AD9265BCPZRL7-125 [ADI]

16-Bit, 125 MSPS/105 MSPS/80 MSPS 1.8 V Analog-to-Digital Converter; 16位, 125 MSPS / 105 MSPS / 80 MSPS, 1.8 V模拟数字转换器
AD9265BCPZRL7-125
型号: AD9265BCPZRL7-125
厂家: ADI    ADI
描述:

16-Bit, 125 MSPS/105 MSPS/80 MSPS 1.8 V Analog-to-Digital Converter
16位, 125 MSPS / 105 MSPS / 80 MSPS, 1.8 V模拟数字转换器

转换器 模数转换器 PC
文件: 总44页 (文件大小:2399K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
16-Bit, 125 MSPS/105 MSPS/80 MSPS,  
1.8 V Analog-to-Digital Converter  
AD9265  
FEATURES  
PRODUCT HIGHLIGHTS  
SNR = 79.0 dBFS @ 70 MHz and 125 MSPS  
SFDR = 93 dBc @ 70 MHz and 125 MSPS  
Low power: 373 mW @ 125 MSPS  
1.8 V analog supply operation  
1.8 V CMOS or LVDS output supply  
Integer 1-to-8 input clock divider  
IF sampling frequencies to 300 MHz  
−154.3 dBm/Hz small signal input noise with 200 Ω input  
impedance @ 70 MHz and 125 MSPS  
Optional on-chip dither  
Programmable internal ADC voltage reference  
Integrated ADC sample-and-hold inputs  
Flexible analog input range: 1 V p-p to 2 V p-p  
Differential analog inputs with 650 MHz bandwidth  
ADC clock duty cycle stabilizer  
1. On-chip dither option for improved SFDR performance  
with low power analog input.  
2. Proprietary differential input that maintains excellent SNR  
performance for input frequencies up to 300 MHz.  
3. Operation from a single 1.8 V supply and a separate digital  
output driver supply accommodating 1.8 V CMOS or  
LVDS outputs.  
4. Standard serial port interface (SPI) that supports various  
product features and functions, such as data formatting  
(offset binary, twos complement, or gray coding), enabling  
the clock duty cycle stabilizer, DCS, power-down, test  
modes, and voltage reference mode.  
5. Pin compatibility with the AD9255, allowing a simple  
migration from 16 bits down to 14 bits.  
Serial port control  
User-configurable, built-in self-test (BIST) capability  
Energy-saving power-down modes  
APPLICATIONS  
Communications  
Multimode digital receivers (3G)  
GSM, EDGE, W-CDMA, LTE, CDMA2000, WiMAX,  
and TD-SCDMA  
Smart antenna systems  
General-purpose software radios  
Broadband data applications  
Ultrasound equipment  
FUNCTIONAL BLOCK DIAGRAM  
SENSE RBIAS PDWN  
AGND AVDD (1.8V)  
LVDS LVDS_RS  
REFERENCE  
VREF  
AD9265  
VCM  
DRVDD (1.8V)  
VIN+  
TRACK-AND-HOLD  
VIN–  
OUTPUT  
ADC  
16-BIT  
CORE  
STAGING  
CMOS OR  
LVDS  
16  
16  
DITHER  
D15 TO D0  
OR  
(DDR)  
CLK+  
CLOCK  
MANAGEMENT  
CLK–  
SYNC  
SERIAL PORT  
DCO  
SVDD SCLK/ SDIO/ CSB  
DFS DCS  
Figure 1.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 www.analog.com  
Fax: 781.461.3113 ©2009–2010 Analog Devices, Inc. All rights reserved.  
 
 
 
 
AD9265  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Voltage Reference ....................................................................... 28  
Clock Input Considerations...................................................... 29  
Power Dissipation and Standby Mode .................................... 31  
Digital Outputs ........................................................................... 32  
Timing ......................................................................................... 32  
Built-In Self-Test (BIST) and Output Test .................................. 33  
Built-In Self-Test (BIST)............................................................ 33  
Output Test Modes..................................................................... 33  
Serial Port Interface (SPI).............................................................. 34  
Configuration Using the SPI..................................................... 34  
Hardware Interface..................................................................... 34  
Configuration Without the SPI ................................................ 35  
SPI Accessible Features.............................................................. 35  
Memory Map .................................................................................. 36  
Reading the Memory Map Register Table............................... 36  
Memory Map Register Table..................................................... 37  
Memory Map Register Descriptions........................................ 39  
Applications Information.............................................................. 40  
Design Guidelines ...................................................................... 40  
Outline Dimensions....................................................................... 41  
Ordering Guide .......................................................................... 41  
Applications....................................................................................... 1  
Product Highlights ........................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
General Description......................................................................... 3  
Specifications..................................................................................... 4  
ADC DC Specifications............................................................... 4  
ADC AC Specifications ................................................................. 5  
Digital Specifications ................................................................... 6  
Switching Specifications ................................................................ 8  
Timing Specifications .................................................................. 9  
Absolute Maximum Ratings.......................................................... 10  
Thermal Characteristics ............................................................ 10  
ESD Caution................................................................................ 10  
Pin Configurations and Function Descriptions ......................... 11  
Typical Performance Characteristics ........................................... 15  
Equivalent Circuits......................................................................... 23  
Theory of Operation ...................................................................... 25  
ADC Architecture ...................................................................... 25  
Analog Input Considerations.................................................... 25  
REVISION HISTORY  
1/10—Rev. 0 to Rev. A  
Changes to Worst Other (Harmonic or Spur) Parameter,  
Table 2 ................................................................................................ 5  
Changes to Figure 77...................................................................... 29  
Changes to Input Clock Divider Section..................................... 30  
Changes to Table 17........................................................................ 37  
Updated Outline Dimensions....................................................... 41  
10/09—Revision 0: Initial Version  
Rev. A | Page 2 of 44  
 
AD9265  
GENERAL DESCRIPTION  
The AD9265 is a 16-bit, 125 MSPS analog-to-digital converter  
(ADC). The AD9265 is designed to support communications  
applications where high performance combined with low cost,  
small size, and versatility is desired.  
A differential clock input controls all internal conversion cycles. A  
duty cycle stabilizer provides the means to compensate for vari-  
ations in the ADC clock duty cycle, allowing the converters to  
maintain excellent performance over a wide range of input clock  
duty cycles. An integrated voltage reference eases design consid-  
erations.  
The ADC core features a multistage, differential pipelined  
architecture with integrated output error correction logic to  
provide 16-bit accuracy at 125 MSPS data rates and guarantees  
no missing codes over the full operating temperature range.  
The ADC output data format is either parallel 1.8 V CMOS or  
LVDS (DDR). A data output clock is provided to ensure proper  
latch timing with receiving logic.  
The ADC features a wide bandwidth differential sample-and-  
hold analog input amplifier supporting a variety of user-selectable  
input ranges. It is suitable for multiplexed systems that switch  
full-scale voltage levels in successive channels and for sampling  
single-channel inputs at frequencies well beyond the Nyquist rate.  
Combined with power and cost savings over previously available  
ADCs, the AD9265 is suitable for applications in communications,  
instrumentation and medical imaging.  
Programming for setup and control is accomplished using a 3-wire  
SPI-compatible serial interface. Flexible power-down options  
allow significant power savings, when desired. An optional on-  
chip dither function is available to improve SFDR performance  
with low power analog input signals.  
The AD9265 is available in a Pb-free, 48-lead LFCSP and is speci-  
fied over the industrial temperature range of −40°C to +85°C.  
Rev. A | Page 3 of 44  
 
AD9265  
SPECIFICATIONS  
ADC DC SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, SVDD = 1.8 V, maximum sample rate, VIN = −1.0 dBFS differential input, 1.0 V internal reference, DCS  
enabled, unless otherwise noted.  
Table 1.  
AD9265BCPZ-1051  
AD9265BCPZ-1251  
AD9265BCPZ-801  
Parameter  
Temp  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
RESOLUTION  
Full  
16  
16  
16  
Bits  
ACCURACY  
No Missing Codes  
Offset Error  
Gain Error  
Full  
Full  
Full  
Full  
25°C  
Full  
25°C  
Guaranteed  
Guaranteed  
±±.±5  
±±.2  
Guaranteed  
±±.±5  
±±.4  
±±.±5  
±±.2  
±±.25  
±2.5  
±±.25  
±2.5  
±±.25  
±2.5  
% FSR  
% FSR  
LSB  
LSB  
LSB  
Differential Nonlinearity (DNL)2  
−1.±  
+1.25  
−1.±  
+1.25  
−1.±  
+1.25  
±±.6  
±1.5  
±±.65  
±2.±  
±±.7  
±ꢀ.±  
Integral Nonlinearity (INL)2  
±2.5  
±12  
±ꢀ.5  
±4.5  
LSB  
TEMPERATURE DRIFT  
Offset Error  
Gain Error  
Full  
Full  
±2  
±15  
±2  
±15  
±2  
±15  
ppm/°C  
ppm/°C  
INTERNAL VOLTAGE REFERENCE  
Output Voltage Error (1 V Mode)  
Load Regulation @ 1.± mA  
INPUT REFERRED NOISE  
VREF = 1.± V  
Full  
Full  
+8  
+8  
±12  
+8  
±12  
mV  
mV  
25°C  
2.17  
2.26  
2.17  
LSB rms  
ANALOG INPUT  
2
8
±.9  
6
2
8
±.9  
6
Input Span, VREF = 1.± V  
Input Capacitanceꢀ  
Input Common-Mode Voltage  
REFERENCE INPUT RESISTANCE  
POWER SUPPLIES  
Supply Voltage  
Full  
Full  
Full  
Full  
2
8
±.9  
6
V p-p  
pF  
V
kΩ  
1.7  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
ꢀ.5  
1.7  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
ꢀ.5  
AVDD  
DRVDD  
SVDD  
Full  
Full  
Full  
1.7  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
ꢀ.5  
V
V
V
Supply Current  
IAVDD2  
126  
1ꢀ1  
169  
176  
Full  
194  
2±2  
mA  
IDRVDD2  
14  
4ꢀ  
2±  
46  
1.8 V CMOS  
1.8 V LVDS  
Full  
Full  
24  
49  
mA  
mA  
POWER CONSUMPTION  
DC Input  
241  
258  
ꢀ2ꢀ  
ꢀ4ꢀ  
Full  
ꢀ7ꢀ  
ꢀ92  
mW  
Sine Wave Input2  
DRVDD = 1.8 V  
254  
ꢀ±8  
54  
ꢀ41  
ꢀ91  
54  
CMOS Output Mode  
LVDS Output Mode  
Standby Power4  
Power-Down Power  
Full  
Full  
Full  
Full  
ꢀ94  
4ꢀ9  
54  
mW  
mW  
mW  
mW  
±.±5  
±.15  
±.±5  
±.15  
±.±5  
.±15  
1 The suffix following the part number refers to the model found in the Ordering Guide section.  
2 Measured with a low input frequency, full-scale sine wave, with approximately 5 pF loading on each output bit.  
Input capacitance refers to the effective capacitance between one differential input pin and AGND.  
4 Standby power is measured with a dc input, the CLK pins (CLK+, CLK−) inactive (set to AVDD or AGND).  
Rev. A | Page 4 of 44  
 
 
 
AD9265  
ADC AC SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, SVDD = 1.8 V, maximum sample rate, VIN = −1.0 dBFS differential input, 1.0 V internal reference, DCS  
enabled, unless otherwise noted.  
Table 2.  
AD9265BCPZ-802  
AD9265BCPZ-1052  
AD9265BCPZ-1252  
Parameter1  
Temp  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max Unit  
SIGNAL-TO-NOISE-RATIO (SNR)  
fIN = 2.4 MHz  
fIN = 70 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
80.2  
79.7  
79.7  
79.2  
79.0  
79.0  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
78.7  
78.2  
77.3  
fIN = 140 MHz  
fIN = 200 MHz  
78.4  
77.1  
78.3  
76.9  
77.5  
75.6  
SIGNAL-TO-NOISE-AND DISTORTION (SINAD)  
fIN = 2.4 MHz  
fIN = 70 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
79.6  
79.6  
79.4  
78.8  
78.7  
78.7  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
78.6  
77.9  
77.0  
fIN = 140 MHz  
fIN = 200 MHz  
77.3  
76.0  
77.5  
75.7  
77.0  
74.4  
EFFECTIVE NUMBER OF BITS (ENOB)  
fIN = 2.4 MHz  
fIN = 70 MHz  
fIN = 140 MHz  
fIN = 200 MHz  
25°C  
25°C  
25°C  
25°C  
12.9  
12.9  
12.5  
12.3  
12.9  
12.8  
12.6  
12.3  
12.8  
12.8  
12.5  
12.1  
Bits  
Bits  
Bits  
Bits  
WORST SECOND OR THIRD HARMONIC  
fIN = 2.4 MHz  
fIN = 70 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
dBc  
dBc  
dBc  
dBc  
dBc  
−88  
−94  
−90  
−89  
−88  
−93  
−92  
−88  
−85  
fIN = 140 MHz  
fIN = 200 MHz  
−82  
−81  
−86  
−81  
−89  
−80  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)  
fIN = 2.4 MHz  
fIN = 70 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
dBc  
dBc  
dBc  
dBc  
dBc  
88  
94  
90  
89  
88  
93  
92  
88  
85  
fIN = 140 MHz  
fIN = 200 MHz  
82  
81  
86  
81  
89  
80  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)  
Without Dither (AIN @ −23 dBFS)  
fIN = 2.4 MHz  
25°C  
25°C  
25°C  
25°C  
dBFS  
dBFS  
dBFS  
dBFS  
103  
103  
104  
102  
98  
96  
96  
101  
96  
98  
98  
97  
fIN = 70 MHz  
fIN = 140 MHz  
fIN = 200 MHz  
With On-Chip Dither (AIN @ −23 dBFS)  
fIN = 2.4 MHz  
fIN = 70 MHz  
fIN = 140 MHz  
fIN = 200 MHz  
25°C  
25°C  
25°C  
25°C  
dBFS  
dBFS  
dBFS  
dBFS  
110  
110  
110  
110  
108  
109  
109  
109  
108  
110  
109  
109  
Rev. A | Page 5 of 44  
 
AD9265  
AD9265BCPZ-802  
AD9265BCPZ-1052  
AD9265BCPZ-1252  
Parameter1  
Temp  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max Unit  
WORST OTHER (HARMONIC OR SPUR)  
Without Dither  
25°C  
25°C  
Full  
25°C  
25°C  
dBc  
dBc  
dBc  
dBc  
dBc  
fIN = 2.4 MHz  
fIN = 70 MHz  
−106  
−106  
−105  
−104  
−101  
−103  
−97  
−95  
−92  
−98  
fIN = 140 MHz  
fIN = 200 MHz  
With On-Chip Dither  
fIN = 2.4 MHz  
−104  
−102  
−103  
−103  
−104  
−100  
25°C  
25°C  
Full  
25°C  
25°C  
dBc  
dBc  
dBc  
dBc  
dBc  
−106  
−106  
−105  
−105  
−102  
−103  
fIN = 70 MHz  
−97  
−99  
fIN = 140 MHz  
fIN = 200 MHz  
−104  
−101  
−103  
−101  
−104  
−100  
TWO-TONE SFDR  
Without Dither  
25°C  
25°C  
25°C  
93  
80  
90  
78  
dBc  
dBc  
MHz  
fIN = 29 MHz (−7 dBFS ), 32 MHz (−7 dBFS )  
fIN = 169 MHz (−7 dBFS ), 172 MHz (−7 dBFS )  
ANALOG INPUT BANDWIDTH  
95  
79  
650  
650  
650  
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions.  
2 The suffix following the part number refers to the model found in the Ordering Guide section.  
DIGITAL SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, SVDD = 1.8 V, maximum sample rate, VIN = −1.0 dBFS differential input, 1.0 V internal reference, and DCS  
enabled, unless otherwise noted.  
Table 3.  
Parameter  
Temperature  
Min  
Typ  
Max  
Unit  
DIFFERENTIAL CLOCK INPUTS (CLK+, CLK−)  
Logic Compliance  
CMOS/LVDS/LVPECL  
0.9  
Internal Common-Mode Bias  
Differential Input Voltage  
Input Voltage Range  
Input Common-Mode Range  
High Level Input Current  
Low Level Input Current  
Input Capacitance  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
V
V p-p  
V
0.3  
AGND  
0.9  
−100  
−100  
3.6  
AVDD  
1.4  
+100  
+100  
V
μA  
μA  
pF  
kΩ  
4
Input Resistance  
8
10  
12  
SYNC INPUT  
Logic Compliance  
Internal Bias  
CMOS  
0.9  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
V
Input Voltage Range  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Capacitance  
AGND  
1.2  
AGND  
−100  
−100  
AVDD  
AVDD  
0.6  
V
V
V
+100  
+100  
μA  
μA  
pF  
kΩ  
1
16  
Input Resistance  
12  
20  
Rev. A | Page 6 of 44  
 
AD9265  
Parameter  
LOGIC INPUT (CSB)1  
Temperature  
Min  
Typ  
Max  
Unit  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.22  
0
SVDD  
0.6  
V
V
−10  
40  
+10  
132  
μA  
μA  
kΩ  
pF  
26  
2
Input Capacitance  
LOGIC INPUT (SCLK/DFS)2  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current (VIN = 1.8 V)  
Low Level Input Current  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.22  
0
−92  
−10  
SVDD  
0.6  
−135  
+10  
V
V
μA  
μA  
kΩ  
pF  
26  
2
Input Capacitance  
LOGIC INPUT/OUTPUT (SDIO/DCS)1  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
1.22  
0
−10  
38  
SVDD  
0.6  
+10  
128  
V
V
μA  
μA  
kΩ  
pF  
V
26  
5
Input Capacitance  
High Level Output Voltage  
Low Level Output Voltage  
LOGIC INPUTS (OEB, PDWN, DITHER, LVDS, LVDS_RS)2  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current (VIN = 1.8 V)  
Low Level Input Current  
Input Resistance  
1.70  
0.2  
V
Full  
Full  
Full  
Full  
Full  
Full  
1.22  
0
−90  
−10  
2.1  
0.6  
−134  
+10  
V
V
μA  
μA  
kΩ  
pF  
26  
5
Input Capacitance  
DIGITAL OUTPUTS (DRVDD = 1.8 V)  
CMOS Mode  
High Level Output Voltage  
IOH = 50 μA  
IOH = 0.5 mA  
Full  
Full  
1.79  
1.75  
V
V
Low Level Output Voltage  
IOL = 1.6 mA  
IOL = 50 μA  
Full  
Full  
0.2  
0.05  
V
V
LVDS Mode  
ANSI Mode  
Differential Output Voltage (VOD)  
Output Offset Voltage (VOS)  
Reduced Swing Mode  
Differential Output Voltage (VOD)  
Output Offset Voltage (VOS)  
Full  
Full  
290  
1.15  
345  
1.25  
400  
1.35  
mV  
V
Full  
Full  
160  
1.15  
200  
1.25  
230  
1.35  
mV  
V
1 Pull-up.  
2 Pull-down.  
Rev. A | Page 7 of 44  
AD9265  
SWITCHING SPECIFICATIONS  
−1.0 dBFS differential input, 1.0 V internal reference, and DCS enabled, unless otherwise noted.  
Table 4.  
AD9265BCPZ-801  
Temp Min Typ Max Min  
AD9265BCPZ-1051 AD9265BCPZ-1251  
Typ Max Min Typ Max Unit  
Parameter  
CLOCK INPUT PARAMETERS  
Input Clock Rate  
Conversion Rate2  
DCS Enabled  
DCS Disabled  
CLK Period—Divide-by-1 Mode (tCLK  
Full  
625  
625  
625  
MHz  
Full  
Full  
Full  
20  
10  
12.5  
80  
80  
20  
10  
9.5  
105  
105  
20  
10  
8
125  
125  
MSPS  
MSPS  
ns  
)
CLK Pulse Width High (tCH)  
Divide-by-1 Mode, DCS Enabled  
Divide-by-1 Mode, DCS Disabled  
Divide-by-3 Mode, Divide-by-5 Mode, and  
Divide-by-7 Mode, DCS Enabled3  
Divide-by-2 Mode, Divide-by-4 Mode, Divide-  
by-6 Mode and Divide-by-8 Mode, DCS  
Enabled or DCS Disabled3  
Full  
3.75  
5.9  
0.8  
6.25 8.75 2.85  
4.75 6.65 2.4  
4
4
5.6  
4.2  
ns  
ns  
ns  
6.25 6.6  
4.5  
0.8  
4.75 5.0  
3.8  
0.8  
Full  
Full  
0.8  
0.8  
0.8  
ns  
Aperture Delay(tA)  
Aperture Uncertainty (Jitter, tJ)  
DATA OUTPUT PARAMETERS  
CMOS Mode  
Full  
Full  
1.0  
0.07  
1.0  
0.07  
1.0  
0.07  
ns  
ps rms  
Data Propagation Delay (tPD)  
DCO Propagation Delay (tDCO  
Full  
Full  
Full  
Full  
2.4  
2.7  
0.3  
2.8  
3.4  
0.6  
12  
3.4  
4.2  
0.9  
2.4  
2.7  
0.3  
2.8  
3.4  
0.6  
12  
3.4  
4.2  
0.9  
2.4  
2.7  
0.3  
2.8  
3.4  
0.6  
12  
3.4  
4.2  
0.9  
ns  
ns  
ns  
Cycles  
4
)
DCO to Data Skew (tSKEW  
)
Pipeline Delay (Latency)  
LVDS Mode  
Data Propagation Delay (tPD)  
DCO Propagation Delay (tDCO  
Full  
Full  
Full  
Full  
Full  
Full  
2.6  
3.3  
−0.3  
3.4  
3.8  
0.4  
12.5  
500  
2
4.2  
4.3  
1.2  
2.6  
3.3  
−0.3  
3.4  
3.8  
0.4  
12.5  
500  
2
4.2  
4.3  
1.2  
2.6  
3.3  
−0.3 0.4  
12.5  
3.4  
3.8  
4.2  
4.3  
1.2  
ns  
ns  
ns  
Cycles  
μs  
4
)
DCO to Data Skew (tSKEW  
)
Pipeline Delay (Latency)  
Wake-Up Time5  
500  
2
OUT-OF-RANGE RECOVERY TIME  
Cycles  
1 The suffix following the part number refers to the model found in the Ordering Guide section.  
2 Conversion rate is the clock rate after the divider.  
3 See the Input Clock Divider section for additional information on using the DCS with the input clock divider.  
4 Additional DCO delay can be added by writing to Bit 0 through Bit 4 in SPI Register 0x17 (see Table 17).  
5 Wake-up time is defined as the time required to return to normal operation from power-down mode.  
Rev. A | Page 8 of 44  
 
AD9265  
TIMING SPECIFICATIONS  
Table 5.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
SYNC TIMING REQUIREMENTS  
tSSYNC  
tHSYNC  
SYNC to rising edge of CLK setup time  
SYNC to rising edge of CLK hold time  
0.30  
0.40  
ns  
ns  
SPI TIMING REQUIREMENTS  
tDS  
tDH  
tCLK  
tS  
tH  
tHIGH  
tLOW  
tEN_SDIO  
Setup time between the data and the rising edge of SCLK  
Hold time between the data and the rising edge of SCLK  
Period of the SCLK  
Setup time between CSB and SCLK  
Hold time between CSB and SCLK  
SCLK pulse width high  
SCLK pulse width low  
Time required for the SDIO pin to switch from an input to an  
output relative to the SCLK falling edge  
2
2
40  
2
2
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDIS_SDIO  
Time required for the SDIO pin to switch from an output to an  
input relative to the SCLK rising edge  
10  
ns  
Timing Diagrams  
N – 1  
N + 4  
tA  
N + 5  
N
N + 3  
VIN  
N + 1  
N + 2  
tCH  
tCL  
tCLK  
CLK+  
CLK–  
tDCO  
DCO/DCO+  
DCO–  
tSKEW  
LVDS (DDR) MODE  
CMOS MODE  
tPD  
D0/1+ TO D14/D15+  
D0/1– TO D14/D15–  
DEx  
– 12  
DOx  
– 12  
DEx  
– 11  
DOx  
– 11  
DEx  
– 10  
DOx  
– 10  
DEx  
– 9  
DOx  
– 9  
DEx  
– 8  
DOx  
– 8  
D0 TO D15  
NOTES  
1. DEx DENOTES EVEN BIT.  
2. DOx DENOTES ODD BIT.  
Dx – 12  
Dx – 11  
Dx – 10  
Dx – 9  
Dx – 8  
Figure 2. LVDS (DDR) and CMOS Output Mode Data Output Timing  
CLK+  
SYNC  
tSSYNC  
tHSYNC  
Figure 3. SYNC Input Timing Requirements  
Rev. A | Page 9 of 44  
 
 
 
AD9265  
ABSOLUTE MAXIMUM RATINGS  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 6.  
Parameter  
Rating  
Electrical  
AVDD to AGND  
DRVDD to AGND  
SVDD to AGND  
VIN+, VIN− to AGND  
CLK+, CLK− to AGND  
SYNC to AGND  
VREF to AGND  
SENSE to AGND  
VCM to AGND  
RBIAS to AGND  
CSB to AGND  
SCLK/DFS to AGND  
SDIO/DCS to AGND  
OEB to AGND  
PDWN to AGND  
LVDS to AGND  
LVDS_RS to AGND  
DITHER to AGND  
D0 through D15 to AGND  
DCO to AGND  
−0.3 V to +2.0 V  
−0.3 V to +2.0V  
−0.3 V to +3.6 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3V to AVDD + 0.2 V  
−0.3V to AVDD + 0.2 V  
−0.3 V to SVDD +0.3 V  
−0.3 V to SVDD +0.3 V  
−0.3V to SVDD + 0.3 V  
−0.3 V to DRVDD + 0.2 V  
−0.3 V to DRVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3V to AVDD + 0.2 V  
−0.3 V to DRVDD + 0.2 V  
−0.3 V to DRVDD + 0.2 V  
THERMAL CHARACTERISTICS  
The exposed paddle must be soldered to the ground plane for  
the LFCSP package. Soldering the exposed paddle to the customer  
board increases the reliability of the solder joints and maximizes  
the thermal capability of the package.  
Typical θJA is specified for a 4-layer PCB with a solid ground  
plane. As shown, airflow improves heat dissipation, which  
reduces θJA. In addition, metal in direct contact with the package  
leads from metal traces, through holes, ground, and power  
planes, reduces the θJA.  
Table 7. Thermal Resistance  
Airflow  
Velocity  
(m/s)  
1, 2  
1, 3  
1, 4  
Package Type  
θJA  
θJC  
θJB  
Unit  
48-Lead LFCSP  
(CP-48-8)  
0
24.5 1.3  
21.4  
12.7 °C/W  
°C/W  
1.0  
2.5  
Environmental  
19.2  
°C/W  
Operating Temperature Range  
(Ambient)  
Maximum Junction Temperature  
Under Bias  
−40°C to +85°C  
150°C  
1 Per JEDEC 51-7, plus JEDEC 25-5 2S2P test board.  
2 Per JEDEC JESD51-2 (still air) or JEDEC JESD51-6 (moving air).  
3 Per MIL-Std 883, Method 1012.1.  
4 Per JEDEC JESD51-8 (still air).  
Storage Temperature Range  
(Ambient)  
−65°C to +150°C  
ESD CAUTION  
Rev. A | Page 10 of 44  
 
 
 
AD9265  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
SYNC  
CLK+  
CLK–  
1
2
3
4
5
6
7
8
9
36 AVDD  
35 DITHER  
34 AVDD  
33 SVDD  
32 CSB  
PIN 1  
INDICATOR  
AVDD  
AVDD  
OEB  
AD9265  
PARALLEL  
31 SCLK/DFS  
30 SDIO/DCS  
29 DRVDD  
28 DNC  
DNC  
CMOS  
DCO  
TOP VIEW  
(Not to Scale)  
D0 (LSB)  
D1 10  
D2 11  
D3 12  
27 OR  
26 D15 (MSB)  
25 D14  
NOTES  
1. DNC = DO NOT CONNECT.  
2. THE EXPOSED THERMAL PAD ON THE BOTTOM OF THE PACKAGE  
PROVIDES THE ANALOG GROUND FOR THE INPUT. THIS EXPOSED  
PAD MUST BE CONNECTED TO GROUND FOR PROPER OPERATION.  
Figure 4. LFCSP Parallel CMOS Pin Configuration (Top View)  
Table 8. Pin Function Descriptions (Parallel CMOS Mode)  
Pin No.  
Mnemonic  
Type  
Description  
ADC Power Supplies  
13, 20, 29  
4, 5, 34, 36, 45  
33  
7, 28, 39, 40  
0
DRVDD  
Supply  
Supply  
Supply  
Digital Output Driver Supply (1.8 V Nominal).  
Analog Power Supply (1.8 V Nominal).  
SPI Input/Output Voltage.  
AVDD  
SVDD  
DNC  
Do Not Connect.  
AGND  
Ground  
Analog Ground. The exposed thermal pad on the bottom of the package provides  
the analog ground for the input. This exposed pad must be connected to ground for  
proper operation.  
ADC Analog  
42  
43  
38  
37  
47  
46  
2
3
VIN+  
VIN−  
VREF  
SENSE  
RBIAS  
VCM  
Input  
Input  
Differential Analog Input Pin (+).  
Differential Analog Input Pin (−).  
Input/output Voltage Reference Input/Output.  
Input  
Input/output External Reference Bias Resistor.  
Output  
Input  
Voltage Reference Mode Select. See Table 11 for details.  
Common-Mode Level Bias Output for Analog Inputs.  
ADC Clock Input—True.  
ADC Clock Input—Complement.  
CLK+  
CLK−  
Input  
Digital Input  
1
SYNC  
Input  
Digital Synchronization Pin. Slave mode only.  
Digital Outputs  
9
D0 (LSB)  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
CMOS Output Data.  
CMOS Output Data.  
CMOS Output Data.  
CMOS Output Data.  
CMOS Output Data.  
CMOS Output Data.  
CMOS Output Data.  
CMOS Output Data.  
CMOS Output Data.  
Rev. A | Page 11 of 44  
10  
11  
12  
14  
15  
16  
17  
18  
 
AD9265  
Pin No.  
Mnemonic  
D9  
D10  
D11  
D12  
D13  
D14  
D15 (MSB)  
OR  
DCO  
Type  
Description  
19  
21  
22  
23  
24  
25  
26  
27  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
CMOS Output Data.  
CMOS Output Data.  
CMOS Output Data.  
CMOS Output Data.  
CMOS Output Data.  
CMOS Output Data.  
CMOS Output Data.  
Overrange Output.  
Data Clock Output.  
8
SPI Control  
31  
30  
32  
SCLK/DFS  
SDIO/DCS  
CSB  
Input  
SPI Serial Clock/Data Format Select Pin in External Pin Mode.  
Input/output SPI Serial Data I/O/Duty Cycle Stabilizer Pin in External Pin Mode.  
Input  
SPI Chip Select (Active Low).  
ADC Configuration  
6
35  
OEB  
DITHER  
Input  
Input  
Output Enable Input (Active Low).  
In external pin mode, this pin sets dither to on (active high). Pull low for control via  
SPI in SPI mode.  
41  
44  
48  
LVDS_RS  
LVDS  
Input  
Input  
Input  
In external pin mode, this pin sets LVDS reduced swing output mode (active high).  
Pull low for control via SPI in SPI mode.  
In external pin mode, this pin sets LVDS output mode (active high). Pull low for  
control via SPI in SPI mode.  
Power-Down Input in External Pin Mode. In SPI mode, this input can be configured as  
power-down or standby.  
PDWN  
Rev. A | Page 12 of 44  
AD9265  
SYNC  
CLK+  
CLK–  
AVDD  
AVDD  
OEB  
1
2
3
4
5
6
7
8
9
36 AVDD  
PIN 1  
35 DITHER  
34 AVDD  
INDICATOR  
33 SVDD  
32 CSB  
AD9265  
INTERLEAVED  
31 SCLK/DFS  
30 SDIO/DCS  
DCO–  
DCO+  
D0/1–  
LVDS  
29  
28  
27  
DRVDD  
OR+  
TOP VIEW  
(Not to Scale)  
D0/1+ 10  
D2/3– 11  
D2/3+ 12  
OR–  
26 D14/15+  
25 D14/15–  
NOTES  
1. DNC = DO NOT CONNECT.  
2. THE EXPOSED THERMAL PAD ON THE BOTTOM OF THE PACKAGE  
PROVIDES THE ANALOG GROUND FOR THE PART. THIS EXPOSED PAD  
MUST BE CONNECTED TO GROUND FOR PROPER OPERATION.  
Figure 5. LFCSP Interleaved Parallel LVDS Pin Configuration (Top View)  
Table 9. Pin Function Descriptions (Interleaved Parallel LVDS Mode)  
Pin No.  
Mnemonic  
Type  
Description  
ADC Power Supplies  
13, 20, 29  
4, 5, 34, 36, 45 AVDD  
33  
39, 40  
0
DRVDD  
Supply  
Supply  
Supply  
Digital Output Driver Supply (1.8 V Nominal).  
Analog Power Supply (1.8 V Nominal).  
SPI Input/Output Voltage.  
SVDD  
DNC  
AGND  
Do Not Connect.  
Ground  
Analog Ground. The exposed thermal pad on the bottom of the package provides the  
analog ground for the input. This exposed pad must be connected to ground for proper  
operation.  
ADC Analog  
42  
43  
38  
37  
47  
46  
2
3
VIN+  
VIN−  
VREF  
SENSE  
RBIAS  
VCM  
Input  
Input  
Differential Analog Input Pin (+).  
Differential Analog Input Pin (−).  
Voltage Reference Input/Output.  
Voltage Reference Mode Select. See Table 11 for details.  
External Reference Bias Resistor.  
Common-Mode Level Bias Output for Analog Inputs.  
ADC Clock Input—True.  
ADC Clock Input—Complement.  
Input/output  
Input  
Input/output  
Output  
Input  
CLK+  
CLK−  
Input  
Digital Input  
1
SYNC  
Input  
Digital Synchronization Pin. Slave mode only.  
Digital Outputs  
10  
9
D0/1+  
D0/1−  
D2/3+  
D2/3−  
D4/5+  
D4/5−  
D6/7+  
D6/7−  
D8/9+  
D8/9−  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
LVDS Output Data Bit 0/Bit 1 (LSB)—True.  
LVDS Output Data Bit 0/Bit 1 (LSB)—Complement.  
LVDS Output Data Bit 2/Bit 3—True.  
LVDS Output Data Bit 2/Bit 3—Complement.  
LVDS Output Data Bit 4/Bit 5—True.  
LVDS Output Data Bit 4/Bit 5—Complement.  
LVDS Output Data Bit 6/Bit 7—True.  
LVDS Output Data Bit 6/Bit 7—Complement.  
LVDS Output Data Bit 8/Bit 9 —True.  
12  
11  
15  
14  
17  
16  
19  
18  
LVDS Output Data Bit 8/Bit 9—Complement.  
Rev. A | Page 13 of 44  
AD9265  
Pin No.  
Mnemonic  
D10/11+  
D10/11−  
D12/13+  
D12/13−  
D14/15+  
D14/15−  
OR+  
Type  
Description  
22  
21  
24  
23  
26  
25  
28  
27  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
LVDS Output Data Bit 10/Bit 11—True.  
LVDS Output Data Bit 10/Bit 11—Complement.  
LVDS Output Data Bit 12/Bit 13—True.  
LVDS Output Data Bit 12/Bit 13—Complement.  
LVDS Output Data Bit 14/Bit 15 (MSB)—True.  
LVDS Output Data Bit 14/Bit 15 (MSB)—Complement.  
LVDS Overrange Output—True.  
LVDS Overrange Output—Complement.  
LVDS Data Clock Output—True.  
LVDS Data Clock Output—Complement.  
OR−  
DCO+  
DCO−  
8
7
SPI Control  
31  
30  
32  
SCLK/DFS  
SDIO/DCS  
CSB  
Input  
Input/output  
Input  
SPI Serial Clock/Data Format Select Pin in External Pin Mode.  
SPI Serial Data I/O/Duty Cycle Stabilizer Pin in External Pin Mode.  
SPI Chip Select (Active Low).  
ADC Configuration  
6
35  
OEB  
Input  
Input  
Output Enable Input (Active Low).  
In external pin mode, this pin sets dither to on (active high). Pull low for control via SPI  
in SPI mode.  
In external pin mode, this pin sets LVDS reduced swing output mode (active high). Pull  
low for control via SPI in SPI mode.  
In external pin mode, this pin sets LVDS output mode (active high). Pull low for control  
via SPI in SPI mode.  
DITHER  
LVDS_RS  
LVDS  
41  
44  
48  
Input  
Input  
Input  
PDWN  
Power-Down Input in External Pin Mode. In SPI mode, this input can be configured as  
power-down or standby.  
Rev. A | Page 14 of 44  
AD9265  
TYPICAL PERFORMANCE CHARACTERISTICS  
AVDD = 1.8 V, DRVDD = 1.8 V, SVDD = 1.8 V, sample rate = 125 MSPS, DCS enabled, 1.0 V internal reference, 2 V p-p differential input,  
VIN = −1.0 dBFS, and 32k sample, TA = 25°C, unless otherwise noted.  
0
–20  
0
80MSPS  
80MSPS  
2.4MHz @ –1dBFS  
SNR = 79.2dB (80.2dBFS)  
SFDR = 88.2dBc  
200.3MHz @ –1dBFS  
SNR = 76.5dB (77.5dBFS)  
SFDR = 81.2dBc  
–20  
–40  
–40  
–60  
–60  
THIRD  
HARMONIC  
SECOND  
HARMONIC  
THIRD  
HARMONIC  
–80  
–80  
SECOND  
HARMONIC  
–100  
–120  
–140  
–100  
–120  
–140  
0
10  
20  
FREQUENCY (MHz)  
30  
40  
0
10  
20  
FREQUENCY (MHz)  
30  
40  
Figure 6. AD9265-80 Single-Tone FFT with fIN = 2.4 MHz  
Figure 9. AD9265-80 Single-Tone FFT with fIN = 200.3 MHz  
0
0
80MSPS  
80MSPS  
70.1MHz @ –1dBFS  
SNR = 78.7dB (79.7dBFS)  
SFDR = 93.8dBc  
70.1MHz @ –6dBFS  
SNR = 74.0dB (80.0dBFS)  
SFDR = 100dBc  
–20  
–40  
–20  
–40  
–60  
–60  
THIRD  
HARMONIC  
SECOND  
HARMONIC  
–80  
–80  
THIRD  
HARMONIC  
SECOND  
HARMONIC  
–100  
–120  
–140  
–100  
–120  
–140  
0
10  
20  
30  
40  
0
10  
20  
30  
40  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 7. AD9265-80 Single-Tone FFT with fIN = 70.1 MHz  
Figure 10. AD9265-80 Single-Tone FFT with fIN = 70.1 MHz @ −6 dBFS with  
Dither Enabled  
120  
0
80MSPS  
SFDR (dBFS)  
140.1MHz @ –1dBFS  
SNR = 77.7dB (78.7dBFS)  
SFDR = 82.2dBc  
–20  
–40  
100  
SNR (dBFS)  
80  
THIRD  
HARMONIC  
–60  
60  
SECOND  
HARMONIC  
SFDR (dBc)  
–80  
40  
–100  
–120  
–140  
SNR (dBc)  
20  
0
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
0
10  
20  
FREQUENCY (MHz)  
30  
40  
INPUT AMPLITUDE (dBFS)  
Figure 11. AD9265-80 Single-Tone SNR/SFDR vs. Input Amplitude (AIN) with  
fIN = 98.12 MHz  
Figure 8. AD9265-80 Single-Tone FFT with fIN = 140.1 MHz  
Rev. A | Page 15 of 44  
 
AD9265  
120  
110  
100  
90  
450,000  
400,000  
350,000  
300,000  
250,000  
200,000  
150,000  
100,000  
50,000  
0
2.17 LSB RMS  
SFDRFS (DITHER ON)  
SFDRFS (DITHER OFF)  
SNRFS (DITHER OFF)  
SNRFS (DITHER ON)  
80  
70  
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
INPUT AMPLITUDE (dBFS)  
OUTPUT CODE  
Figure 15. AD9265-80 Grounded Input Histogram  
Figure 12. AD9265-80 Single-Tone SNR/SFDR vs. Input Amplitude (AIN) with  
fIN = 30 MHz With and Without Dither Enabled  
100  
4
3
INL WITHOUT DITHER  
INL WITH DITHER  
95  
90  
85  
80  
75  
70  
65  
SFDR @ +25°C  
SFDR @ +85°C  
2
1
SNR @ –40°C  
0
SFDR @ –40°C  
–1  
–2  
–3  
SNR @ +25°C  
SNR @ +85°C  
–4  
0
0
50  
100  
150  
200  
250  
300  
10,000  
20,000  
30,000  
40,000  
50,000  
60,000  
INPUT FREQUENCY (MHz)  
OUTPUT CODE  
Figure 13. AD9265-80 Single-Tone SNR/SFDR vs.  
Figure 16. AD9265-80 INL with fIN = 12.5 MHz  
Input Frequency (fIN) and Temperature with 2 V p-p Full Scale  
105  
1.00  
0.75  
0.50  
0.25  
0
100  
95  
SFDR  
90  
–0.25  
–0.50  
–0.75  
85  
SNR  
80  
75  
25  
–1.00  
0
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
10,000  
20,000  
30,000  
40,000  
50,000  
60,000  
SAMPLE RATE (MSPS)  
OUTPUT CODE  
Figure 14. AD9265-80 Single-Tone SNR/SFDR vs. Sample Rate (fS)  
with fIN = 70.1 MHz  
Figure 17. AD9265-80 DNL with fIN = 12.5 MHz  
Rev. A | Page 16 of 44  
AD9265  
0
–20  
0
–20  
105MSPS  
105MSPS  
2.4MHz @ –1dBFS  
SNR = 78.8dB (79.8dBFS)  
SFDR = 91dBc  
200.3MHz @ –1dBFS  
SNR = 75.9dB (76.9dBFS)  
SFDR = 82dBc  
–40  
–40  
–60  
–60  
THIRD  
HARMONIC  
SECOND  
HARMONIC  
SECOND  
HARMONIC  
–80  
–80  
THIRD  
HARMONIC  
–100  
–120  
–140  
–100  
–120  
–140  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 18. AD9265-105 Single-Tone FFT with fIN = 2.4 MHz  
Figure 21. AD9265-105 Single-Tone FFT with fIN = 200.3 MHz  
0
0
105MSPS  
105MSPS  
70.1MHz @ –1dBFS  
70.1MHz @ –6dBFS  
SNR = 78.3dB (79.3dBFS)  
SFDR = 89dBc  
SNR = 73.7dB (79.7dBFS)  
SFDR = 92dBc  
–20  
–40  
–20  
–40  
–60  
–60  
SECOND  
HARMONIC  
THIRD  
HARMONIC  
SECOND  
HARMONIC  
–80  
–80  
THIRD  
HARMONIC  
–100  
–120  
–140  
–100  
–120  
–140  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 19. AD9265-105 Single-Tone FFT with fIN = 70.1 MHz  
Figure 22. AD9265-105 Single-Tone FFT with fIN = 70.1 MHz @ −6dBFS with  
Dither Enabled  
120  
0
105MSPS  
SFDR (dBFS)  
140.1MHz @ –1dBFS  
SNR = 77.3dB (78.3dBFS)  
SFDR = 86dBc  
–20  
–40  
100  
SNR (dBFS)  
80  
–60  
THIRD  
HARMONIC  
60  
SECOND  
HARMONIC  
SFDR (dBc)  
–80  
40  
–100  
–120  
–140  
SNR (dBc)  
20  
0
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
0
10  
20  
30  
40  
50  
INPUT AMPLITUDE (dBFS)  
FREQUENCY (MHz)  
Figure 23. AD9265-105 Single-Tone SNR/SFDR vs. Input Amplitude (AIN) with  
fIN = 98.12 MHz  
Figure 20. AD9265-105 Single-Tone FFT with fIN = 140.1 MHz  
Rev. A | Page 17 of 44  
AD9265  
120  
110  
100  
90  
400,000  
350,000  
300,000  
250,000  
200,000  
150,000  
100,000  
50,000  
0
SFDRFS (DITHER ON)  
2.28 LSB RMS  
SFDRFS (DITHER OFF)  
SNRFS (DITHER OFF)  
SNRFS (DITHER ON)  
80  
70  
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
INPUT AMPLITUDE (dBFS)  
OUTPUT CODE  
Figure 27. AD9265-105 Grounded Input Histogram  
Figure 24. AD9265-105 Single-Tone SNR/SFDR vs. Input Amplitude (AIN) with  
fIN = 30 MHz with and without Dither Enabled  
100  
4
3
INL WITHOUT DITHER  
INL WITH DITHER  
SFDR @ +25°C  
SFDR @ –40°C  
95  
SFDR @ +85°C  
2
90  
1
85  
80  
75  
70  
65  
SNR @ –40°C  
0
–1  
–2  
–3  
SNR @ +25°C  
SNR @ +85°C  
–4  
0
0
50  
100  
150  
200  
250  
300  
10,000  
20,000  
30,000  
40,000  
50,000  
60,000  
INPUT FREQUENCY (MHz)  
OUTPUT CODE  
Figure 25. AD9265-105 Single-Tone SNR/SFDR vs.  
Figure 28. AD9265-105 INL with fIN = 12.5 MHz  
Input Frequency (fIN) and Temperature with 2 V p-p Full Scale  
105  
1.00  
0.75  
0.50  
0.25  
0
100  
SFDR  
95  
90  
85  
–0.25  
–0.50  
–0.75  
SNR  
80  
75  
–1.00  
0
25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105  
10,000  
20,000  
30,000  
40,000  
50,000  
60,000  
SAMPLE RATE (MSPS)  
OUTPUT CODE  
Figure 26. AD9265-105 Single-Tone SNR/SFDR vs. Sample Rate (fS)  
with fIN = 70.1 MHz  
Figure 29. AD9265-105 DNL with fIN = 12.5 MHz  
Rev. A | Page 18 of 44  
AD9265  
0
–20  
0
–20  
125MSPS  
125MSPS  
2.4MHz @ –1dBFS  
SNR = 78.0dB (79.0dBFS)  
SFDR = 88dBc  
140.1MHz @ –1dBFS  
SNR = 76.6dB (77.6dBFS)  
SFDR = 89dBc  
–40  
–40  
–60  
–60  
SECOND  
HARMONIC  
SECOND  
HARMONIC  
THIRD  
HARMONIC  
–80  
–80  
THIRD  
HARMONIC  
–100  
–120  
–140  
–100  
–120  
–140  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 30. AD9265-125 Single-Tone FFT with fIN = 2.4 MHz  
Figure 33. AD9265-125 Single-Tone FFT with fIN = 140.1 MHz  
0
0
125MSPS  
125MSPS  
30.3MHz @ –1dBFS  
200.3MHz @ –1dBFS  
SNR = 78.6dB (79.6dBFS)  
SFDR = 95dBc  
SNR = 74.7dB (75.7dBFS)  
SFDR = 80dBc  
–20  
–40  
–20  
–40  
THIRD  
HARMONIC  
–60  
–60  
THIRD  
HARMONIC  
SECOND  
HARMONIC  
SECOND  
HARMONIC  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 31. AD9265-125 Single-Tone FFT with fIN = 30.3 MHz  
Figure 34. AD9265-125 Single-Tone FFT with fIN = 200.3 MHz  
0
0
125MSPS  
125MSPS  
70.1MHz @ –1dBFS  
220.1MHz @ –1dBFS  
SNR = 78.0dB (79.0dBFS)  
SFDR = 94dBc  
SNR = 74.3dB (75.3dBFS)  
SFDR = 80dBc  
–20  
–40  
–20  
–40  
THIRD  
HARMONIC  
–60  
–60  
SECOND  
HARMONIC  
SECOND  
HARMONIC  
THIRD  
HARMONIC  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 32. AD9265-125 Single-Tone FFT with fIN = 70.1 MHz  
Figure 35. AD9265-125 Single-Tone FFT with fIN = 220.1 MHz  
Rev. A | Page 19 of 44  
AD9265  
0
120  
100  
80  
60  
40  
20  
0
125MSPS  
SFDR (dBFS)  
70.1MHz @ –6dBFS  
SNR = 73.5dB (79.5dBFS)  
SFDR = 98dBc  
–20  
–40  
SNR (dBFS)  
–60  
SFDR (dBc)  
–80  
SECOND  
HARMONIC  
THIRD  
HARMONIC  
–100  
–120  
–140  
SNR (dBc)  
0
10  
20  
30  
40  
50  
60  
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 36. AD9265-125 Single-Tone FFT with fIN = 70.1 MHz @ −6 dBFS with  
Dither Enabled  
Figure 39. AD9265-125 Single-Tone SNR/SFDR vs. Input Amplitude (AIN) with  
fIN = 2.4 MHz  
120  
125MSPS  
70.1MHz @ –23dBFS  
0
SFDR (dBFS)  
SNR = 57.3dBc (80.3dBFS)  
SFDR = 75.1dBc  
–30  
–15  
100  
SNR (dBFS)  
80  
–45  
–60  
–75  
60  
SFDR (dBc)  
–90  
2
40  
5
3
–105  
–120  
–135  
+
6
4
SNR (dBc)  
20  
0
6
12  
18  
24  
30  
36  
42  
48  
54  
60  
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 37. AD9265-125 Single-Tone FFT with fIN = 70.1 MHz @ −23 dBFS with  
Dither Disabled, 1M Sample  
Figure 40. AD9265-125 Single-Tone SNR/SFDR vs. Input Amplitude (AIN) with  
fIN = 98.12 MHz  
120  
125MSPS  
70.1MHz @ –23dBFS  
0
SFDRFS (DITHER ON)  
SNR = 56.8dBc (79.8dBFS)  
SFDR = 86.8dBc  
–30  
–15  
110  
100  
–45  
–60  
–75  
SFDRFS (DITHER OFF)  
90  
–90  
–105  
2
+
4
5
3
SNRFS (DITHER OFF)  
6
–120  
–135  
80  
SNRFS (DITHER ON)  
70  
6
12  
18  
24  
30  
36  
42  
48  
54  
60  
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 41. AD9265-125 Single-Tone SNR/SFDR vs. Input Amplitude (AIN) with  
fIN = 30 MHz With and Without Dither Enabled  
Figure 38. AD9265-125 Single-Tone FFT with fIN = 70.1 MHz @ −23 dBFS with  
Dither Enabled, 1M Sample  
Rev. A | Page 20 of 44  
AD9265  
100  
95  
90  
85  
80  
75  
70  
65  
0
–20  
SFDR @ –40°C  
SFDR (dBc)  
SFDR @ +25°C  
SFDR @ +85°C  
–40  
IMD3 (dBc)  
–60  
SNR @ –40°C  
–80  
SFDR (dBFS)  
IMD3 (dBFS)  
–100  
–120  
–140  
SNR @ +25°C  
SNR @ +85°C  
0
50  
100  
150  
200  
250  
300  
–90  
–78  
–66  
–54  
–42  
–30  
–18  
–6  
INPUT FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 42. AD9265-125 Single-Tone SNR/SFDR vs.  
Figure 45. AD9265-125 Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN  
)
Input Frequency (fIN) and Temperature with 2 V p-p Full Scale  
with fIN1 = 169.1 MHz, fIN2 = 172.1 MHz, fS = 125 MSPS  
100  
0
125MSPS  
29.1MHz @ –7dBFS  
32.1MHz @ –7dBFS  
SFDR = 94.9dBc (101.9dBFS)  
95  
–20  
–40  
SFDR  
90  
85  
80  
75  
–60  
–80  
–100  
–120  
–140  
SNR  
70  
65  
0
50  
100  
150  
200  
250  
300  
0
10  
20  
30  
40  
50  
60  
INPUT FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 43. AD9265-125 Single-Tone SNR/SFDR vs.  
Input Frequency (fIN) with 1 V p-p Full Scale  
Figure 46. AD9265-125 Two-Tone FFT with fIN1 = 29.1 MHz and fIN2 = 32.1 MHz  
0
–20  
0
125MSPS  
169.1MHz @ –7dBFS  
172.1MHz @ –7dBFS  
SFDR = 79.4dBc (86.4dBFS)  
SFDR (dBc)  
IMD3 (dBc)  
–20  
–40  
–40  
–60  
–60  
–80  
–80  
SFDR (dBFS)  
IMD3 (dBFS)  
–100  
–120  
–140  
–100  
–120  
–140  
–90  
–78  
–66  
–54  
–42  
–30  
–18  
–6  
0
10  
20  
30  
40  
50  
60  
INPUT AMPLITUDE (dBFS)  
FREQUENCY (MHz)  
Figure 44. AD9265-125 Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN  
)
Figure 47. AD9265-125 Two-Tone FFT with fIN1 = 169.1 MHz and  
fIN2 = 172.1 MHz  
with fIN1 = 29.1 MHz, fIN2 = 32.1 MHz, fS = 125 MSPS  
Rev. A | Page 21 of 44  
AD9265  
105  
100  
95  
1.00  
0.75  
0.50  
0.25  
0
SFDR  
90  
–0.25  
–0.50  
–0.75  
–1.00  
85  
SNR  
75  
80  
75  
25  
35  
45  
55  
65  
85  
95  
105 115 125  
0
10,000  
20,000  
30,000  
40,000  
50,000  
60,000  
OUTPUT CODE  
SAMPLE RATE (MSPS)  
Figure 51. AD9265-125 DNL with fIN = 9.7 MHz  
Figure 48. AD9265-125 Single-Tone SNR/SFDR vs. Sample Rate (fS)  
with fIN = 70.1 MHz  
450,000  
100  
90  
80  
70  
60  
50  
40  
2.13 LSB RMS  
SFDR  
400,000  
350,000  
300,000  
250,000  
200,000  
150,000  
100,000  
50,000  
0
SNR  
0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20  
INPUT COMMON-MODE VOLTAGE (V)  
OUTPUT CODE  
Figure 49. AD9265-125 Grounded Input Histogram  
Figure 52. AD9265-125 SNR/SFDR vs. Input Common Mode (VCM)  
with fIN = 30 MHz  
4
INL WITHOUT DITHER  
INL WITH DITHER  
3
2
1
0
–1  
–2  
–3  
–4  
0
10,000  
20,000  
30,000  
40,000  
50,000  
60,000  
OUTPUT CODE  
Figure 50. AD9265-125 INL with fIN = 9.7 MHz  
Rev. A | Page 22 of 44  
 
AD9265  
EQUIVALENT CIRCUITS  
AVDD  
VIN+ OR  
VIN–  
VREF  
6k  
Figure 53. Equivalent Analog Input Circuit  
Figure 57. Equivalent VREF Circuit  
AVDD  
SVDD  
0.9V  
26k  
10k  
10kΩ  
350Ω  
CLK–  
CLK+  
SDIO/DCS  
Figure 58. Equivalent SDIO/DCS Circuit  
Figure 54. Equivalent Clock Input Circuit  
SVDD  
DRVDD  
350Ω  
SCLK/DFS  
PAD  
26kΩ  
Figure 59. Equivalent SCLK/DFS Input Circuit  
Figure 55. Digital Output  
SVDD  
AVDD  
26kΩ  
350Ω  
350  
CSB  
SENSE  
Figure 60. Equivalent CSB Input Circuit  
Figure 56. Equivalent SENSE Circuit  
Rev. A | Page 23 of 44  
 
 
AD9265  
AVDD  
DITHER,  
LVDS OR  
LVDS_RS  
350  
350  
PDWN  
26kΩ  
26kΩ  
Figure 63. Equivalent DITHER, LVDS, and LVDS_RS Input Circuit  
Figure 61. Equivalent PDWN Circuit  
DRVDD  
26k  
350Ω  
OEB  
Figure 62. Equivalent OEB Input Circuit  
Rev. A | Page 24 of 44  
AD9265  
THEORY OF OPERATION  
A small resistor in series with each input can help reduce the  
With the AD9265, the user can sample any fS/2 frequency  
segment from dc to 200 MHz, using appropriate low-pass or  
band-pass filtering at the ADC inputs with little loss in ADC  
performance. Operation to 300 MHz analog input is permitted,  
but it occurs at the expense of increased ADC noise and distortion.  
peak transient current required from the output stage of the  
driving source. A shunt capacitor can be placed across the  
inputs to provide dynamic charging currents. This passive  
network creates a low-pass filter at the ADC input; therefore,  
the precise values are dependent on the application.  
Synchronization capability is provided to allow synchronized  
timing between multiple devices.  
In intermediate frequency (IF) undersampling applications, any  
shunt capacitors should be reduced. In combination with the  
driving source impedance, the shunt capacitors limit the input  
bandwidth. Refer to AN-742 Application Note, Frequency Domain  
Response of Switched-Capacitor ADCs; AN-827 Application Note,  
A Resonant Approach to Interfacing Amplifiers to Switched-  
Capacitor ADCs; and the Analog Dialogue article, Transformer-  
Coupled Front-End for Wideband A/D Converters,for more  
information on this subject (see www.analog.com).  
Programming and control of the AD9265 are accomplished  
using a 3-wire SPI-compatible serial interface.  
ADC ARCHITECTURE  
The AD9265 architecture consists of a front-end sample-and-  
hold input network, followed by a pipelined, switched-capacitor  
ADC. The quantized outputs from each stage combine into a  
final 16-bit result in the digital correction logic. The pipelined  
architecture permits the first stage to operate on a new input  
sample and the remaining stages to operate on the preceding  
samples. Sampling occurs on the rising edge of the clock.  
BIAS  
S
S
C
FB  
C
S
VIN+  
VIN–  
Each stage of the pipeline, excluding the last, consists of a low  
resolution flash ADC connected to a switched-capacitor digital-  
to-analog converter (DAC) and an interstage residue amplifier  
(MDAC). The residue amplifier magnifies the difference between  
the reconstructed DAC output and the flash input for the next  
stage in the pipeline. One bit of redundancy is used in each stage  
to facilitate digital correction of flash errors. The last stage simply  
consists of a flash ADC.  
C
PAR1  
C
PAR2  
H
S
S
S
C
S
C
FB  
C
PAR1  
C
PAR2  
S
BIAS  
Figure 64. Switched Capacitor Input  
The input stage can be ac- or dc-coupled in differential or  
single-ended modes. The output staging block aligns the data,  
corrects errors, and passes the data to the output buffers. The  
output buffers are powered from a separate supply, allowing  
adjustment of the output voltage swing. During power-down,  
the output buffers go into a high impedance state.  
For best dynamic performance, the source impedances driving  
VIN+ and VIN− should be matched, and the inputs should be  
differentially balanced.  
An internal differential reference buffer creates positive and  
negative reference voltages that define the input span of the ADC  
core. The span of the ADC core is set by this buffer to 2 × VREF.  
ANALOG INPUT CONSIDERATIONS  
Input Common Mode  
The analog input to the AD9265 is a differential switched-  
capacitor network that has been designed to give optimum  
performance while processing a differential input signal.  
The analog inputs of the AD9265 are not internally dc biased.  
In ac-coupled applications, the user must provide this bias  
externally. Setting the device so that VCM = 0.5 × AVDD is  
recommended for optimum performance, but the device  
functions over a wider range with reasonable performance (see  
Figure 52). An on-board common-mode voltage reference is  
included in the design and is available from the VCM pin.  
Optimum performance is achieved when the common-mode  
voltage of the analog input is set by the VCM pin voltage  
(typically 0.5 × AVDD). The VCM pin must be decoupled to  
ground by a 0.1 μF capacitor, as described in the Applications  
Information section.  
The clock signal alternatively switches between sample mode  
and hold mode (see Figure 64). When the input is switched into  
sample mode, the signal source must be capable of charging the  
sample capacitors and settling within 1/2 of a clock cycle.  
Rev. A | Page 25 of 44  
 
 
 
 
AD9265  
Static Linearity  
Dither  
The AD9265 has an optional dither mode that can be selected  
either through the SPI bus or by using the DITHER pin. Dithering  
is the act of injecting a known but random amount of white noise,  
commonly referred to as dither, into the input of the ADC.  
Dithering has the effect of improving the local linearity at  
various points along the ADC transfer function. Dithering  
can significantly improve the SFDR when quantizing small  
signal inputs, typically when the input level is below −6 dBFS.  
Dithering also removes sharp local discontinuities in the INL  
transfer function of the ADC and reduces the overall peak-to-  
peak INL.  
In receiver applications, utilizing dither helps to reduce DNL errors  
that cause small signal gain errors. Often this issue is overcome  
by setting the input noise 5 dB to 10 dB above the converter  
noise. By utilizing dither within the converter to correct the  
DNL errors, the input noise requirement can be reduced.  
As shown in Figure 65, the dither that is added to the input of  
the ADC through the dither DAC is precisely subtracted out  
digitally to minimize SNR degradation. When dithering is enabled,  
the dither DAC is driven by a pseudorandom number generator  
(PN gen). In the AD9265, the dither DAC is precisely calibrated  
to result in only a very small degradation in SNR and SINAD.  
The typical SNR and SINAD degradation values, with dithering  
enabled, are only 1 dB and 0.8 dB, respectively.  
Differential Input Configurations  
Optimum performance is achieved while driving the AD9265 in a  
differential input configuration. For baseband applications, the  
AD8138, ADA4937-2, and ADA4938-2 differential drivers provide  
excellent performance and a flexible interface to the ADC.  
The output common-mode voltage of the ADA4938 is easily set  
with the VCM pin of the AD9265 (see Figure 66), and the  
driver can be configured in the filter topology shown to provide  
band limiting of the input signal.  
VIN  
DOUT  
ADC CORE  
15pF  
200Ω  
33Ω  
5pF  
15Ω  
15Ω  
90Ω  
VIN–  
VIN+  
DITHER  
DAC  
AVDD  
ADC  
VCM  
76.8Ω  
VIN  
ADA4938-2  
0.1µF  
33Ω  
PN GEN  
DITHER ENABLE  
120Ω  
15pF  
Figure 65. Dither Block Diagram  
200Ω  
Large Signal FFT  
Figure 66. Differential Input Configuration Using the ADA4938-2  
In most cases, dithering does not improve SFDR for large signal  
inputs close to full scale, for example, with a −1 dBFS input. For  
large signal inputs, the SFDR is typically limited by front-end  
sampling distortion, which dithering cannot improve. However,  
even for such large signal inputs, dithering may be useful for  
certain applications because it makes the noise floor whiter.  
As is common in pipeline ADCs, the AD9265 contains small  
DNL errors caused by random component mismatches that  
produce spurs or tones that make the noise floor somewhat  
randomly colored part-to-part. Although these tones are  
typically at very low levels and do not limit SFDR when the  
ADC is quantizing large signal inputs, dithering converts these  
tones to noise and produces a whiter noise floor.  
For baseband applications where SNR is a key parameter,  
differential transformer coupling is the recommended input  
configuration. An example is shown in Figure 67. To bias the  
analog input, the VCM voltage can be connected to the center  
tap of the secondary winding of the transformer.  
C2  
R2  
VIN+  
R1  
2V p-p  
49.9  
C1  
R1  
ADC  
VCM  
R2  
VIN–  
0.1µF  
C2  
Figure 67. Differential Transformer-Coupled Configuration  
Small Signal FFT  
The signal characteristics must be considered when selecting  
a transformer. Most RF transformers saturate at frequencies  
below a few megahertz (MHz). Excessive signal power can also  
cause core saturation, which leads to distortion.  
For small signal inputs, the front-end sampling circuit typically  
contributes very little distortion, and, therefore, the SFDR is likely  
to be limited by tones caused by DNL errors due to random com-  
ponent mismatches. Therefore, for small signal inputs (typically,  
those below −6 dBFS), dithering can significantly improve  
SFDR by converting these DNL tones to white noise.  
At input frequencies in the second Nyquist zone and above, the  
noise performance of most amplifiers is not adequate to achieve  
the true SNR performance of the AD9265. For applications in  
Rev. A | Page 26 of 44  
 
 
 
AD9265  
which SNR is a key parameter, differential double balun coupling  
is the recommended input configuration (see Figure 68). In this  
configuration, the input is ac-coupled and the CML is provided  
to each input through a 33 Ω resistor. These resistors compensate  
for losses in the input baluns to provide a 50 Ω impedance to  
the driver.  
Table 10. Example RC Network  
Frequency  
Range  
(MHz)  
R1 Series C1 Differential R2 Series C2 Shunt  
(Ω Each) (pF)  
(Ω Each)  
(pF Each)  
Open  
10  
0 to 100  
100 to 300 10  
15  
18  
10  
15  
10  
An alternative to using a transformer-coupled input at fre-  
quencies in the second Nyquist zone and higher is to use the  
ADL5562 differential driver. The ADL5562 provides three  
selectable gain options up to 15.5 dB. An example circuit is  
shown in Figure 69; additional filtering between the ADL5562  
output and the AD9265 input may be required to reduce out-of-  
band noise. See the ADL5562 data sheet for more information.  
In the double balun and transformer configurations, the value of  
the input capacitors and resistors is dependent on the input fre-  
quency and source impedance and may need to be reduced or  
removed. Table 10 displays recommended values to set the RC  
network. However, these values are dependent on the input  
signal and should be used only as a starting guide.  
C2  
0.1µF  
0.1µF  
0.1µF  
R1  
R2  
VIN+  
VIN–  
2V p-p  
33Ω  
33Ω  
P
A
S
S
P
C1  
R1  
ADC  
0.1µF  
R2  
VCM  
C2  
Figure 68. Differential Double Balun Input Configuration  
V
CC  
10pF  
0.1µF  
0.1µF  
5, 6, 7, 8  
0Ω  
2
1
0.1µF  
0.1µF  
ANALOG INPUT  
ANALOG INPUT  
20Ω  
15Ω  
15Ω  
11  
VIN+  
100Ω  
5pF  
AD9265  
ADL5562  
10  
100Ω  
4
3
15Ω  
15Ω  
VCM  
VIN–  
20Ω  
9
0Ω  
0.1µF  
0.1µF  
10pF  
0.1µF  
Figure 69. Differential Input Configuration Using the ADL5562  
Rev. A | Page 27 of 44  
 
 
 
AD9265  
the reference amplifier in a noninverting mode with the VREF  
output defined as follows:  
VOLTAGE REFERENCE  
A stable and accurate voltage reference is built into the AD9265.  
The input range can be adjusted by varying the reference voltage  
applied to the AD9265, using either the internal reference or an  
externally applied reference voltage. The input span of the ADC  
tracks reference voltage changes linearly. The various reference  
modes are summarized in the sections that follow. The Reference  
Decoupling section describes the best practices PCB layout of  
the reference.  
R2  
R1  
VREF 0.51  
The input range of the ADC always equals twice the voltage at  
the reference pin for either an internal or an external reference.  
VIN+  
VIN–  
Internal Reference Connection  
ADC  
A comparator within the AD9265 detects the potential at the  
SENSE pin and configures the reference into four possible modes,  
which are summarized in Table 11. If SENSE is grounded, the  
reference amplifier switch is connected to the internal resistor  
divider (see Figure 70), setting VREF to 1.0 V for a 2.0 V p-p full-  
scale input. In this mode, with SENSE grounded, the full scale can  
also be adjusted through the SPI port by adjusting Bit 6 and Bit 7 of  
Register 0x18. These bits can be used to change the full scale to  
1.25 V p-p, 1.5 V p-p, 1.75 V p-p, or to the default of 2.0 V p-p,  
as shown in Table 17.  
CORE  
VREF  
1.0µF  
0.1µF  
R2  
SELECT  
LOGIC  
SENSE  
0.5V  
R1  
ADC  
Figure 71. Programmable Reference Configuration  
Connecting the SENSE pin to the VREF pin switches the reference  
amplifier output to the SENSE pin, completing the loop and pro-  
viding a 0.5 V reference output for a 1 V p-p full-scale input.  
If the internal reference of the AD9265 is used to drive multiple  
converters to improve gain matching, the loading of the reference  
by the other converters must be considered. Figure 72 shows  
how the internal reference voltage is affected by loading.  
VIN+  
VIN–  
0
ADC  
CORE  
–0.5  
VREF = 0.5V  
VREF  
–1.0  
1.0µF  
0.1µF  
SELECT  
LOGIC  
VREF = 1V  
–1.5  
SENSE  
0.5V  
ADC  
–2.0  
–2.5  
–3.0  
Figure 70. Internal Reference Configuration  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
If a resistor divider is connected external to the chip, as shown  
in Figure 71, the switch again sets to the SENSE pin. This puts  
LOAD CURRENT (mA)  
Figure 72. VREF Accuracy vs. Load  
Table 11. Reference Configuration Summary  
Selected Mode  
SENSE Voltage  
Resulting VREF (V)  
Resulting Differential Span (V p-p)  
External Reference  
AVDD  
N/A  
2 × external reference  
Internal Fixed Reference  
Programmable Reference  
Internal Fixed Reference  
VREF  
0.5  
1.0  
R2  
R1  
(see Figure 71)  
0.5 1  
0.2 V to VREF  
AGND to 0.2 V  
2 × VREF  
2.0  
1.0  
Rev. A | Page 28 of 44  
 
 
 
 
 
AD9265  
External Reference Operation  
The RF balun configuration is recommended for clock frequencies  
at 625 MHz and the RF transformer is recommended for clock  
frequencies from 10 MHz to 200 MHz. The back-to-back Schottky  
diodes across the transformer/balun secondary limit clock excur-  
sions into the AD9265 to approximately 0.8 V p-p differential.  
The use of an external reference may be necessary to enhance  
the gain accuracy of the ADC or improve thermal drift charac-  
teristics. Figure 73 shows the typical drift characteristics of the  
internal reference in 1.0 V mode.  
2.0  
This limit helps prevent the large voltage swings of the clock  
from feeding through to other portions of the AD9265 while  
preserving the fast rise and fall times of the signal that are critical  
to low jitter performance.  
1.5  
VREF = 1.0V  
1.0  
0.5  
0
®
Mini-Circuits  
ADC  
ADT1-1WT, 1:1Z  
AD9265  
0.1µF  
0.1µF  
XFMR  
CLOCK  
INPUT  
CLK+  
CLK–  
–0.5  
–1.0  
100  
50Ω  
0.1µF  
SCHOTTKY  
DIODES:  
0.1µF  
–1.5  
–2.0  
HSMS2822  
Figure 75. Transformer-Coupled Differential Clock (Up to 200 MHz)  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
ADC  
Figure 73. Typical VREF Drift Update Figure  
AD9265  
1nF  
50Ω  
1nF  
0.1µF  
0.1µF  
CLOCK  
INPUT  
When the SENSE pin is tied to AVDD, the internal reference is  
disabled, allowing the use of an external reference. An internal  
reference buffer loads the external reference with an equivalent  
6 kΩ load (see Figure 57). The internal buffer generates the  
positive and negative full-scale references for the ADC core.  
Therefore, the external reference must be limited to a maximum  
of 1.0 V.  
CLK+  
CLK–  
SCHOTTKY  
DIODES:  
HSMS2822  
Figure 76. Balun-Coupled Differential Clock (625 MHz)  
If a low jitter clock source is not available, another option is to  
ac couple a differential PECL signal to the sample clock input  
pins, as shown in Figure 77. The AD9510/AD9511/AD9512/  
AD9513/AD9514/AD9515/AD9516/AD9517/AD9518/AD9520/  
AD9522 clock drivers offer excellent jitter performance.  
CLOCK INPUT CONSIDERATIONS  
For optimum performance, the AD9265 sample clock inputs,  
CLK+ and CLK−, should be clocked with a differential signal.  
The signal is typically ac-coupled into the CLK+ and CLK− pins  
via a transformer or capacitors. These pins are biased internally  
(see Figure 74) and require no external bias.  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
ADC  
AD9265  
AVDD  
AD95xx  
100  
PECL DRIVER  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK–  
0.9V  
240Ω  
240Ω  
50kΩ  
50kΩ  
CLK+  
CLK–  
Figure 77. Differential PECL Sample Clock (Up To Rated Sample Rate)  
4pF  
4pF  
A third option is to ac-couple a differential LVDS signal to the  
sample clock input pins, as shown in Figure 78. The AD9510/  
AD9511/AD9512/AD9513/AD9514/AD9515/AD9516/AD9517/  
AD9518/AD9520/AD9522 clock drivers offer excellent jitter  
performance.  
Figure 74. Equivalent Clock Input Circuit  
Clock Input Options  
The AD9265 has a very flexible clock input structure. Clock input  
can be a CMOS, LVDS, LVPECL, or sine wave signal. Regardless of  
the type of signal being used, clock source jitter is of the most  
concern, as described in the Jitter Considerations section.  
Figure 75 and Figure 76 show two preferred methods for clocking  
the AD9265. A low jitter clock source is converted from a single-  
ended signal to a differential signal using either an RF transformer  
or an RF balun.  
Rev. A | Page 29 of 44  
 
 
 
 
 
 
AD9265  
The DCS is enabled by setting the SDIO/DCS pin high when  
operating in the external pin mode (see Table 12). If the SPI  
mode is enabled, the DCS is enabled by default and can be  
disabled by writing a 0x00 to Address 0x09.  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
ADC  
AD9265  
AD95xx  
LVDS DRIVER  
100  
0.1µF  
0.1µF  
CLOCK  
INPUT  
50kΩ  
Input Clock Divider  
CLK–  
50kΩ  
The AD9265 contains an input clock divider with the ability to  
divide the input clock by integer values between 2 and 8. For  
clock divide ratios of 2, 4, 6, or 8, the duty cycle stabilizer (DCS)  
is not required because the output of the divider inherently  
produces a 50% duty cycle. Enabling the DCS with the clock  
divider in these divide modes may cause a slight degradation  
in SNR; therefore, disabling the DCS is recommended. For  
other divide ratios, divide-by-3, divide-by-5, and divide-by-7,  
the duty cycle output from the clock divider is related to the  
input clock’s duty cycle. In these modes, if the input clock has  
a 50% duty cycle, the DCS is again not required. However, if a  
50% duty cycle input clock is not available, the DCS must be  
enabled for proper part operation.  
Figure 78. Differential LVDS Sample Clock (Up to Rated Sample Rate)  
In some applications, it may be acceptable to drive the sample  
clock inputs with a single-ended CMOS signal. In such applica-  
tions, drive the CLK+ pin directly from a CMOS gate, and bypass  
the CLK− pin to ground with a 0.1 ꢀF capacitor (see Figure 79).  
V
CC  
OPTIONAL  
100Ω  
0.1µF  
1
0.1µF  
1kΩ  
1kΩ  
AD95xx  
CMOS DRIVER  
CLOCK  
INPUT  
CLK+  
ADC  
50Ω  
AD9265  
CLK–  
0.1µF  
The AD9265 clock divider can be synchronized using an external  
sync signal applied to the SYNC pin input. Bit 1 and Bit 2 of Reg-  
ister 0x100 allow the clock divider to be resynchronized on every  
SYNC signal or only on the first SYNC signal after the register  
is written. A valid signal at the SYNC pin causes the clock divider  
to reset to its initial state. This synchronization feature allows  
multiple parts to have their clock dividers aligned to guarantee  
simultaneous input sampling. If the SYNC pin is not used, it  
should be tied to AGND.  
1
50RESISTOR IS OPTIONAL.  
Figure 79. Single-Ended 1.8 V CMOS Input Clock (Up to 200 MHz)  
Clock Duty Cycle  
Typical high speed ADCs use both clock edges to generate  
a variety of internal timing signals and, as a result, may be  
sensitive to clock duty cycle. Commonly, a 5% tolerance is  
required on the clock duty cycle to maintain dynamic  
performance characteristics.  
Jitter Considerations  
The AD9265 contains a duty cycle stabilizer (DCS) that retimes  
the nonsampling (falling) edge, providing an internal clock signal  
with a nominal 50% duty cycle. This allows the user to provide a  
wide range of clock input duty cycles without affecting the perfor-  
mance of the AD9265. Noise and distortion performance are  
nearly flat for a wide range of duty cycles with the DCS enabled.  
Jitter in the rising edge of the input is still of paramount concern  
and is not easily reduced by the internal stabilization circuit.  
High speed, high resolution ADCs are sensitive to the quality  
of the clock input. The degradation in SNR from the low frequency  
SNR (SNRLF) at a given input frequency (fINPUT) due to jitter (tJRMS  
)
can be calculated by  
SNRHF = −10 log[(2π × fINPUT × tJRMS)2 + 10 (SNR /10)  
]
LF  
In the equation, the rms aperture jitter represents the clock input  
jitter specification. IF undersampling applications are particularly  
sensitive to jitter, as illustrated in Figure 80.  
80  
The duty cycle control loop does not function for clock rates  
less than 20 MHz nominally. The loop has a time constant  
associated with it that must be considered in applications in  
which the clock rate can change dynamically. A wait time of  
1.5 μs to 5 μs is required after a dynamic clock frequency increase  
or decrease before the DCS loop is relocked to the input signal.  
During the time period that the loop is not locked, the DCS loop is  
bypassed, and the internal device timing is dependent on the duty  
cycle of the input clock signal. In such applications, it may be  
appropriate to disable the duty cycle stabilizer. The DCS can also be  
disabled in some cases when using the input clock divider circuit,  
see the Input Clock Divider section for additional information. In  
all other applications, enabling the DCS circuit is recommended  
to maximize ac performance.  
0.05ps  
75  
MEASURED  
70  
0.20ps  
65  
0.50ps  
60  
55  
50  
1.00ps  
1.50ps  
1
10  
100  
1k  
INPUT FREQUENCY (MHz)  
Figure 80. SNR vs. Input Frequency and Jitter  
Rev. A | Page 30 of 44  
 
 
 
 
 
AD9265  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.20  
Treat the clock input as an analog signal in cases in which  
aperture jitter may affect the dynamic range of the AD9265. To  
avoid modulating the clock signal with digital noise, separate  
power supplies for clock drivers from the ADC output driver  
supplies. Low jitter, crystal controlled oscillators make the best  
clock sources. If the clock is generated from another type of source  
(by gating, dividing, or another method), the output clock should  
be retimed by the original clock at the last step.  
0.16  
0.12  
0.08  
0.04  
IAVDD  
TOTAL  
POWER  
Refer to AN-501 Application Note, Aperture Uncertainty and  
ADC System Performance, and AN-756 Application Note,  
Sampled Systems and the Effects of Clock Phase Noise and Jitter  
(see www.analog.com) for more information about jitter perfor-  
mance as it relates to ADCs.  
IDRVDD  
65  
0
105  
25  
35  
45  
55  
75  
85  
95  
CLOCK FREQUENCY (MSPS)  
POWER DISSIPATION AND STANDBY MODE  
Figure 82. AD9265-105 Power and Current vs. Sample Rate  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.15  
As shown in Figure 81, the power dissipated by the AD9265 is  
proportional to its sample rate. In CMOS output mode, the digital  
power dissipation is determined primarily by the strength of the  
digital drivers and the load on each output bit.  
0.12  
0.09  
0.06  
0.03  
0
IAVDD  
The maximum DRVDD current (IDRVDD) can be  
approximately calculated as  
TOTAL  
POWER  
IDRVDD = VDRVDD × CLOAD × fCLK × N  
where N is the number of output bits (16 data bits plus 1 DCO,  
in the case of the AD9265).  
This maximum current occurs when every output bit switches on  
every clock cycle, that is, a full-scale square wave at the Nyquist  
frequency of fCLK/2. In practice, the DRVDD current is established  
by the average number of output bits switching, which is  
determined by the sample rate and the characteristics of the  
analog input signal.  
IDRVDD  
55  
25  
35  
45  
65  
75  
ENCODE FREQUENCY (MSPS)  
Figure 83. AD9265-80 Power and Current vs. Sample Rate  
By asserting PDWN (either through the SPI port or by asserting  
the PDWN pin high), the AD9265 is placed in power-down mode.  
In this state, the ADC typically dissipates 0.05 mW. During power-  
down, the output drivers are placed in a high impedance state.  
Asserting the PDWN pin low returns the AD9265 to its normal  
operating mode.  
Reducing the capacitive load presented to the output drivers can  
minimize digital power consumption. The data shown in Figure 81,  
Figure 82, and Figure 83 were taken using a 70 MHz analog input  
signal with a 5 pF load on each output driver.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.20  
0.16  
0.12  
0.08  
0.04  
0
Low power dissipation in power-down mode is achieved by  
shutting down the reference, reference buffer, biasing networks,  
and clock. Internal capacitors are discharged when entering power-  
down mode and then must be recharged when returning to normal  
operation.  
IAVDD  
TOTAL  
POWER  
When using the SPI port interface, the user can place the ADC  
in power-down mode or standby mode. Standby mode allows  
the user to keep the internal reference circuitry powered when  
faster wake-up times are required. In addition, when using the SPI  
mode, the user can change the function of the external PDWN pin  
to either place the part in power-down or standby mode. See the  
Memory Map Register Description section for more details.  
IDRVDD  
25  
50  
75  
100  
125  
CLOCK FREQUENCY (MSPS)  
Figure 81. AD9265-125 Power and Current vs. Sample Rate  
Rev. A | Page 31 of 44  
 
 
 
 
AD9265  
Digital Output Enable Function (OEB)  
DIGITAL OUTPUTS  
The AD9265 has a flexible three-state ability for the digital output  
pins. The three-state mode is enabled using the OEB pin or  
through the SPI interface. If the OEB pin is low, the output data  
drivers and DCOs are enabled. If the OEB pin is high, the output  
data drivers and DCOs are placed in a high impedance state. This  
OEB function is not intended for rapid access to the data bus.  
Note that OEB is referenced to the output driver supply (DRVDD)  
and should not exceed that supply voltage.  
The AD9265 output drivers can be configured to interface with  
1.8 V CMOS logic families. The AD9265 can also be configured  
for LVDS outputs using a DRVDD supply voltage of 1.8 V. The  
AD9265 defaults to CMOS output mode but can be placed into  
LVDS mode either by setting the LVDS pin high or by using the SPI  
port to place the part into LVDS mode. Because most users do not  
toggle between CMOS and LVDS mode during operation, use of  
the LVDS pin is recommended to avoid any power-up loading  
issues on the CMOS configured outputs.  
When using the SPI interface, the data and DCO outputs can be  
three-stated by using the output enable bar bit in Register 0x14.  
In CMOS output mode, the output drivers are sized to provide  
sufficient output current to drive a wide variety of logic families.  
However, large drive currents tend to cause current glitches on  
the supplies, which may affect converter performance. Applications  
requiring the ADC to drive large capacitive loads or large  
fanouts may require external buffers or latches.  
TIMING  
The AD9265 provides latched data with a pipeline delay of  
12 clock cycles (12.5 clock cycles in LVDS mode). Data outputs  
are available one propagation delay (tPD) after the rising edge of  
the clock signal.  
In LVDS output mode two output drive levels can be selected,  
either ANSI LVDS or reduced swing LVDS mode. Using the  
reduced swing LVDS mode lowers the DRVDD current and  
reduces power consumption. The reduced swing LVDS mode  
can be selected by asserting the LVDS_RS pin or by selecting  
this mode via the SPI port.  
Minimize the length of the output data lines and loads placed  
on them to reduce transients within the AD9265. These  
transients can degrade converter dynamic performance.  
The lowest typical conversion rate of the AD9265 is 10 MSPS.  
At clock rates below 10 MSPS, dynamic performance can degrade.  
Data Clock Output (DCO)  
The output data format is selected for either offset binary or  
twos complement by setting the SCLK/DFS pin when operating in  
the external pin mode (see Table 12).  
The AD9265 provides a single data clock output (DCO) pin in  
CMOS output mode and two differential data clock output (DCO)  
pins in LVDS mode intended for capturing the data in an external  
register. In CMOS output mode, the data outputs are valid on the  
rising edge of DCO, unless the DCO clock polarity has been  
changed via the SPI. In LVDS output mode, data is output as  
double data rate with the even numbered output bits transitioning  
near the rising edge of DCO and the odd numbered output bits  
transitioning near the falling edge of DCO. See Figure 2 for a  
graphical timing description.  
As detailed in AN-877 Application Note, Interfacing to High  
Speed ADCs via SPI, the data format can be selected for offset  
binary, twos complement, or gray code when using the SPI control.  
Table 12. SCLK/DFS Mode Selection (External Pin Mode)  
Voltage at  
Pin  
SCLK/DFS  
Offset binary (default) DCS disabled  
Twos complement DCS enabled (default)  
SDIO/DCS  
AGND  
SVDD  
Table 13. Output Data Format  
Input (V)  
Condition (V)  
Offset Binary Output Mode  
0000 0000 0000 0000  
0000 0000 0000 0000  
1000 0000 0000 0000  
1111 1111 1111 1111  
1111 1111 1111 1111  
Twos Complement Mode  
1000 0000 0000 0000  
1000 0000 0000 0000  
0000 0000 0000 0000  
0111 1111 1111 1111  
0111 1111 1111 1111  
OR  
1
0
0
0
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
< −VREF − 0.5 LSB  
= −VREF  
= 0  
= +VREF − 1.0 LSB  
> +VREF − 0.5 LSB  
1
Rev. A | Page 32 of 44  
 
 
 
AD9265  
BUILT-IN SELF-TEST (BIST) AND OUTPUT TEST  
The AD9265 includes built-in test features designed to enable  
verification of the integrity of the part as well as facilitate board  
level debugging. A BIST (built-in self-test) feature is included that  
verifies the integrity of the digital datapath of the AD9265. Various  
output test options are also provided to place predictable values on  
the outputs of the AD9265.  
The outputs are not disconnected during this test, so the PN  
sequence can be observed as it runs. The PN sequence can be  
continued from its last value or reset from the beginning, based  
on the value programmed in Register 0x0E, Bit 2. The BIST  
signature result varies based on the part configuration.  
OUTPUT TEST MODES  
BUILT-IN SELF-TEST (BIST)  
The output test options are shown in Table 17. When an output  
test mode is enabled, the analog section of the ADC is discon-  
nected from the digital back end blocks and the test pattern is run  
through the output formatting block. Some of the test patterns are  
subject to output formatting, and some are not. The seed value for  
the PN sequence tests can be forced if the PN reset bits are used  
to hold the generator in reset mode by setting Bit 4 or Bit 5 of  
Register 0x0D. These tests can be performed with or without  
an analog signal (if present, the analog signal is ignored), but  
they do require an encode clock. For more information, see  
AN-877 Application Note, Interfacing to High Speed ADCs via SPI.  
The BIST is a thorough test of the digital portion of the selected  
AD9265 signal path. When enabled, the test runs from an internal  
pseudorandom noise (PN) source through the digital datapath  
starting at the ADC block output. The BIST sequence runs for  
512 cycles and stops. The BIST signature value is placed in  
Register 0x24 and Register 0x25.  
Rev. A | Page 33 of 44  
 
 
 
AD9265  
SERIAL PORT INTERFACE (SPI)  
The AD9265 serial port interface (SPI) allows the user to configure  
the converter for specific functions or operations through a  
structured register space provided inside the ADC. The SPI  
gives the user added flexibility and customization, depending on  
the application. Addresses are accessed via the serial port and  
can be written to or read from via the port. Memory is organized  
into bytes that can be further divided into fields, which are docu-  
mented in the Memory Map section. For detailed operational  
information, see AN-877 Application Note, Interfacing to High  
Speed ADCs via SPI.  
All data is composed of 8-bit words. The first bit of the first byte  
in a multibyte serial data transfer frame indicates whether a read  
command or a write command is issued. This allows the serial  
data input/output (SDIO) pin to change direction from an input  
to an output.  
In addition to word length, the instruction phase determines  
whether the serial frame is a read or write operation, allowing  
the serial port to be used both to program the chip and to read  
the contents of the on-chip memory. If the instruction is a readback  
operation, performing a readback causes the serial data input/  
output (SDIO) pin to change direction from an input to an output  
at the appropriate point in the serial frame.  
CONFIGURATION USING THE SPI  
Three pins define the SPI of this ADC: the SCLK/DFS pin, the  
SDIO/DCS pin, and the CSB pin (see Table 14). The SCLK/DFS  
(a serial clock) is used to synchronize the read and write data  
presented from and to the ADC. The SDIO/DCS (serial data  
input/output) is a dual-purpose pin that allows data to be sent  
and read from the internal ADC memory map registers. The  
CSB (chip select bar) is an active low control that enables or  
disables the read and write cycles.  
Data can be sent in MSB-first mode or in LSB-first mode. MSB  
first is the default on power-up and can be changed via the SPI  
port configuration register. For more information about this  
and other features, see AN-877 Application Note, Interfacing to  
High Speed ADCs via SPI.  
HARDWARE INTERFACE  
The pins described in Table 14 comprise the physical interface  
between the user programming device and the serial port of the  
AD9265. The SCLK pin and the CSB pin function as inputs  
when using the SPI interface. The SDIO pin is bidirectional,  
functioning as an input during write phases and as an output  
during readback.  
Table 14. Serial Port Interface Pins  
Pin Mnemonic Function  
SCLK/DFS  
Serial clock. The SCLK function of the pin is for  
the serial shift clock input, which is used to  
synchronize serial interface reads and writes.  
SDIO is the serial data input/output function  
of the pin. A dual-purpose pin that typically  
serves as an input or an output, depending on  
the instruction being sent and the relative  
position in the timing frame.  
SDIO/DCS  
The AD9265 has a separate supply pin for the SPI interface,  
SVDD. The SVDD pin can be set at any level between 1.8 V  
and 3.3 V to enable operation with a SPI bus at these voltages  
without requiring level translation. If the SPI port is not used,  
SVDD can be tied to the DRVDD voltage.  
CSB  
Chip select bar. An active low control that  
gates the read and write cycles.  
The SPI interface is flexible enough to be controlled by either  
FPGAs or microcontrollers. One method for SPI configuration  
is described in detail in AN-812 Application Note, Microcontroller-  
Based Serial Port Interface (SPI) Boot Circuit.  
The falling edge of the CSB, in conjunction with the rising edge  
of the SCLK, determines the start of the framing. See Figure 84  
and Table 5 for an example of the serial timing and its  
definitions.  
The SPI port should not be active during periods when the full  
dynamic performance of the converter is required. Because the  
SCLK signal, the CSB signal, and the SDIO signal are typically  
asynchronous to the ADC clock, noise from these signals can  
degrade converter performance. If the on-board SPI bus is used for  
other devices, it may be necessary to provide buffers between  
this bus and the AD9265 to prevent these signals from transi-  
tioning at the converter inputs during critical sampling periods.  
Other modes involving the CSB are available. The CSB can be  
held low indefinitely, which permanently enables the device;  
this is called streaming. The CSB can stall high between bytes to  
allow for additional external timing. When CSB is tied high at  
power-up, SPI functions are placed in high impedance mode.  
This mode turns on any SPI pin secondary functions. When  
CSB is toggled low after power-up, the part remains in SPI  
mode and does not revert back to pin mode.  
Some pins serve a dual function when the SPI interface is not  
being used. When the pins are tied to AVDD or ground during  
device power-on, they are associated with a specific function.  
The Digital Outputs section describes those alternate functions  
that are supported on the AD9265.  
During an instruction phase, a 16-bit instruction is transmitted.  
Data follows the instruction phase, and its length is determined  
by the W0 and W1 bits.  
Rev. A | Page 34 of 44  
 
 
 
 
AD9265  
CONFIGURATION WITHOUT THE SPI  
SPI ACCESSIBLE FEATURES  
In applications that do not interface to the SPI control registers,  
the SDIO/DCS pin and the SCLK/DFS pin serve as standalone  
CMOS-compatible control pins. When the device is powered  
up, it is assumed that the user intends to use the pins as static  
control lines for the duty cycle stabilizer and output data format  
feature control. In this mode, connect the CSB chip select to  
AVDD, which disables the serial port interface.  
Table 16 provides a brief description of the general features that  
are accessible via the SPI. These features are described in detail  
in AN-877 Application Note, Interfacing to High Speed ADCs via  
SPI. The AD9265 part-specific features are described in detail  
following Table 17, the external memory map register table.  
Table 16. Features Accessible Using the SPI  
Feature  
The OEB pin, the DITHER pin, the LVDS pin, the LVDS_RS  
pin, and the PDWN pin are active control lines in both external  
pin mode and SPI mode. The input from these pins or the SPI  
register setting is used to determine the mode of operation for  
the part.  
Name  
Description  
Mode  
Allows the user to set either power-down mode or  
standby mode  
Allows the user to access the DCS, set the clock  
divider, set the clock divider phase, and enable  
the SYNC input  
Clock  
Table 15. Mode Selection  
Offset  
Allows the user to digitally adjust the converter  
offset  
External  
Pin  
Voltage  
Configuration  
Test I/O  
Allows the user to set test modes to have known  
data on output bits  
SDIO/DCS SVDD (default)  
AGND  
SCLK/DFS SVDD  
AGND (default)  
Duty cycle stabilizer enabled  
Duty cycle stabilizer disabled  
Twos complement enabled  
Offset binary enabled  
Outputs in high impedance  
Outputs enabled  
Output Mode Allows the user to set the output mode  
Output Phase Allows the user to set the output clock polarity  
Output Delay Allows the user to vary the DCO delay  
VREF  
Allows the user to set the reference voltage  
OEB  
DRVDD  
AGND (default)  
AVDD  
PDWN  
Chip in power-down or standby  
mode  
AGND (default)  
AGND (default)  
AVDD  
AGND (default)  
AVDD  
Normal operation  
LVDS  
CMOS output mode  
LVDS output mode  
ANSI LVDS output levels  
Reduced swing LVDS output  
levels  
LVDS_RS  
DITHER  
AGND (default)  
AVDD  
Dither disabled  
Dither enabled  
tHIGH  
tDS  
tCLK  
tH  
tS  
tDH  
tLOW  
CSB  
SCLK DON’T CARE  
SDIO DON’T CARE  
DON’T CARE  
R/W  
W1  
W0  
A12  
A11  
A10  
A9  
A8  
A7  
D5  
D4  
D3  
D2  
D1  
D0  
DON’T CARE  
Figure 84. Serial Port Interface Timing Diagram  
Rev. A | Page 35 of 44  
 
 
 
 
AD9265  
MEMORY MAP  
open (for example, Address 0x18). If the entire address location  
is open (for example, Address 0x13), this address location should  
not be written.  
READING THE MEMORY MAP REGISTER TABLE  
Each row in the memory map register table has eight bit locations.  
The memory map is roughly divided into four sections: the chip  
configuration registers (Address 0x00 to Address 0x02); the  
transfer register (Address 0xFF); the ADC functions registers,  
including setup, control, and test (Address 0x08 to Address 0x30);  
and the digital feature control register (Address 0x100).  
Default Values  
After the AD9265 is reset, critical registers are loaded with  
default values. The default values for the registers are given in  
the memory map register table, Table 17.  
The memory map register table (see Table 17) documents the  
default hexadecimal value for each hexadecimal address shown.  
The column with the heading, Bit 7 (MSB), is the start of the  
default hexadecimal value given. For example, Address 0x18,  
the VREF select register, has a hexadecimal default value of 0xC0.  
This means that Bit 7 = 1, Bit 6 = 1, and the remaining bits are 0s.  
This setting is the default reference selection setting. The default  
value uses a 2.0 V p-p reference. For more information on this  
function and others, see AN-877 Application Note, Interfacing to  
High Speed ADCs via SPI. This document details the functions  
controlled by Register 0x00 to Register 0xFF. The remaining  
register, Register 0x100, is documented in the Memory Map  
Register Description section.  
Logic Levels  
An explanation of logic level terminology follows:  
“Bit is set” is synonymous with “bit is set to Logic 1” or  
“writing Logic 1 for the bit.”  
“Clear a bit” is synonymous with “bit is set to Logic 0” or  
“writing Logic 0 for the bit.”  
Transfer Register Map  
Address 0x08 to Address 0x18 are shadowed. Writes to these  
addresses do not affect part operation until a transfer command  
is issued by writing 0x01 to Address 0xFF, setting the transfer bit.  
This allows these registers to be updated internally and simulta-  
neously when the transfer bit is set. The internal update takes  
place when the transfer bit is set, and the bit autoclears.  
Open Locations  
All address and bit locations that are not included in Table 17  
are not currently supported for this device. Unused bits of a  
valid address location should be written with 0s. Writing to these  
locations is required only when part of an address location is  
Rev. A | Page 36 of 44  
 
 
AD9265  
MEMORY MAP REGISTER TABLE  
All address and bit locations that are not included in Table 17 are not currently supported for this device.  
Table 17. Memory Map Registers  
Default  
Value  
Bit 0 (LSB) (Hex)  
Addr. Register  
Default Notes/  
Comments  
(Hex)  
Name  
Bit 7 (MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Chip Configuration Registers  
0x00  
SPI port  
configuration  
0
LSB first  
Soft reset  
1
1
Soft reset LSB  
first  
0
0x18  
The nibbles are  
mirrored so  
LSB-first mode  
or MSB-first  
mode registers  
correctly,  
regardless of  
shift mode  
0x01  
0x02  
Chip ID  
8-bit Chip ID[7:0], AD9265 = 0x64 (default)  
0x64  
Read only  
Chip grade  
Open  
Open  
Open  
Open  
Speed grade ID  
01 = 125 MSPS  
10 = 105 MSPS  
11 = 80 MSPS  
Open Open  
Open  
Open  
Open  
Speed grade ID  
used to  
differentiate  
devices; read  
only  
Transfer Register  
0xFF Transfer  
Open  
Open  
Open Open  
Transfer  
0x00  
0x80  
Synchronously  
transfers data  
from the  
master shift  
register to the  
slave  
ADC Functions Registers  
0x08  
Power  
modes  
1
Open  
External  
Open  
Open Open  
Internal  
Determines  
various generic  
modes of chip  
operation  
power-down  
pin function  
power-down  
mode  
0 = power-  
down  
00 = normal  
operation  
1=standby  
Open  
01 = full power-  
down  
10 = standby  
11 = normal  
operation  
0x09  
0x0D  
Global clock  
Test mode  
Open  
Open  
Open  
Open  
Open  
Open Open  
Open  
Duty  
0x01  
0x00  
cycle  
stabilizer  
(default)  
ResetPN23  
generator  
Reset PN9 Open  
generator  
Output test mode  
When this  
register is set,  
the test data is  
placed on the  
output pins in  
place of normal  
data  
000 = off (default)  
001 = midscale short  
010 = positive FS  
011 = negative FS  
100 = alternating checkerboard  
101 = PN 23 sequence  
110 = PN 9 sequence  
111 = one/zero word toggle  
BIST  
0x0E  
BIST enable  
Open  
Open  
Open  
Open  
Open Reset BIST Open  
0x04  
sequence  
enable  
Rev. A | Page 37 of 44  
 
 
AD9265  
Default  
Value  
Bit 0 (LSB) (Hex)  
Addr. Register  
Default Notes/  
Comments  
(Hex)  
Name  
Bit 7 (MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
0x14  
Output  
mode  
Drive  
strength  
Output  
type  
Open  
Output  
enable  
bar  
Open Output  
invert  
Output  
format  
0x00  
Configures the  
outputs and  
the format of  
the data  
0 = ANSI LVDS 0 = CMOS  
00 = offset binary  
1 = reduced  
LVDS  
1 = LVDS  
01 = twos  
complement  
01 = gray code  
11 = offset binary  
0x16  
Clock phase  
control  
Invert DCO  
clock  
Open  
Open  
Open  
Open  
Input clock divider phase adjust  
000 = no delay  
0x00  
Allows  
selection of  
clock delays  
into the input  
clock divider  
001 = 1 input clock cycle  
010 = 2 input clock cycles  
011 = 3 input clock cycles  
100 = 4 input clock cycles  
101 = 5 input clock cycles  
110 = 6 input clock cycles  
111 = 7 input clock cycles  
DCO clock delay  
0x17  
DCO output  
delay  
Open  
Open  
Open  
0x00  
(delay = 2500 ps × register value/31)  
00000 = 0 ps  
00001 = 81 ps  
00010 = 161 ps  
11110 = 2419 ps  
11111 = 2500 ps  
0x18  
VREF select  
Reference voltage selection Open  
00 = 1.25 V p-p  
Open  
Open Open  
Open  
Open  
0xC0  
01 = 1.5 V p-p  
10 = 1.75 V p-p  
11 = 2.0 V p-p (default)  
0x24  
0x25  
BIST  
signature LSB  
BIST Signature[7:0]  
BIST Signature[15:8]  
0x00  
0x00  
Read only  
Read only  
BIST  
signature  
MSB  
0x30  
Dither  
enable  
Open  
Open  
Open  
Dither  
enable  
Open Open  
Open  
Clock  
Open  
0x00  
0x00  
Digital Feature Control Register  
0x100 Sync control Open  
Open  
Open  
Open  
Open Clock  
divider  
Master  
divider sync  
next sync  
only  
sync  
enable  
enable  
Rev. A | Page 38 of 44  
AD9265  
and to ignore the rest. The clock divider sync enable bit (Address  
0x100, Bit 1) resets after it syncs.  
MEMORY MAP REGISTER DESCRIPTIONS  
For additional information about functions controlled in  
Register 0x00 to Register 0xFF, see AN-877 Application Note,  
Interfacing to High Speed ADCs via SPI.  
Bit 1—Clock Divider Sync Enable  
Bit 1 gates the sync pulse to the clock divider. The sync signal is  
enabled when Bit 1 is high and Bit 0 is high. This is continuous  
sync mode.  
Sync Control (Register 0x100)  
Bits[7:3]—Reserved  
Bit 0—Master Sync Enable  
These bits are reserved.  
Bit 0 must be high to enable any of the sync functions. If the  
sync capability is not used, this bit should remain low to  
conserve power.  
Bit 2—Clock Divider Next Sync Only  
If the master sync enable bit (Address 0x100, Bit 0) and the  
clock divider sync enable bit (Address 0x100, Bit 1) are high, Bit 2  
allows the clock divider to sync to the first sync pulse it receives  
Rev. A | Page 39 of 44  
 
AD9265  
APPLICATIONS INFORMATION  
The copper plane should have several vias to achieve the lowest  
possible resistive thermal path for heat dissipation to flow through  
the bottom of the PCB. Fill or plug these vias with nonconductive  
epoxy.  
DESIGN GUIDELINES  
Before starting design and layout of the AD9265 as a system,  
it is recommended that the designer become familiar with these  
guidelines, which discuss the special circuit connections and  
layout requirements that are needed for certain pins.  
To maximize the coverage and adhesion between the ADC and  
the PCB, overlay a silkscreen to partition the continuous plane on  
the PCB into several uniform sections. This provides several tie  
points between the ADC and the PCB during the reflow process.  
Using one continuous plane with no partitions guarantees only one  
tie point between the ADC and the PCB. For detailed information  
about packaging and PCB layout of chip scale packages, see  
AN-772 Application Note, A Design and Manufacturing Guide  
for the Lead Frame Chip Scale Package (LFCSP), at  
Power and Ground Recommendations  
When connecting power to the AD9265, it is recommended that  
two separate 1.8 V supplies be used. Use one supply for analog  
(AVDD); use a separate supply for the digital outputs (DRVDD).  
Several different decoupling capacitors can be used to cover both  
high and low frequencies. Locate these capacitors close to the  
point of entry at the PCB level and close to the pins of the part,  
with minimal trace length. The power supply for the SPI port,  
SVDD, should not contain excessive noise and should also be  
bypassed close to the part.  
www.analog.com.  
VCM  
Decouple the VCM pin to ground with a 0.1 ꢀF capacitor, as  
shown in Figure 67.  
A single PCB ground plane should be sufficient when using the  
AD9265. With proper decoupling and smart partitioning of the  
PCB analog, digital, and clock sections, optimum performance  
is easily achieved.  
RBIAS  
The AD9265 requires that a 10 kΩ resistor be placed between  
the RBIAS pin and ground. This resistor sets the master current  
reference of the ADC core and should have at least a 1% tolerance.  
LVDS Operation  
The AD9265 can be configured for CMOS or LVDS output mode  
on power-up using the LVDS pin, Pin 44. If LVDS operation is  
desired, connect Pin 44 to AVDD. LVDS operation can also be  
enabled through the SPI port. If CMOS operation is desired,  
connect Pin 44 to AGND.  
Reference Decoupling  
Decouple the VREF pin externally to ground with a low ESR,  
1.0 ꢀF capacitor in parallel with a low ESR, 0.1 ꢀF ceramic  
capacitor.  
SPI Port  
Exposed Paddle Thermal Heat Slug Recommendations  
The SPI port should not be active during periods when the full  
dynamic performance of the converter is required. Because the  
SCLK, CSB, and SDIO signals are typically asynchronous to the  
ADC clock, noise from these signals can degrade converter per-  
formance. If the on-board SPI bus is used for other devices, it  
may be necessary to provide buffers between this bus and the  
AD9265 to keep these signals from transitioning at the converter  
inputs during critical sampling periods.  
It is mandatory that the exposed paddle on the underside of the  
ADC be connected to the analog ground (AGND) to achieve  
the best electrical and thermal performance. A continuous,  
exposed (no solder mask) copper plane on the PCB should mate  
to the AD9265 exposed paddle, Pin 0.  
Rev. A | Page 40 of 44  
 
 
 
AD9265  
OUTLINE DIMENSIONS  
7.10  
7.00 SQ  
6.90  
0.30  
0.23  
0.18  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
37  
36  
48  
1
PIN 1  
INDICATOR  
0.50  
REF  
6.85  
*
5.65  
5.50 SQ  
5.35  
6.75 SQ  
6.65  
EXPOSED  
PAD  
(BOTTOM VIEW)  
25  
24  
12  
13  
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
5.50 REF  
0.80 MAX  
0.65 TYP  
12° MAX  
1.00  
0.85  
0.80  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.08  
0.20 REF  
*
COMPLIANT TO JEDEC STANDARDS MO-220-VKKD-2  
WITH EXCEPTION TO EXPOSED PAD DIMENSION.  
Figure 85. 48-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
7 mm × 7 mm Body, Very Thin Quad  
(CP-48-8)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
AD9265BCPZ-125  
AD9265BCPZRL7-125  
AD9265BCPZ-105  
AD9265BCPZRL7-105  
AD9265BCPZ-80  
AD9265BCPZRL7-80  
AD9265-125EBZ  
AD9265-105EBZ  
AD9265-80EBZ  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
48-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
48-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
48-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
48-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
48-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
48-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
Evaluation Board  
CP-48-8  
CP-48-8  
CP-48-8  
CP-48-8  
CP-48-8  
CP-48-8  
Evaluation Board  
Evaluation Board  
1 Z = RoHS Compliant Part.  
Rev. A | Page 41 of 44  
 
 
AD9265  
NOTES  
Rev. A | Page 42 of 44  
AD9265  
NOTES  
Rev. A | Page 43 of 44  
AD9265  
NOTES  
©2009–2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08502-0-1/10(A)  
Rev. A | Page 44 of 44  

相关型号:

AD9265BCPZRL7-80

16-Bit, 125 MSPS/105 MSPS/80 MSPS 1.8 V Analog-to-Digital Converter
ADI

AD9265_13

16-Bit, 125 MSPS/105 MSPS/80 MSPS, 1.8 V Analog-to-Digital Converter
ADI

AD9266

16-Bit, 20 MSPS/40 MSPS/65 MSPS/80 MSPS, 1.8 V Analog-to-Digital Converter
ADI

AD9266-20EBZ

16-Bit, 20 MSPS/40 MSPS/65 MSPS/80 MSPS, 1.8 V Analog-to-Digital Converter
ADI

AD9266-40EBZ

16-Bit, 20 MSPS/40 MSPS/65 MSPS/80 MSPS, 1.8 V Analog-to-Digital Converter
ADI

AD9266-65EBZ

16-Bit, 20 MSPS/40 MSPS/65 MSPS/80 MSPS, 1.8 V Analog-to-Digital Converter
ADI

AD9266-80EBZ

16-Bit, 20 MSPS/40 MSPS/65 MSPS/80 MSPS, 1.8 V Analog-to-Digital Converter
ADI

AD9266BCPZ-20

16-Bit, 20 MSPS/40 MSPS/65 MSPS/80 MSPS, 1.8 V Analog-to-Digital Converter
ADI

AD9266BCPZ-40

16-Bit, 20 MSPS/40 MSPS/65 MSPS/80 MSPS, 1.8 V Analog-to-Digital Converter
ADI

AD9266BCPZ-65

16-Bit, 20 MSPS/40 MSPS/65 MSPS/80 MSPS, 1.8 V Analog-to-Digital Converter
ADI

AD9266BCPZ-80

16-Bit, 20 MSPS/40 MSPS/65 MSPS/80 MSPS, 1.8 V Analog-to-Digital Converter
ADI

AD9266BCPZRL7-20

16-Bit, 20 MSPS/40 MSPS/65 MSPS/80 MSPS, 1.8 V Analog-to-Digital Converter
ADI