AD9289BBC [ADI]

Quad 8-Bit, 65 MSPS, Serial LVDS A/D Converter;
AD9289BBC
型号: AD9289BBC
厂家: ADI    ADI
描述:

Quad 8-Bit, 65 MSPS, Serial LVDS A/D Converter

转换器
文件: 总33页 (文件大小:915K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Quad 8-Bit, 65 MSPS,  
Serial LVDS 3 V A/D Converter  
AD9289  
FEATURES  
Four ADCs in one package  
FUNCTIONAL BLOCK DIAGRAM  
AVDD  
DFS  
PDWN  
DTP  
DRVDD  
DRGND  
Serial LVDS digital output data rates to 520 Mbps (ANSI-644)  
Data and frame clock outputs  
SNR = 48 dBc (to Nyquist)  
AD9289  
VIN+A  
VIN–A  
8
D1+A  
D1–A  
SERIAL  
LVDS  
PIPELINE  
ADC  
SHA  
Excellent linearity  
DNL = 0.2 LSB (typical)  
INL = 0.25 LSB (typical)  
300 MHz full power analog bandwidth  
Power dissipation = 112 mW/channel at 65 MSPS  
1 Vp-p to 2 Vp-p input voltage range  
3.0 V supply operation  
VIN+B  
VIN–B  
8
8
8
D1+B  
D1–B  
SERIAL  
LVDS  
PIPELINE  
ADC  
SHA  
SHA  
SHA  
VIN+C  
VIN–C  
D1+C  
D1–C  
SERIAL  
LVDS  
PIPELINE  
ADC  
VIN+D  
VIN–D  
D1+D  
D1–D  
SERIAL  
LVDS  
PIPELINE  
ADC  
Power-down mode  
Digital test pattern enable for timing alignments  
LOCK  
VREF  
SENSE  
FCO+  
FCO–  
0.5V  
REFT_A  
REFB_A  
REFT_B  
REFB_B  
APPLICATIONS  
Tape drives  
Medical imaging  
REF  
SELECT  
DCO+  
DCO–  
DATA RATE  
MULTIPLIER  
SHARED_REF AGND LVDSBIAS CML CLK+ CLK–  
Figure 1.  
PRODUCT HIGHLIGHTS  
PRODUCT DESCRIPTION  
The AD9289 is a quad 8-bit, 65 MSPS analog-to-digital conver-  
ter (ADC) with an on-chip sample-and-hold circuit that is  
designed for low cost, low power, small size, and ease of use.  
The product operates at up to a 65 MSPS conversion rate and is  
optimized for outstanding dynamic performance where a small  
package size is critical.  
1. Four ADCs are contained in a small, space-saving package.  
2. A data clock out (DCO) is provided, which operates up to  
260 MHz and supports double-data rate operation (DDR).  
3. The outputs of each ADC are serialized LVDS with data  
rates up to 520 Mbps (8 bits × 65 MSPS).  
The ADC requires a single, 3 V power supply and an LVDS-  
compatible sample rate clock for full performance operation.  
No external reference or driver components are required for  
many applications.  
4. The AD9289 operates from a single 3.0 V power supply.  
5. The internal clock duty cycle stabilizer maintains  
performance over a wide range of input clock duty cycles.  
The ADC automatically multiplies the sample rate clock for the  
appropriate LVDS serial data rate. A data clock (DCO) for  
capturing data on the output and a frame clock (FCO) trigger  
for signaling a new output byte are provided. Power-down is  
supported. The ADC typically consumes 7 mW when enabled.  
Fabricated on an advanced CMOS process, the AD9289 is  
available in a 64-ball mini-BGA package (64-BGA). It is  
specified over the industrial temperature range of –40°C  
to +85°C.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
AD9289* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
TOOLS AND SIMULATIONS  
Visual Analog  
AD9289 IBIS Models  
DOCUMENTATION  
REFERENCE MATERIALS  
Application Notes  
AN-1142: Techniques for High Speed ADC PCB Layout  
AN-282: Fundamentals of Sampled Data Systems  
AN-345: Grounding for Low-and-High-Frequency Circuits  
Technical Articles  
Correlating High-Speed ADC Performance to Multicarrier  
3G Requirements  
High-speed ADCs: Preventing Front-end Collisions  
AN-501: Aperture Uncertainty and ADC System  
Performance  
MS-2210: Designing Power Supplies for High Speed ADC  
AN-586: LVDS Outputs for High Speed A/D Converters  
DESIGN RESOURCES  
AD9289 Material Declaration  
PCN-PDN Information  
Quality And Reliability  
Symbols and Footprints  
AN-715: A First Approach to IBIS Models: What They Are  
and How They Are Generated  
AN-737: How ADIsimADC Models an ADC  
AN-741: Little Known Characteristics of Phase Noise  
AN-756: Sampled Systems and the Effects of Clock Phase  
Noise and Jitter  
AN-827: A Resonant Approach to Interfacing Amplifiers to  
Switched-Capacitor ADCs  
DISCUSSIONS  
View all AD9289 EngineerZone Discussions.  
AN-835: Understanding High Speed ADC Testing and  
Evaluation  
SAMPLE AND BUY  
AN-905: Visual Analog Converter Evaluation Tool Version  
Visit the product page to see pricing options.  
1.0 User Manual  
AN-935: Designing an ADC Transformer-Coupled Front  
TECHNICAL SUPPORT  
End  
Submit a technical question or find your regional support  
number.  
Data Sheet  
AD9289: Quad 8-Bit,65 MSPS Serial LVDS 3V A/D  
Converter Data Sheet  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
AD9289  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
AC Specifications.......................................................................... 4  
Digital Specifications ................................................................... 4  
Switching Specifications .............................................................. 5  
Timing Diagrams.......................................................................... 5  
Absolute Maximum Ratings............................................................ 6  
Explanation of Test Levels........................................................... 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Equivalent Circuits........................................................................... 8  
Typical Performance Characteristics ..............................................9  
Terminology.................................................................................... 12  
Theory of Operation...................................................................... 14  
Analog Input and Reference Overview ................................... 14  
Clock Input and Considerations .............................................. 15  
Evaluation Board ............................................................................ 20  
Outline Dimensions....................................................................... 30  
Ordering Guide .......................................................................... 30  
REVISION HISTORY  
10/04—Initial Version: Revision 0  
Rev. 0 | Page 2 of 32  
AD9289  
SPECIFICATIONS  
AVDD = 3.0 V, DRVDD = 3.0 V, conversion rate = 65 MSPS, 2 V p-p differential input, 1.0 V internal reference, AIN = –0.5 dBFS, unless  
otherwise noted.  
Table 1.  
Parameter  
Temperature  
Test Level  
Min  
Typ  
Max  
Unit  
RESOLUTION  
8
Bits  
ACCURACY  
No Missing Codes  
Offset Error  
Offset Matching  
Gain Error ꢀ  
Gain Matchingꢀ  
Full  
Full  
Full  
Full  
Full  
2±°C  
Full  
2±°C  
Full  
VI  
VI  
VI  
VI  
VI  
V
VI  
V
VI  
Guaranteed  
±±  
±ꢀ2  
±0.±  
±0.2  
±0.2  
±0.2  
±0.2±  
±0.2±  
±±5  
±ꢁ8  
±2.±  
±0.ꢂ  
mV  
mV  
% FS  
% FS  
LSB  
LSB  
LSB  
LSB  
Differential Nonlinearity (DNL)  
±0.ꢁ  
±0.ꢁ  
Integral Nonlinearity (INL)  
TEMPERATURE DRIFT  
Offset Error  
Full  
Full  
Full  
V
V
V
±ꢀꢁ  
±ꢃ0  
±ꢀ0  
ppm/°C  
ppm/°C  
ppm/°C  
Gain Error  
1
Reference Voltage (VREF = ꢀ V)  
REFERENCE  
Output Voltage Error (VREF = ꢀ V)  
Load Regulation @ ꢀ.0 mA (VREF = ꢀ V)  
Output Voltage Error (VREF = 0.± V)  
Load Regulation @ 0.± mA (VREF = 0.± V)  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
VI  
V
VI  
V
±ꢀ0  
0.5  
±8  
0.2  
5
±3±  
±2ꢁ  
mV  
mV  
mV  
mV  
kΩ  
V
COMMON MODE  
Common-Mode Level Output  
ANALOG INPUTS  
Full  
VI  
±ꢀ.±  
±±0  
mV  
Differential Input Voltage Range (VREF = ꢀ V)  
Differential Input Voltage Range (VREF = 0.± V)  
Common-Mode Voltage  
Input Capacitance  
Analog Bandwidth, Full Power  
POWER SUPPLY  
Full  
Full  
Full  
Full  
Full  
VI  
VI  
V
V
V
2
ꢀ.±  
±
300  
V p-p  
V p-p  
V
pF  
MHz  
AVDD  
DRVDD  
IAVDD  
DRVDD  
Power Dissipation2  
Power-Down Dissipation  
CROSSTALK  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
IV  
IV  
VI  
VI  
VI  
VI  
V
2.5  
2.5  
3.0  
3.0  
ꢀ±0  
33  
±±0  
5
3.3  
3.3  
ꢀꢁ8  
ꢃ0  
ꢁ2±  
ꢀ2  
V
V
2
mA  
mA  
mW  
mW  
dB  
2
–5±  
Gain error and gain temperature coefficients are based on the ADC only (with a fixed ꢀ.0 V external reference and a 2 V p-p differential analog input).  
2 Power dissipation measured with rated encode and 2.ꢃ MHz analog input at –0.± dBFS.  
Rev. 0 | Page 3 of 32  
 
 
 
AD9289  
AC SPECIFICATIONS  
AVDD = 3.0 V, DRVDD = 3.0 V, conversion rate = 65 MSPS, 2 V p-p differential input, 1.0 V internal reference, AIN = –0.5 dBFS, unless  
otherwise noted.  
Table 2.  
Parameter  
Temperature  
Full  
2±°C  
Full  
Test Level  
Min  
Typ  
Max  
Unit  
dB  
dB  
SIGNAL-TO-NOISE RATIO (SNR)  
fIN = 2.ꢃ MHz  
fIN = ꢀ0.3 MHz  
fIN = 3± MHz  
fIN = 2.ꢃ MHz  
fIN = ꢀ0.3 MHz  
fIN = 3± MHz  
fIN = 2.ꢃ MHz  
fIN = ꢀ0.3 MHz  
fIN = 3± MHz  
fIN = 2.ꢃ MHz  
fIN = ꢀ0.3 MHz  
fIN = 3± MHz  
fIN = 2.ꢃ MHz  
fIN = ꢀ0.3 MHz  
fIN = 3± MHz  
fIN = 2.ꢃ MHz  
fIN = ꢀ0.3 MHz  
fIN = 3± MHz  
IV  
V
VI  
IV  
V
VI  
IV  
V
VI  
IV  
V
VI  
IV  
V
VI  
IV  
V
ꢃ5.5  
ꢃꢂ.0  
ꢃ8.±  
ꢃ8.0  
ꢃ8.ꢂ  
ꢃ8.ꢃ  
ꢃ5.±  
5.8  
ꢃꢁ.5  
ꢃ5.ꢁ  
dB  
SIGNAL-TO-NOISE RATIO (SINAD)  
Full  
2±°C  
Full  
dB  
dB  
dB  
ꢃꢁ.2  
5.ꢁ  
EFFECTIVE NUMBER OF BITS (ENOB)  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)  
WORST HARMONIC (Second or Third)  
WORST OTHER (Excluding Second or Third)  
Full  
2±°C  
Full  
Bits  
Bits  
Bits  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
5.5  
5.ꢁ  
5.ꢃ  
Full  
2±°C  
Full  
ꢁꢀ.0  
50.0  
ꢁ8.0  
ꢁ±.0  
–5±.0  
–50.0  
–ꢁ±.0  
–50.0  
–ꢁ8.0  
–ꢁ±.0  
–52.0  
±ꢃ.0  
Full  
2±°C  
Full  
–ꢁꢀ.0  
–±ꢃ.0  
–ꢁꢀ.0  
Full  
2±°C  
Full  
VI  
V
–±5.±  
TWO TONE INTERMOD DISTORTION (IMD)  
AINꢀ and AIN2 = –5.0 dBFS  
fINꢀ = ꢀ± MHz  
fIN2 = ꢀꢁ MHz  
2±°C  
DIGITAL SPECIFICATIONS  
AVDD = 3.0 V, DRVDD = 3.0 V, conversion rate = 65 MSPS, 2 V p-p differential input, 1.0 V internal reference, AIN = –0.5 dBFS, unless  
otherwise noted.  
Table 3.  
Parameter  
CLOCK INPUTS(CLK+, CLK–)  
Temperature  
Test Level  
Min  
Typ  
Max  
Unit  
Logic Compliance  
LVDS  
2±0  
Differential Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Common-Mode Voltage  
Input Resistance  
Full  
Full  
Full  
Full  
2±°C  
2±°C  
IV  
VI  
VI  
IV  
V
3±0  
30  
ꢃ±0  
5±  
mV p-p  
µA  
30  
5±  
µA  
ꢀ.ꢀ2±  
2.0  
ꢀ.2±  
ꢀ00  
2
ꢀ.35±  
V
kΩ  
pF  
Input Capacitance  
V
LOGIC INPUTS (DFS, PDWN, SHARED_REF)  
Logic ꢀ Voltage  
Logic 0 Voltage  
Input Resistance  
Input Capacitance  
Full  
Full  
2±°C  
2±°C  
IV  
IV  
V
V
0.8  
V
30  
kΩ  
pF  
V
LOCK  
LOGIC OUTPUTS (  
)
Logic ꢀ Voltage  
Logic 0 Voltage  
Full  
Full  
IV  
IV  
2.ꢃ±  
V
V
0.0±  
DIGITAL OUTPUTS (Dꢀ+, Dꢀ–)  
Logic Compliance  
Differential Output Voltage  
Output Offset Voltage  
Output Coding  
LVDS  
2ꢁ0  
ꢀ.ꢀ±  
Full  
Full  
Full  
VI  
VI  
VI  
3±0  
ꢀ.2±  
ꢃꢃ0  
ꢀ.3±  
mV  
V
Twos complement or binary  
Clock inputs are LVDS-compatible. They require external dc bias and cannot be ac-coupled.  
Rev. 0 | Page ꢃ of 32  
 
AD9289  
SWITCHING SPECIFICATIONS  
AVDD = 3.0 V, DRVDD = 3.0 V, conversion rate = 65 MSPS, 2 V p-p differential input, 1.0 V internal reference, AIN = –0.5 dBFS, unless  
otherwise noted.  
Table 4.  
Parameter  
Temp  
Test Level  
Min  
Typ  
Max  
Unit  
CLOCK  
Maximum Clock Rate  
Minimum Clock Rate  
Clock Pulse Width High (tEH)  
Clock Pulse Width Low (tEL)  
OUTPUT PARAMETERS  
Valid Time (tV)ꢀ  
Propagation Delay (tPD)  
Rise Time (tR) (20% to 80%)  
Fall Time (tF) (20% to 80%)  
FCO Propagation Delay (tFCO  
Full  
Full  
Full  
Full  
VI  
IV  
VI  
VI  
ꢁ±  
MSPS  
MSPS  
ns  
ꢀ2  
ꢁ.ꢂ  
ꢁ.ꢂ  
5.5  
5.5  
ns  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
2±°C  
2±°C  
Full  
IV  
VI  
V
V
V
0.±  
ꢁ.ꢂ  
<ꢀ.±  
ꢀꢀ.ꢁ  
CLK cycles  
ns  
ps  
ps  
ns  
ns  
ps  
ps  
ꢂ.0  
2±0  
2±0  
ꢂ.0  
)
)
DCO Propagation Delay (tCPD  
DCO-to-Data Delay (tDATA  
DCO-to-FCO Delay (tFRAME  
Data-to-Data Skew (tDATA-MAX – tDATA-MIN  
V
ꢂ.0  
)
)
VI  
VI  
IV  
V
V
IV  
±ꢀ00  
±ꢀ00  
±ꢀ00  
ꢀ.8  
5
±±±0  
±±00  
±2±0  
)
ps  
µs  
PLL Lock Time (tLOCK  
Wake-Up Time  
)
ms  
CLK cycles  
Pipeline Latency  
APERTURE  
Aperture Delay (tA)  
Aperture Uncertainty (Jitter)  
OUT-OF-RANGE RECOVERY TIME  
2±°C  
2±°C  
2±°C  
V
V
V
ꢃ.±  
<ꢀ  
ns  
ps rms  
CLK cycles  
LOCK  
Actual valid time is dependent on the moment when  
goes low.  
TIMING DIAGRAMS  
N-1  
AIN  
tA  
N
tEH  
tEL  
CLK–  
CLK+  
tCPD  
DCO–  
STATIC  
DCO+  
STATIC  
tFCO  
tFRAME  
FCO–  
FCO+  
STATIC  
STATIC  
STATIC  
tDATA  
D3  
tPD  
D1–  
D1+  
MSB D6  
D5  
D4  
D2  
D1 LSB MSB  
STATIC  
INVALID  
(N-7) (N-7) (N-7) (N-7) (N-7) (N-7) (N-7) (N-7) (N-6)  
LOCK  
tV  
Figure 2. Timing Diagram  
Rev. 0 | Page ± of 32  
 
 
AD9289  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
EXPLANATION OF TEST LEVELS  
With  
Respect  
I. 100% production tested.  
Parameter  
ELECTRICAL  
AVDD  
DRVDD  
AGND  
To  
Min  
Max  
Unit  
II. 100% production tested at 25°C and guaranteed by design  
and characterization at specified temperatures.  
AGND  
–0.3  
–0.3  
–0.3  
–3.ꢂ  
–0.3  
+3.ꢂ  
+3.ꢂ  
+0.3  
+3.ꢂ  
V
V
V
V
V
DRGND  
DRGND  
DRVDD  
DRGND  
III. Sample tested only.  
IV. Parameter is guaranteed by design and characterization  
testing.  
AVDD  
Digital Outputs (Dꢀ+,  
Dꢀ–, DCO+, DCO–,  
FCO+, FCO–)  
DRVDD  
V. Parameter is a typical value only.  
DRVDD  
AVDD  
AVDD  
AVDD  
AVDD  
LOCK, LVDSBIAS  
CLK+, CLK–  
VIN+, VIN–  
PDWN, DFS, DTP  
REFT, REFB,  
DRGND  
AGND  
AGND  
AGND  
AGND  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
V
V
V
V
V
VI. 100% production tested at 25°C and guaranteed by design  
and characterization for industrial temperature range.  
SHARED_REF, CML  
VREF, SENSE  
AGND  
–0.3  
–ꢃ0  
AVDD  
+8±  
V
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those listed in the operational sections  
of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
ENVIRONMENTAL  
Operating  
Temperature Range  
(Ambient)  
Maximum Junction  
Temperature  
Lead Temperature  
(Soldering, ꢀ0 sec)  
Storage  
°C  
ꢀ±0  
°C  
°C  
°C  
300  
–ꢁ±  
+ꢀ±0  
Temperature Range  
(Ambient)  
Thermal  
ꢃ0  
°C/W  
Impedanceꢀ  
θJA for a ꢃ-layer PCB with solid ground plane in still air.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as ꢃ000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. 0 | Page ꢁ of 32  
 
AD9289  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2 3 4 5 6 7 8  
A
B
C
D
E
F
G
H
Figure 3. BGA Top View (Looking Through)  
Table 6. Pin Function Descriptions  
Pin  
Pin  
No.  
Aꢀ  
Bꢀ  
Mnemonic  
Dꢀ–A  
Dꢀ+A  
Description  
No.  
D±  
E±  
Mnemonic  
Description  
ADC A Complement Digital Output  
ADC A True Digital Output  
Frame Clock Output (MSB Indicator)  
True Output  
Do Not Connect  
Analog Ground  
ADC A Analog Input—Complement  
ADC A Analog Input—True  
LVDS Output Bias Pin  
Do Not Connect  
Do Not Connect  
Frame Clock Output (MSB Indicator)  
Complement Output  
Do Not Connect  
Analog Ground  
Analog Supply  
Analog Ground  
ADC B Analog Input—True  
ADC B Complement Digital Output  
ADC B True Digital Output  
Digital Supply  
Digital Ground  
Analog Ground  
AGND  
AGND  
REFT_B  
REFB_B  
VREF  
Analog Ground  
Analog Ground  
Reference Buffer Decoupling (Positive)  
Reference Buffer Decoupling (Negative)  
Voltage Reference Input/Output  
Do Not Connect  
Do Not Connect  
Digital Supply  
Digital Ground  
Analog Supply  
Analog Ground  
Analog Ground  
ADC C Analog Input—Complement  
ADC D Complement Digital Output  
ADC D True Digital Output  
Data Format Select  
Analog Ground  
Analog Ground  
Analog Supply  
Analog Ground  
Cꢀ  
FCO+  
F±  
G±  
H±  
Aꢁ  
Bꢁ  
Cꢁ  
Dꢁ  
Eꢁ  
Dꢀ  
Eꢀ  
Fꢀ  
Gꢀ  
Hꢀ  
A2  
B2  
C2  
DNC  
AGND  
VIN–A  
VIN+A  
LVDSBIASꢀ  
DNC  
DNC  
DNC  
DRVDD  
DRGND  
AVDD  
AGND  
AGND  
VIN–C  
Dꢀ–D  
Dꢀ+D  
DFS2  
AGND  
AGND  
AVDD  
AGND  
VIN+C  
DNC  
DNC  
CLK+  
CLK–  
PDWN3  
VIN–D  
VIN+D  
DTP3, ꢃ  
DNC  
FCO–  
Fꢁ  
Gꢁ  
Hꢁ  
A5  
B5  
C5  
D5  
E5  
D2  
E2  
F2  
DNC  
AGND  
AVDD  
AGND  
VIN+B  
Dꢀ–B  
G2  
H2  
A3  
B3  
C3  
D3  
E3  
F3  
G3  
H3  
Aꢃ  
Bꢃ  
Cꢃ  
Dꢃ  
F5  
Dꢀ+B  
G5  
H5  
A8  
B8  
C8  
D8  
E8  
F8  
G8  
H8  
DRVDD  
DRGND  
AGND  
CML  
SHARED_REF3  
VIN–B  
DNC  
ADC C Analog Input—True  
Do Not Connect  
Do Not Connect  
Common Mode Level Output ( = AVDD/2)  
Shared Reference Control Bit  
ADC B Analog Input—Complement  
Do Not Connect  
Do Not Connect  
Data Clock Output—True  
PLL Lock Output  
Input Clock—True  
Input Clock—Complement  
Power Down Selection  
ADC D Analog Input—Complement  
ADC D Analog Input—True  
Digital Test Pattern  
DNC  
DCO+  
LOCK  
AVDD  
REFT_A  
REFB_A  
SENSE  
Dꢀ–C  
Eꢃ  
Fꢃ  
Gꢃ  
Hꢃ  
A±  
B±  
C±  
Analog Supply  
LVDSBIAS use a 3.ꢂ kΩ resistor-to-analog ground to set the LVDS output  
differential swing of 3±0 mV p-p.  
Reference Buffer Decoupling (Positive)  
Reference Buffer Decoupling (Negative)  
Reference Mode Selection  
ADC C Complement Digital Output  
ADC C True Digital Output  
2 DFS has an internal on-chip pull-down resistor and defaults to offset binary  
output coding if untied. If twos complement output coding is desired then  
tie this pin to AVDD.  
3 To enable, tie this pin to AVDD. To disable, tie this pin to AGND.  
DTP has an internal on-chip pull-down resistor.  
Dꢀ+C  
DCO–  
Data Clock Output—Complement  
Rev. 0 | Page 5 of 32  
 
 
 
 
 
 
AD9289  
EQUIVALENT CIRCUITS  
AVDD  
DRVDD  
VIN+, VIN–  
V
V
D1–  
D1+  
V
V
AGND  
DRGND  
Figure 4. Equivalent Analog Input Circuit  
Figure 7. Equivalent Digital Output Circuit  
AVDD  
DRVDD  
CLK+, CLK–  
LOCK  
25  
375  
AGND  
DRGND  
LOCK  
Figure 5. Equivalent Clock Input Circuit  
Figure 8. Equivalent  
Output Circuit  
DRVDD  
DFS, PDWN,  
SHARED_REF  
375  
DRGND  
Figure 6. Equivalent Digital Input Circuit  
Rev. 0 | Page 8 of 32  
 
AD9289  
TYPICAL PERFORMANCE CHARACTERISTICS  
0
75  
70  
65  
60  
AIN = –0.5dBFS  
SNR = 49.08dB  
ENOB = 7.86 BITS  
AIN = –0.5dBFS  
2V p-p, SFDR (dBc)  
SFDR = 70.55dBc  
–20  
–40  
–60  
1V p-p, SFDR (dBc)  
55  
–80  
2V p-p, SNR (dB)  
50  
45  
1V p-p, SNR (dB)  
30 40  
–100  
0.0  
4.1  
8.1  
12.2  
16.3  
20.3  
24.4  
28.4  
32.5  
10  
20  
50  
ENCODE (MSPS)  
60  
70  
FREQUENCY (MHz)  
Figure 9. Single-Tone 32k FFT With fIN = 2.4 MHz, fSAMPLE = 65 MSPS  
Figure 12. SNR/SFDR vs. fSAMPLE, fIN = 2.4 MHz  
0
75  
70  
65  
60  
AIN = –0.5dBFS  
SNR = 48.93dB  
ENOB = 7.83 BITS  
2V p-p, SFDR (dBc)  
–20  
–40  
–60  
SFDR = 71.45dBc  
AIN = –0.5dBFS  
1V p-p, SFDR (dBc)  
55  
–80  
2V p-p, SNR (dB)  
1V p-p, SNR (dB)  
50  
45  
–100  
0.0  
4.1  
8.1  
12.2  
16.3  
20.3  
24.4  
28.4  
32.5  
10  
20  
30  
40  
50  
60  
70  
FREQUENCY (MHz)  
ENCODE (MSPS)  
Figure 10. Single-Tone 32k FFT With fIN = 10.3 MHz, fSAMPLE = 65 MSPS  
Figure 13. SNR/SFDR vs. fSAMPLE, fIN = 10.3 MHz  
0
75  
70  
65  
60  
2V p-p, SFDR (dBc)  
AIN = –0.5dBFS  
AIN = –0.5dBFS  
SNR = 48.8dB  
ENOB = 7.8 BITS  
–20  
–40  
–60  
SFDR = 68.5dBc  
1V p-p, SFDR (dBc)  
55  
–80  
2V p-p, SNR (dB)  
50  
45  
1V p-p, SNR (dB)  
30 40  
–100  
0.0  
4.1  
8.1  
12.2  
16.3  
20.3  
24.4  
28.4  
32.5  
10  
20  
50  
ENCODE (MSPS)  
60  
70  
FREQUENCY (MHz)  
Figure 11. Single-Tone 32k FFT With fIN = 35 MHz, fSAMPLE = 65 MSP  
Figure 14. SNR/SFDR vs. fSAMPLE, fIN = 35 MHz  
Rev. 0 | Page ꢂ of 32  
 
AD9289  
75  
75  
60  
70dB REFERENCE LINE  
70  
65  
60  
55  
SFDR (dBc)  
2V p-p, SNR (dB)  
50  
40  
1V p-p, SFDR (dBc)  
30  
20  
10  
1V p-p, SNR (dB)  
50  
45  
2V p-p, SFDR (dBc)  
SNR (dB)  
0
–40  
–35  
–30  
–25  
–20  
–15  
–10  
–5  
0
0.1  
1
10  
FREQUENCY (MHz)  
100  
ANALOG INPUT LEVEL (dBFS)  
Figure 15. SNR/SFDR vs. Analog Input Level, fSAMPLE = 65 MSPS,  
IN = 2.4 MHz  
Figure 18. SNR/SFDR vs. fIN, fSAMPLE = 65 MHz  
f
0
–20  
–40  
–60  
75  
60  
AIN1 AND AIN2 = –7.0dBFS  
SFDR = 69.9dBc  
IMD2 = 74.9dBc  
IMD3 = 72.9dBc  
70dB REFERENCE LINE  
2V p-p, SNR (dB)  
50  
40  
1V p-p, SFDR (dBc)  
30  
20  
10  
0
1V p-p, SNR (dB)  
–80  
2V p-p, SFDR (dBc)  
–100  
0.0  
4.1  
8.1  
12.2  
16.3  
20.3  
24.4  
28.4  
32.5  
–40  
–35  
–30  
–25  
–20  
–15  
–10  
–5  
0
FREQUENCY (MHz)  
ANALOG INPUT LEVEL (dBFS)  
Figure 16. SNR/SFDR vs. Analog Input Level, fSAMPLE = 65 MSPS,  
IN = 10.3 MHz  
Figure 19. Two-Tone 32k FFT with fIN1 = 15 MHz and fIN2 = 16 MHz,  
SAMPLE = 65 MSPS  
f
f
75  
60  
80  
70  
60  
50  
40  
30  
70dB REFERENCE LINE  
2V p-p, SNR (dB)  
50  
40  
1V p-p, SFDR (dBc)  
70dB REFERENCE LINE  
30  
20  
10  
0
1V p-p, SNR (dB)  
SFDR (dBc)  
20  
2V p-p, SFDR (dBc)  
10  
0
–40  
–35  
–30  
–25  
–20  
–15  
–10  
–5  
0
–40  
–35  
–30  
–25  
–20  
–15  
–10  
–5  
0
ANALOG INPUT LEVEL (dBFS)  
ANALOG INPUT LEVEL (dBFS)  
Figure 17. SNR/SFDR vs. Analog Input Level, fSAMPLE = 65 MSPS,  
IN = 35 MHz  
Figure 20. Two-Tone SFDR vs. Analog Input Level with fIN1 = 15 MHz and  
IN2 = 16 MHz, fSAMPLE = 65 MSPS  
f
f
Rev. 0 | Page ꢀ0 of 32  
AD9289  
0.5  
0.4  
0.3  
0.2  
0.1  
75  
2V p-p, SFDR (dBc)  
70  
65  
1V p-p, SFDR (dBc)  
0
–0.1  
–0.2  
–0.3  
60  
55  
2V p-p, SINAD (dB)  
1V p-p, SINAD (dB)  
50  
45  
–0.4  
–0.5  
0
32  
64  
96  
128  
160  
192  
224  
256  
–40  
–20  
0
20  
49  
60  
80  
CODE  
TEMPERATURE (°C)  
Figure 21. SINAD/SFDR vs. Temperature, fSAMPLE = 65 MSPS, fIN 10.3 MHz  
Figure 23. Typical DNL, fIN = 2.4 MHz, fSAMPLE = 65 MSPS  
0.5  
15  
10  
0.4  
0.3  
0.2  
0.1  
5
SHARED REF MODE  
(PIN TIED HIGH)  
0
–0.1  
–0.2  
–0.3  
0
–5  
SHARED REF MODE  
(PIN TIED LOW)  
–10  
–15  
–0.4  
–0.5  
0
32  
64  
96  
128  
CODE  
160  
192  
224  
256  
–40  
–20  
0
20  
49  
60  
80  
TEMPERATURE (°C)  
Figure 24. Typical INL, fIN = 2.4 MHz, fSAMPLE = 65 MSPS  
Figure 22. Gain vs. Temperature  
Rev. 0 | Page ꢀꢀ of 32  
AD9289  
TERMINOLOGY  
Analog Bandwidth  
Effective Number of Bits (ENOB)  
Analog Bandwidth is the analog input frequency at which the  
spectral power of the fundamental frequency (as determined by  
the FFT analysis) is reduced by 3 dB from full scale.  
For a sine wave, SINAD can be expressed in terms of the  
number of bits. Using the following formula, it is possible to  
obtain a measure of performance expressed as N, the effective  
number of bits:  
Aperture Delay  
N = (SINAD – 1.76)/6.02  
Aperture delay is a measure of the sample-and-hold amplifier  
(SHA) performance and is measured from the 50% point rising  
edge of the clock input to the time at which the input signal is  
held for conversion.  
Thus, the effective number of bits for a device for sine wave  
inputs at a given input frequency can be calculated directly  
from its measured SINAD.  
Aperture Uncertainty (Jitter)  
Gain Error  
Aperture jitter is the variation in aperture delay for successive  
samples and can be manifested as frequency-dependent noise  
on the ADC input.  
The largest gain error is specified and is considered the  
difference between the measured and ideal full-scale input  
voltage range.  
Clock Pulse Width and Duty Cycle  
Gain Matching  
Pulse width high is the minimum amount of time that the clock  
pulse should be left in the Logic 1 state to achieve a rated  
performance. Pulse width low is the minimum time the clock  
pulse should be left in the low state. At a given clock rate, these  
specifications define an acceptable clock duty cycle.  
Expressed in %FSR. Computed using the following equation:  
FSRmaxFSRmin  
FSRmax+ FSRmin  
GainMatching =  
×100%  
2
where FSRMAX is the most positive gain error of the ADCs, and  
FSRMIN is the most negative gain error of the ADCs.  
Crosstalk  
Crosstalk is defined as the coupling of a channel when all  
channels are driven by a full-scale signal.  
Second and Third Harmonic Distortion  
The ratio of the rms signal amplitude to the rms value of the  
second or third harmonic component, reported in dBc.  
Differential Analog Input Capacitance  
The complex impedance simulated at each analog input port.  
Differential Analog Input Voltage Range  
Integral Nonlinearity (INL)  
INL refers to the deviation of each individual code from a line  
drawn from negative full scale through positive full scale The  
point used as negative full scale occurs 1/2 LSB before the first  
code transition. Positive full scale is defined as a level 1 1/2 LSB  
beyond the last code transition. The deviation is measured from  
the middle of each particular code to the true straight line.  
The peak-to-peak differential voltage that must be applied to  
the converter to generate a full-scale response. Peak differential  
voltage is computed by observing the voltage on a pin and  
subtracting the voltage from a second pin that is 180° out of  
phase. Peak-to-peak differential is computed by rotating the  
input phase 180° and taking the peak measurement again. The  
difference is computed between both peak measurements.  
Offset Error  
The largest offset error is specified and is considered the  
difference between the measured and ideal voltage at the analog  
input that produces the midscale code at the outputs.  
Differential Nonlinearity (DNL, No Missing Codes)  
An ideal ADC exhibits code transitions that are exactly 1 LSB  
apart. DNL is the deviation from this ideal value. Guaranteed no  
missing codes to an 8-bit resolution indicates that all 256 codes,  
respectively, must be present over all operating ranges.  
Rev. 0 | Page ꢀ2 of 32  
 
AD9289  
Signal-to Noise and Distortion (SINAD) Ratio  
Offset Matching  
SINAD is the ratio of the rms value of the measured input  
signal to the rms sum of all other spectral components below  
the Nyquist frequency, including harmonics but excluding dc.  
The value for SINAD is expressed in decibels.  
Expressed in mV. Computed using the following equation:  
OffsetMatching = OFFMAX OFFMIN  
where OFFMAX is the most positive offset error and OFFMIN is the  
most negative offset error.  
Signal-to-Noise Ratio (SNR)  
Out-of-Range Recovery Time  
SNR is the ratio of the rms value of the measured input signal to  
the rms sum of all other spectral components below the Nyquist  
frequency, excluding the first six harmonics and dc. The value  
for SNR is expressed in decibels.  
Out-of-range recovery time is the time it takes for the ADC to  
reacquire the analog input after a transient from 10% above  
positive full scale to 10% above negative full scale, or from 10%  
below negative full scale to 10% below positive full scale.  
Spurious-Free Dynamic Range (SFDR)  
Output Propagation Delay  
SFDR is the difference in dB between the rms amplitude of the  
input signal and the peak spurious signal.  
The delay between the clock logic threshold and the time when  
all bits are within valid logic levels.  
Temperature Drift  
The temperature drift for offset error and gain error specifies  
the maximum change from the initial (25°C) value to the value  
at TMIN or TMAX  
.
Two-Tone SFDR  
The ratio of the rms value of either input tone to the rms value  
of the peak spurious component. The peak spurious component  
may or may not be an IMD product. It may be reported in dBc  
(i.e., degrades as signal levels are lowered) or in dBFS (always  
related back to converter full scale).  
Rev. 0 | Page ꢀ3 of 32  
AD9289  
THEORY OF OPERATION  
of a clock cycle. A small resistor in series with each input can  
help reduce the peak transient current required from the output  
stage of the driving source. Also, a small shunt capacitor can  
be placed across the inputs to provide dynamic charging  
currents. This passive network creates a low-pass filter at the  
ADCs input; therefore, the precise values are dependent on  
the application.  
Each A/D converter in the AD9289 architecture consists of a  
front send sample-and-hold amplifier (SHA) followed by a  
pipe-lined, switched capacitor ADC. The pipelined ADC is  
divided into two sections, consisting of six 1.5-bit stages and a  
final 2-bit flash. Each stage provides sufficient overlap to correct  
for flash errors in the preceding stages. The quantized outputs  
from each stage are combined into a final 8-bit result in the  
digital correc-tion logic. The pipelined architecture permits the  
first stage to operate on a new input sample, while the  
remaining stages operate on preceding samples. Sampling  
occurs on the rising edge of the clock.  
The analog inputs of the AD9289 are not internally dc biased. In  
ac-coupled applications, the user must provide this bias exter-  
nally. Setting the device so that VCM = AVDD/2 is recommended  
for optimum performance, but the device functions over a  
wider range with reasonable performance (see Figure 26 and  
Figure 27).  
Each stage of the pipeline, excluding the last, consists of a low  
resolution flash ADC connected to a switched capacitor digital-  
to-analog converter (DAC) and interstage residue amplifier  
(MDAC). The MDAC magnifies the difference between the  
reconstructed DAC output and the flash input for the next stage  
in the pipeline. One bit of redundancy is used in each of the  
stages to facilitate digital correction of flash errors. The last  
stage simply consists of a flash ADC.  
75  
2V p-p, SFDR (dBc)  
70  
1V p-p, SFDR (dBc)  
65  
60  
55  
50  
45  
The input stage contains a differential SHA that can be config-  
ured as ac- or dc-coupled in differential or single-ended modes.  
The output-staging block aligns the data and carries out the  
error correction. The data is serialized and aligned to the frame,  
output clock, and lock detection circuitry.  
2V p-p, SNR (dB)  
1V p-p, SNR (dB)  
40  
35  
ANALOG INPUT AND REFERENCE OVERVIEW  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
ANALOG INPUT COMMON-MODE VOLTAGE (V)  
The analog input to the AD9289 is a differential-switched  
capacitor SHA that has been designed for optimum perfor-  
mance while processing a differential input signal. The SHA  
input can support a wide common-mode range and maintain  
excellent performance, as shown in Figure 26 sand Figure 27.  
An input common-mode voltage of midsupply minimizes  
signal dependent errors and provides optimum performance.  
Figure 26. SNR, SFDR vs. Common-Mode Voltage, fIN = 2.4 MHz,  
f
SAMPLE = 65 MSPS  
75  
2V p-p, SFDR (dBc)  
70  
65  
60  
H
1V p-p, SFDR (dBc)  
55  
50  
45  
S
S
2V p-p, SNR (dB)  
1V p-p, SNR (dB)  
VIN+  
VIN–  
C
PAR  
40  
35  
S
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
C
PAR  
ANALOG INPUT COMMON-MODE VOLTAGE (V)  
S
Figure 27. SNR, SFDR vs. Common-Mode Voltage, fIN = 35 MHz,  
SAMPLE = 65 MSPS  
f
H
For best dynamic performance, the source impedances driving  
VIN+ and VIN− should be matched such that common-mode  
settling errors are symmetrical. These errors are reduced by the  
common-mode rejection of the ADC.  
Figure 25. Switched-Capacitor SHA Input UPDATE  
The clock signal alternately switches the SHA between sample  
mode and hold mode (see Figure 25). When the SHA is  
switched into sample mode, the signal source must be capable  
of charging the sample capacitors and settling within one-half  
Rev. 0 | Page ꢀꢃ of 32  
 
 
 
 
AD9289  
An internal reference buffer creates the positive and negative  
reference voltages, REFT and REFB, respectively, that defines  
the span of the ADC core. The output common-mode of the  
reference buffer is set to midsupply, and the REFT and REFB  
voltages and span are defined as  
AVDD  
VIN+  
R
R
2Vp-p  
49.9  
AD9289  
C
AVDD  
1kΩ  
VIN–  
AGND  
REFT = 1/2 (AVDD + VREF)  
1kΩ  
REFB = 1/2 (AVDD VREF)  
0.1µF  
Span = 2 × (REFT REFB) = 2 × VREF  
Figure 29. Differential Transformer-Coupled Configuration  
It can be seen from the equations above that the REFT and  
REFB voltages are symmetrical about the midsupply voltage  
and, by definition, the input span is twice the value of the VREF  
voltage.  
Single-Ended Input Configuration  
A single-ended input may provide adequate performance in  
cost-sensitive applications. In this configuration, there is a  
degradation in SFDR and distortion performance due to the  
large input common-mode swing. However, if the source  
impedances on each input are matched, there should be little  
effect on SNR performance. Figure 30 details a typical single-  
ended input configuration.  
The internal voltage reference can be pin-strapped to fixed  
values of 0.5 V or 1.0 V or adjusted within the same range, as  
discussed in the Internal Reference Connection section.  
Maximum SNR performance is achieved by setting the AD9289  
to the largest input span of 2 V p-p.  
The SHA should be driven from a source that keeps the signal  
peaks within the allowable range for the selected reference  
voltage. The minimum and maximum common-mode input  
levels are defined in Figure 26 and Figure 27.  
10µF  
AVDD  
1kΩ  
R
VIN+  
0.1µF  
1kΩ  
2V p-p  
49.9Ω  
AD9289  
C
Differential Input Configurations  
AVDD  
R
Optimum performance is achieved by driving the AD9289 in a  
differential input configuration. For baseband applications, the  
AD8351 differential driver provides excellent performance and  
a flexible interface to the ADC (see Figure 28).  
1kΩ  
1kΩ  
VIN–  
AGND  
10µF  
0.1µF  
Figure 30. Single-Ended Input Configuration  
1k  
1kΩ  
10kΩ  
0.1µF  
0.1µF  
1kΩ  
1kΩ  
CLOCK INPUT AND CONSIDERATIONS  
Typical high speed ADCs use both clock edges to generate a  
variety of internal timing signals, and as a result may be  
sensitive to clock duty cycle. Typically, a 5% tolerance is  
required on the clock duty cycle to maintain dynamic perfor-  
mance characteristics. The AD9289 has a self-contained clock  
duty cycle stabilizer that retimes the nonsampling edge,  
providing an internal clock signal with a nominal 50% duty  
cycle. This allows a wide range of clock input duty cycles  
without affecting the performance of the AD9289.  
AVDD  
VIN–  
0.1µF  
0.1µF  
V
CM  
10Ω  
R
PWUP  
GP1  
GP2  
25Ω  
50Ω  
25Ω  
AD8351  
C
AD9289  
R
1V p-p  
VIN+  
AGND  
10Ω  
0.1µF  
AVDD  
1.2kΩ  
1kΩ  
1kΩ  
Figure 28. Differential Input Configuration Using the AD8351  
An on-board phase-locked loop (PLL) multiplies the input  
clock rate for the purpose of shifting the serial data out. As a  
result, any change to the sampling frequency requires a  
minimum of 100 clock periods to allow the PLL to reacquire  
and lock to the new rate.  
However, the noise performance of most amplifiers is not  
adequate to achieve the true performance of the AD9289. For  
applications where SNR is a key parameter, differential transfor-  
mer coupling is the recommended input configuration. An  
example of this is shown in Figure 29.  
In any configuration, the value of the shunt capacitor, C, is  
dependent on the input frequency and may need to be reduced  
or removed.  
Rev. 0 | Page ꢀ± of 32  
 
 
 
 
AD9289  
By asserting the PDWN pin high, the AD9289 is placed in  
standby mode. In this state, the ADC typically dissipates 7 mW.  
During standby the LVDS output drivers are placed in a high  
impedance state. Reasserting the PDWN pin low returns the  
AD9289 into its normal operational mode.  
High speed, high resolution ADCs are sensitive to the quality of  
the clock input. The degradation in SNR at a given full-scale  
input frequency (fA) due only to aperture jitter (tA) can be  
calculated with the following equation:  
SNR degradation = 20 × log10 [1/2 × π × fA × tA]  
In standby mode, low power dissipation is achieved by shutting  
down the reference, reference buffer, and biasing networks. The  
decoupling capacitors on REFT and REFB are discharged when  
entering standby mode and then must be recharged when  
returning to normal operation. As a result, the wake-up time is  
related to the time spent in standby mode, and shorter standby  
cycles result in proportionally shorter wake-up times. With the  
recommended 0.1 µF and 10 µF decoupling capacitors on REFT  
and REFB, it takes approximately 1 s to fully discharge the  
reference buffer decoupling capacitors and 7 ms to restore full  
operation.  
In the equation, the rms aperture jitter, tA, represents the root  
sum square of all jitter sources, which include the clock input,  
analog input signal, and ADC aperture jitter specification.  
Applications that require undersampling are particularly  
sensitive to jitter.  
The LVDS clock input should be treated as an analog signal in  
cases where aperture jitter may affect the dynamic range of the  
AD9289. Power supplies for clock drivers should be separated  
from the ADC output driver supplies to avoid modulating the  
clock signal with digital noise. Low jitter, crystal-controlled  
oscillators make the best clock sources. If the clock is generated  
from another type of source (by gating, dividing, or other  
methods), it should be retimed by the original clock at the  
last step.  
Digital Outputs  
The AD9289s differential outputs conform to the ANSI-644  
LVDS standard. To set the LVDS bias current place a resistor  
(RSET is nominally equal to 3.9 kΩ) to ground at the  
LVDSBIAS pin. The RSET resistor current is derived on-chip  
and sets the output current at each output equal to a nominal  
3.5 mA. A 100 Ω differential termination resistor placed at the  
LVDS receiver inputs results in a nominal 350 mV swing at  
the receiver. To adjust the differential signal swing, simply  
change the resistor to a different value, as shown in Table 7.  
The AD9289 can also support a single-ended CMOS clock.  
Refer to the evaluation board schematics to enable this feature.  
Power Dissipation and Standby Mode  
As shown in Figure 31, the power dissipated by the AD9289 is  
proportional to its sample rate. The digital power dissipation  
does not vary because it is determined primarily by the strength  
of the digital drivers and the load on each output bit.  
Table 7. LVDSBIAS Pin Configuration  
RSET  
Differential Output Swing  
3.ꢁk  
3.ꢂk (Default)  
ꢃ.3k  
35± mV p-p  
3±0 mV p-p  
32±mV p-p  
Digital power consumption can be minimized by reducing the  
capacitive load presented to the output drivers. The data in  
Figure 31 was collected while a 5 pF load was placed on each  
output driver.  
The AD9289s LVDS outputs facilitate interfacing with LVDS  
receivers in custom ASICs and FPGAs that have LVDS capa-  
bility for superior switching performance in noisy environ-  
ments. Single point-to-point net topologies are recommended  
with a 100 Ω termination resistor placed as close to the receiver  
as possible. It is recommended to keep the trace length no  
longer than 12 inches and to keep differential output traces  
close together and at equal lengths.  
The analog circuitry of the AD9289 is optimally biased to  
achieve excellent performance while affording reduced  
power consumption.  
600  
180  
160  
140  
120  
100  
550  
I
AVDD  
The format of the output data can be selected as offset binary or  
twos complement. A quick example of each output coding  
format can be found in Table 8. The DFS pin is used to set the  
format (see Table 9).  
500  
450  
POWER  
80  
60  
40  
Table 8. Digital Output Coding  
VIN+ −  
VIN− Input  
Span = 2 V  
VIN+ −  
Digital  
Digital  
VIN− Input  
Span = 1 V  
p-p (V)  
Output Offset  
Binary  
(D7...D0)  
Output Twos  
Complement  
(D7...D0)  
400  
350  
I
DRVDD  
20  
0
Code p-p (V)  
2±±  
ꢀ28  
ꢀ25  
0
ꢀ.000  
0
0.±00  
ꢀꢀꢀꢀ ꢀꢀꢀꢀ  
ꢀ000 0000  
0ꢀꢀꢀ ꢀꢀꢀꢀ  
0000 0000  
0ꢀꢀꢀ ꢀꢀꢀꢀ  
0000 0000  
ꢀꢀꢀꢀ ꢀꢀꢀꢀ  
ꢀ000 0000  
10  
20  
30  
40  
50  
60  
70  
0
ENCODE (MSPS)  
−0.0058ꢀ  
−ꢀ.00  
−0.003ꢂꢀ  
−0.±000  
Figure 31. Supply Current vs. fSAMPLE for fIN = 10.3 MHz  
Rev. 0 | Page ꢀꢁ of 32  
 
 
 
AD9289  
Table 9. Data Format Configuration  
Voltage Reference  
DFS Mode  
Data Format  
A stable and accurate 0.5 V voltage reference is built into the  
AD9289. The input range can be adjusted by varying the refer-  
ence voltage applied to the AD9289, using either the internal  
reference or an externally applied reference voltage. The input  
span of the ADC tracks reference voltage changes linearly.  
AVDD  
AGND  
Twos complement  
Offset binary  
Timing  
Data from each ADC is serialized and provided on a separate  
channel. The data rate for each serial stream is equal to eight  
bits times the sample clock rate, with a maximum of 520 MHz  
(8 bits x 65 MSPS = 520 MHz). The lowest typical conversion  
rate is 12 MSPS.  
The shared reference mode (see Figure 32) allows the user to  
externally connect the reference buffers from the quad ADC for  
better gain and offset matching performance. If the ADCs are to  
function independently, the reference decoupling can be treated  
independently and can provide better isolation between the four  
channels. To enable shared reference mode, the SHARED_REF  
pin must be tied high and external reference buffer decoupling  
pins must be externally shorted. (REFT_A must be externally  
shorted to REFT_B and REFB_A must be shorted to REFB_B.)  
Note that Channels A and B are referenced to REFT_A and  
REFB_A and Channels C and D are referenced to REFT_B  
and REFB_B.  
Two output clocks are provided to assist in capturing data from  
the AD9289. The DCO is used to clock the output data and is  
equal to four times the sampling clock (CLK) rate. Data is  
clocked out of the AD9289 and can be captured on the rising  
and falling edges of the DCO that supports double-data rate  
operation (DDR). The frame clock out (FCO) signals the start  
of a new output byte and is equal to the sampling clock rate. See  
the timing diagram shown in Figure 2 for more information.  
Table 10. Reference Settings  
Resulting  
Pin  
LOCK  
SENSE  
Voltage  
Resulting  
VREF (V)  
Differential Span  
(V p-p)  
Selected Mode  
The AD9289 contains an internal PLL that is used to generate  
External  
Reference  
AVDD  
N/A  
2 × External  
Reference  
the DCO. When the PLL is locked, the  
indicating valid data on the outputs.  
signal will be low,  
LOCK  
Internal,  
VREF  
0.±  
ꢀ.0  
ꢀ V p-p FSR  
If for any reason the PLL loses lock, the  
signal goes high  
LOCK  
Programmable  
0.2 V to  
VREF  
0.± ×  
(ꢀ + R2/Rꢀ)  
2 × VREF  
2.0  
as soon as the lock circuitry detects an unlocked condition.  
While the PLL is unlocked, the data outputs and DCO remains  
Internal,  
2 V p-p FSR  
AGND to  
0.2 V  
ꢀ.0  
in the last known state. If the  
signal goes high in the  
LOCK  
middle of a byte, no data or DCO signals will be available for  
the rest of the byte. It takes at least 1.8 µs at 65 MSPS to regain  
lock once it is lost. Note that regaining lock is sample rate-  
dependent and takes at least 100 input periods after the PLL  
acquires the input clock.  
Internal Reference Connection  
A comparator within the AD9289 detects the potential at the  
SENSE pin and configures the reference into four possible  
states, which are summarized in Table 10. If SENSE is grounded,  
the reference amplifier switch is connected to the internal resis-  
tor divider (see Figure 33), setting VREF to 1 V. Connecting the  
SENSE pin to the VREF pin switches the amplifier output to the  
SENSE pin, configuring the internal op amp circuit as a voltage  
follower and providing a 0.5 V reference output. If an external  
resistor divider is connected as shown in Figure 34 the switch is  
again set to the SENSE pin. This puts the reference amplifier in  
a noninverting mode with the VREF output defined as  
Once the PLL regains lock the DCO starts. The first valid data  
byte is indicated by the FCO signal. The FCO rising edge occurs  
0.5 to <1.5 input clock periods after  
goes low.  
LOCK  
CML Pin  
A common-mode level output is available at Pin F3. This output  
self biases to AVDD/2. This is a relatively high impedance  
output (2.5k nominal), which may need to be considered when  
used as a reference.  
R2  
R1  
VREF = 0.5× 1 +  
DTP Pin  
In all reference configurations, REFT_A and REFT_B and  
REFB_A and REFB_B establish their input span of the ADC  
core. The input range of the ADC always equals twice the  
voltage at the reference pin for either an internal or an external  
reference.  
When the digital test pattern (DTP) pin is enabled (pulled to  
AVDD), all of the ADC channel outputs shift out the following  
pattern: 11000000. The FCO and DCO outputs still work as  
usual while all channels shift out the test pattern. This pattern  
allows the user to perform timing alignment adjustments  
between the DCO and the output data.  
Rev. 0 | Page ꢀ5 of 32  
 
AD9289  
VIN+A (+B)  
VIN–A (–B)  
VIN+A (+B)  
VIN–A (–B)  
REFT_A  
REFT_A  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
+
+
A CORE  
B CORE  
A CORE  
B CORE  
10µF  
10µF  
REFB_A  
REFB_A  
V
V
REF  
REF  
0.1µF  
0.1µF  
V
V
REF  
REF  
10µF  
0.1µF  
10µF  
0.1µF  
R2  
SELECT  
LOGIC  
SELECT  
LOGIC  
SENSE  
SENSE  
R1  
0.5V  
0.5V  
VIN+C (+D)  
VIN–C (–D)  
VIN+C (+D)  
VIN–C (–D)  
REFT_B  
REFT_B  
V
V
REF  
REF  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
+
+
C CORE  
D CORE  
C CORE  
D CORE  
10µF  
10µF  
REFB_B  
REFB_B  
AVDD  
SHARED_REF  
CONTROL  
CONTROL  
SHARED_REF  
Figure 32. Shared Reference Mode Enabled  
Figure 34. Programmable Reference Configuration  
VIN+A (+B)  
VIN–A (–B)  
If the internal reference of the AD9289 is used to drive multiple  
converters to improve gain matching, the loading of the refer-  
ence by the other converters must be considered. Figure 35  
depicts how the internal reference voltage is affected by loading.  
REFT_A  
0.1µF  
0.1µF  
+
A CORE  
B CORE  
10µF  
REFB_A  
V
0.05  
REF  
0.1µF  
V
REF  
0
10µF  
0.1µF  
–0.05  
SELECT  
LOGIC  
V
= 0.5V  
REF  
–0.10  
–0.15  
–0.20  
–0.25  
–0.30  
SENSE  
0.5V  
V
= 1.0V  
REF  
VIN+C (+D)  
VIN–C (–D)  
REFT_B  
V
REF  
–0.35  
–0.40  
0.1µF  
0.1µF  
+
C CORE  
D CORE  
10µF  
0
0.5  
1.0  
I
1.5  
(mA)  
2.0  
2.5  
REFB_B  
LOAD  
SHARED_REF  
CONTROL  
Figure 35. VREF Accuracy vs. Load  
Figure 33. Internal Reference Configuration  
Rev. 0 | Page ꢀ8 of 32  
 
AD9289  
External Reference Operation  
When the SENSE pin is tied to AVDD, the internal reference is  
disabled, allowing the use of an external reference. An internal  
reference buffer loads the external reference with an equivalent  
7 kΩ load. The internal buffer still generates the positive and  
negative full-scale references, REFT_A and REFT_B and  
REFB_A and REFB_B , for the ADC core. The input span is  
always twice the value of the reference voltage; therefore, the  
external reference must be limited to a maximum of 1 V.  
The use of an external reference may be necessary to enhance  
the gain accuracy of the ADC or improve thermal drift  
characteristics. Figure 36 shows the typical drift characteristics  
of the internal shared reference in both 1 V and 0.5 V modes.  
0.15  
V
= 0.5V  
0.10  
0.05  
0
REF  
Power and Ground Recommendations  
V
= 1.0V  
REF  
When connecting power to the AD9289, it is recommended that  
two separate 3.0 V supplies be used. One for analog (AVDD)  
and one for digital (DRVDD). If only one supply is available  
then it should be routed to the AVDD first and tapped off and  
isolated with a ferrite bead or filter choke with decoupling  
capacitors proceeding. One may want to use several different  
decoupling capacitors to cover both high and low frequencies.  
These should be located close the point of entry at the pc board  
level as well as close to the parts with minimal trace length.  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
A single pc board ground plane should be sufficient when using  
the AD9289. With proper decoupling and smart partitioning of  
the pc boards analog, digital, and clock sections, optimum  
performance is easily achieved.  
Figure 36. Typical VREF Drift  
Rev. 0 | Page ꢀꢂ of 32  
 
AD9289  
EVALUATION BOARD  
the signal sources that are used have very low phase noise  
(< 1 ps rms jitter) to realize the ultimate performance of the  
converter. Proper filtering of the analog input signal to  
remove harmonics and lower the integrated or broadband  
noise at the input is also necessary to achieve the specified  
noise performance.  
The AD9289 evaluation board provides all of the support cir-  
cuitry required to operate the ADC in its various modes and  
configurations. The converter can be driven differentially  
through a transformer (default) or the AD8351 driver. Provi-  
sions have also been made to drive the ADC single-ended.  
Separate power pins are provided to isolate the DUT from the  
support circuitry. Each input configuration can be selected by  
proper connection of various jumpers (refer to the schematics).  
Figure 37 shows the typical bench characterization setup used  
to evaluate the ac performance of the AD9289. It is critical that  
See Figure 37 to Figure 47 for complete schematics and layout  
plots, which demonstrate the routing and grounding techniques  
that should be applied at the system level.  
3.0V  
3.0V  
3.3V  
+
+
+
HSC-ADC-FPGA  
HIGH-SPEED  
DE-SERIALIZATION  
BOARD  
HSC-ADC-EVAL-DC  
FIFO DATA  
CAPTURE  
PC  
RUNNING  
ADC  
ROHDE AND SCHWARZ,  
SMHU,  
BOARD  
ANALYZER  
BAND-PASS  
FILTER  
XFMR  
INPUT  
2V p-p SIGNAL  
SYNTHESIZER  
CHA–CHD  
8-BIT  
SERIAL  
LVDS  
2 CH  
8-BIT  
PARALLEL  
CMOS  
AD9289  
USB  
CONNECTION  
EVALUATION BOARD  
ROHDE AND SCHWARZ,  
SMHU,  
CLK  
2V p-p SIGNAL  
SYNTHESIZER  
Figure 37. Evaluation Board Connections  
Rev. 0 | Page 20 of 32  
 
 
AD9289  
U7  
D N C  
D N C  
C H D  
C H D  
D
D 1 +  
A 2  
B 7  
A 7  
D – D 1  
B 2  
C H A  
C H A  
F C O  
F C O  
A – D 1  
D N C  
A 1  
B 1  
B 8  
A
D 1 +  
F C O  
F C O +  
D N C  
D N C  
D N C  
A 8  
E 8  
W N P D  
C 2  
C 1  
D 2  
D 1  
F 1  
G 1  
E 1  
E 2  
H 2  
H 3  
F 2  
G 2  
C L K +  
C 8  
D 8  
C 7  
F 8  
C L K  
D F S  
A _ N V I  
A _ N V I  
D _ N V I  
A – N V I  
A + N V I  
D – N V I  
D + N V I  
D _ N V I  
G 8  
A G N D  
A G N D  
B + N V I  
A G N D  
D 7  
A G N D  
E 7  
H 7  
H 6  
E 4  
C _ N V I  
C _ N V I  
D D  
C + N V I  
C – N V I  
D D A V  
B _ N V I  
B _ N V I  
B – N V I  
D D A V  
D D  
D U T _ A V  
D U T _ A V  
A G N D  
A G N D  
E 5  
Figure 38. Evaluation Board Schematic, DUT, VREF, and Clock Inputs  
Rev. 0 | Page 2ꢀ of 32  
AD9289  
J P 2 0  
J P 1 9  
J P 1 8  
J P 2 6  
J P 2 9  
J P 2 8  
J P 2 1 J P 2 4  
J P 2 5 J P 2 7  
Figure 39. Evaluation Board Schematic, DUT Analog Input  
Rev. 0 | Page 22 of 32  
AD9289  
A D 8 3 5 1  
A D 8 3 5 1  
A D 8 3 5 1  
A D 8 3 5 1  
Figure 40. Evaluation Board Schematic, Optional DUT Analog Input Drive  
Rev. 0 | Page 23 of 32  
AD9289  
T P 1 8  
T P 1 6  
T P 1 5  
T P 1 4  
J P 1  
J P 2  
J P 4  
Figure 41. Evaluation Board Schematic, Power, and Decoupling  
Rev. 0 | Page 2ꢃ of 32  
AD9289  
Figure 42. Evaluation Board Layout, Primary Side  
Figure 43. Evaluation Board Layout, Primary Side (With Ground Copper Pour)  
Rev. 0 | Page 2± of 32  
AD9289  
Figure 44. Evaluation Board Layout, Ground Plane  
Figure 45. Evaluation Board Layout, Power Plane  
Rev. 0 | Page 2ꢁ of 32  
AD9289  
Figure 46. Evaluation Board Layout, Secondary Side  
Figure 47. Evaluation Board Layout, Secondary Side (With Ground Copper Pour)  
Rev. 0 | Page 25 of 32  
AD9289  
Table 11. Evaluation Board Bill of Materials (BOM)  
Qnty.  
per  
Board  
Item  
REFDES  
Device  
Package  
Value  
Manufacturing  
Mfg. Part Number  
ADꢂ28ꢂ BGA  
REVA/PCB  
PCB  
PCB  
PCB  
PCSM  
PCSM  
2
3
8
Assembly  
Rꢃꢁ, Rꢃ8, Rꢁ0, Rꢁꢀ,  
Rꢂ8, Rꢂꢂ, Rꢀꢀ3, Rꢀꢀꢃ  
R±, R5, R8, Rꢂ, Rꢀ0,  
Rꢀ5, R33, R3ꢂ  
R22,Rꢃꢂ, R±2, R±±,  
R5ꢂ, Rꢂ2, Rꢀ0ꢀ, Rꢀ0ꢁ  
Rꢀꢀ,Rꢀꢃ, R23, R25,  
R3ꢀ, R3ꢃ, Rꢃꢃ, Rꢃ5  
Protronics  
Yageo America  
Protronics  
ꢂC0ꢃ02ꢀA0R00JLHF3  
RES_ꢃ02  
RES_ꢃ02  
RES_ꢃ02  
RES_ꢃ02  
ꢃ02  
ꢃ02  
ꢃ02  
ꢃ02  
0
±
8
8
8
ꢀ0  
2±  
33  
Susumu Co Ltd  
Susumu Co Ltd  
Susumu Co Ltd  
RR0±ꢀ0R-ꢀ00-D  
RR0±ꢀ0R-2ꢃ0-D  
RR0±ꢀ0R-330-D  
5
8
8
R38, R±ꢁ, Rꢂꢀ, Rꢀ05  
R53  
Rꢃ±, R±0, R±5, R±8,  
RES_ꢃ02  
RES_ꢃ02  
RES_ꢃ02  
ꢃ02  
ꢃ02  
ꢃ02  
±0  
ꢀ00  
ꢀK  
Panasonic-ECG  
Yageo America  
Panasonic-ECG  
ERJ-LꢀꢃKF±0MU  
ꢂC0ꢃ02ꢀAꢀ000FLHF3  
ERJ-2GEJꢀ02X  
Rꢂ3, Rꢂꢃ, Rꢀ08, Rꢀꢀꢀ  
ꢀ0  
ꢀꢀ  
ꢀ3  
R3±, R±3, R8ꢀ, Rꢀ03  
RES_ꢃ02  
RES_ꢃ02  
ꢃ02  
ꢃ02  
ꢀ.2K  
ꢀ0K  
Panasonic-ECG  
Susumu Co Ltd  
ERJ-2GEJꢀ22X  
RR0±ꢀ0P-ꢀ03-D  
Rꢁ, R32, R3ꢁ, R±ꢀ,  
R±ꢃ, R52, R5±, R58,  
Rꢂ0, Rꢀ00, Rꢀ0ꢃ, R35,  
R5ꢁ  
ꢀ2  
Rꢁ2, Rꢁ3, Rꢁꢃ, Rꢁ±,  
Rꢁꢁ, R5ꢀ  
BRESꢁ03  
ꢁ03  
0
Panasonic-ECG  
ERJ-3GEY0R00V  
ꢀ3  
ꢀꢃ  
±
Rꢀ02  
Rꢀ±, R30, Rꢃꢀ, Rꢃ2,  
R83  
BRESꢁ03  
BRESꢁ03  
ꢁ03  
ꢁ03  
22  
±0  
Susumu Co Ltd  
Susumu Co Ltd  
RR08ꢀꢁQ-220-D  
RR08ꢀꢁQ-ꢃꢂRꢂ-D-ꢁ8R  
ꢀ±  
23  
Rꢀ, Rꢀ2, Rꢀ3, Rꢀꢁ,  
Rꢀ8, Rꢀꢂ, R20, R2ꢀ,  
R2ꢃ, R2ꢂ, Rꢃ0, Rꢃ3,  
R±ꢂ, Rꢁ8, Rꢁꢂ, R50,  
R5ꢃ, R55, R80, R82,  
R8ꢃ, Rꢀ0ꢂ, Rꢀꢀ0  
BRESꢁ03  
ꢁ03  
ꢀK  
Susumu Co Ltd  
RR08ꢀꢁP-ꢀ02-D  
ꢀꢁ  
ꢀ5  
ꢀ8  
2
3ꢁ  
Rꢂꢁ, Rꢂ5  
Cꢀ0, C2ꢀ, C30, Cꢃꢀ  
BRESꢁ03  
CAPꢃ02  
CAPꢃ02  
ꢁ03  
ꢃ02  
ꢃ02  
XXX  
20PF  
ꢀUF  
Kemet  
Panasonic-ECG  
C0ꢃ02C220J±GACTU  
ECJ-0EFꢀCꢀ0ꢃZ  
Cꢀ, C3±, Cꢃꢃ, Cꢃ5,  
C80, C2±0, Cꢁ00,  
Cꢀꢀ, Cꢀ2, Cꢀꢃ, C35,  
Cꢃ0, Cꢃ8, Cꢁ3, Cꢁꢃ,  
Cꢁ±, Cꢁꢁ, Cꢁ5, Cꢁ8,  
Cꢁꢂ, C50, C5ꢀ, C52,  
C53  
ꢀꢂ  
ꢀ5  
C2, C3, Cꢃ,  
BYPASSCAP  
ꢁ03  
0.ꢀUF  
Kemet  
C0ꢁ03Cꢀ0ꢃZ3VACTU  
C±, Cꢁ, C5, Cꢀ±, Cꢀꢁ,  
Cꢀ8, C20, C2±, C2ꢂ,  
C3ꢁ, C±3, Cꢀ08,  
Cꢀꢀ0, Cꢀ83  
20  
2ꢀ  
22  
3
3
ꢀꢁ  
Cꢀ00, Cꢀ20, Cꢀꢁ3  
Cꢀ50, Cꢀ5ꢀ, Cꢀ5ꢁ  
Lꢀ, L2 ,L3, Lꢃ, Lꢁ, Lꢂ,  
Lꢀ0, Lꢀꢀ, Lꢀ2, Lꢀ3,  
Lꢀꢂ, L20, L2ꢀ, L22,  
L25, L28  
TANTALUMB  
TANTALUMB  
INDUCTOR_ꢁ ꢁ03  
80±  
TꢃꢂꢀB0ꢁK0ꢀ  
ꢀ0UF  
ꢀ0UF  
ꢀ20NH  
Panasonic-ECG  
Kemet  
Murata  
ECJ-2FB0Jꢀ0ꢁM  
TꢃꢂꢀBꢀ0ꢁK0ꢀꢁAS  
BLMꢀ8BB5±0SNꢀD  
23  
2ꢃ  
3
L±,L5,L8  
Pꢁ  
INDꢀ2ꢀ0  
PTMICROꢁ  
ꢀ2ꢀ0  
PTMICROꢁ  
ꢀ0UH  
ꢁ-Pole PCB  
Header  
Panasonic-ECG  
Wieland  
ELJ-SAꢀ00KF  
Z±.±3ꢀ.3ꢁ2±.0  
Rev. 0 | Page 28 of 32  
AD9289  
Qnty.  
per  
Board  
Item  
REFDES  
Device  
Package  
Value  
Manufacturing  
Mfg. Part Number  
ꢁ-Pole PCB  
Connector  
Wieland  
2±.ꢁ00.±ꢁ±3.0  
2±  
±
Pꢀ, P2, P3, Pꢃ, P±  
SMBMST  
SMB  
SMBMST  
Amphenol-RF  
Division  
ꢂ0ꢀ-ꢀꢃꢃ-8RFX  
2ꢁ  
25  
Tꢀ, T2, T3, Tꢃ  
Uꢀ5  
ADTꢀ-ꢀWT  
HEADER  
CD±ꢃ2_Xꢁ±  
2MMSMT-852 WMꢀ8ꢀ±8-  
ND  
ADTꢀ-ꢀWT  
Minicircuits  
Molex/Waldom  
Electronics Corp  
ADTꢀ-ꢀWT  
852ꢁ5-08±0  
28  
2ꢂ  
U±  
Jꢁ  
DIFF_CONN  
MINIJMPR3  
FCN_2ꢁ8M0ꢀ DIFF_CONN  
2MMSMT-852 MINIJMPR3  
Fujitsu  
Molex/Waldom  
Electronics Corp  
FCN-2ꢁ8M0ꢀ2-G/ꢀD  
852ꢁ5-08±0  
30  
3ꢀ  
2
2
JPꢀ, JP2  
SGLJMPR  
ꢀꢀ/ꢃ"  
SGLJMPR  
NYLON  
852ꢁ5-08±0  
ꢀ/ꢃ" ꢁ-32  
Samtec  
RAF  
TSW-ꢀ20-05-G-S  
ꢃ0ꢃ0-ꢁ32-N  
STANDOFF  
32  
33  
2
ꢁ-32NUTS  
5ꢃVHC0ꢃMTC TSSOP-ꢀꢃ  
NYLON  
ꢁ-32  
5ꢃVHC0ꢃ  
RAF  
Fairchild  
Semiconductor  
Fairchild  
Semiconductor  
ADI  
30±8-N  
5ꢃVHC0ꢃMTC  
Uꢀ  
U2  
Uꢃ  
3ꢃ  
3±  
FINꢀ0ꢀ5M  
MO8A_(SOIC) FINꢀ0ꢀ5M  
FINꢀ0ꢀ5M  
ADꢂ28ꢂBBC-  
ꢁ±  
ꢂ28ꢂBGA  
ꢂ28ꢂBGA  
ADꢂ28ꢂBBC-ꢁ±  
3ꢁ  
35  
Uꢁ  
ADR±ꢀ0  
AD83±ꢀARM  
SOT23  
MSOP0ꢀ0  
ADR±ꢀ0  
AD83±ꢀ  
ADI  
ADI  
ADR±ꢀ0  
AD83±ꢀARM  
U5, U8, Uꢂ, Uꢀ0  
Rev. 0 | Page 2ꢂ of 32  
AD9289  
OUTLINE DIMENSIONS  
A1 CORNER  
INDEX AREA  
8.00  
BSC SQ  
8
7
6
5
4
3
2
1
A
B
C
D
E
F
BALL A1  
INDICATOR  
5.60  
BSC SQ  
TOP VIEW  
0.80  
BSC  
G
H
BOTTOM VIEW  
DETAIL A  
DETAIL A  
1.70  
1.55  
1.35  
1.31  
1.21  
1.10  
0.34 NOM  
0.25 MIN  
COPLANARITY  
0.12  
0.55  
0.50  
0.45  
SEATING  
PLANE  
BALL DIAMETER  
COMPLIANT TO JEDEC STANDARDS MO-205-BA  
Figure 48. 64-Lead Chip Scale Package Ball Grid Array [CSP_BGA]  
(BC-64-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
Package Option  
ADꢂ28ꢂBBC  
ADꢂ28ꢂ-ꢁ±EB  
–ꢃ0°C to +8±°C  
ꢁꢃ-Lead Chip Scale Package Ball Grid Array [CSP_BGA]  
Evaluation Board  
BC-ꢁꢃ-ꢀ  
Rev. 0 | Page 30 of 32  
 
AD9289  
NOTES  
Rev. 0 | Page 3ꢀ of 32  
AD9289  
NOTES  
©
2004 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D03682-0-10/04(0)  
Rev. 0 | Page 32 of 32  

相关型号:

AD9289BBC-65

Quad 8-Bit, 65 MSPS Serial LVDS 3V A/D Converter
ADI

AD9289BBC-65EB

Quad 8-Bit, 65 MSPS Serial LVDS 3V A/D Converter
ADI

AD9289BBCZ

Quad 8-Bit, 65 MSPS, Serial LVDS A/D Converter
ADI

AD9289XBC

Quad 8-Bit, 65 MSPS, Serial LVDS A/D Converter
ADI

AD9289_15

Quad 8-Bit, 65 MSPS, Serial LVDS 3 V A/D Converter
ADI

AD9289_17

Serial LVDS 3 V A/D Converter
ADI

AD9300

4 x 1 Wideband Video Multiplexer
ADI

AD9300KP

4 x 1 Wideband Video Multiplexer
ADI

AD9300KP-REEL

IC 4-CHANNEL, VIDEO MULTIPLEXER, PQCC20, PLASTIC, LCC-20, Multiplexer or Switch
ADI

AD9300KQ

4 x 1 Wideband Video Multiplexer
ADI

AD9300TE

4-Channel Analog Multiplexer
ETC

AD9300TE/883B

4 x 1 Wideband Video Multiplexer
ADI