AD9393 [ADI]

Low Power HDMI Display Interface; 低功耗HDMI显示接口
AD9393
型号: AD9393
厂家: ADI    ADI
描述:

Low Power HDMI Display Interface
低功耗HDMI显示接口

文件: 总40页 (文件大小:819K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Power HDMI Display Interface  
AD9393  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
HDMI interface  
SERIAL  
SCL  
SDA  
REGISTER  
AND  
Supports high bandwidth digital content protection  
RGB to YCrCb 2-way color conversion  
1.8 V/3.3 V power supply  
POWER  
MANAGEMENT  
R/G/B 8 × 3  
OR YCrCb  
D[23:0]  
DCLK  
76-ball BGA package  
RGB and YCrCb output formats  
Digital video interface  
HDMI 1.2a, DVI 1.0  
80 MHz HDMI receiver  
DATACK  
HSOUT  
VSOUT  
DE  
Rx0+  
Rx0–  
H
SYNC  
V
SYNC  
Rx1+  
Rx1–  
DE  
HDMI  
RECEIVER  
Supports high bandwidth digital content protection  
(HDCP 1.1)  
SPDIF  
Rx2+  
Rx2–  
8-CHANNEL  
I S  
RxC+  
RxC–  
RTERM  
Digital audio interface  
2
HDMI 1.2a-compatible audio interface  
S/PDIF (IEC60958-compatible) digital audio output  
Multichannel I2S audio output (up to 8 channels)  
MCLK  
SCLK  
LRCLK  
MCL  
MDA  
HDCP  
AD9393  
DDC_SCL  
DDC_SDA  
APPLICATIONS  
Portable low power TV  
HDTV  
Figure 1.  
Projectors  
LCD monitor  
GENERAL DESCRIPTION  
The AD9393 offers a High-Definition Multimedia Interface  
(HDMI™) receiver integrated on a single chip. Support is also  
included for high bandwidth digital content protection (HDCP).  
of a video receiver, decryption of encoded data at the receiver,  
and renewability of that authentication during transmission as  
specified by the HDCP 1.1 protocol.  
The AD9393 contains a HDMI 1.2a-compatible receiver and  
supports HDTV formats (up to 720p or 1080i) and displays  
resolutions up to XGA (1024 × 768 @ 75 Hz). The receiver  
features an intrapair skew tolerance of up to one full clock  
cycle. With the inclusion of HDCP, displays may now receive  
encrypted video content. The AD9393 allows for authentication  
Fabricated in an advanced CMOS process, the AD9393 is  
provided in a space-saving 76-ball, surface-mount, Pb-free,  
ball grid array (BGA) and is specified over the −10°C to  
+80°C temperature range.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2009 Analog Devices, Inc. All rights reserved.  
 
 
 
AD9393  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
2-Wire Serial Register Map ........................................................... 12  
2-Wire Serial Control Register Details........................................ 22  
Chip Identification..................................................................... 22  
BT656 Generation...................................................................... 24  
Color Space Conversion............................................................ 25  
2-Wire Serial Control Port............................................................ 31  
Data Transfer via Serial Interface............................................. 31  
Serial Interface Read/Write Examples..................................... 32  
PCB Layout Recommendations.................................................... 33  
Power Supply Bypassing............................................................ 33  
Outputs (Both Data and Clocks).............................................. 33  
Digital Inputs .............................................................................. 33  
Color Space Converter (CSC) Common Settings...................... 34  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 3  
Digital Interface Electrical Characteristics ............................... 4  
Absolute Maximum Ratings............................................................ 5  
Explanation of Test Levels........................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Design Guide..................................................................................... 8  
General Description..................................................................... 8  
Digital Inputs ................................................................................ 8  
Serial Control Port ....................................................................... 8  
Output Signal Handling............................................................... 8  
Power Management...................................................................... 8  
Timing............................................................................................ 9  
HDMI Receiver............................................................................. 9  
DE Generator................................................................................ 9  
4:4:4 to 4:2:2 Filter ........................................................................ 9  
Audio PLL Setup......................................................................... 10  
Audio Board Level Muting........................................................ 11  
Output Data Formats................................................................. 11  
HDTV YCrCb (0 to 255) to RGB (0 to 255) (Default Setting  
for AD9393) ................................................................................ 34  
HDTV YCrCb (16 to 235) to RGB (0 to 255)......................... 34  
SDTV YCrCb (0 to 255) to RGB (0 to 255)............................ 34  
SDTV YCrCb (16 to 235) to RGB (0 to 255).......................... 35  
RGB (0 to 255) to HDTV YCrCb (0 to 255)........................... 35  
RGB (0 to 255) to HDTV YCrCb (16 to 235)......................... 35  
RGB (0 to 255) to SDTV YCrCb (0 to 255)............................ 36  
RGB (0 to 255) to SDTV YCrCb (16 to 235).......................... 36  
Outline Dimensions....................................................................... 37  
Ordering Guide .......................................................................... 37  
REVISION HISTORY  
10/09—Revision 0: Initial Version  
Rev. 0 | Page 2 of 40  
 
AD9393  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
VDD, VD = 3.3 V, DVDD = PVDD = 1.8 V, unless otherwise noted.  
Table 1.  
Parameter  
Temp  
Test Level  
Min  
Typ  
Max  
Unit  
DIGITAL INPUTS (5 V Tolerant)  
Input Voltage, High (VIH)  
Input Voltage, Low (VIL)  
Input Current, High (IIH)  
Input Current, Low (IIL)  
Input Capacitance  
Full  
Full  
Full  
Full  
25°C  
VI  
VI  
V
V
V
2.6  
V
V
μA  
μA  
pF  
0.8  
−82  
82  
3
DIGITAL OUTPUTS  
Output Voltage, High (VOH)  
Output Voltage, Low (VOL)  
Duty Cycle, DCLK  
Full  
Full  
Full  
VI  
VI  
V
VDD − 0.1  
45  
V
V
%
0.4  
55  
50  
Output Coding  
Binary  
THERMAL CHARACTERISTICS  
θJA Junction-to-Ambient  
θJC Junction-to-Case  
V
V
59  
15.2  
°C/W  
°C/W  
Rev. 0 | Page 3 of 40  
 
AD9393  
DIGITAL INTERFACE ELECTRICAL CHARACTERISTICS  
VDD = VD =3.3 V, DVDD = PVDD = 1.8 V, unless otherwise noted.  
Table 2.  
Test  
Parameter  
Level Conditions  
Min  
Typ  
Max Unit  
DC DIGITAL I/O Specifications  
High-Level Input Voltage (VIH)  
Low-Level Input Voltage (VIL)  
High-Level Output Voltage (VOH)  
Low-Level Output Voltage (VOL)  
VI  
VI  
VI  
VI  
2.5  
V
0.8  
0.1  
V
V
V
VDD − 0.1  
VDD − 0.1  
DC SPECIFICATIONS  
Output High Level  
IOHD (VOUT = VOH)  
Output Low Level  
IOLD (VOUT = VOL)  
DCLK High Level  
VOHC (VOUT = VOH)  
DCLK Low Level  
VOLC (VOUT = VOL)  
IV  
IV  
IV  
IV  
IV  
IV  
IV  
IV  
IV  
Output drive = high strength  
Output drive = low strength  
Output drive = high strength  
Output drive = low strength  
Output drive = high strength  
Output drive = low strength  
Output drive = high strength  
Output drive = low  
36  
24  
12  
8
40  
20  
30  
15  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mV  
Differential Input Voltage, Single-Ended Amplitude  
75  
700  
POWER SUPPLY  
VD  
VDD  
DVDD  
PVDD  
IV  
IV  
IV  
IV  
3.15  
1.7  
1.7  
3.3  
3.3  
1.8  
1.8  
485  
3.47  
347  
1.9  
V
V
V
V
1.7  
1.9  
Power—54 MHz, YCrCb 422, CSC Disabled  
mW  
Supply Current (Worst Pattern)1  
IVD  
IVDD  
IDVDD  
IPVDD  
V
V
V
V
95  
18  
51  
26  
593  
mA  
mA  
mA  
mA  
mW  
2
Power—74.25 MHz, RGB, CSC Disabled  
Supply Current (Worst Pattern)1  
IVD  
IVDD  
IDVDD  
V
V
V
V
VI  
109  
38  
66  
26  
130  
mA  
mA  
mA  
mA  
mW  
IPVDD  
Power-Down Power  
AC SPECIFICATIONS  
Intrapair (+ to −) Differential Input Skew (tDPS  
Channel-to-Channel Differential Input Skew (tCCS  
Low-to-High Transition Time for Data and Controls (DLHT  
)
IV  
IV  
IV  
IV  
IV  
IV  
IV  
IV  
IV  
IV  
IV  
IV  
VI  
0.4  
0.6  
tBIT  
tPIXEL  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ns  
%
MHz  
)
)
Output drive = high; CL = 10 pF  
Output drive = low; CL = 5 pF  
Output drive = high; CL = 10 pF  
Output drive = low; CL = 5 pF  
Output drive = high; CL = 10 pF  
Output drive = low; CL = 5 pF  
Output drive = high; CL = 10 pF  
Output drive = low; CL = 5 pF  
1000  
1000  
1000  
1000  
Low-to-High Transition Time for DCLK (DLHT  
High-to-Low Transition Time for Data and Controls (DHLT  
High-to-Low Transition Time for DCLK (DHLT  
)
)
)
Clock-to-Data Skew3 (tSKEW  
Duty Cycle, DCLK3  
)
−0.5  
45  
20  
+2.0  
80  
50  
DCLK Frequency (fCIP)  
1 Worst-case pattern is alternating black and white pixels.  
2 DCLK load = 10 pF, data load = 5 pF.  
3 Drive strength = high.  
Rev. 0 | Page 4 of 40  
 
 
AD9393  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
EXPLANATION OF TEST LEVELS  
I
100% production tested.  
Parameter  
Rating  
VD  
VDD  
DVDD  
3.6 V  
3.6 V  
1.98 V  
II  
100% production tested at 25°C and sample tested at  
specified temperatures.  
III  
IV  
Sample tested only.  
PVDD  
Digital Inputs  
1.98 V  
5 V to 0.0 V  
20 mA  
−25°C to +85°C  
−65°C to +150°C  
150°C  
Parameter is guaranteed by design and characterization  
testing.  
Digital Output Current  
Operating Temperature Range  
Storage Temperature Range  
Maximum Junction Temperature  
Maximum Case Temperature  
V
Parameter is a typical value only.  
VI  
100% production tested at 25°C; guaranteed by design  
and characterization testing.  
150°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
ESD CAUTION  
Rev. 0 | Page 5 of 40  
 
 
 
AD9393  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
8
9
10  
D14  
D15  
D16  
D18  
D20  
D22  
DCLK HSOUT  
O/E  
SDA  
A
B
C
D
E
F
D13  
D11  
D9  
D12  
D10  
D8  
D17  
D19  
D21  
D23  
DE  
VSOUT  
PD  
SCL  
GND  
FILT  
GND  
MDA  
MCL  
GND  
Rx2+  
Rx2–  
GND  
GND  
GND  
V
V
GND  
GND  
DD  
DD  
D7  
D6  
GND  
GND  
V
D
AD9393  
TOP VIEW  
(Not to Scale)  
D5  
D4  
V
D
PV  
DD  
D3  
D2  
SCLK  
DV  
DV  
DD  
LRCLK  
PV  
DD  
G
H
J
DD  
DDC_  
SCL  
D1  
D0  
DDC_  
SDA  
GND  
RxC–  
MCLK  
RxC+  
I2S3  
GND  
I2S2  
I2S1  
I2S0  
GND  
SPDIF RTERM  
Rx0–  
Rx0+  
Rx1–  
Rx1+  
GND  
K
Figure 2. Pin Configuration  
Table 4. Complete Pin List  
Pin No.  
Inputs  
B9  
Mnemonic  
Description  
Value  
PD  
Power-Down Control. Power-Down Control/Three-State Control. The function  
of this pin is programmable via Register 0x26[2:1].  
3.3 V CMOS  
Digital Video Data Inputs  
K5, K4, K8, K7, J10, K10  
Rx0+, Rx0−,  
Rx1+, Rx1−,  
Rx2+, Rx2−  
Digital Input Channel x True/Complement. These six pins receive three pairs of TMDS  
transition minimized differential signaling (TMDS ) pixel data (at 10× the pixel  
rate) from a digital graphics transmitter.  
Digital Video Clock Inputs  
K2, K1  
RxC+, RxC−  
D[23:0]  
Digital Data Clock True/Complement. This clock pair receives a TMDS clock at  
1× pixel data rate.  
TMDS  
VDD  
Outputs  
B6, A6, B5, A5, B4,  
A4, B3, A3, A2, A1,  
B1, B2, C1, C2, D1,  
D2, E1, E2, F1, F2,  
G1, G2, H1, H2  
Data Outputs. In RGB,  
D[23:16] = Red[7:0]  
D[15:8] = Green[7:0]  
D[7:0] = Blue[7:0]  
See Table 6  
A7  
DCLK  
Data Output Clock. This is the main clock output signal used to strobe the  
output data and HSOUT into external logic. Four possible output clocks can  
be selected with Register 0x25[7:6]. These are related to the pixel clock (½×  
pixel clock, 1× pixel clock, 2× frequency pixel clock, and a 90° phase shifted  
pixel clock). They are produced by the internal PLL clock generator and are  
synchronous with the pixel clock. The polarity of DCLK can also be inverted via  
Register 0x24[0].  
VDD  
A8  
HSOUT  
HSYNC Output Clock (Phase-Aligned with DCLK). Horizontal sync output. A  
reconstructed and phase-aligned version of the HSYNC input. Both the  
polarity and duration of this output can be programmed via serial bus  
registers. By maintaining alignment with DCLK and data, data timing with  
respect to horizontal sync can always be determined.  
VDD  
Rev. 0 | Page 6 of 40  
 
AD9393  
Pin No.  
Mnemonic  
Description  
Value  
B8  
VSOUT  
VSYNC Output Clock (Phase-Aligned with DCLK). Vertical Sync Output. The  
separated VSYNC from a composite signal or a direct passthrough of the  
VSYNC signal. The polarity of this output can be controlled via the serial bus  
bit (Register 0x24[6]).  
VDD  
A9  
O/E  
FILT  
Odd/Even Field Output for Interlaced Video. This output identifies whether the VDD  
current field (in an interlaced signal) is odd or even. The polarity of this signal  
is programmable via Register 0x24[4].  
References  
D10  
Connection for External Filter Components for Audio PLL. For proper operation,  
the audio clock generator PLL requires an external filter. Connect the filter  
shown in Figure 6 to this pin. For optimal performance, minimize noise and  
parasitics on this node. For more information, see the PCB Layout  
Recommendations section.  
PVDD  
Power Supply1  
E7, F7  
VD  
HDMI Terminator Power Supply (3.3 V). These pins supply power to the HDMI  
terminators. They should be as quiet and filtered as possible.  
3.3 V  
VDD  
D4, D5  
Digital Output Power Supply (1.8 V to 3.3 V). A large number of output pins (up  
to 27) switching at high speed (up to 80 MHz) generates many power supply  
transients (noise). These supply pins are identified separately from the VD pins,  
so output noise transferred into the sensitive circuitry can be minimized. If the  
AD9393 is interfacing with lower voltage logic, VDD can be connected to a  
lower supply voltage (as low as 1.8 V) for compatibility.  
1.8 V to 3.3  
V
F9, G9  
G6, G7  
PVDD  
PLL Power Supply (1.8 V). The most sensitive portion of the AD9393 is the  
clock generation circuitry. These pins provide power to the clock PLL and help  
the user design for optimal performance. The user should provide quiet,  
noise-free power to these pins.  
Digital Logic Power Supply (1.8 V). These pins supply power to the digital  
logic.  
1.8 V  
1.8 V  
DVDD  
GND  
C9, C10, D6, D7, D9, E4,  
E9, E10,  
F4, H10, J1, K3, K6, K9  
Ground. The ground return for all circuitry on chip. It is recommended that the 0 V  
AD9393 be assembled on a single solid ground plane, with careful attention  
to ground current paths.  
Control  
A10  
SDA  
SCL  
Serial Port Data I/O for Programming the AD9393 Registers. The I2C address is  
Address 0x98.  
Serial Port Data Clock for Programming the AD9393 Registers.  
3.3 V CMOS  
B10  
HDCP  
H9  
3.3 V CMOS  
DDC_SCL  
DDC_SDA  
HDCP Slave Serial Port Data Clock for HDCP Communications to Transmitter.  
3.3 V CMOS  
3.3 V CMOS  
J9  
HDCP Slave Serial Port Data I/O for HDCP Communications to Transmitter. The  
I2C address is Address 0x74 or Address 0x76.  
F10  
G10  
MDA  
MCL  
Master Serial Port I/O to EEPROM with HDCP Keys—I2C Address is 0xA0.  
Master Serial Port Data Clock to EEPROM with HDCP Keys.  
3.3 V CMOS  
3.3 V CMOS  
Audio Data Outputs  
J7  
J6  
J5  
J4  
J3  
J2  
G4  
G5  
S/PDIF  
I2S0  
I2S1  
I2S2  
I2S3  
MCLK  
SCLK  
LRCLK  
S/PDIF Digital Audio Output.  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
I2S Audio (Channel 1, Channel 2). Channel 0 and Channel 1 Audio Output.  
I2S Audio (Channel 3, Channel 4). Channel 2 and Channel 3 Audio Output.  
I2S Audio (Channel 5, Channel 6). Channel 4 and Channel 5 Audio Output.  
I2S Audio (Channel 7, Channel 8). Channel 6 and Channel 7 Audio Output.  
Audio Master Clock Output for S/PDIF Data.  
Audio Serial Clock Output for I2S Data.  
Data Output Clock for Left and Right Audio Channels.  
Data Enable  
B7  
DE  
Data Enable for Active Data Pixels.  
3.3 V CMOS  
500 Ω  
RTERM  
J8  
RTERM  
Sets Internal Termination Resistance. Place a 500 Ω (1% tolerance) resistor from  
this pin to ground. This sets the internal termination of TMDS lines to 50 Ω.  
1 The supplies should be sequenced such that VD and VDD are never less than 300 mV below DVDD. At no time should DVDD be more than 300 mV greater than VD or VDD  
.
Rev. 0 | Page 7 of 40  
AD9393  
DESIGN GUIDE  
GENERAL DESCRIPTION  
SERIAL CONTROL PORT  
The AD9393 is a fully integrated solution for receiving DVI/  
HDMI signals and is capable of decoding HDCP-encrypted  
signals through connections to an external EEPROM. The  
circuit is ideal for providing an interface for HDTV monitors  
or as the front end to high performance video scan converters.  
The serial control port is designed for 3.3 V logic. However, it is  
tolerant of 5 V logic signals.  
OUTPUT SIGNAL HANDLING  
The digital outputs operate from 1.8 V to 3.3 V (VDD).  
POWER MANAGEMENT  
Implemented in a high performance CMOS process, the  
interface can capture signals with pixel rates of up to 80 MHz.  
To determine the correct power state, the AD9393 uses the  
activity detect circuits, the active interface bits in the serial bus,  
the active interface override bits, the power-down bit, and the  
power-down ball. There are three power modes: full power,  
auto power-down, and power-down.  
The AD9393 includes all necessary circuitry for decoding  
TMDS signaling including those encrypted with HDCP.  
Included in the output formatting is a color space converter  
(CSC), which accommodates any input color space and can  
output any color space. All controls are programmable via a  
2-wire serial interface. Full integration of these sensitive mixed  
signal functions makes system design straight forward and less  
sensitive to the physical and electrical environment.  
Table 5 summarizes how the AD9393 determines which power  
mode to use and which circuitry is powered on/off in each of  
these modes. The power-down command has first priority and  
the automatic circuitry second priority. The power-down ball  
(Ball B8—polarity set by Register 0x26[3]) can drive the chip  
into two power-down options. Bit 2 of Register 0x26 controls  
these two options. Bit 0 controls whether the chip is powered  
down or the outputs are placed in high impedance mode. Bit 7  
to Bit 4 of Register 0x26 control whether the outputs, Sony/  
Philips digital interface (S/PDIF), or Inter-IC Sound bus (I2S or  
IIS) outputs are in high impedance mode or not. See the 2-Wire  
Serial Control Register Detail section for the details.  
DIGITAL INPUTS  
The digital control inputs (I2C) on the AD9393 operate to 3.3 V  
CMOS levels. In addition, all digital inputs except the TMDS  
inputs (HDMI/DVI) are 5 V tolerant. Applying 5 V to them  
does not cause any damage. The TMDS input pairs (Rx0 ,  
Rx1 , Rx2 , and RxC ) must maintain a 100 Ω differential  
impedance (through proper PCB layout) from the connector to  
the input where they are internally terminated (50 Ω to 3.3 V).  
If additional ESD protection is desired, using a low capacitance  
ESD protection varistor offers 8 kV of protection to the HDMI  
TMDS lines.  
Table 5. Power-Down Mode Descriptions  
Inputs  
Auto PD Enable2  
Mode  
Power-Down1  
Power-On/Comments  
Full Power  
Auto Power-Down  
Power-Down  
1
1
0
X
1
X
Everything  
Serial bus, sync activity detect, band gap reference  
Serial bus, sync activity detect, band gap reference  
1 Power-down is controlled via Bit 0 in Register 0x26.  
2 Auto power-down is controlled via Bit 7 in Register 0x27.  
Rev. 0 | Page 8 of 40  
 
 
 
 
 
 
AD9393  
TIMING  
DE GENERATOR  
The output data clock signal is created so that its rising edge  
always occurs between data transitions and can be used to latch  
the output data externally.  
The AD9393 has an on-board generator for DE, for the start  
of active video (SAV), and for the end of active video (EAV), all  
of which are necessary for describing the complete data stream  
for a BT656-compatible output. This signal alerts the following  
circuitry, which are displayable video pixels.  
Figure 3 shows the timing operation of the AD9393.  
tPER  
4:4:4 TO 4:2:2 FILTER  
tDCYCLE  
The AD9393 contains a filter that allows it to convert a  
signal from YCrCb 4:4:4 to YCrCb 4:2:2 while maintaining  
the maximum accuracy and fidelity of the original signal.  
DATACK  
tSKEW  
Input Color Space to Output Color Space  
DATA  
HSOUT  
The AD9393 can accept a wide variety of input formats and  
either retain that format or convert to another. Input formats  
supported are  
Figure 3. Output Timing  
4:4:4 YCrCb 8-bit  
4:2:2 YCrCb 8-, 10-, and 12-bit  
RGB 8-bit  
HDMI RECEIVER  
The HDMI receiver section of the AD9393 allows the reception  
of a digital video stream (which is backward compatible with  
DVI and able to accommodate video of various formats (RGB,  
YCrCb 4:4:4, 4:2:2)). The receiver also allows up to eight channels  
of audio. Infoframes are transmitted carrying information about  
the video format, audio clocks, and many other items necessary  
for a monitor to utilize fully the information stream available.  
Output modes supported are  
4:4:4 YCrCb 8-bit  
4:2:2 YCrCb 8-, 10-, and 12-bit  
Dual 4:2:2 YCrCb 8-bit  
Color Space Conversion (CSC) Matrix  
The earlier digital visual interface (DVI) format was restricted  
to an RGB 24-bit color space only. Embedded in this data stream  
were HSYNCs, VSYNCs, and display enable (DE) signals; but  
no audio information. The HDMI specification allows trans-  
mission of all the DVI capabilities, but adds several YCrCb  
formats that make the inclusion of a programmable color space  
converter (CSC) a very desirable feature. With this feature, the  
scaler following the AD9393 can specify that it always wishes to  
receive a particular format, for instance, 4:2:2 YCrCb, regardless  
of the transmitted mode. If RGB is sent, the CSC can easily  
convert that to 4:2:2 YCrCb while relieving the scaler of this  
task.  
The CSC matrix in the AD9393 consists of three identical  
processing channels. In each channel, three input values are  
multiplied by three separate coefficients. An offset value for  
each row of the matrix and a scaling multiple for all values  
are also included. Each value has a 13-bit, twos complement  
resolution to ensure the signal integrity is maintained. The  
CSC is designed to run at speeds up to 80 MHz supporting  
resolutions up to 720p at 60 Hz. With any-to-any color space  
support, formats such as RGB, YUV, YCrCb, and others are  
supported by the CSC.  
The main inputs, RIN, GIN, and BIN, come from the 8-bit or 12-  
bit inputs from each channel. These inputs are based on the  
input format detailed in Table 30 to Table 52. The mapping of  
these inputs to the CSC inputs is shown in Table 6.  
In addition, the HDMI specification supports the transmission  
of up to eight channels of S/PDIF or I2S audio. The audio infor-  
mation is separated into packets and transmitted during the  
video blanking periods along with specific information about  
the clock frequency. Part of this audio information (audio  
infoframe) tells the user how many channels of audio are being  
transmitted, where the channels should be placed, information  
regarding the source (make, model), and other data.  
Table 6. CSC Port Mapping  
Input Channel  
R/Cr (D[23:16])  
Gr/Y (D[15:8])  
B/Cb (D[7:0])  
CSC Input Channel  
RIN  
GIN  
BIN  
Rev. 0 | Page 9 of 40  
 
 
 
 
 
AD9393  
One of the three input channels is represented in Figure 4.  
In each processing channel, the three inputs are multiplied  
by three separate coefficients marked a1, a2, and a3. These  
coefficients are divided by 4096 to obtain nominal values  
ranging from −0.9998 to +0.9998. The variable labeled a4 is  
used as an offset control. The CSC_MODE setting is the same  
for all three processing channels. This multiplies all coefficients  
audio, but also the sampling frequency (fS). The audio info-  
frame also contains information about the N and CTS values  
used to recreate the clock. With this information, it is possible  
to regenerate the audio sampling frequency. The audio clock is  
regenerated by dividing the 20-bit CTS value into the TMDS  
clock, then multiplying by the 20-bit N value. This yields a  
multiple of the sampling frequency of either 128 × fS or 256 ×  
fS. It is possible for this to be specified up to 1024 × fS.  
and offsets by a factor of 2CSC_MODE  
.
SOURCE DEVICE  
SINK DEVICE  
The functional diagram for a single channel of the CSC (as  
shown in Figure 4) is repeated for the remaining G and B  
channels. The coefficients for these channels are b1, b2, b3,  
b4, c1, c2, c3, and c4.  
CTS*  
CYCLE  
TIME  
DIVIDE  
BY  
128 × fS  
COUNTER  
N
CSC_MODE[1:0]  
128 × fS  
TMDS  
CLOCK  
N*  
a4[12:0]  
a1[12:0]  
VIDEO  
÷ CTS  
× N  
CLOCK  
×4  
×2  
2
1
0
1
4096  
REGISTER  
N
R
G
B
[11:0]  
[11:0]  
[11:0]  
+
+
+
×
×
×
×
N
IN  
IN  
IN  
R
[11:0]  
OUT  
a2[12:0]  
*N AND CTS VALUES ARE TRANSMITTED USING THE  
AUDIO CLOCK REGENERATION PACKET. VIDEO  
CLOCK IS TRANSMITTED ON TMDS CLOCK CHANNEL.  
1
4096  
×
Figure 5. N and CTS for Audio Clock  
a3[12:0]  
To provide the most flexibility in configuring the audio  
sampling clock, an additional PLL is employed. The PLL  
characteristics are determined by the loop filter design (see  
Figure 6), the PLL charge pump current, and the VCO range  
setting.  
1
4096  
×
Figure 4. Single CSC Channel  
A programming example and register settings for several  
common conversions are listed in the Color Space Converter  
PV  
DD  
C
C
Z
80nF  
P
8nF  
(CSC) Common Settings section.  
R
1.5k  
Z
For a detailed functional description and more programming  
examples that are compatible with the AD9393, refer to the  
AN-795 Application Note, AD9880 Color Space Converter  
User's Guide.  
FILT  
Figure 6. PLL Loop Filter Detail  
To fully support all audio modes for all video resolutions up  
to 1080i, it is necessary to adjust certain audio-related registers  
from their power-on default values. Table 7 describes these  
registers and gives the recommended settings.  
AUDIO PLL SETUP  
Data contained in the audio infoframes (among other registers)  
defines for the AD9393 HDMI receiver not only the type of  
Table 7. Audio Register Settings  
Recommended  
Register Bits Setting  
Function  
Comments  
0x01  
0x02  
0x03  
[7:0] 0x00  
[7:4] 0x40  
[7:6] 01  
PLL divisor (MSBs)  
PLL divisor (LSBs)  
VCO range  
The video PLL is used for the audio clock circuit when in HDMI mode. This  
is done automatically.  
[5:3] 010  
Charge pump current  
PLL enable  
[2]  
1
In HDMI mode, this bit enables a lower frequency to be used for audio  
MCLK generation.  
0x34  
0x58  
[5:4] 11  
Audio frequency mode  
override  
Allows the chip to determine the low frequency mode of the audio PLL.  
[7]  
1
MCLK PLL enable  
MCLK PLL divisor  
This enables the analog PLL to be used for audio MCLK generation.  
[6:4] 001  
When the analog PLL is enabled for MCLK generation, another frequency  
divider is provided; these bits set the divisor to 2.  
[3]  
0
N/CTS disable  
The N and CTS values should always be enabled.  
[2:0] 0**  
MCLK sampling  
frequency  
000 = 128 × fS  
001 = 256 × fS  
010 = 384 × fS  
011 = 512 × fS  
Rev. 0 | Page 10 of 40  
 
 
 
 
AD9393  
This information is the fundamental difference between DVI  
AUDIO BOARD LEVEL MUTING  
and HDMI transmissions and is located in the read-only registers  
Register 0x5A to Register 0xEE. In addition to this information,  
registers are provided to indicate that new information has been  
received. Registers with addresses ending in 7 or F beginning  
with Register 0x87 contain the new data flags (NDF)  
information. All of these registers contain the same information  
and all are reset when any of them are read. Although there is  
no external interrupt signal, it is very easy for the user to read  
any of the NDF registers to see if there is new information to be  
processed.  
The audio can be muted through the infoframes or locally  
via the serial bus registers. This can be controlled with  
Register 0x57, Bits[7:6].  
AVI Infoframes  
The HDMI TMDS transmission contains infoframes with  
specific information for the monitor such as:  
Audio information  
Two channels to eight channels of audio identified  
Audio coding  
OUTPUT DATA FORMATS  
Audio sampling frequency  
Speaker placement  
N and CTS values (for reconstruction of the audio)  
Muting  
The AD9393 supports 4:4:4, 4:2:2, double data-rate (DDR), and  
BT656 output formats. Register 0x25[3:0] controls the output  
mode. These modes and the pin mapping are illustrated in  
Table 8.  
Source information  
CD  
SACD  
DVD  
Video information  
Video ID code (per CEA861B)  
Color space  
Aspect ratio  
Horizontal and vertical bar information  
MPEG frame information (I, B, or P frame)  
Vendor (transmitter source) name and product model  
Table 8. Output Formats1  
Bits D[23:0]  
Port  
23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
4:4:4  
Red/Cr [7:0]  
CbCr [7:0]  
Green/Y [7:0]  
Y [7:0]  
Blue/Cb [7:0]  
DDR 4:2:2 CbCr Y, Y  
4:2:2  
4:4:4 DDR  
DDR G [3:0]  
DDR R [7:0]  
DDR B [7:4]  
DDR B [3:0]  
DDR G [7:4]  
DDR 4:2:2 CbCr [11:0]  
DDR 4:2:2 Y, Y [11:0]  
Y [11:0]  
4:2:2 to 12-bit CbCr [11:0]  
1 Arrows indicate clock edge. The rising edge of clock = , the falling edge = .  
Rev. 0 | Page 11 of 40  
 
 
 
AD9393  
2-WIRE SERIAL REGISTER MAP  
The AD9393 is initialized and controlled by a set of registers that determines the operating modes. An external controller is employed to  
write and read the control registers through the 2-wire serial interface port.  
Table 9. Control Register Map  
Default  
Hex Address  
Read/Write  
Bits  
Value  
Register Name  
Description  
0x00  
Read  
[7:0]  
00000000  
Chip revision  
Chip revision ID. Revision is read [7:4] = major revision. [3:0]  
= minor revision.  
0x01  
0x02  
0x03  
Read/write  
Read/write  
Read/write  
[7:0]  
[7:4]  
[7:6]  
[5:3]  
[2]  
01101001  
1101xxxx  
01xxxxxx  
xx001xxx  
xxxxx0xx  
PLL divider MSB  
PLL divider LSB  
VCO range  
PLL feedback divider value MSB.  
PLL feedback divider value LSB.  
VCO range.  
Charge pump  
Charge pump current control for PLL.  
This bit enables a lower frequency to be used for audio  
MCLK generation.  
PLL enable  
0x11  
0x12  
Read/write  
Read/write  
[7:0]  
[7]  
00000000  
1xxxxxxx  
Reserved  
Must be set to 0x00 (default).  
0 = active low.  
Input HSYNC polarity  
1 = active high.  
[6]  
[5]  
[4]  
x0xxxxxx  
xx1xxxxx  
xxx0xxxx  
HSYNC polarity override  
Input VSYNC polarity  
VSYNC polarity override  
0 = auto HSYNC polarity.  
1 = manual HSYNC polarity.  
0 = active low.  
1 = active high.  
0 = auto VSYNC polarity.  
1 = manual VSYNC polarity.  
MSB of HSYNCs per VSYNC.  
HSYNCs per VSYNC count.  
VSYNC duration.  
0x17  
0x18  
0x22  
0x23  
Read  
[3:0]  
[7:0]  
[7:0]  
[7:0]  
xxxx0000  
HSYNCs per VSYNC MSB  
HSYNCs per VSYNC LSB  
VSYNC duration  
Read  
00000000  
Read/write  
Read/write  
4
32  
HSYNC duration  
HSYNC duration. Sets the duration of the output HSYNC in  
pixel clocks.  
0x24  
Read/write  
[7]  
[6]  
[5]  
[4]  
1xxxxxxx  
x1xxxxxx  
xx1xxxxx  
xxx1xxxx  
HSYNC output polarity  
VSYNC output polarity  
DE output polarity  
Output HSYNC polarity.  
0 = active low output.  
1 = active high output.  
Output VSYNC polarity.  
0 = active low output.  
1 = active high output.  
Output DE polarity.  
0 = negative output.  
1 = positive output.  
Field output polarity  
Output field polarity.  
0 = active low output.  
1 = active high output.  
0 = noninverted clock output.  
1 = inverted clock output.  
[0]  
xxxxxxx0  
01xxxxxx  
Output CLK invert  
Output CLK select  
0x25  
Read/write  
[7:6]  
Selects which clock to use on output ball. 1× CLK is divided  
down from TMDS clock input when pixel repetition is in use.  
00 = ½× CLK.  
01 = 1× CLK.  
10 = 2× CLK.  
11 = 90° phase 1× CLK.  
[5:4]  
[3:2]  
xx11xxxx  
xxxx00xx  
Output drive strength  
Output mode  
Sets the drive strength of the outputs. 00 = lowest, 11 =  
highest.  
Selects the data output mapping.  
00 = 4:4:4 mode (normal).  
01 = 4:2:2 + DDR 4:2:2 on D[7:0].  
10 = DDR 4:4:4 + DDR 4:2:2 on D[7:0].  
11 = 12-bit 4:2:2.  
[1]  
[0]  
xxxxxx1x  
xxxxxxx0  
Primary output enable  
Enables primary output.  
Secondary output enable  
Enables secondary output (DDR 4:2:2 in Output Mode 1  
and Output Mode 2).  
Rev. 0 | Page 12 of 40  
 
AD9393  
Default  
Value  
Hex Address  
Read/Write  
Bits  
[7]  
Register Name  
Description  
0x26  
Read/write  
0xxxxxxx  
xx0xxxxx  
xxx0xxxx  
xxxx1xxx  
Output three-state  
S/PDIF three-state  
I2S three-state  
Three-state the outputs.  
Three-state the S/PDIF output.  
Three-state the I2S output and the MCLK output.  
Sets polarity of power-down ball.  
0 = active low.  
[5]  
[4]  
[3]  
Power-down ball polarity  
1 = active high.  
[2:1]  
xxxxx00x  
Power-down ball function  
Selects the function of the power-down ball.  
0x = power-down.  
1x = three-state outputs.  
0 = normal.  
[0]  
[7]  
[6]  
xxxxxxx0  
1xxxxxxx  
x0xxxxxx  
Power-down  
1 = power-down.  
0x27  
Read/write  
Auto power-down enable  
HDCP A0  
0 = disable auto low power state.  
1 = enable auto low power state.  
Sets the LSB of the address of the HDCP I2C. Set to 1 only  
for a second receiver in a dual-link configuration.  
[5]  
[4]  
xx0xxxxx  
xxx0xxxx  
Clock test  
BT656 EN  
Must be written to 0.  
Enables EAV/SAV codes to be inserted into the video  
output data.  
[3]  
xxxx0xxx  
xxxxx000  
011000xx  
Force DE generation  
Interlace offset  
VSYNC delay  
Allows use of the internal DE generator—not the DE  
transmitted over TMDS.  
[2:0]  
[7:2]  
Sets the difference (in HSYNCs) in field length between  
Field 0 and Field 1.  
0x28  
0x29  
Read/write  
Read/write  
Sets the delay (in lines) from the VSYNC leading edge to  
the start of active video.  
[1:0]  
[7:0]  
xxxxxx01  
00000100  
HSYNC delay MSB  
HSYNC delay LSB  
HSYNC delay MSB of Register 0x29.  
Sets the delay (in pixels) from the HSYNC leading edge to  
the start of active video.  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
Read/write  
Read/write  
Read/write  
Read/write  
Read/write  
[3:0]  
[7:0]  
[3:0]  
[7:0]  
[7]  
xxxx0101  
00000000  
xxxx0010  
11010000  
0xxxxxxx  
x00xxxxx  
Line width MSB  
Line width LSB  
Screen height MSB  
Screen height LSB  
CTRL EN  
Line width MSB of Register 0x2B.  
Sets the width of the active video line in pixels.  
Screen height MSB of Register 0x2D.  
Sets the height of the active screen in lines.  
Allows CTRL[3:0] to be output on the I2S data pins.  
00 = I2S mode.  
[6:5]  
I2S output mode  
01 = right-justified.  
10 = left-justified.  
11 = raw IEC60958 mode.  
[4:0]  
[6]  
xxx11000  
x0xxxxxx  
xx0xxxxx  
xxx0xxxx  
I2S bit width  
TMDS sync detect  
TMDS active  
AV mute  
Sets the desired bit width for right-justified mode.  
Detects a TMDS DE.  
0x2F  
0x30  
Read  
Read  
[5]  
Detects a TMDS clock.  
[4]  
Gives the status of AV mute based on general control  
packets.  
[3]  
xxxx0xxx  
xxxxx000  
x0xxxxxx  
HDCP keys read  
Returns 1 when read of EEPROM keys is successful.  
Returns quality number based on DE edges.  
[2:0]  
[6]  
HDMI quality  
HDMI content encrypted  
This bit is high when HDCP decryption is in use (content is  
protected). The signal goes low when HDCP is not being  
used. Use this bit to allow copying of the content. The bit  
should be sampled at regular intervals because it can  
change on a frame-by-frame basis.  
[5]  
xx0xxxxx  
xxx0xxxx  
xxxx0000  
HDMI HSYNC polarity  
HDMI VSYNC polarity  
HDMI pixel repetition  
Returns HDMI HSYNC polarity.  
Returns HDMI VSYNC polarity.  
[4]  
[3:0]  
Returns current HDMI pixel repetition amount. 0 = 1×,  
1 = 2× … The clock and data outputs are automatically  
decimated by this value.  
Rev. 0 | Page 13 of 40  
AD9393  
Default  
Value  
Hex Address  
Read/Write  
Bits  
[5:4]  
[3]  
Register Name  
Audio setup  
Description  
0x34  
Read/write  
xx00xxxx  
xxxx0xxx  
Must be written to 0b11 for proper operation.  
0 = repeat Cr and Cb values.  
Upconversion mode  
1 = interpolate Cr and Cb values.  
Enables the FIR filter for 4:2:2 CrCb output.  
[2]  
[1]  
xxxxx0xx  
xxxxxx0x  
CrCb filter enable  
CSC_ENABLE  
Enables the color space converter (CSC). The default  
settings for the CSC provide HDTV-to-RGB conversion.  
Sets the fixed point position of the CSC coefficients,  
including the A4, B4, and C4 offsets.  
0x35  
0x36  
Read/write  
Read/write  
[6:5]  
x01xxxxx  
CSC_MODE  
00 = 1.0, −4096 to +4095.  
01 = 2.0, −8192 to +8190.  
1x = 4.0, −16,384 to +16,380.  
[4:0]  
[7:0]  
xxx01100  
01010010  
CSC_COEFF_A1 MSB  
CSC_COEFF_A1 LSB  
MSB of Register 0x36.  
Color space converter (CSC) coefficient for equation:  
ROUT = (A1 × RIN) + (A2 × GIN) + (A3 × BIN) + A4  
GOUT = (B1 × RIN) + (B2 × GIN) + (B3 × BIN) + B4  
BOUT = (C1 × RIN) + (C2 × GIN) + (C3 × BIN) + C4  
MSB of Register 0x38.  
0x37  
0x38  
Read/write  
Read/write  
[4:0]  
[7:0]  
xxx01000  
00000000  
CSC_COEFF_A2 MSB  
CSC_COEFF_A2 LSB  
CSC coefficient for equation:  
ROUT = (A1 × RIN) + (A2 × GIN) + (A3 × BIN) + A4  
GOUT = (B1 × RIN) + (B2 × GIN) + (B3 × BIN) + B4  
BOUT = (C1 × RIN) + (C2 × GIN) + (C3 × BIN) + C4  
MSB of Register 0x3A.  
0x39  
0x3A  
Read/write  
Read/write  
[4:0]  
[7:0]  
xxx00000  
00000000  
CSC_COEFF_A3 MSB  
CSC_COEFF_A3 LSB  
CSC coefficient for equation:  
ROUT = (A1 × RIN) + (A2 × GIN) + (A3 × BIN) + A4  
GOUT = (B1 × RIN) + (B2 × GIN) + (B3 × BIN) + B4  
BOUT = (C1 × RIN) + (C2 × GIN) + (C3 × BIN) + C4  
MSB of Register 0x3C.  
0x3B  
0x3C  
Read/write  
Read/write  
[4:0]  
[7:0]  
xxx11001  
11010111  
CSC_COEFF_A4 MSB  
CSC_COEFF_A4 LSB  
CSC coefficient for equation:  
ROUT = (A1 × RIN) + (A2 × GIN) + (A3 × BIN) + A4  
GOUT = (B1 × RIN) + (B2 × GIN) + (B3 × BIN) + B4  
BOUT = (C1 × RIN) + (C2 × GIN) + (C3 × BIN) + C4  
MSB of Register 0x3E.  
0x3D  
0x3E  
Read/write  
Read/write  
[4:0]  
[7:0]  
xxx11100  
01010100  
CSC_COEFF_B1 MSB  
CSC_COEFF_B1 LSB  
CSC coefficient for equation:  
ROUT = (A1 × RIN) + (A2 × GIN) + (A3 × BIN) + A4  
GOUT = (B1 × RIN) + (B2 × GIN) + (B3 × BIN) + B4  
BOUT = (C1 × RIN) + (C2 × GIN) + (C3 × BIN) + C4  
MSB of Register 0x40.  
0x3F  
0x40  
Read/write  
Read/write  
[4:0]  
[7:0]  
***01000  
00000000  
CSC_COEFF_B2 MSB  
CSC_COEFF_B2 LSB  
CSC coefficient for equation:  
ROUT = (A1 × RIN) + (A2 × GIN) + (A3 × BIN) + A4  
GOUT = (B1 × RIN) + (B2 × GIN) + (B3 × BIN) + B4  
BOUT = (C1 × RIN) + (C2 × GIN) + (C3 × BIN) + C4  
MSB of Register 0x42.  
0x41  
0x42  
Read/write  
Read/write  
[4:0]  
[7:0]  
xxx11110  
10001001  
CSC_COEFF_B3 MSB  
CSC_COEFF_B3 LSB  
CSC coefficient for equation:  
ROUT = (A1 × RIN) + (A2 × GIN) + (A3 × BIN) + A4  
GOUT = (B1 × RIN) + (B2 × GIN) + (B3 × BIN) + B4  
BOUT = (C1 × RIN) + (C2 × GIN) + (C3 × BIN) + C4  
MSB of Register 0x44.  
0x43  
0x44  
Read/write  
Read/write  
[4:0]  
[7:0]  
xxx00010  
10010010  
CSC_COEFF_B4 MSB  
CSC_COEFF_B4 LSB  
CSC coefficient for equation:  
ROUT = (A1 × RIN) + (A2 × GIN) + (A3 × BIN) + A4  
GOUT = (B1 × RIN) + (B2 × GIN) + (B3 × BIN) + B4  
BOUT = (C1 × RIN) + (C2 × GIN) + (C3 × BIN) + C4  
MSB of Register 0x46.  
0x45  
0x46  
Read/write  
Read/write  
[4:0]  
[7:0]  
xxx00000  
00000000  
CSC_COEFF_C1 MSB  
CSC_COEFF_C1 LSB  
CSC coefficient for equation:  
ROUT = (A1 × RIN) + (A2 × GIN) + (A3 × BIN) + A4  
GOUT = (B1 × RIN) + (B2 × GIN) + (B3 × BIN) + B4  
BOUT = (C1 × RIN) + (C2 × GIN) + (C3 × BIN) + C4  
Rev. 0 | Page 14 of 40  
AD9393  
Default  
Value  
Hex Address  
0x47  
Read/Write  
Read/write  
Read/write  
Bits  
[4:0]  
[7:0]  
Register Name  
Description  
xxx01000  
00000000  
CSC_COEFF_C2 MSB  
CSC_COEFF_C2 LSB  
MSB of Register 0x48.  
0x48  
CSC coefficient for equation:  
ROUT = (A1 × RIN) + (A2 × GIN) + (A3 × BIN) + A4  
GOUT = (B1 × RIN) + (B2 × GIN) + (B3 × BIN) + B4  
BOUT = (C1 × RIN) + (C2 × GIN) + (C3 × BIN) + C4  
MSB of Register 0x4A.  
0x49  
0x4A  
Read/write  
Read/write  
[4:0]  
[7:0]  
xxx01110  
10000111  
CSC_COEFF_C3 MSB  
CSC_COEFF_C3 LSB  
CSC coefficient for equation:  
ROUT = (A1 × RIN) + (A2 × GIN) + (A3 × BIN) + A4  
GOUT = (B1 × RIN) + (B2 × GIN) + (B3 × BIN) + B4  
BOUT = (C1 × RIN) + (C2 × GIN) + (C3 × BIN) + C4  
MSB of Register 0x4C.  
0x4B  
0x4C  
Read/write  
Read/write  
[4:0]  
[7:0]  
xxx11000  
10111101  
CSC_COEFF_C4 MSB  
CSC_COEFF_C4 LSB  
CSC coefficient for equation:  
ROUT = (A1 × RIN) + (A2 × GIN) + (A3 × BIN) + A4  
GOUT = (B1 × RIN) + (B2 × GIN) + (B3 × BIN) + B4  
BOUT = (C1 × RIN) + (C2 × GIN) + (C3 × BIN) + C4  
Must be written to 0x3B.  
0x4D  
0x4E  
0x4F  
0x50  
0x56  
0x57  
Read/write  
Read/write  
Read/write  
Read/write  
Read/write  
Read/write  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7]  
00110110  
00110110  
00110110  
00100000  
00001111  
0xxxxxxx  
x0xxxxxx  
xxxx0xxx  
xxxxx0xx  
0
TMDS PLL Control1  
TMDS PLL Control2  
TMDS PLL Control3  
Test  
Must be written to 0x6D.  
Must be written to 0x54.  
Must be written to 0x20 for proper operation.  
Test  
Must be written to 0x0F (default) for proper operation.  
A1 overrides the AV mute value with Bit 6.  
Sets AV mute value if override is enabled.  
Disables mute of video during AV mute.  
Disables mute of audio during AV mute.  
MCLK PLL enable—uses analog PLL.  
AV mute override  
AV mute value  
Disable video mute  
Disable audio mute  
MCLK PLL enable  
MCLK PLL_N  
[6]  
[3]  
[2]  
0x58  
0x59  
Read/write  
Read/write  
[7]  
[6:4]  
0
MCLK PLL_N [2:0]—this controls the division of the MCLK  
out of the PLL: 0 = /1, 1 = /2, 2 = /3, 3 = /4 …  
[3]  
0
0
N_CTS_DISABLE  
MCLK FS_N  
Prevents the N/CTS packet on the link from writing to the N  
and CTS registers.  
[2:0]  
Controls the multiple of 128 fS used for MCLK out.  
0 = 128 × fS, 1 = 256 × fS, 2 = 384 × fS, 7 = 1024 × fS.  
[6]  
[5]  
0
0
MDA/MCL PU  
CLK term O/R  
This disables the MDA/MCL pull-ups.  
Clock termination power-down override: 0 = auto,  
1 = manual.  
[4]  
0
0
0
0
0
Manual CLK term  
FIFO reset UF  
Clock termination: 0 = normal, 1 = disconnected.  
This bit resets the audio FIFO if underflow is detected.  
This bit resets the audio FIFO if overflow is detected.  
This bit three-states the MDA/MCL lines.  
[2]  
[1]  
FIFO reset OF  
[0]  
MDA/MCL three-state  
Packet detected  
0x5A  
Read  
[6:0]  
These seven bits are updated if any specific packet has  
been received since last reset or loss of clock detect.  
Normal is 0x00.  
Bit Data Packet Detected  
0
1
2
3
4
5
6
AVI infoframe.  
Audio infoframe.  
SPD infoframe.  
MPEG source infoframe.  
ACP packets.  
ISRC1 packets.  
ISRC2 packets.  
0x5B  
Read  
[3]  
0
HDMI mode  
0 = DVI, 1 = HDMI.  
Rev. 0 | Page 15 of 40  
AD9393  
Default  
Value  
Hex Address  
Read/Write  
Bits  
[7:6]  
[5:3]  
Register Name  
Channel status  
PCM audio data  
Description  
0x5E  
Read  
0
0
Mode = 00. All others are reserved.  
When Bit 1 = 0 (linear PCM):  
000 = two audio channels without pre-emphasis.  
001 = two audio channels with 50 μs/15 μs pre-emphasis.  
010 = reserved.  
011 = reserved.  
[2]  
[1]  
[0]  
0
0
0
Copyright information  
0 = software for which copyright is asserted.  
1 = software for which no copyright is asserted.  
Linear PCM identification  
0 = audio sample word represents linear PCM samples.  
1 = audio sample word used for other purposes.  
Use of channel  
status block  
0 = consumer use of channel status block.  
Per HDMI  
Audio Channel Status  
0x5F  
Read  
[7:0]  
0
Channel status  
category code  
0x60  
Read  
Read  
[7:4]  
[3:0]  
[5:4]  
0
0
0
Channel number  
Source number  
Clock accuracy  
Per HDMI  
Per HDMI  
0x61  
Clock accuracy.  
00 = Level II.  
01 = Level III.  
10 = Level I.  
11 = reserved.  
0011 = 32 kHz.  
0000 = 44.1 kHz.  
1000 = 88.2 kHz.  
1100 = 176.4 kHz.  
0010 = 48 kHz.  
1010 = 96 kHz.  
1110 = 192 kHz.  
Word length.  
[3:0]  
[3:0]  
0
0
Sampling frequency  
0x62  
Read  
Word length  
0000 = not specified.  
0100 = 16 bits.  
0011 = 17 bits.  
0010 = 18 bits.  
0001 = 19 bits.  
0101 = 20 bits.  
1000 = not specified.  
1100 = 20 bits.  
1011 = 21 bits.  
1010 = 22 bits.  
1001 = 23 bits.  
1101 = 24 bits.  
0x7B  
Read  
[7:0]  
0
CTS[19:12]  
Cycle time stamp. This 20-bit value is used with the N value  
to regenerate an audio clock. For the remaining bits, see  
Register 0x7C and Register 0x7D.  
0x7C  
0x7D  
Read  
Read  
Read  
[7:0]  
[7:4]  
[3:0]  
0
0
0
CTS[11:4]  
CTS[3:0]  
N[19:16]  
See Register 0x7B  
See Register 0x7B  
20-bit N used with CTS to regenerate the audio clock. For  
remaining bits, see Register 0x7E and Register 0x7F.  
0x7E  
Read  
Read  
[7:0]  
[7:0]  
0
0
N[15:8]  
N[7:0]  
See Register 0x7D  
See Register 0x7D  
0x7F  
AVI Infoframe  
0x80  
Read  
[7:0]  
0
AVI infoframe version  
Rev. 0 | Page 16 of 40  
AD9393  
Default  
Value  
Hex Address  
Read/Write  
Bits  
Register Name  
Description  
0x81  
Read  
[6:5]  
0
Y[1:0]  
Y[1:0] indicates RGB, 4:2:2, or 4:4:4.  
00 = RGB.  
01 = YCrCb 4:2:2.  
10 = YCrCb 4:4:4.  
[4]  
0
0
Active format information  
status  
Active format information present.  
0 = no data.  
1 = active format information valid.  
B[1:0].  
[3:2]  
Bar information  
00 = no bar information.  
01 = horizontal bar information valid.  
10 = vertical bar information valid.  
11 = horizontal and vertical bar information valid.  
[1:0]  
[7:6]  
[5:4]  
[3:0]  
0
0
0
0
Scan information  
Colorimetry  
S[1:0].  
00 = no information.  
01 = overscanned (television).  
10 = underscanned (computer).  
C[1:0].  
0x82  
Read  
00 = no data.  
01 = SMPTE 170M, ITU601.  
10 = ITU709.  
Picture aspect ratio  
Active format aspect ratio  
M[1:0].  
00 = no data.  
01 = 4:3.  
10 = 16:9.  
R[3:0].  
1000 = same as picture aspect ratio.  
1001 = 4:3 (center).  
1010 = 16:9 (center).  
1011 = 14:9 (center).  
SC[1:0].  
0x83  
Read  
[1:0]  
0
Nonuniform picture scaling  
00 = no known nonuniform scaling.  
01 = picture has been scaled horizontally.  
10 = picture has been scaled vertically.  
11 = picture has been scaled horizontally and vertically.  
0x84  
0x85  
Read  
Read  
[6:0]  
[3:0]  
0
0
Video identification code  
Pixel repeat  
VIC[6:0] video identification code—refer to CEA EDID short  
video descriptors.  
PR[3:0] specifies how many times a pixel has been  
repeated.  
0000 = no repetition (pixel sent once).  
0001 = pixel sent twice (repeated once).  
0010 = pixel sent three times.  
1001 = pixel sent 10 times.  
0xA to 0xF reserved.  
0x86  
0x87  
Read  
Read  
[7:0]  
[6:0]  
0
0
Active line start LSB  
New data flags  
This represents the line number of the end of the top  
horizontal bar. If 0, there is no horizontal bar. Combines  
with Register 0x88 for a 16-bit value.  
New data flags. These eight bits are updated if any specific  
data changes. Normal (no NDFs) is 0x00. When any NDF  
register is read, all bits reset to 0x00. All NDF registers  
contain the same data.  
Bit Data Packet Changed  
0
1
2
3
4
5
6
AVI infoframe.  
Audio infoframe.  
SPD infoframe.  
MPEG source infoframe.  
ACP packets.  
ISRC1 packets.  
ISRC2 packets.  
Rev. 0 | Page 17 of 40  
AD9393  
Default  
Value  
Hex Address  
0x88  
Read/Write  
Read  
Bits  
[7:0]  
[7:0]  
Register Name  
Description  
0
0
Active line start MSB  
Active line end LSB  
Active line start MSB (see Register 0x86).  
0x89  
Read  
This represents the line number of the beginning of a lower  
horizontal bar. If greater than the number of active video  
lines, there is no lower horizontal bar. Combines with  
Register 0x8A for a 16-bit value.  
0x8A  
0x8B  
Read  
Read  
[7:0]  
[7:0]  
0
0
Active line end MSB  
Active pixel start LSB  
Active line end MSB. See Register 0x89.  
This represents the last pixel in a vertical pillar bar at the  
left side of the picture. If 0, there is no left bar. Combines  
with Register 0x8C for a 16-bit value.  
0x8C  
0x8D  
Read  
Read  
[7:0]  
[7:0]  
0
0
Active pixel start MSB  
Active pixel end LSB  
Active pixel start MSB. See Register 0x8B.  
This represents the first horizontal pixel in a vertical pillar-bar  
at the right side of the picture. If greater than the maximum  
number of horizontal pixels, there is no vertical bar. Com-  
bines with Register 0x8E for a16-bit value.  
0x8E  
0x8F  
0x90  
0x91  
Read  
Read  
Read  
Read  
[7:0]  
[6:0]  
[7:0]  
[7:4]  
0
0
0
0
Active pixel end MSB  
New data flags  
Active pixel end MSB. See Register 0x8D.  
New data flags (see Register 0x87).  
Per HDMI  
Audio infoframe version  
Audio coding type  
CT[3:0]. Audio coding type.  
0x00 = refer to stream header.  
0x01 = IEC60958 PCM.  
0x02 = AC3.  
0x03 = MPEG1 (Layer 1 and Layer 2).  
0x04 = MP3 (MPEG1 Layer 3).  
0x05 = MPEG2 (multichannel).  
0x06 = AAC.  
0x07 = DTS.  
0x08 = ATRAC.  
[2:0]  
[4:2]  
0
0
Audio coding count  
Sampling frequency  
CC[2:0]. Audio channel count.  
000 = refer to stream header.  
001 = two channels.  
010 = three channels.  
111 = eight channels.  
SF[2:0]. Sampling frequency.  
000 = refer to stream header.  
001 = 32 kHz.  
0x92  
Read  
010 = 44.1 kHz (CD).  
011 = 48 kHz.  
100 = 88.2 kHz.  
101 = 96 kHz.  
110 = 176.4 kHz.  
111 = 192 kHz.  
[1:0]  
[7:0]  
0
0
Sample size  
SS [1:0]. Sample size.  
00 = refer to stream header.  
01 = 16 bits.  
10 = 20 bits.  
11 = 24 bits.  
0x93  
Read  
Maximum bit rate  
Maximum bit rate (compressed audio only). The value of  
this field multiplied by 8 kHz represents the maximum bit  
rate.  
0x94  
0x95  
Read  
Read  
[7:0]  
[7]  
0
0
Speaker mapping  
Down-mix  
CA[7:0]. Speaker mapping or placement for up to eight  
channels. See Table 24.  
DM_INH: down-mix inhibit.  
0 = permitted or no information.  
1 = prohibited.  
[6:3]  
0
Level shift  
LSV[3:0]: level shift values with attenuation information.  
0000 = 0 dB attenuation.  
0001 = 1 dB attenuation.  
. . .  
1111 = 15 dB attenuation.  
Rev. 0 | Page 18 of 40  
AD9393  
Default  
Value  
Hex Address  
0x96  
Read/Write  
Read  
Bits  
[7:0]  
[6:0]  
Register Name  
Description  
0
0
Reserved.  
0x97  
Read  
New data flags  
New data flags (see Register 0x87).  
Source Product Description (SPD) Infoframe  
0x98  
Read  
[7:0]  
0
0
Source product description  
(SPD) infoframe version  
Per HDMI  
0x99  
Read  
[7:0]  
Vender Name Character 1  
Vender name character 1 (VN1) 7-bit ASCII code. The first of  
eight characters naming the product company.  
0x9A  
0x9B  
0x9C  
0x9D  
0x9E  
0x9F  
0xA0  
0xA1  
0xA2  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[6:0]  
[7:0]  
[7:0]  
[7:0]  
0
0
0
0
0
0
0
0
0
VN2  
VN2.  
VN3  
VN3.  
VN4  
VN4.  
VN5  
VN5.  
VN6  
VN6.  
New data flags  
VN7  
New data flags (see Register 0x87).  
VN7.  
VN8.  
VN8  
Product Description  
Character 1  
Product Description Character 1 (PD1) 7-bit ASCII code. The  
first of 16 characters that contains the model number and a  
short description.  
0xA3  
0xA4  
0xA5  
0xA6  
0xA7  
0xA8  
0xA9  
0xAA  
0xAB  
0xAC  
0xAD  
0xAE  
0xAF  
0xB0  
0xB1  
0xB2  
0xB3  
0xB4  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[6:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[6:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PD2  
PD2.  
PD3  
PD3.  
PD4  
PD4.  
PD5  
PD5.  
New data flags  
PD6  
New data flags (see Register 0x87).  
PD6.  
PD7  
PD7.  
PD8  
PD8.  
PD9  
PD9.  
PD10  
PD10.  
PD11  
PD11.  
PD12  
PD12.  
New data flags  
PD13  
New data flags (see Register 0x87).  
PD13.  
PD14  
PD14.  
PD15  
PD15.  
PD16  
PD16.  
Source device  
Information code  
This is a code that classifies the source device.  
0x00 = unknown.  
0x01 = digital STB.  
0x02 = DVD.  
0x03 = D-VHS.  
0x04 = HDD video.  
0x05 = DVC.  
0x06 = DSC.  
0x07 = video CD.  
0x08 = game.  
0x09 = PC general.  
New data flags (see Register 0x87).  
0xB7  
Read  
[6:0]  
0
New data flags  
MPEG Source Infoframe  
0xB8  
Read  
[7:0]  
[7:0]  
0
0
MPEG source infoframe  
version  
0xB9  
Read  
MB[0]  
MB[0] (lower byte of MPEG bit rate in hertz). This is the  
lower eight bits of 32 bits (4 bytes) that specify the MPEG  
bit rate in hertz.  
0xBA  
0xBB  
0xBC  
Read  
Read  
Read  
[7:0]  
[7:0]  
[7:0]  
0
0
0
MB[1]  
MB[2]  
MB[3]  
MB[1].  
MB[2].  
MB[3] (upper byte).  
Rev. 0 | Page 19 of 40  
AD9393  
Default  
Value  
Hex Address  
Read/Write  
Bits  
Register Name  
Description  
0xBD  
Read  
[4]  
0
Field repeat  
FR—new field or repeated field.  
0 = new field or picture.  
1 = repeated field.  
[1:0]  
0
MPEG frame  
MF[1:0]. This identifies whether frame is an I, B, or P picture.  
00 = unknown.  
01 = I picture.  
10 = B picture.  
11 = P picture.  
0xBE  
0xBF  
0xC0  
Read  
Read  
Read  
[7:0]  
[6:0]  
[7:0]  
0
0
0
Reserved.  
New data flags  
New data flags (see Register 0x87).  
Audio content protection  
packet (ACP) type  
Audio content protection packet (ACP) type.  
0x00 = generic audio.  
0x01 = IEC60958-identified audio.  
0x02 = DVD audio.  
0x03 = reserved for super audio CD (SACD).  
0x04 to 0xFF = reserved.  
ACP Packet Byte 0 (ACP_PB0).  
ACP_PB1.  
0xC1  
0xC2  
0xC3  
0xC4  
0xC5  
0xC6  
0xC7  
0xC8  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[6:0]  
[7]  
0
0
0
0
0
0
0
0
ACP Packet Byte 0  
ACP_PB1  
ACP_PB2  
ACP_PB2.  
ACP_PB3  
ACP_PB3.  
ACP_PB4  
ACP_PB4.  
ACP_PB5  
ACP_PB5.  
New data flags  
ISRC1 continued  
New data flags (see Register 0x87).  
International standard recording code (ISRC1) continued.  
This indicates an ISRC2 packet is being transmitted.  
[6]  
0
0
ISRC1 valid  
0 = ISRC1 status bits and PBs not valid.  
1 = ISRC1 status bits and PBs valid.  
[2:0]  
ISRC1 status  
001 = starting position.  
010 = intermediate position.  
100 = final position.  
0xC9  
0xCA  
0xCB  
0xCC  
0xCD  
0xCE  
0xCF  
0xD0  
0xD1  
0xD2  
0xD3  
0xD4  
0xD5  
0xD6  
0xD7  
0xD8  
0xD9  
0xDA  
0xDB  
0xDC  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[6:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[6:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
ISRC1 Packet Byte 0  
ISRC1_PB1  
ISRC1 Packet Byte 0 (ISRC1_PB0).  
ISRC1_PB1.  
ISRC1_PB2  
ISRC1_PB2.  
ISRC1_PB3  
ISRC1_PB3.  
ISRC1_PB4  
ISRC1_PB4.  
ISRC1_PB5  
ISRC1_PB5.  
New data flags  
ISRC1_PB6  
New data flags (see Register 0x87).  
ISRC1_PB6.  
ISRC1_PB7  
ISRC1_PB7.  
ISRC1_PB8  
ISRC1_PB8.  
ISRC1_PB9  
ISRC1_PB9.  
ISRC1_PB10  
ISRC1_PB11  
ISRC1_PB12  
New data flags  
ISRC1_PB13  
ISRC1_PB14  
ISRC1_PB15  
ISRC1_PB16  
ISRC2 Packet Byte 0  
ISRC1_PB10.  
ISRC1_PB11.  
ISRC1_PB12.  
New data flags (see Register 0x87).  
ISRC1_PB13.  
ISRC1_PB14.  
ISRC1_PB15.  
ISRC1_PB16.  
ISRC2 Packet Byte 0 (ISRC2_PB0). This is transmitted only  
when the ISRC bit continues (Register 0xC8, Bit[7]) is set to 1.  
0xDD  
0xDE  
0xDF  
0xE0  
0xE1  
0xE2  
Read  
Read  
Read  
Read  
Read  
Read  
[7:0]  
[7:0]  
[6:0]  
[7:0]  
[7:0]  
[7:0]  
0
0
0
0
0
0
ISRC2_PB1  
ISRC2_PB2  
New data flags  
ISRC2_PB3  
ISRC2_PB4  
ISRC2_PB5  
ISRC2_PB1.  
ISRC2_PB2.  
New data flags (see Register 0x87).  
ISRC2_PB3.  
ISRC2_PB4.  
ISRC2_PB5.  
Rev. 0 | Page 20 of 40  
AD9393  
Default  
Value  
Hex Address  
0xE3  
Read/Write  
Read  
Read  
Read  
Read  
Read  
Bits  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[6:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
Register Name  
ISRC2_PB6  
Description  
0
0
0
0
0
0
0
0
0
0
0
0
ISRC2_PB6.  
0xE4  
ISRC2_PB7  
ISRC2_PB7.  
0xE5  
ISRC2_PB8  
ISRC2_PB8.  
0xE6  
ISRC2_PB9  
ISRC2_PB9.  
0xE7  
New data flags  
ISRC2_PB10  
ISRC2_PB11  
ISRC2_PB12  
ISRC2_PB13  
ISRC2_PB14  
ISRC2_PB15  
ISRC2_PB16  
New data flags (see Register 0x87).  
ISRC2_PB10.  
0xE8  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
0xE9  
ISRC2_PB11.  
0xEA  
0xEB  
ISRC2_PB12.  
ISRC2_PB13.  
0xEC  
ISRC2_PB14.  
0xED  
0xEE  
ISRC2_PB15.  
ISRC2_PB16.  
Rev. 0 | Page 21 of 40  
AD9393  
2-WIRE SERIAL CONTROL REGISTER DETAILS  
This section describes certain register details. Note that not all  
registers are discussed in this section.  
0x25—Bits[7:6], Output CLK Select  
These bits select the clock output on the DCLK ball. They  
include ½× clock, a 2× clock, a 90° phase shifted clock, or  
the normal pixel clock. The power-up default setting is 01.  
See Table 10.  
CHIP IDENTIFICATION  
0x00—Bits[7:0], Chip Revision  
An 8-bit value that reflects the current chip revision.  
Table 10. Output Clock Select  
0x17—Bits[3:0], HSYNCs per VSYNC MSB  
Select  
Result  
These bits are four MSBs of the 12-bit counter that reports the  
number of HSYNCs per VSYNC on the active input. This is  
useful in determining the mode and aid in setting the PLL  
divide ratio.  
00  
01  
10  
11  
½× pixel clock  
1× pixel clock  
2× pixel clock  
90° phase 1× pixel clock  
0x18—Bit[7:0], HSYNCs per VSYNC LSB  
These bits are eight LSBs of the 12-bit counter that reports the  
number of HSYNCs per VSYNCs on the active input.  
0x25—Bits[5:4], Output Drive Strength  
These two bits select the drive strength for all the high speed  
digital outputs (except the VSOUT, HSOUT, and O/E). Higher  
drive strength results in faster rise/fall times and in general  
makes it easier to capture data. Lower drive strength results in  
slower rise/fall times and helps to reduce EMI and digitally  
generated power supply noise. The power-up default setting is  
11. See Table 11.  
0x23—Bits[7:0], HSYNC Duration  
These bits are an 8-bit register that sets the duration of the  
HSYNC output pulse. The leading edge of the HSYNC output  
is triggered by the internally generated, phase-adjusted PLL  
feedback clock. The AD9393 then counts a number of pixel  
clocks equal to the value in this register. This triggers the  
trailing edge of the HSYNC output, which is also phase-  
adjusted. The power-up default is 32.  
Table 11. Output Drive Strength  
Output Drive  
Result  
0x24—Bit[7], HSYNC Output Polarity  
00  
01  
10  
11  
Low output drive strength  
Medium low output drive strength  
Medium high output drive strength  
High output drive strength  
This bit sets the polarity of the HSYNC output. Setting this bit  
to 0 sets the HSYNC output to active low. Setting this bit to 1  
sets the HSYNC output to active high. The power-up default  
setting is 1.  
0x25—Bits[3:2], Output Mode  
0x24—Bit[6], VSYNC Output Polarity  
These bits choose between four options for the output mode.  
4:4:4 mode is standard RGB; 4:2:2 mode is YCrCb, which  
reduces the number of active output pins from 24 to 16; 4:4:4  
is double data rate (DDR) output mode; and the data is RGB  
mode that changes on every clock edge. The power-up default  
setting is 00. See Table 12.  
This bit sets the polarity of the VSYNC output. Setting this bit to 0  
sets the VSYNC output to active low. Setting this bit to 1 sets the  
VSYNC output to active high. The power-up default is 1.  
0x24—Bit[5] DE Output Polarity  
This bit sets the polarity of the display enable (DE). 0 = DE  
output polarity is negative. 1 = DE output polarity is positive.  
The power-up default is 1.  
Table 12. Output Mode  
Output  
Mode  
0x24—Bit[4], Field Output Polarity  
Result  
00  
01  
10  
11  
4:4:4 RGB mode  
This bit sets the polarity of the odd/even field output signal on  
Ball A7. 0 = active low = even field; active high = odd field. 1 =  
active high = odd field; active high = even field. The power-up  
default setting is 1.  
4:2:2 YCrCb mode + DDR 4:2:2 on D[7:0] (secondary)  
DDR 4:4:4 DDR mode + DDR 4:2:2 on D[7:0] (secondary)  
12-bit 4:2:2  
0x24—Bit[0], Output CLK Invert  
This bit allows inversion of the output clock as specified by  
Register 0x25, Bits[7:6]. 0 = noninverted clock. 1 = inverted  
clock. The power-up default setting is 0.  
Rev. 0 | Page 22 of 40  
 
 
 
AD9393  
0x25—Bit[1], Primary Output Enable  
0x26—Bit[0], Power-Down  
This bit places the primary output in active or high impedance  
mode. The primary output is designated when using either 4:2:2  
or DDR 4:4:4. In these modes, the data on the red and green  
output channels (D[23:8]) is the primary output, whereas the  
output data on the blue channel (D[7:0], DDR YCrCb) is the  
secondary output. Double data rate 0 = primary output is in  
high impedance mode. 1 = primary output is enabled. The  
power-up default setting is 1.  
This bit is used to put the chip in power-down mode. In this  
mode, the power dissipation is reduced to a fraction of the  
typical power (see Table 2 for exact power dissipation). When  
in power-down, the HSOUT, VSOUT, DCLK, and all 24 of the  
data outputs are put into a high impedance state. Circuit blocks  
that continue to be active during power-down include the  
voltage references, sync detection, and the serial register. These  
blocks facilitate a fast start up from power-down. 0 = normal  
operation. 1 = power-down. The power-up default setting is 0.  
0x25—Bit[0], Secondary Output Enable  
0x27—Bit[7], Auto Power-Down Enable  
This bit places the secondary output in active or high impe-  
dance mode. The secondary output is designated when using  
either 4:2:2 or DDR 4:4:4. In these modes, the data on the blue  
output channel (D[7:0]) is the secondary output and the output  
data on the red and green channels (D[23:8]) is the primary  
output. Secondary output is always a DDR YCrCb data mode.  
0 = secondary output is in high impedance mode. 1 = second-  
ary output is enabled. The power-up default setting is 0.  
This bit enables the chip to go into low power mode, or seek  
mode if no sync inputs are detected. 0 = auto power-down  
disabled. 1 = chip powers down if no sync inputs are present.  
The power-up default setting is 1.  
0x27—Bit[6], HDCP A0  
This bit sets the LSB of the address of the HDCP I2C. Set this bit  
to 1 only for a second receiver in a dual-link configuration. The  
power-up default is 0.  
0x26—Bit[7], Output Three-State  
When enabled, this bit puts all outputs in a high impedance  
state. 0 = normal outputs. 1 = all outputs in high impedance  
mode. The power-up default setting is 0.  
0x27—Bit[5], Clock Test  
The power-up default setting is 0.  
0x26—Bit[5], S/PDIF Three-State  
When enabled, this bit places the S/PDIF audio output pins in a  
high impedance state. 0 = normal S/PDIF output. 1 = S/PDIF  
pins in high impedance mode. The power-up default setting is 0.  
0x26—Bit[4], I2S Three-State  
When enabled, this bit places the I2S output pins in a high  
impedance state. 0 = normal I2S output. 1 = I2S pins are in  
high impedance mode. The power-up default setting is 0.  
0x26—Bit[3], Power-Down Ball Polarity  
This bit defines the polarity of the input power-down ball.  
0 = power-down ball is active low. 1 = power-down ball is  
active high. The power-up default setting is 1.  
0x26—Bits[2:1], Power-Down Ball Function  
These bits define the different operational modes of the power-  
down ball. These bits are functional only when the power-down  
ball is active; when it is inactive, the part is powered up and  
functioning. 0x = the chip is powered down and all outputs are  
in high impedance mode. 1x = the chip remains powered up,  
but all outputs are in three-state outputs mode. The power-up  
default setting is 00.  
Rev. 0 | Page 23 of 40  
AD9393  
0x2E—Bits[6:5], I2S Output Mode  
BT656 GENERATION  
These bits select between four options for the I2S output: I2S,  
right-justified, left-justified, or raw IEC60958 mode. The  
power-up default setting is 00. See Table 13.  
0x27—Bit[4], BT656 EN  
This bit enables the output to be BT656-compatible with the  
defined start of active video (SAV) and the end of active video  
(EAV) controls to be inserted. These require specification of the  
number of active lines, active pixels per line, and delays to place  
these markers. 0 = disable BT656 video mode. 1 = enable BT656  
video mode. The power-up default setting is 0.  
Table 13. I2S Output Select  
I2S Output Mode  
Result  
00  
01  
10  
11  
I2S mode  
Right-justified  
Left-justified  
Raw IEC60958 mode  
0x27—Bit[3], Force DE Generation  
This bit allows the use of the internal DE generator in DVI  
mode. 0 = internal DE generation disabled. 1 = force DE  
generation via programmed registers. The power-up default  
setting is 0.  
0x2E—Bits[4:0], I2S Bit Width  
These bits set the I2S bit width for right-justified mode. The  
power-up default setting is 24 bits.  
0x27—Bits[2:0], Interlace Offset  
These bits define the offset in HSYNCs from Field 0 to Field 1.  
The power-up default setting is 000.  
0x2F—Bit[6], TMDS Sync Detect  
This read-only bit indicates the presence of a TMDS DE.  
0 = no TMDS DE present. 1 = TMDS DE detected.  
0x28—Bits[7:2], VSYNC Delay  
These bits set the delay (in lines) from the leading edge of  
VSYNC to active video. The power-up default setting is 24d.  
0x2F—Bit[5], TMDS Active  
This read-only bit indicates the presence of a TMDS clock.  
0 = no TMDS clock present. 1 = TMDS clock detected.  
0x28—Bits[1:0], HSYNC Delay MSB and 0x29—Bits[7:0],  
HSYNC Delay LSB  
0x2F—Bit[4], AV Mute  
These 10 bits set the delay (in pixels) from the HSYNC leading  
edge to the start of active video. The power-up default setting is  
0x104.  
This read-only bit indicates the presence of AV mute based on  
general control packets. 0 = AV not muted. 1 = AV muted.  
0x2F—Bit[3], HDCP Keys Read  
0x2A—Bits[3:0], Line Width MSB and 0x2B—Bits[7:0]  
Line Width LSB  
This read-only bit reports if the HDCP keys were read  
successfully. 0 = failure to read HDCP keys. 1 = HDCP  
keys read.  
These 12 bits set the width of the active video line (in pixels).  
The power-up default setting is 0x500.  
0x2F—Bits[2:0], HDMI Quality  
0x2C—Bits[3:0], Screen Height MSB and 0x2D—Bits[7:0]  
Screen Height LSB  
These read-only bits indicate a level of HDMI quality based  
on the DE (display enable) edges. A larger number indicates  
a higher quality.  
These 12 bits set the height of the active screen (in lines). The  
power-up default setting is 0x2D0.  
0x30—Bit[6], HDMI Content Encrypted  
0x2E—Bit[7], CTRL EN  
This read-only bit is high when HDCP decryption is in use  
(content is protected). The signal goes low when HDCP is  
not being used. Use this bit to to allow copying of the content.  
Sample the bit at regular intervals because it can change on a  
frame-by-frame basis. 0 = HDCP not in use. 1 = HDCP  
decryption in use.  
When set, this bit allows CTRL[3:0] signals decoded from the  
DVI to be output on the I2S data pins. 0 = I2S signals on I2S  
lines. 1 = CTRL[3:0] output on I2S lines. The power-up default  
setting is 0.  
Rev. 0 | Page 24 of 40  
 
 
AD9393  
0x30—Bit[5], HDMI HSYNC Polarity  
COLOR SPACE CONVERSION  
This read-only bit indicates the polarity of the HDMI HSYNC.  
0 = HDMI HSYNC polarity is active low. 1 = HDMI HSYNC  
polarity is active high.  
The default power up values for the color space converter  
coefficients (Register 0x34 through Register 0x4C) are set  
for ATSC RGB-to-YCrCb conversion. They are completely  
programmable for other conversions.  
0x30—Bit[4], HDMI VSYNC Polarity  
0x34—Bit[1], CSC_ENABLE  
This read-only bit indicates the polarity of the HDMI VSYNC.  
0 = HDMI VSYNC polarity is low active. 1 = HDMI VSYNC  
polarity is high active.  
This bit enables the color space converter. 0 = disable color  
space converter. 1 = enable color space converter. The power-  
up default setting is 0.  
0x30—Bits[3:0], HDMI Pixel Repetition  
0x35—Bits[6:5], CSC_MODE  
These read-only bits indicate the pixel repetition on HDMI.  
0 = 1×, 1 = 2×, 2 = 3×, with a maximum repetition of 10× (0x9).  
See Table 14.  
These two bits set the fixed-point position of the CSC  
coefficients, including the A4, B4, and C4 offsets.  
Table 14.  
Table 15. CSC Fixed Point Converter Mode  
Select  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
Repetition Multiplier  
Select  
Result  
1×  
2×  
3×  
4×  
5×  
6×  
7×  
8×  
9×  
10×  
00  
01  
1x  
1.0, −4096 to +4095  
2.0, −8192 to +8190  
4.0, −16,384 to +16,380  
0x35—Bits[4:0], CSC_COEFF_A1 MSB and 0x36—  
Bits[7:0], CSC_COEFF_A1 LSB  
Register 0x35[4:0] form the five MSBs of the Color Space  
Conversion Coefficient A1. These bits, combined with the  
eight LSBs of Register 0x36 form a 13-bit, twos complement  
coefficient, which is user programmable. The equation takes  
the form of:  
0x34—Bit[5:4], Audio Setup  
R
G
B
OUT = (A1 × RIN) + (A2 × GIN) + (A3 × BIN) + A4  
OUT = (B1 × RIN) + (B2 × GIN) + (B3 × BIN) + B4  
OUT = (C1 × RIN) + (C2 × GIN) + (C3 × BIN) + C4  
This bit must be written to 0b11 for proper audio operation.  
0x34—Bit[3], Up Conversion Mode  
The default value for the 13-bit A1 coefficient is 0x0C52.  
0 = repeat Cb and Cr values. 1 = interpolate Cb and Cr values.  
0x34—Bit[2], CrCb Filter Enable  
0x37—Bits[4:0], CSC_COEFF_A2 MSB and 0x38—  
Bits[7:0], CSC _COEFF_A2 LSB  
Enables the FIR filter for 4:2:2 CrCb output.  
Register 0x37[4:0] form the five MSBs of the Color Space  
Conversion Coefficient A2. Combined with the eight LSBs of  
Register 0x38, these bits form a 13-bit, twos complement  
coefficient that is user programmable. The equation takes  
the form of:  
R
OUT = (A1 × RIN) + (A2 × GIN) + (A3 × BIN) + A4  
OUT = (B1 × RIN) + (B2 × GIN) + (B3 × BIN) + B4  
OUT = (C1 × RIN) + (C2 × GIN) + (C3 × BIN) + C4  
The default value for the 13-bit A2 coefficient is 0x0800.  
G
B
Rev. 0 | Page 25 of 40  
 
 
AD9393  
0x39—Bits[4:0], CSC_COEFF_A3 MSB and 0x3A—  
Bits[7:0], CSC_COEFF_A3 LSB  
0x58—Bit[3], N_CTS_Disable  
This bit prevents the N/CTS packet on the link from writing to  
the N and CTS registers.  
The default value for the 13-bit A3 is 0x00000.  
0x3B—Bits[4:0], CSC_COEFF_A4 MSB and 0x3C—  
Bits[7:0], CSC_COEFF_A4 LSB  
0x58—Bits[2:0], MCLK FS_N  
These bits control the multiple of 128 fS used for MCLK out. See  
Table 17.  
The default value for the 13-bit A4 is 0x19D7.  
0x3D—Bits[4:0], CSC_COEFF_B1 MSB and 0x3E—  
Bits[7:0], CSC_COEFF_B1 LSB  
Table 17.  
MCLK FS_N [2:0]  
fS Multiple  
128  
256  
384  
512  
640  
768  
896  
1024  
The default value for the 13-bit B1 is 0x1C54.  
0
1
2
3
4
5
6
7
0x3F—Bits[4:0], CSC_COEFF_B2 MSB and 0x40—  
Bits[7:0], CSC_COEFF_B2 LSB  
The default value for the 13-bit B2 is 0x0800.  
0x41—Bits[4:0], CSC_COEFF_B3 MSB and 0x42—  
Bits[7:0], CSC_COEFF_B3 LSB  
The default value for the 13-bit B3 is 0x1E89.  
0x43—Bits[4:0], CSC_COEFF_B4 MSB and 0x44—  
Bits[7:0], CSC_COEFF_B4 LSB  
0x59—Bit[6], MDA/MCL PU  
The default value for the 13-bit B4 is 0x0291.  
This bit disables the MDA/MCL pull-ups.  
0x59—Bit[5], CLK Term O/R  
0x45—Bits[4:0], CSC_COEFF_C1 MSB and 0x46—  
Bits[7:0], CSC_COEFF_C1 LSB  
This bit allows for overriding during power-down.  
0 = auto, 1 = manual.  
The default value for the 13-bit C1 is 0x0000.  
0x47—Bits[4:0], CSC_COEFF_C2 MSB and 0x48—  
Bits[7:0], CSC_COEFF_C2 LSB  
0x59—Bit[4], Manual CLK Term  
This bit allows normal clock termination or disconnects this.  
0 = normal, 1 = disconnected.  
The default value for the 13 bit C2 is 0x0800.  
0x49—Bits[4:0], CSC_COEFF_C3 MSB and 0x4A—  
Bits[7:0], CSC_COEFF_C3 LSB  
0x59—Bit[2], FIFO Reset UF  
This bit resets the audio FIFO if underflow is detected.  
0x59—Bit[1], FIFO Reset OF  
The default value for the 13-bit C3 is 0x0E87.  
0x4B—Bits[4:0], CSC_COEFF_C4 MSB and 0x4C—  
Bits[7:0], CSC_COEFF_C4 LSB  
This bit resets the audio FIFO if overflow is detected.  
0x59—Bit[0], MDA/MCL Three-State  
The default value for the 13-bit C4 is 0x18BD.  
0x58—Bit[7], MCLK PLL Enable  
This bit three-states the MDA/MCL lines to allow in-circuit  
programming of the EEPROM.  
This bit enables the use of the analog PLL.  
0x58—Bits[6:4], MCLK PLL_N  
0x5A—Bits[6:0], Packet Detected  
This register indicates if a data packet in specific sections has  
been detected. These seven bits are updated if any specific  
packet has been received since the last reset or loss of clock  
detect. The default setting is 0x00. See Table 18.  
These bits control the division of the MCLK out of the PLL. See  
Table 16.  
Table 16.  
MCLK PLL_N [2:0]  
MCLK Divide Value  
Table 18.  
0
1
2
3
4
5
6
7
/1  
/2  
/3  
/4  
/5  
/6  
/7  
/8  
Packet Detect Bit  
Packet Detected  
AVI infoframe  
Audio infoframe  
SPD infoframe  
MPEG source infoframe  
ACP packets  
0
1
2
3
4
5
6
ISRC1 packets  
ISRC2 packets  
Rev. 0 | Page 26 of 40  
 
 
 
AD9393  
0x89—Bits[7:0], Active Line End LSB and 0x8A—  
Bits[7:0], Active Line End MSB  
0x5B—Bit[3], HDMI Mode  
0 = DVI, 1 = HDMI.  
These bits indicate the last line of active video. All lines past  
this comprise a lower horizontal bar. This is used in letter-box  
modes. If the 2-byte value is greater than the number of lines in  
the display, there is no lower horizontal bar.  
0x7B—Bits[7:0], CTS[19:12], 0x7C—Bits[7:0] CTS[11:4],  
and 0x7D—Bits[7:4], CTS[3:0]  
These bits are the most significant eight bits of a 20-bit word used  
with the 20-bit N term in the regeneration of the audio clock.  
0x8B—Bits[7:0], Active Pixel Start LSB and 0x8C—  
Bits[7:0], Active Pixel Start MSB  
0x7D—Bits[3:0], N[19:16], 0x7E—Bits[7:0], N[15:8], and  
0x7F—Btis[7:0], N[7:0]  
These bits indicate the first pixel in the display, which is active  
video. All pixels before this comprise a left vertical bar. If the  
2-byte value is 0x00, there is no left bar.  
These are the most significant four bits of a 20-bit word used  
with the 20-bit CTS term to regenerate the audio clock.  
0x81—Bits[6:5], Y[1:0]  
0x8D—Bits[7:0], Active Pixel End LSB and 0x8E—  
Bits[7:0], Active Pixel End MSB  
This register indicates whether data is RGB, 4:4:4, or 4:2:2.  
These bits indicate the last active video pixel in the display. All  
pixels past this comprise a right vertical bar. If the 2-byte value  
is greater than the number of pixels in the display, there is no  
vertical bar.  
Table 19.  
Y
00  
01  
10  
Video Data  
RGB  
YCrCb 4:2:2  
YCrCb 4:4:4  
0x8F—Bits[6:0], New Data Flags  
See the 0x87—Bits[6:0], New Data Flags (NDF) section.  
0x91—Bits[7:4], Audio Coding Type  
0x81—Bit[4], Active Format Information Status  
0 = no data. 1 = active format information valid.  
0x84—Bits[6:0], Video Identification Code  
See the CEA EDID short video descriptors in EIA/CEA-861B.  
0x85—Bits[3:0], Pixel Repeat  
These bits identify the audio coding so that the receiver may  
process audio properly. See Table 21.  
Table 21.  
CT[3:0]  
Audio Coding  
Refer to stream header  
IEC60958 PCM  
AC3  
0x0  
0x1  
0x2  
This value indicates how many times the pixel was repeated,  
for example, 0x0 = no repeats, sent once, 0x8 = eight repeats,  
sent nine times.  
0x3  
0x4  
0x5  
0x6  
MPEG1 (Layer 1 and Layer 2)  
MP3 (MPEG1 Layer 3)  
MPEG2 (multichannel)  
AAC  
0x86—Bits[7:0], Active Line Start LSB and 0x88—  
Bits[7:0] Active Line Start MSB  
These bits indicate the beginning line of active video. All  
lines before this comprise a top horizontal bar. This is used  
in letter box modes. If the 2-byte value is 0x00, there is no  
horizontal bar.  
0x7  
DTS  
0x8  
ATRAC  
0x91—Bits[2:0], Audio Channel Count  
0x87—Bits[6:0], New Data Flags (NDF)  
These bits specify how many audio channels (2 channels to  
8 channels) are being sent.  
This register indicates whether data in specific sections has  
changed. In the address space from 0x80 to 0xFF, each register  
address ending in 0b111 (for example, 0x87, 0x8F, 0x97, 0xAF)  
is an NDF register. They all have the same data and all are reset  
when any one of them is read. See Table 20.  
Table 22.  
CC[2:0]  
Channel Count  
000  
Refer to stream header  
Table 20.  
NDF Bit Number  
001  
010  
011  
100  
101  
110  
111  
2
3
4
5
6
7
8
Changes Occurred  
AVI infoframe  
Audio infoframe  
SPD infoframe  
MPEG source infoframe  
ACP packets  
ISRC1 packets  
0
1
2
3
4
5
6
ISRC2 packets  
Rev. 0 | Page 27 of 40  
 
 
 
AD9393  
Table 23.  
0x93—Bits[7:0], Maximum Bit Rate  
Abbreviation  
Speaker Placement  
Front left  
Front center  
For compressed audio only, when this value is multiplied by  
8 kHz, it represents the maximum bit rate. A value of 0x08 in  
this field yields a maximum bit rate of (8 kHz × 8 kHz = 64 kHz).  
FL  
FC  
FR  
FCL  
FCR  
RL  
Front right  
0x94—Bits[7:0], Speaker Mapping  
Front center left  
Front center right  
Rear left  
Bits[4:0] define the suggested placement of speakers. Bits[7:5]  
are currently not available. See Table 23 and Table 24.  
RC  
Rear center  
RR  
Rear right  
RCL  
RCR  
LFE  
Rear center left  
Rear center right  
Low frequency effect  
Table 24. Speaker Mapping  
CA  
Channel Number  
Bit 4  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Bit 3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
Bit 2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
Bit 1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
Bit 0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
8
7
6
5
4
3
2
1
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FL  
FL  
FL  
FL  
FL  
FL  
FL  
FL  
FL  
FL  
FL  
FL  
FL  
FL  
FL  
FL  
FL  
FL  
FL  
FL  
FL  
FL  
FL  
FL  
FL  
FL  
FL  
FL  
FL  
FL  
FL  
FL  
LFE  
LFE  
LFE  
LFE  
LFE  
LFE  
LFE  
LFE  
LFE  
FC  
FC  
RC  
RC  
RC  
RC  
RL  
RL  
RL  
RL  
RL  
RL  
RL  
RL  
RL  
RL  
RL  
RL  
FC  
FC  
RR  
RR  
RR  
RR  
RR  
RR  
RR  
RR  
RR  
RR  
RR  
RR  
FC  
FC  
RC  
RC  
RC  
RC  
FC  
FC  
RRC  
RRC  
RRC  
RRC  
FRC  
FRC  
FRC  
FRC  
FRC  
FRC  
FRC  
FRC  
FRC  
FRC  
FRC  
FRC  
RLC  
RLC  
RLC  
RLC  
FLC  
FLC  
FLC  
FLC  
FLC  
FLC  
FLC  
FLC  
FLC  
FLC  
FLC  
FLC  
FC  
FC  
LFE  
v
LFE  
v
FC  
FC  
LFE  
LFE  
RC  
RC  
RC  
RC  
RL  
RL  
RL  
RL  
FC  
FC  
LFE  
v
LFE  
RR  
RR  
RR  
RR  
FC  
FC  
LFE  
Rev. 0 | Page 28 of 40  
 
 
AD9393  
0x95—Bits[6:3], Level Shift  
0xB7—Bits[6:0], New Data Flags  
These bits define the amount of attenuation. The value directly  
corresponds to the amount of attenuation: for example, 0000 =  
0 dB, 0001 = 1 dB, … ,1111 = 15 dB attenuation.  
See the 0x87—Bits[6:0], New Data Flags (NDF) section for a  
description.  
0xB9—Bits[7:0], MB0  
0x97—Bits[6:0], New Data Flags  
These are the lower eight bits of 32 bits that specify the MPEG  
bit rate in hertz.  
See the 0x87—Bits[6:0], New Data Flags (NDF) section for a  
description.  
0xBD—Bit[4], Field Repeat  
0x99—Bits[7:0], Vender Name Character 1  
This defines whether the field is new or repeated. 0 = new field  
or picture. 1 = repeated field.  
This is the first character in eight that is the name of the  
vendor that appears on the product. The data characters are  
7-bit ASCII code.  
0xBD—Bits[1:0], MPEG Frame  
This identifies the frame as I, B, or P. See Table 26.  
0x9F—Bits[6:0], New Data Flags  
Table 26.  
MF[1:0]  
See the 0x87—Bits[6:0], New Data Flags (NDF) section for a  
description.  
Frame Type  
Unknown  
I (picture)  
B (picture)  
P (picture)  
00  
01  
0xA2—Bits[7:0], Product Description Character 1  
This is the first character of 16, which contains the model  
number and a short description of the product. The data  
characters are 7-bit ASCII code.  
10  
11  
0xA7—Bits[6:0], New Data Flags  
0xBF—Bits[6:0], New Data Flags  
See the 0x87—Bits[6:0], New Data Flags (NDF) section for a  
description.  
See the 0x87—Bits[6:0], New Data Flags (NDF) section for a  
description.  
0xAF—Bits[6:0], New Data Flags  
0xC0—Bits[7:0], Audio Content Protection Packet (ACP  
Type)  
See the 0x87—Bits[6:0], New Data Flags (NDF) section for a  
description.  
These bits define which audio content protection is used.  
0xB4—Bits[7:0], Source Device Information Code  
Table 27.  
Code  
These bytes classify the source device. See Table 25.  
ACP Type  
0x00  
0x01  
0x02  
0x03  
Generic audio  
IEC 60958-identified audio  
DVD-audio  
Reserved for super audio CD (SACD)  
Reserved  
Table 25.  
SDI Code  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
Source  
Unknown  
Digital STB  
DVD  
D-VHS  
HDD video  
DVC  
DSC  
Video CD  
Game  
0x04 to 0xFF  
0xC7—Bits[6:0], New Data Flags  
See the 0x87—Bits[6:0], New Data Flags (NDF) section for a  
description.  
0xC8—Bit[7], ISRC1 Continued  
This bit indicates that a continuation of the 16 ISRC1 packet  
bytes (an ISRC2 packet) is being transmitted.  
PC general  
Rev. 0 | Page 29 of 40  
 
 
AD9393  
0xC8—Bit[6], ISRC1 Valid  
0xD7—Bits[6:0], New Data Flags  
This bit is an indication of whether the ISRC1 packet bytes are  
valid. 0 = ISRC1 status bits and PBs not valid. 1 = ISRC1 status  
bits and PBs valid.  
See the 0x87—Bits[6:0], New Data Flags (NDF) section for a  
description.  
0xDC—Bits[7:0], ISRC2 Packet Byte 0 (ISRC2_PB0)  
0xC8—[2:0], ISRC Status  
This is transmitted only when the ISRC continued bit  
(Register 0xC8 Bit 7) is set to 1.  
These bits define where in the ISRC track the samples are. At  
least two transmissions of 001 occur at the beginning of the  
track, while continuous transmission of 010 occurs in the  
middle of the track, followed by at least two transmissions of  
100 near the end of the track.  
0xDF—Bits[6:0], New Data Flags  
See the 0x87—Bits[6:0], New Data Flags (NDF) section for a  
description.  
0xE7—Bits[6:0], New Data Flags  
0xCF—Bits[6:0], New Data Flags  
See the 0x87—Bits[6:0], New Data Flags (NDF) section for a  
description.  
See the 0x87—Bits[6:0], New Data Flags (NDF) section for a  
description.  
Rev. 0 | Page 30 of 40  
AD9393  
2-WIRE SERIAL CONTROL PORT  
A 2-wire serial interface control interface is provided in the  
AD9393.  
DATA TRANSFER VIA SERIAL INTERFACE  
For each byte of data read or written, the MSB is the first bit of  
the sequence.  
The 2-wire serial interface is comprised of a clock (SCL) and a  
bidirectional data (SDA) ball. The HDMI flat panel interface  
acts as a slave for receiving and transmitting data over the serial  
interface. When the serial interface is not active, the logic levels  
on SCL and SDA are pulled high by external pull-up resistors.  
If the AD9393 does not acknowledge the master device during a  
write sequence, the SDA remains high so the master can gener-  
ate a stop signal. If the master device does not acknowledge the  
AD9393 during a read sequence, the AD9393 interprets this as  
the end of data. The SDA remains high, so the master can  
generate a stop signal.  
Data received or transmitted on the SDA line must be stable for  
the duration of the positive-going SCL pulse. Change data on  
SDA only when SCL is low. If SDA changes state while SCL is  
high, the serial interface interprets that action as a start or stop  
sequence.  
To write data to specific control registers of the AD9393, the  
8-bit address of the control register of interest must be written  
after the slave address has been established. This control register  
address is the base address for subsequent write operations. The  
base address autoincrements by 1 for each byte of data written  
after the data byte intended for the base address. If more bytes  
are transferred than there are available addresses, the address  
does not increment and remains at its maximum value. Any  
base address higher than the maximum value does not produce  
an acknowledge signal.  
There are six components to serial bus operation:  
Start signal  
Slave address byte  
Base register address byte  
Data byte to read or write  
Stop signal  
Acknowledge (ACK)  
Data are read from the control registers of the AD9393 in a  
similar manner. Reading requires two data transfer operations:  
When the serial interface is inactive (SCL and SDA are high),  
communications are initiated by sending a start signal. The start  
signal is a high-to-low transition on SDA while SCL is high.  
This signal alerts all slave devices that a data transfer sequence  
is coming.  
The base address must be written with the R/W bit of the  
slave address byte low to set up a sequential read operation.  
W
Reading (the R/ bit of the slave address byte high)  
begins at the previously established base address. The  
address of the read register autoincrements after each  
byte is transferred.  
The first eight bits of data transferred after a start signal  
comprise an 7-bit slave address (the first 7 bits) and a single  
W
W
R/ bit (the eight bit). The R/ bit indicates the direction of  
the data transfer, read from (1) or write to (0) the slave device. If  
the transmitted slave address matches the address of the device,  
the AD9393 acknowledges by bringing SDA low on the ninth  
SCL pulse. If the addresses do not match, the AD9393 does not  
acknowledge.  
To terminate a read/write sequence to the AD9393, a stop signal  
must be sent. A stop signal comprises a low-to-high transition  
of SDA while SCL is high.  
A repeated start signal occurs when the master device driving  
the serial interface generates a start signal without first genera-  
ting a stop signal to terminate the current communication.  
This is used to change the mode of communication (read,  
write) between the slave and master without releasing the  
serial interface lines.  
Table 28. Serial Port Addresses  
Bit 7  
A6 (MSB)  
1
Bit 6  
Bit 5  
Bit 4  
Bit 3  
A2  
1
Bit 2  
A1  
0
Bit 1  
A0  
0
Bit 0  
A5  
0
A4  
0
A3  
1
R/W  
SDA  
tBUFF  
tSTAH  
tDSU  
tDHO  
tSTOSU  
tSTASU  
tDAL  
SCL  
tDAH  
Figure 7. Serial Port Read/Write Timing  
Rev. 0 | Page 31 of 40  
 
AD9393  
SERIAL INTERFACE READ/WRITE EXAMPLES  
Write to one control register:  
Read from one control register:  
1. Start signal  
1. Start signal  
W
2. Slave address byte (R/ bit = low)  
W
2. Slave address byte (R/ bit = low)  
3. Base address byte  
4. Start signal  
3. Base address byte  
4. Data byte to base address  
5. Stop signal  
W
5. Slave address byte (R/ bit = high)  
6. Data byte from base address  
7. Stop signal  
Write to four consecutive control registers:  
1. Start signal  
Read from four consecutive control registers:  
1. Start signal  
W
2. Slave address byte (R/ bit = low)  
3. Base address byte  
W
2. Slave address byte (R/ bit = low)  
4. Data byte to base address  
5. Data byte to (base address + 1)  
6. Data byte to (base address + 2)  
7. Data byte to (base address + 3)  
8. Stop signal  
3. Base address byte  
4. Start signal  
5. Slave address byte (R/ bit = high)  
6. Data byte from base address  
7. Data byte from (base address + 1)  
8. Data byte from (base address + 2)  
9. Data byte from (base address + 3)  
10. Stop signal  
W
SDA  
SCL  
BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0  
ACK  
BIT 7  
Figure 8. Serial Interface—Typical Byte Transfer  
Rev. 0 | Page 32 of 40  
 
AD9393  
PCB LAYOUT RECOMMENDATIONS  
The AD9393 is a high precision, high speed digital device. To  
achieve the maximum performance from the part, it is impor-  
tant to have a well laid-out board. The following sections are a  
guide for designing a board using the AD9393.  
In some cases, using separate ground planes is unavoidable, so  
it is recommended to place a single ground plane under the  
AD9393. The location of the split should be at the receiver of  
the digital outputs. In this case, it is even more important to  
place components wisely because the current loops are much  
longer (current takes the path of least resistance).  
POWER SUPPLY BYPASSING  
It is recommended to bypass each power supply ball with a  
0.1 μF capacitor. The exception is in the case where two or  
more supply pins are adjacent to each other. For these groupings  
of powers/grounds, it is only necessary to have one bypass  
capacitor. The fundamental idea is to have a bypass capacitor  
within about 0.5 cm of each power ball. Also, avoid placing  
the capacitor on the opposite side of the PC board from the  
AD9393, because that interposes resistive vias in the path.  
OUTPUTS (BOTH DATA AND CLOCKS)  
Try to minimize the trace length that the digital outputs have  
to drive. Longer traces have higher capacitance, which require  
more current that causes more internal digital noise.  
Shorter traces reduce the possibility of reflections.  
Adding a series resistor of value 50 Ω to 200 Ω can suppress  
reflections, reduce EMI, and reduce the current spikes inside  
the AD9393. If series resistors are used, place them as close as  
possible to the AD9393 pins (although try not to add vias or  
extra length to the output trace to move the resistors closer).  
The bypass capacitors should be physically located between the  
power plane and the power ball. Current should flow from the  
power plane to the capacitor to the power ball. Do not make the  
power connection between the capacitor and the power ball.  
Placing a via underneath the capacitor pads down to the power  
plane is generally the best approach.  
If possible, limit the capacitance that each of the digital outputs  
drives to less than 10 pF. This can be accomplished easily by  
keeping traces short and by connecting the outputs to only one  
device. Loading the outputs with excessive capacitance increases  
the current transients inside of the AD9393 and creates more  
digital noise on its power supplies.  
It is particularly important to maintain low noise and good  
stability of PVDD (the clock generator supply). Abrupt changes  
in PVDD can result in similarly abrupt changes in sampling  
clock phase and frequency. This can be avoided by paying  
careful attention to regulation, filtering, and bypassing. It is  
highly desirable to provide separate regulated supplies for  
each of the circuitry groups (VD and PVDD).  
DIGITAL INPUTS  
The digital inputs on the AD9393 are designed to work with  
3.3 V signals, but are tolerant of 5.0 V signals. Therefore, no  
extra components need to be added if using 5.0 V logic.  
Some graphic controllers use substantially different levels of  
power when active (during active picture time) and when idle  
(during HSYNC and VSYNC periods). This can result in a  
measurable change in the voltage supplied to the regulator,  
which can in turn produce changes in the regulated supply  
voltage. This can be mitigated by regulating the PVDD from a  
different, cleaner power source (for example, from a 12 V supply).  
Any noise that enters the HSYNC input trace can add jitter to  
the system. Therefore, minimize the trace length and do not run  
any digital or other high frequency traces near it.  
It is recommended to use a single ground plane for the entire  
board. Experience has shown repeatedly that the noise perfor-  
mance is the same or better with a single ground plane. Using  
multiple ground planes can be detrimental because each separate  
ground plane is smaller and long ground loops can result.  
Rev. 0 | Page 33 of 40  
 
 
 
 
 
AD9393  
COLOR SPACE CONVERTER (CSC) COMMON SETTINGS  
HDTV YCRCB (0 TO 255) TO RGB (0 TO 255) (DEFAULT SETTING FOR AD9393)  
Table 29.  
Register  
Address  
Value  
Red/Cr Coeff 1  
0x36  
Red/Cr Coeff 2  
0x38  
Red/Cr Coeff 3  
0x3A  
Red/Cr Offset  
0x3C  
0x35  
0x0C  
0x37  
0x08  
0x39  
0x00  
0x3B  
0x19  
0x52  
0x00  
0x00  
0xD7  
Table 30.  
Register  
Address  
Value  
Green/Y Coeff 1  
0x3E  
Green/Y Coeff 2  
0x40  
Green/Y Coeff 3  
0x42  
Green/Y Offset  
0x44  
0x3D  
0x1C  
0x3F  
0x08  
0x41  
0x3E  
0x43  
0x02  
0x54  
0x00  
0x89  
0x91  
Table 31.  
Register  
Address  
Value  
Blue/Cb Coeff 1  
0x46  
Blue/Cb Coeff 2  
0x48  
Blue/Cb Coeff 3  
0x4A  
Blue/Cb Offset  
0x4C  
0x45  
0x00  
0x47  
0x08  
0x49  
0x0E  
0x4B  
0x18  
0x00  
0x00  
0x87  
0xBD  
HDTV YCRCB (16 TO 235) TO RGB (0 TO 255)  
Table 32.  
Register  
Address  
Value  
Red/Cr Coeff 1  
0x36  
Red/Cr Coeff 2  
0x38  
Red/Cr Coeff 3  
0x3A  
Red/Cr Offset  
0x3C  
0x35  
0x47  
0x37  
0x04  
0x39  
0x00  
0x3B  
0x1C  
0x2C  
0xA8  
0x00  
0x1F  
Table 33.  
Register  
Address  
Value  
Green/Y Coeff 1  
0x3E  
Green/Y Coeff 2  
0x40  
Green/Y Coeff 3  
0x42  
Green/Y Offset  
0x44  
0x3D  
0x1D  
0x3F  
0x04  
0x41  
0x1F  
0x43  
0x01  
0xDD  
0xA8  
0x26  
0x34  
Table 34.  
Register  
Address  
Value  
Blue/Cb Coeff 1  
0x46  
Blue/Cb Coeff 2  
0x48  
Blue/Cb Coeff 3  
0x4A  
Blue/Cb Offset  
0x4C  
0x45  
0x00  
0x47  
0x04  
0x49  
0x08  
0x4B  
0x1B  
0x00  
0xA8  
0x 75  
0x7B  
SDTV YCRCB (0 TO 255) TO RGB (0 TO 255)  
Table 35.  
Register  
Address  
Value  
Red/Cr Coeff 1  
0x36  
Red/Cr Coeff 2  
0x38  
Red/Cr Coeff 3  
0x3A  
Red/Cr Offset  
0x3C  
0x35  
0x2A  
0x37  
0x08  
0x39  
0x00  
0x3B  
0x1A  
0xF8  
0x00  
0x00  
0x84  
Table 36.  
Register  
Address  
Value  
Green/Y Coeff 1  
0x3E  
Green/Y Coeff 2  
0x40  
Green/Y Coeff 3  
0x42  
Green/Y Offset  
0x44  
0x3D  
0x1A  
0x3F  
0x08  
0x41  
0x1D  
0x43  
0x04  
0x6A  
0x00  
0x50  
0x23  
Table 37.  
Register  
Address  
Value  
Blue/Cb Coeff 1  
0x46  
Blue/Cb Coeff 2  
0x48  
Blue/Cb Coeff 3  
0x4A  
Blue/Cb Offset  
0x4C  
0x45  
0x00  
0x47  
0x08  
0x49  
0x0D  
0x4B  
0x19  
0x00  
0x00  
0xDB  
0x12  
Rev. 0 | Page 34 of 40  
 
 
 
 
 
 
AD9393  
SDTV YCRCB (16 TO 235) TO RGB (0 TO 255)  
Table 38.  
Register  
Address  
Value  
Red/Cr Coeff 1  
0x36  
Red/Cr Coeff 2  
0x38  
Red/Cr Coeff 3  
0x3A  
Red/Cr Offset  
0x35  
0x46  
0x37  
0x04  
0x39  
0x00  
0x3B  
0x1C  
0x3C  
0x84  
0x63  
0xA8  
0x00  
Table 39.  
Register  
Address  
Value  
Green/Y Coeff 1  
0x3E  
Green/Y Coeff 2  
0x40  
Green/Y Coeff 3  
0x42  
Green/Y Offset  
0x44  
0x3D  
0x1C  
0x3F  
0x04  
0x41  
0x1E  
0x43  
0x02  
0xC0  
0xA8  
0x6F  
0x1E  
Table 40.  
Register  
Address  
Value  
Blue/Cb Coeff 1  
0x46  
Blue/Cb Coeff 2  
0x48  
Blue/Cb Coeff 3  
0x4A  
Blue/Cb Offset  
0x4C  
0x45  
0x00  
0x47  
0x04  
0x49  
0x08  
0x4B  
0x1B  
0x00  
0xA8  
0x11  
0xAD  
RGB (0 TO 255) TO HDTV YCRCB (0 TO 255)  
Table 41.  
Register  
Address  
Value  
Red/Cr Coeff 1  
0x36  
Red/Cr Coeff 2  
0x38  
Red/Cr Coeff  
0x3A  
Red/Cr Offset  
0x3C  
0x35  
0x08  
0x37  
0x18  
0x39  
0x1F  
0x3B  
0x08  
0x2D  
0x93  
0x3F  
0x00  
Table 42.  
Register  
Address  
Value  
Green/Y Coeff 1  
0x3E  
Green/Y Coeff 2  
0x40  
Green/Y Coeff 3  
0x42  
Green/Y Offset  
0x44  
0x3D  
0x03  
0x3F  
0x0B  
0x41  
0x01  
0x43  
0x00  
0x68  
0x71  
0x27  
0x00  
Table 43.  
Register  
Address  
Value  
Blue/Cb Coeff 1  
0x46  
Blue/Cb Coeff 2  
0x48  
Blue/Cb Coeff 3  
0x4A  
Blue/Cb Offset  
0x4C  
0x45  
0x1E  
0x47  
0x19  
0x49  
0x08  
0x4B  
0x08  
0x21  
0xB2  
0x2D  
0x00  
RGB (0 TO 255) TO HDTV YCRCB (16 TO 235)  
Table 44.  
Register  
Address  
Value  
Red/Cr Coeff 1  
0x36  
Red/Cr Coeff 2  
0x38  
Red/Cr Coeff 3  
0x3A  
Red/Cr Offset  
0x3C  
0x35  
0x07  
0x37  
0x19  
0x39  
0x1F  
0x3B  
0x08  
0x06  
0xA0  
0x5B  
0x00  
Table 45.  
Register  
Address  
Value  
Green/Y Coeff 1  
0x3E  
Green/Y Coeff 2  
0x40  
Green/Y Coeff 3  
0x42  
Green/Y Offset  
0x44  
0x3D  
0x02  
0x3F  
0x09  
0x41  
0x00  
0x43  
0x01  
0xED  
0xD3  
0xFD  
0x00  
Table 46.  
Register  
Address  
Value  
Blue/Cb Coeff 1  
0x46  
Blue/Cb Coeff 2  
0x48  
Blue/Cb Coeff 3  
0x4A  
Blue/Cb Offset  
0x4C  
0x45  
0x1E  
0x47  
0x1A  
0x49  
0x07  
0x4B  
0x08  
0x64  
0x96  
0x06  
0x00  
Rev. 0 | Page 35 of 40  
 
 
 
AD9393  
RGB (0 TO 255) TO SDTV YCRCB (0 TO 255)  
Table 47.  
Register  
Address  
Value  
Red/Cr Coeff 1  
0x36  
Red/Cr Coeff 2  
0x38  
Red/Cr Coeff 3  
0x3A  
Red/Cr Offset  
0x3C  
0x35  
0x08  
0x37  
0x19  
0x39  
0x1E  
0x3B  
0x08  
0x2D  
0x27  
0xAC  
0x00  
Table 48.  
Register  
Address  
Value  
Green/Y Coeff 1  
0x3E  
Green/Y Coeff 2  
0x40  
Green/Y Coeff 3  
0x42  
Green/Y Offset  
0x44  
0x3D  
0x04  
0x3F  
0x09  
0x41  
0x01  
0x43  
0x00  
0xC9  
0x64  
0xD3  
0x00  
Table 49.  
Register  
Address  
Value  
Blue/Cb Coeff 1  
0x46  
Blue/Cb Coeff 2  
0x48  
Blue/Cb Coeff 3  
0x4A  
Blue/Cb Offset  
0x4C  
0x45  
0x1D  
0x47  
0x1A  
0x49  
0x08  
0x4B  
0x08  
0x3F  
0x93  
0x2D  
0x00  
RGB (0 TO 255) TO SDTV YCRCB (16 TO 235)  
Table 50.  
Register  
Address  
Value  
Red/Cr Coeff 1  
0x36  
Red/Cr Coeff 2  
0x38  
Red/Cr Coeff 3  
0x3A  
Red/Cr Offset  
0x3C  
0x35  
0x07  
0x37  
0x1A  
0x39  
0x1E  
0x3B  
0x08  
0x06  
0x1E  
0xDC  
0x00  
Table 51.  
Register  
Address  
Value  
Green/Y Coeff 1  
0x3E  
Green/Y Coeff 2  
0x40  
Green/Y Coeff 3  
0x42  
Green/Y Offset  
0x44  
0x3D  
0x04  
0x3F  
0x08  
0x41  
0x01  
0x43  
0x01  
0x1C  
0x11  
0x91  
0x00  
Table 52.  
Register  
Address  
Value  
Blue/Cb Coeff 1  
0x46  
Blue/Cb Coeff 2  
0x48  
Blue/Cb Coeff 3  
0x4A  
Blue/Cb Offset  
0x4C  
0x45  
0x1D  
0x47  
0x1B  
0x49  
0x07  
0x4B  
0x08  
0xA3  
0x57  
0x06  
0x00  
Rev. 0 | Page 36 of 40  
 
 
 
AD9393  
OUTLINE DIMENSIONS  
A1 CORNER  
INDEX AREA  
6.10  
6.00 SQ  
5.90  
10  
9
8
7
6
5
3
4
2
1
A
B
C
D
E
F
BALL A1  
PAD CORNER  
4.50  
BSC SQ  
TOP VIEW  
0.50  
BSC  
G
H
J
K
BOTTOM VIEW  
DETAIL A  
0.75  
REF  
DETAIL A  
*
1.40 MAX  
0.65 MIN  
0.15 MIN  
COPLANARITY  
0.08 MAX  
0.35  
0.30  
0.25  
SEATING  
PLANE  
BALL DIAMETER  
*
COMPLIANT TO JEDEC STANDARDS MO-225  
WITH THE EXCEPTION TO PACKAGE HEIGHT.  
Figure 9. 76-Pin Chip Scale Package Pin Grid Array [CSP_BGA]  
6 mm × 6 mm × 1.2 mm  
(BC-76-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Max Speed  
Temperature  
Model  
(MHz) Digital  
Range  
Package Description  
Package Option  
BC-76-2  
BC-76-2  
AD9393BBCZ-801  
AD9393BBCZRL-801  
AD9393/PCBZ1  
80  
80  
−10°C to +80°C  
−10°C to +80°C  
76-Pin Chip Scale Package Pin Grid Array (CSP_BGA)  
76-Pin Chip Scale Package Pin Grid Array (CSP_BGA)  
Evaluation Board  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 37 of 40  
 
 
 
AD9393  
NOTES  
Rev. 0 | Page 38 of 40  
AD9393  
NOTES  
Rev. 0 | Page 39 of 40  
AD9393  
NOTES  
©2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08043-0-10/09(0)  
Rev. 0 | Page 40 of 40  

相关型号:

AD9393/PCBZ

Low Power HDMI Display Interface
ADI

AD9393BBCZ-80

Low Power HDMI Display Interface
ADI

AD9393BBCZRL-80

Low Power HDMI Display Interface
ADI

AD9394BCBZ-R7

5 V Charge Pump HDMI Tx Companion Chip
ADI

AD9396

Analog/DVI Dual-Display Interface
ADI

AD9396/PCB

Analog/DVI Dual-Display Interface
ADI

AD9396KSTZ-100

Analog/DVI Dual-Display Interface
ADI

AD9396KSTZ-150

Analog/DVI Dual-Display Interface
ADI

AD9397

DVI Display Interface
ADI

AD9397/PCB

DVI Display Interface
ADI

AD9397KSTZ-100

DVI Display Interface
ADI

AD9397KSTZ-150

DVI Display Interface
ADI