadecimal value for each hexadecimal address shown.  
The column with the heading, Bit 7 (MSB), is the start of the  
default hexadecimal value given. For example, Address 0x18, the  
VREF select register, has a hexadecimal default value of 0xC0. This  
means that Bit 7 = 1, Bit 6 = 1, and the remaining bits are 0s. This  
setting is the default reference selection setting. The default value  
uses a 2.0 V p-p reference. For more information on this function  
and others, see AN-877 Application Note, Interfacing to High Speed  
ADCs via SPI. This document details the functions controlled by  
Register 0x00 to Register 0x30. The remaining register, at  
Register 0x100, is documented in the Memory Map Register  
Descriptions section.  
Logic Levels  
An explanation of logic level terminology follows:  
“Bit is set” is synonymous with “bit is set to Logic 1” or  
“writing Logic 1 for the bit.”  
“Clear a bit” is synonymous with “bit is set to Logic 0” or  
“writing Logic 0 for the bit.”  
Transfer Register Map  
Address 0x08 to Address 0x18 are shadowed. Writes to these  
addresses do not affect part operation until a transfer command  
is issued by writing 0x01 to Address 0xFF, setting the transfer bit.  
This allows these registers to be updated internally and simulta-  
neously when the transfer bit is set. The internal update takes  
place when the transfer bit is set, and the bit autoclears.  
Open Locations  
All address and bit locations that are not included in Table 17  
are not currently supported for this device. Unused bits of a  
Rev. C | Page 36 of 44  
 
 
Data Sheet  
AD9255  
MEMORY MAP REGISTER TABLE  
All address and bit locations that are not included in Table 17 are not currently supported for this device.  
Table 17. Memory Map Registers  
Default  
Value  
Bit 0 (LSB) (Hex)  
Addr. Register  
Default Notes/  
Comments  
(Hex)  
Name  
Bit 7 (MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Chip Configuration Registers  
0x00  
SPI port  
configuration  
0
LSB first  
Soft reset  
1
1
Soft reset LSB  
first  
0
0x18  
The nibbles are  
mirrored so  
LSB-first mode  
or MSB-first  
mode registers  
correctly,  
regardless of  
shift mode  
0x01  
0x02  
Chip ID  
8-Bit Chip ID[7:0], AD9255 = 0x65 (default)  
0x65  
Read only  
Chip grade  
Open  
Open  
Open  
Open  
Speed grade ID  
01 = 125 MSPS  
10 = 105 MSPS  
11 = 80 MSPS  
Open Open  
Open  
Open  
Open  
Speed grade ID  
used to  
differentiate  
devices; read  
only  
Transfer Register  
0xFF Transfer  
Open  
Open  
Open Open  
Transfer  
0x00  
0x80  
Synchronously  
transfers data  
from the  
master shift  
register to the  
slave  
ADC Functions Registers  
0x08  
Power  
modes  
1
Open  
External power- Open  
down pin  
Open Open  
Internal  
Determines  
various generic  
modes of chip  
operation  
power-down  
mode  
function  
0 = power-  
down  
00 = normal  
operation  
1 = standby  
01 = full power-  
down  
10 = standby  
11 = normal  
operation  
0x09  
0x0B  
Global clock  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open Open  
Open  
Open  
Duty  
cycle  
stabilizer  
(default)  
0x01  
0x00  
Clock divide  
(global)  
Clock divide ratio  
Clock divide  
values other  
than 000  
automatically  
cause the duty  
stabilizer to  
become active.  
000 = divide by 1  
001 = divide by 2  
010 = divide by 3  
011 = divide by 4  
100 = divide by 5  
101 = divide by 6  
110 = divide by 7  
111 = divide by 8  
0x0D  
Test mode  
Open  
Open  
Reset PN23  
generator  
Reset PN9  
generator  
Open  
Output test mode  
000 = off (default)  
001 = midscale short  
010 = positive FS  
011 = negative FS  
0x00  
When this  
register is set,  
the test data is  
placed on the  
output pins in  
place of normal  
data  
100 = alternating checkerboard  
101 = PN 23 sequence  
110 = PN 9 sequence  
111 = one/zero word toggle  
0x0E  
BIST enable  
Open  
Open  
Open  
Open  
Open Reset BIST Open  
sequence  
BIST  
enable  
0x04  
Rev. C | Page 37 of 44  
 
 
AD9255  
Data Sheet  
Default  
Addr. Register  
Value  
Bit 0 (LSB) (Hex)  
Default Notes/  
Comments  
(Hex)  
Name  
Bit 7 (MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
0x14  
Output  
mode  
Drive  
strength  
Output  
type  
Open  
Output  
enable  
bar  
Open Output  
invert  
Output  
format  
0x00  
Configures the  
outputs and  
the format of  
the data  
0 = ANSI  
LVDS  
0 =  
CMOS  
00 = offset  
binary  
1 = reduced 1 = LVDS  
LVDS  
01 = twos  
complement  
01 = gray code  
11 = offset binary  
0x16  
Clock phase  
control  
Invert DCO  
clock  
Open  
Open  
Open  
Open  
Input clock divider phase adjust  
000 = no delay  
0x00  
Allows  
selection of  
clock delays  
into the input  
clock divider  
001 = 1 input clock cycle  
010 = 2 input clock cycles  
011 = 3 input clock cycles  
100 = 4 input clock cycles  
101 = 5 input clock cycles  
110 = 6 input clock cycles  
111 = 7 input clock cycles  
DCO clock delay  
0x17  
DCO output  
delay  
Open  
Open  
Open  
0x00  
(delay = 2500 ps × register value/31)  
00000 = 0 ps  
00001 = 81 ps  
00010 = 161 ps  
11110 = 2419 ps  
11111 = 2500 ps  
0x18  
VREF select  
Reference voltage  
selection  
Open  
Open  
Open Open  
Open  
Open  
0xC0  
00 = 1.25 V p-p  
01 = 1.5 V p-p  
10 = 1.75 V p-p  
11 = 2.0 V p-p (default)  
0x24  
0x25  
BIST  
signature LSB  
BIST Signature[7:0]  
BIST Signature[15:8]  
0x00  
0x00  
Read only  
Read only  
BIST  
signature  
MSB  
0x30  
Dither  
enable  
Open  
Open  
Open  
Dither  
enable  
Open Open  
Open  
Clock  
Open  
0x00  
0x00  
Digital Feature Control Register  
0x100 Sync control Open  
Open  
Open  
Open  
Open Clock  
divider  
Master  
divider sync  
next sync  
only  
sync  
enable  
enable  
Rev. C | Page 38 of 44  
Data Sheet  
AD9255  
and to ignore the rest. The clock divider sync enable bit  
(Address 0x100, Bit 1) resets after it syncs.  
MEMORY MAP REGISTER DESCRIPTIONS  
For additional information about functions controlled in  
Register 0x00 to Register 0xFF, see AN-877 Application Note,  
Interfacing to High Speed ADCs via SPI.  
Bit 1—Clock Divider Sync Enable  
Bit 1 gates the sync pulse to the clock divider. The sync signal is  
enabled when Bit 1 is high and Bit 0 is high. This is continuous  
sync mode.  
Sync Control (Register 0x100)  
Bits[7:3]—Reserved  
Bit 0—Master Sync Enable  
These bits are reserved.  
Bit 0 must be high to enable any of the sync functions. If the  
sync capability is not used, this bit should remain low to  
conserve power.  
Bit 2—Clock Divider Next Sync Only  
If the master sync enable bit (Address 0x100, Bit 0) and the  
clock divider sync enable bit (Address 0x100, Bit 1) are high, Bit 2  
allows the clock divider to sync to the first sync pulse it receives  
Rev. C | Page 39 of 44  
 
AD9255  
Data Sheet  
APPLICATIONS INFORMATION  
should have several vias to achieve the lowest possible resistive  
thermal path for heat dissipation to flow through the bottom of  
the PCB. Fill or plug these vias with nonconductive epoxy.  
DESIGN GUIDELINES  
Before starting design and layout of the AD9255 as a system, it  
is recommended that the designer become familiar with these  
guidelines, which discuss the special circuit connections and  
layout requirements that are needed for certain pins.  
To maximize the coverage and adhesion between the ADC and  
the PCB, overlay a silkscreen to partition the continuous plane on  
the PCB into several uniform sections. This provides several tie  
points between the ADC and the PCB during the reflow process.  
Using one continuous plane with no partitions guarantees only one  
tie point between the ADC and the PCB. For detailed information  
about packaging and PCB layout of chip scale packages, see the  
AN-772 Application Note, A Design and Manufacturing Guide for  
the Lead Frame Chip Scale Package (LFCSP), at www.analog.com.  
Power and Ground Recommendations  
When connecting power to the AD9255, it is recommended that  
two separate 1.8 V supplies be used. Use one supply for analog  
(AVDD); use a separate supply for the digital outputs (DRVDD).  
Several different decoupling capacitors can be used to cover both  
high and low frequencies. Locate these capacitors close to the  
point of entry at the PCB level and close to the pins of the part,  
with minimal trace length. The power supply for the SPI port,  
SVDD, should not contain excessive noise and should also be  
bypassed close to the part.  
VCM  
Decouple the VCM pin to ground with a 0.1 μF capacitor, as  
shown in Figure 67.  
RBIAS  
A single PCB ground plane should be sufficient when using the  
AD9255. With proper decoupling and smart partitioning of the  
PCB analog, digital, and clock sections, optimum performance  
is easily achieved.  
The AD9255 requires that a 10 kΩ resistor be placed between  
the RBIAS pin and ground. This resistor sets the master current  
reference of the ADC core and should have at least a 1% tolerance.  
Reference Decoupling  
LVDS Operation  
Decouple the VREF pin externally to ground with a low ESR,  
1.0 μF capacitor in parallel with a low ESR, 0.1 μF ceramic  
capacitor.  
The AD9255 can be configured for CMOS or LVDS output mode  
on power-up using the LVDS pin, Pin 44. If LVDS operation is  
desired, connect Pin 44 to AVDD. LVDS operation can also be  
enabled through the SPI port. If CMOS operation is desired,  
connect Pin 44 to AGND.  
SPI Port  
The SPI port should not be active during periods when the full  
dynamic performance of the converter is required. Because the  
SCLK, CSB, and SDIO signals are typically asynchronous to the  
ADC clock, noise from these signals can degrade converter per-  
formance. If the on-board SPI bus is used for other devices, it  
may be necessary to provide buffers between this bus and the  
AD9255 to keep these signals from transitioning at the converter  
inputs during critical sampling periods.  
Exposed Paddle Thermal Heat Slug Recommendations  
It is mandatory that the exposed paddle on the underside of the  
ADC be connected to the analog ground (AGND) to achieve  
the best electrical and thermal performance. A continuous,  
exposed (no solder mask) copper plane on the PCB should mate  
to the AD9255 exposed paddle, Pin 0. The copper plane  
Rev. C | Page 40 of 44  
 
 
 
Data Sheet  
AD9255  
OUTLINE DIMENSIONS  
7.10  
7.00 SQ  
6.90  
0.30  
0.23  
0.18  
0.60 MAX  
0.60 MAX  
PIN 1  
37  
48  
INDICATOR  
1
36  
PIN 1  
INDICATOR  
0.50  
REF  
6.85  
6.75 SQ  
6.65  
*
5.55  
5.50 SQ  
5.45  
EXPOSED  
PAD  
25  
12  
24  
13  
0.50  
0.40  
0.30  
0.22 MIN  
TOP VIEW  
BOTTOMVIEW  
5.50 REF  
0.80 MAX  
0.65 TYP  
12° MAX  
1.00  
0.85  
0.80  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.08  
0.20 REF  
*
COMPLIANT TO JEDEC STANDARDS MO-220-VKKD-2  
WITH EXCEPTION TO EXPOSED PAD DIMENSION  
Figure 85. 48-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
7 mm × 7 mm Body, Very Thin Quad  
(CP-48-8)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
AD9255BCPZ-125  
AD9255BCPZRL7-125  
AD9255BCPZ-105  
AD9255BCPZRL7-105  
AD9255BCPZ-80  
AD9255BCPZRL7-80  
AD9255-125EBZ  
AD9255-105EBZ  
AD9255-80EBZ  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
48-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
48-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
48-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
48-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
48-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
48-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
Evaluation Board  
CP-48-8  
CP-48-8  
CP-48-8  
CP-48-8  
CP-48-8  
CP-48-8  
Evaluation Board  
Evaluation Board  
1 Z = RoHS Compliant Part.  
Rev. C | Page 41 of 44  
 
 
 
AD9255  
NOTES  
Data Sheet  
Rev. C | Page 42 of 44  
Data Sheet  
NOTES  
AD9255  
Rev. C | Page 43 of 44  
AD9255  
NOTES  
Data Sheet  
©2009–2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08505-0-7/13(C)  
Rev. C | Page 44 of 44  

相关型号:

AD9255-125EBZ

14-Bit, 125 MSPS/105 MSPS/80 MSPS
ADI

AD9255-80EBZ

14-Bit, 125 MSPS/105 MSPS/80 MSPS
ADI

AD9255BCPZ-105

14-Bit, 125 MSPS/105 MSPS/80 MSPS
ADI

AD9255BCPZ-125

14-Bit, 125 MSPS/105 MSPS/80 MSPS
ADI

AD9255BCPZ-80

14-Bit, 125 MSPS/105 MSPS/80 MSPS
ADI

AD9255BCPZRL7-105

14-Bit, 125 MSPS/105 MSPS/80 MSPS
ADI

AD9255BCPZRL7-125

14-Bit, 125 MSPS/105 MSPS/80 MSPS
ADI

AD9255BCPZRL7-80

14-Bit, 125 MSPS/105 MSPS/80 MSPS
ADI

AD9257

Octal, 14-Bit, 40/65 MSPS, Serial LVDS
ADI

AD9257-65EBZ

Octal, 14-Bit, 40/65 MSPS, Serial LVDS
ADI

AD9257BCPZ-40

Octal, 14-Bit, 40/65 MSPS, Serial LVDS
ADI

AD9257BCPZ-65

Octal, 14-Bit, 40/65 MSPS, Serial LVDS
ADI