AD9410BSQZ [ADI]

IC 1-CH 10-BIT FLASH METHOD ADC, PARALLEL ACCESS, PQFP80, POWER, HEAT SINK, PLASTIC, LQFP-80, Analog to Digital Converter;
AD9410BSQZ
型号: AD9410BSQZ
厂家: ADI    ADI
描述:

IC 1-CH 10-BIT FLASH METHOD ADC, PARALLEL ACCESS, PQFP80, POWER, HEAT SINK, PLASTIC, LQFP-80, Analog to Digital Converter

转换器
文件: 总20页 (文件大小:314K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
10-Bit, 210 MSPS  
A/D Converter  
a
AD9410  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
SNR = 54 dB with 99 MHz Analog Input  
500 MHz Analog Bandwidth  
V
V
V
REF  
REF  
OUT  
AGND  
DGND  
D
DD CC  
IN  
On-Chip Reference and Track/Hold  
1.5 V p-p Differential Analog Input Range  
5.0 V and 3.3 V Supply Operation  
3.3 V CMOS/TTL Outputs  
AD9410  
REFERENCE  
OR  
A
10  
PORT  
A
D9 –D0  
A
A
Power: 2.1 W Typical at 210 MSPS  
Demultiplexed Outputs Each at 105 MSPS  
Output Data Format Option  
Data Sync Input and Data Clock Output Provided  
Interleaved or Parallel Data Output Option  
10  
A
A
ADC  
10-BIT  
CORE  
IN  
T/H  
IN  
OR  
B
10  
PORT  
B
D9 –D0  
B
B
DS  
DS  
ENCODE  
ENCODE  
TIMING AND  
SYNCHRONIZATION  
APPLICATIONS  
DCO  
Communications and Radar  
Local Multipoint Distribution Service (LMDS)  
High-End Imaging Systems and Projectors  
Cable Reverse Path  
DCO  
DFS  
I/P  
Point-to-Point Radio Link  
PRODUCT HIGHLIGHTS  
GENERAL DESCRIPTION  
High Resolution at High Speed—The architecture is specifically  
designed to support conversion up to 210 MSPS with outstand-  
ing dynamic performance.  
The AD9410 is a 10-bit monolithic sampling analog-to-digital  
converter with an on-chip track-and-hold circuit and is opti-  
mized for high-speed conversion and ease of use. The product  
operates at a 210 MSPS conversion rate, with outstanding  
dynamic performance over its full operating range.  
Demultiplexed Output—Output data is decimated by two and  
provided on two data ports for ease of data transport.  
The ADC requires a 5.0 V and 3.3 V power supply and up to a  
210 MHz differential clock input for full performance operation.  
No external reference or driver components are required for many  
applications. The digital outputs are TTL/CMOS-compatible,  
and separate output power supply pins also support interfacing  
with 3.3 V logic.  
Output Data Clock—The AD9410 provides an output data  
clock synchronous with the output data, simplifying the timing  
between data and other logic.  
Data Synchronization—A DS input is provided to allow for  
synchronization of two or more AD9410s in a system, or  
to synchronize data to a specific output port in a single  
AD9410 system.  
The clock input is differential and TTL/CMOS-compatible. The  
10-bit digital outputs can be operated from 3.3 V (2.5 V to 3.6 V)  
supplies. Two output buses support demultiplexed data up to  
105 MSPS rates, and binary or two’s complement output coding  
format is available. A data sync function is provided for timing-  
dependent applications. An output clock simplifies interfacing to  
external logic. The output data bus timing is selectable for parallel  
or interleaved mode, allowing for flexibility in latching output data.  
Fabricated on an advanced BiCMOS process, the AD9410  
is available in an 80-lead surface-mount plastic package  
(PowerQuad®2) specified over the industrial temperature range  
(–40°C to +85°C).  
PowerQuad is a registered trademark of Amkor Electronics, Inc.  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 2000  
AD9410–SPECIFICATIONS  
(VDD = 3.3 V, VD = 3.3 V, VCC = 5.0 V; 2.5 V external reference; AIN = –0.5 dBFS; Clock input = 210 MSPS;  
T = 25C; unless otherwise noted.)  
DC SPECIFICATIONS  
A
Test  
Parameter  
Temp  
Level  
Min  
Typ  
Max  
Unit  
RESOLUTION  
10  
Bits  
DC ACCURACY  
No Missing Codes1  
Differential Nonlinearity  
Full  
25°C  
Full  
25°C  
Full  
25°C  
Full  
IV  
I
VI  
I
VI  
I
V
Guaranteed  
0.5  
–1.0  
–1.0  
–2.5  
–3.0  
–6.0  
+1.25  
+1.5  
+2.5  
+3.0  
+6.0  
LSB  
LSB  
LSB  
LSB  
% FS  
ppm/°C  
Integral Nonlinearity  
1.65  
Gain Error  
Gain Tempco  
0
130  
ANALOG INPUT  
Input Voltage Range (With Respect to AIN)  
Common-Mode Voltage  
Input Offset Voltage  
Full  
Full  
25°C  
Full  
Full  
Full  
Full  
25°C  
25°C  
V
V
I
VI  
VI  
V
VI  
V
768  
3.0  
+3  
mV p-p  
V
mV  
mV  
V
ppm/°C  
pF  
–15  
–20  
2.4  
+15  
+20  
2.6  
Reference Voltage  
Reference Tempco  
Input Resistance  
Input Capacitance  
Analog Bandwidth, Full Power  
2.5  
50  
875  
3
500  
610  
1250  
V
MHz  
POWER SUPPLY  
Power Dissipation AC2  
Power Dissipation DC3  
25°C  
Full  
Full  
Full  
25°C  
V
2.1  
2.0  
128  
401  
+0.5  
W
W
mA  
mA  
mV/V  
VI  
VI  
VI  
I
2.4  
3
IVCC  
145  
480  
+7.5  
3
IVD  
Power Supply Rejection Ratio PSRR  
–7.5  
NOTES  
1Package heat slug should be attached when operating at greater than 70°C ambient temperature.  
2Encode = 210 MSPS, AIN = –0.5 dBFS 10 MHz sine wave, IVDD = 31 mA typical at CLOAD = 5 pF.  
3Encode = 210 MSPS, AIN = dc, outputs not switching.  
Specifications subject to change without notice.  
(VDD = 3.3 V, VD = 3.3 V, VCC = 5.0 V; 2.5 V external reference; AIN = –0.5 dBFS; Clock  
input = 210 MSPS; T = 25C; unless otherwise noted.)  
SWITCHING SPECIFICATIONS  
A
Test  
Parameter  
Temp  
Level  
Min  
Typ  
Max  
Unit  
SWITCHING PERFORMANCE  
Maximum Conversion Rate  
Minimum Conversion Rate  
Full  
Full  
VI  
IV  
IV  
IV  
V
210  
MSPS  
MSPS  
ns  
ns  
ns  
ps rms  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Cycles  
Cycles  
100  
Encode Pulsewidth High (tEH  
)
25°C  
25°C  
25°C  
25°C  
Full  
1.2  
1.2  
2.4  
2.4  
1.0  
0.65  
Encode Pulsewidth Low (tEL  
)
Aperture Delay (tA)  
Aperture Uncertainty (Jitter)  
Output Valid Time (tV)  
Output Propagation Delay (tPD  
Output Rise Time (tR)  
V
VI  
VI  
V
3.0  
)
Full  
7.4  
25°C  
25°C  
Full  
Full  
Full  
Full  
Full  
Full  
1.8  
1.4  
4.8  
1
Output Fall Time (tF)  
V
CLKOUT Propagation Delay1 (tCPD  
)
VI  
IV  
IV  
IV  
VI  
VI  
2.6  
0
0.5  
6.4  
2
Data to DCO Skew (tPD–tCPD  
DS Setup Time (tSDS  
DS Hold Time (tHDS  
)
)
)
0
Interleaved Mode (A, B Latency)  
Parallel Mode (A, B Latency)  
A = 6, B = 6  
A = 7, B = 6  
NOTES  
1CLOAD = 5 pF.  
Specifications subject to change without notice.  
–2–  
REV. 0  
AD9410  
DIGITAL SPECIFICATIONS (V = 3.3 V, V = 3.3 V, V = 5.0 V; 2.5 V external reference; A = –0.5 dBFS;  
Clock input = 210 MSPS; TA = 25C; unless otherwise noted.)  
DD  
D
CC  
IN  
Test  
Parameter  
Temp  
Level  
Min  
Typ  
Max  
Unit  
DIGITAL INPUTS  
DFS, Input Logic “1” Voltage  
DFS, Input Logic “0” Voltage  
DFS, Input Logic “1” Current  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
25°C  
IV  
IV  
V
V
V
V
IV  
V
V
IV  
V
4
V
V
µA  
µA  
µA  
µA  
V
kΩ  
V
V
V
1
50  
50  
400  
1
DFS, Input Logic “0” Current  
I/P Input Logic “1” Current1  
I/P Input Logic “0” Current1  
ENCODE, ENCODE Differential Input Voltage  
ENCODE, ENCODE Differential Input Resistance  
ENCODE, ENCODE Common-Mode Input Voltage2  
DS, DS Differential Input Voltage  
DS, DS Common-Mode Input Voltage  
Digital Input Pin Capacitance  
0.4  
0.4  
1.6  
1.5  
1.5  
3
V
pF  
DIGITAL OUTPUTS  
Logic “1” Voltage (VDD = 3.3 V)  
Logic “0” Voltage (VDD = 3.3 V)  
Output Coding  
Full  
Full  
VI  
VI  
VDD – 0.05  
0.05  
Binary or Two’s Complement  
V
V
NOTES  
1I/P pin Logic “1” = 5 V, Logic “0” = GND. It is recommended to place a series 2.5 k( 10%) resistor to VDD when setting to Logic “1” to limit input current.  
2See Encode Input section in Applications section.  
Specifications subject to change without notice.  
(VDD = 3.3 V, VD = 3.3 V, VCC = 5.0 V; 2.5 V external reference; AIN = –0.5 dBFS; Clock input = 210 MSPS;  
T = 25C; unless otherwise noted.)  
A
AC SPECIFICATIONS  
Test  
Level  
Parameter  
Temp  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
Transient Response  
Overvoltage Recovery Time  
Signal-to-Noise Ratio (SNR)  
(Without Harmonics)  
25°C  
25°C  
V
V
2
2
ns  
ns  
f
IN = 10.3 MHz  
fIN = 82 MHz  
IN = 160 MHz  
25°C  
25°C  
25°C  
I
I
V
52.5  
52  
55  
54  
53  
dB  
dB  
dB  
f
Signal-to-Noise Ratio (SINAD)  
(With Harmonics)  
f
f
IN = 10.3 MHz  
IN = 82 MHz  
25°C  
25°C  
25°C  
I
51  
50  
54  
53  
52  
dB  
dB  
dB  
I
fIN = 160 MHz  
Effective Number of Bits  
V
f
f
IN = 10.3 MHz  
IN = 82 MHz  
25°C  
25°C  
25°C  
I
8.3  
8.1  
8.8  
8.6  
8.4  
Bits  
Bits  
Bits  
I
fIN = 160 MHz  
Second Harmonic Distortion  
V
f
f
IN = 10.3 MHz  
IN = 82 MHz  
25°C  
25°C  
25°C  
I
–56  
–55  
–65  
–63  
–65  
dBc  
dBc  
dBc  
I
fIN = 160 MHz  
Third Harmonic Distortion  
V
f
f
IN = 10.3 MHz  
IN = 82 MHz  
25°C  
25°C  
25°C  
I
–58  
–57  
–69  
–67  
–62  
dBc  
dBc  
dBc  
I
fIN = 160 MHz  
Spurious Free Dynamic Range (SFDR)  
V
f
f
IN = 10.3 MHz  
IN = 82 MHz  
25°C  
25°C  
25°C  
I
56  
54  
61  
60  
58  
dBc  
dBc  
dBc  
I
fIN = 160 MHz  
V
Two-Tone Intermod Distortion IMD1  
fIN1 = 80.3 MHz, fIN2 = 81.3 MHz  
25°C  
V
58  
dBFS  
NOTES  
1IN1, IN2 level = –7 dBFS.  
Specifications subject to change without notice.  
REV. 0  
–3–  
AD9410  
Figure 1. Timing Diagram  
–4–  
REV. 0  
AD9410  
ABSOLUTE MAXIMUM RATINGS1  
EXPLANATION OF TEST LEVELS  
Test Level  
I. 100% production tested.  
VD, VCC, VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V  
Analog Inputs . . . . . . . . . . . . . . . . . . . . . 0 V to VCC + 0.5 V  
Digital Inputs . . . . . . . . . . . . . . . . . . . . . 0 V to VDD + 0.5 V  
VREF IN . . . . . . . . . . . . . . . . . . . . . . . . . . 0 V to VD + 0.5 V  
Digital Output Current . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
Operating Temperature . . . . . . . . . . . . . . . . –55°C to +125°C  
Storage Temperature . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Maximum Junction Temperature2 . . . . . . . . . . . . . . . . 150°C  
II. 100% production tested at 25°C and sample tested at  
specified temperatures.  
III. Sample tested only.  
IV. Parameter is guaranteed by design and characterization  
testing.  
NOTES  
V. Parameter is a typical value only.  
1Absolute maximum ratings are limiting values to be applied individually, and  
beyond which the serviceability of the circuit may be impaired. Functional  
operability is not necessarily implied. Exposure to absolute maximum rating  
conditions for an extended period of time may affect device reliability. Stresses  
above those listed under Absolute Maximum Ratings may cause permanent  
damage to the device. This is a stress rating only; functional operation of the device  
at these or any other conditions outside of those indicated in the operation sections  
of this specification is not implied.  
VI. 100% production tested at 25°C; guaranteed by design and  
characterization testing for industrial temperature range.  
2Typical  
soldered), for multilayer board in still air with solid ground plane.  
θJA = 22°C/W (heat slug not soldered), typical θJA = 16°C/W (heat slug  
ORDERING GUIDE  
Temperature  
Package  
Package  
Option  
Model  
Range  
Description  
AD9410BSQ  
AD9410/PCB  
–40°C to +85°C  
25°C  
PowerQuad 2  
Evaluation Board  
SQ-80  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the AD9410 features proprietary ESD protection circuitry, permanent damage may occur on  
devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. 0  
–5–  
AD9410  
PIN FUNCTION DESCRIPTIONS  
Pin No.  
Mnemonic  
Function  
1, 2, 8, 9, 12, 13, 16, 17, 20, 21, 24,  
27, 28, 29, 30, 71, 72, 73, 74, 77, 78  
AGND  
Analog Ground.  
3, 7, 14, 15  
4
5
6
10  
11  
18  
19  
22  
23  
VCC  
5 V Supply. (Regulate to within 5%.)  
Internal Reference Output.  
Internal Reference Input.  
Do Not Connect.  
Analog Input—True.  
Analog Input—Complement.  
Clock Input—True.  
Clock Input—Complement.  
Data Sync (Input)—True. Tie LOW if not used.  
Data Sync (Input)—Complement. Float and decouple with 0.1 µF  
capacitor if not used.  
REFOUT  
REFIN  
DNC  
AIN  
AIN  
ENCODE  
ENCODE  
DS  
DS  
25, 26, 31, 32, 69, 70, 75, 76  
33, 40, 49, 52, 59, 68  
34, 41, 48, 53, 60, 67  
35–39  
42–46  
47  
VD  
DGND  
VDD  
DB0–DB4  
DB5–DB9  
ORB  
3.3 V Analog Supply. (Regulate to within 5%.)  
Digital Ground.  
3.3 V Digital Output Supply. (2.5 V to 3.6 V)  
Digital Data Output for Channel B. (LSB = DB0.)  
Digital Data Output for Channel B. (MSB = DB9.)  
Data Overrange for Channel B.  
50  
51  
DCO  
DCO  
Clock Output—Complement.  
Clock Output—True.  
54–58  
61–65  
66  
79  
80  
D
D
ORA  
DFS  
I/P  
A0–DA4  
A5–DA9  
Digital Data Output for Channel A. (LSB = DA0.)  
Digital Data Output for Channel A. (MSB = DA9.)  
Data Overrange for Channel A.  
Data Format Select. HIGH = Two’s Complement, LOW = Binary.  
Interleaved or Parallel Output Mode. Low = Parallel Mode, High =  
Interleaved Mode. If tying high, use a current limiting series resistor  
(2.5 k) to the 5 V supply.  
–6–  
REV. 0  
AD9410  
PIN CONFIGURATION  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
V
DD  
DGND  
AGND  
AGND  
1
2
PIN 1  
IDENTIFIER  
D
D
D
D
D
V
A4  
A3  
A2  
A1  
A0  
V
3
CC  
4
REF  
OUT  
REF  
5
IN  
6
DNC  
(LSB)  
V
7
CC  
AGND  
AGND  
8
DD  
DGND  
DCO  
9
AD9410  
TOP VIEW  
80-Lead PowerQuad2  
(Not to Scale)  
10  
11  
A
A
IN  
DCO  
IN  
DGND  
AGND 12  
AGND 13  
V
DD  
OR  
D
B
V
V
14  
15  
CC  
CC  
(MSB)  
B9  
45  
44  
43  
42  
41  
D
D
D
D
V
AGND 16  
AGND 17  
B8  
B7  
B6  
B5  
DD  
ENCODE 18  
19  
ENCODE  
20  
AGND  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
DNC DO NOT CONNECT  
REV. 0  
–7–  
AD9410  
DEFINITIONS OF SPECIFICATIONS  
Analog Bandwidth  
The analog input frequency at which the spectral power of the  
fundamental frequency (as determined by the FFT analysis) is  
reduced by 3 dB.  
Minimum Conversion Rate  
The encode rate at which the SNR of the lowest analog  
signal frequency drops by no more than 3 dB below the  
guaranteed limit.  
Maximum Conversion Rate  
The encode rate at which parametric testing is performed.  
Aperture Delay  
The delay between the 50% point of the rising edge of the  
ENCODE command and the instant at which the analog  
input is sampled.  
Aperture Uncertainty (Jitter)  
The sample-to-sample variation in aperture delay.  
Output Propagation Delay  
The delay between a differential crossing of ENCODE and  
ENCODE and the time when all output data bits are within  
valid logic levels.  
Out-of-Range Recovery Time  
Differential Analog Input Resistance, Differential Analog  
Input Capacitance, and Differential Analog Input Impedance  
The real and complex impedances measured at each analog  
input port. The resistance is measured statically and the capaci-  
tance and differential input impedances are measured with a  
network analyzer.  
Out-of-range recovery time is the time it takes for the ADC to  
reacquire the analog input after a transient from 10% above  
positive full scale to 10% above negative full scale, or from 10%  
below negative full scale to 10% below positive full scale.  
Noise (For Any Range Within the ADC)  
Differential Analog Input Voltage Range  
FSdBm SIGNALdBFS  
VNOISE = |Z|×0.001×10  
10  
The peak-to-peak differential voltage that must be applied to the  
converter to generate a full-scale response. Peak differential voltage  
is computed by observing the voltage on a single pin and subtract-  
ing the voltage from the other pin, which is 180 degrees out of  
phase. Peak-to-peak differential is computed by rotating the  
inputs phase 180 degrees and taking the peak measurement  
again. The difference is then computed between both peak  
measurements.  
Where Z is the input impedance, FS is the full scale of the device  
for the frequency in question, SNR is the value for the particular  
input level, and SIGNAL is the signal level within the ADC  
reported in dB below full scale. This value includes both thermal  
and quantization noise.  
Power Supply Rejection Ratio  
Differential Nonlinearity  
The deviation of any code width from an ideal 1 LSB step.  
The ratio of a change in input offset voltage to a change in  
power supply voltage.  
Effective Number of Bits  
Signal-to-Noise-and-Distortion (SINAD)  
The effective number of bits (ENOB) is calculated from the  
measured SINAD based on the equation.  
The ratio of the rms signal amplitude (set 0.5 dB below full  
scale) to the rms value of the sum of all other spectral compo-  
nents, including harmonics, but excluding dc.  
Full Scale Amplitude  
Input Amplitude  
SINADMEASURED 1.76 dB + 20 log  
Signal-to-Noise Ratio (Without Harmonics)  
ENOB =  
The ratio of the rms signal amplitude (set at 0.5 dB below full  
scale) to the rms value of the sum of all other spectral compo-  
nents, excluding the first five harmonics and dc.  
6.02  
Encode Pulsewidth/Duty Cycle  
Pulsewidth high is the minimum amount of time that the  
ENCODE pulse should be left in Logic 1 state to achieve  
rated performance; pulsewidth low is the minimum time  
ENCODE pulse should be left in low state. See timing implica-  
tions of changing tENCH in text. At a given clock rate, these specs  
define an acceptable ENCODE duty cycle.  
Spurious-Free Dynamic Range (SFDR)  
The ratio of the rms signal amplitude to the rms value of the  
peak spurious spectral component. The peak spurious compo-  
nent may or may not be a harmonic. May be reported in dBc  
(i.e., degrades as signal level is lowered), or dBFS (always  
related back to converter full scale).  
Full-Scale Input Power  
Expressed in dBm. Computed using the following equation:  
Transient Response Time  
Transient response time is defined as the time it takes for the  
ADC to reacquire the analog input after a transient from 10%  
above negative full scale to 10% below positive full scale.  
2
V
FULL SCALErms  
Z INPUT  
POWERFULL SCALE = 10 log  
Two-Tone Intermodulation Distortion Rejection  
The ratio of the rms value of either input tone to the rms value  
of the worst third order intermodulation product; reported in dBc.  
0.001  
Harmonic Distortion, Second  
The ratio of the rms signal amplitude to the rms value of the  
second harmonic component, reported in dBc.  
Two-Tone SFDR  
The ratio of the rms value of either input tone to the rms value  
of the peak spurious component. The peak spurious component  
may or may not be an IMD product. May be reported in dBc  
(i.e., degrades as signal level is lowered), or in dBFS (always  
related back to converter full scale).  
Harmonic Distortion, Third  
The ratio of the rms signal amplitude to the rms value of the  
third harmonic component, reported in dBc.  
Integral Nonlinearity  
Worst Other Spur  
The deviation of the transfer function from a reference line  
measured in fractions of 1 LSB using a best straight line”  
determined by a least-square curve fit.  
The ratio of the rms signal amplitude to the rms value of the  
worst spurious component (excluding the second and third  
harmonic) reported in dBc.  
–8–  
REV. 0  
AD9410  
Table I. Output Coding (VREF = 2.5 V)  
Digital Outputs  
Offset Binary  
Digital Outputs  
Two’s Complement  
Step  
AINAIN  
ORA, ORB  
> 0.768  
0.768  
11 1111 1111  
11 1111 1111  
01 1111 1111  
01 1111 1111  
1
0
1023  
513  
512  
511  
0.0015  
0.0  
10 0000 0001  
10 0000 0000  
01 1111 1111  
00 0000 0001  
00 0000 0000  
11 1111 1111  
0
0
0
0
1
0.0015  
0
0.768  
< 0.768  
00 0000 0000  
00 0000 0000  
10 0000 0000  
10 0000 0000  
V
CC  
V
CC  
1.5kꢃ  
1.5kꢃ  
A
A
VREFOUT  
IN  
IN  
2.25kꢃ  
2.25kꢃ  
Figure 6. Equivalent Reference Output Circuit  
Figure 2. Equivalent Analog Input Circuit  
V
CC  
V
CC  
DFS  
100kꢃ  
VREFIN  
Figure 7. Equivalent DFS Input Circuit  
Figure 3. Equivalent Reference Input Circuit  
V
CC  
17.5kꢃ  
V
CC  
300ꢃ  
300ꢃ  
DS  
DS  
450ꢃ  
450ꢃ  
17kꢃ  
8kꢃ  
17kꢃ  
8kꢃ  
7.5kꢃ  
ENCODE  
ENCODE  
100ꢃ  
100ꢃ  
Figure 8. Equivalent DS Input Circuit  
Figure 4 Equivalent Encode Input Circuit  
V
CC  
17.5kꢃ  
V
300ꢃ  
DD  
I/P  
DIGITAL  
OUTPUT  
7.5kꢃ  
Figure 9. Equivalent I/P Input Circuit  
Figure 5. Equivalent Digital Output Circuit  
REV. 0  
–9–  
AD9410Typical Performance Characteristics  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
0
ENCODE = 210MSPS  
IN  
SNR = 54.5dB  
SINAD = 53.5dB  
A
= 40MHz @ 0.5dBFS  
20  
40  
SNR  
60  
80  
SINAD  
100  
120  
0
50  
100  
150  
MHz  
200  
250  
0
105  
MHz  
A
IN  
TPC 1. Single Tone at 40 MHz, Encode = 210 MSPS  
TPC 4. SNR/SINAD vs. AIN Encode = 210 MSPS  
0
55.0  
ENCODE = 210MSPS  
IN  
54.5  
A
= 100MHz @ 0.5dBFS  
SNR  
20  
40  
SNR = 53.5dB  
SINAD = 52.5dB  
54.0  
53.5  
53.0  
60  
52.5  
SINAD  
52.0  
51.5  
51.0  
50.5  
50.0  
80  
100  
120  
0
105  
100  
120  
140  
160  
180  
200  
220  
240  
MHz  
MHz  
TPC 2. Single Tone at 100 MHz, Encode = 210 MSPS  
TPC 5. SNR/SINAD vs. FS AIN = 70 MHz  
60  
55  
50  
45  
40  
35  
0
ENCODE = 210MSPS  
IN  
SNR = 53dB  
SINAD = 52dB  
A
= 160MHz @ 0.5dBFS  
20  
40  
SNR  
SINAD  
60  
80  
100  
120  
30  
0
0.5  
1.0  
1.5  
2.0  
ns  
2.5  
3.0  
3.5  
4.0  
0
105  
MHz  
TPC 3. Single Tone at 160 MHz, Encode = 210 MSPS  
TPC 6. SNR/SINAD vs. Encode Positive Pulsewidth  
(FS = 210 MSPS, AIN = 70 MHz)  
–10–  
REV. 0  
AD9410  
0
20  
2.52  
2.51  
2.50  
2.49  
2.48  
2.47  
2.46  
ENCODE = 210MSPS  
1, A 2 = 7dBFS  
SFDR = 62dBFS  
A
IN  
IN  
40  
60  
80  
100  
120  
0
105  
4.0  
4.2  
4.4  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
MHz  
ANALOG SUPPLY  
TPC 7. Two Tone Test AIN 1 = 80.3 MHz, AIN 2 = 81.3 MHz  
TPC 10. VREFOUT vs. Analog 5 V Supply  
55.5  
55.0  
54.5  
460  
410  
360  
310  
260  
210  
160  
110  
60  
IAhi3  
54.0  
SNR  
53.5  
53.0  
52.5  
IAhi5  
Ivdd  
SINAD  
52.0  
10  
100  
51.5  
40  
20  
0
20  
40  
60  
80  
100  
120  
120  
140  
160  
180  
200  
220  
TEMPERATURE C  
MSPS  
TPC 8. SNR/SINAD vs. Temperature,  
Encode = 210 MSPS, AIN = 70 MHz  
TPC 11. Power Supply Currents vs. Encode  
74  
72  
70  
68  
66  
64  
62  
60  
2.55  
2.50  
2.45  
2.40  
2.35  
2.30  
2.25  
H2  
H3  
58  
40  
20  
0
20  
40  
60  
80  
100  
120  
0
0.5  
1.0  
1.5  
2.0  
2.5  
mA  
TEMPERATURE C  
TPC 9. Second and Third Harmonics vs. Temperature;  
IN = 70 MHz, Encode = 210 MSPS  
TPC 12. VREFOUT vs. ILOAD  
A
REV. 0  
–11–  
AD9410  
5.1  
4.9  
4.7  
4.5  
4.3  
4.1  
3.9  
2.503  
2.502  
2.501  
2.500  
2.499  
2.498  
2.497  
2.496  
T
PD  
T
V
T
CPD  
40  
20  
0
20  
40  
60  
80  
40  
20  
0
20  
40  
60  
80  
TEMPERATURE C  
TEMPERATURE C  
TPC 13. VREFOUT vs. Temperature  
TPC 14. TPD, TV, TCPD vs. Temperature  
–12–  
REV. 0  
AD9410  
Analog Input  
APPLICATION NOTES  
THEORY OF OPERATION  
The analog input to the AD9410 is a differential buffer. For  
best dynamic performance, impedances at AIN and AIN should  
match. The analog input has been optimized to provide superior  
wideband performance and requires that the analog inputs be  
driven differentially. SNR and SINAD performance will degrade  
significantly if the analog input is driven with a single-ended  
signal. A wideband transformer such as Minicircuits ADT1-1WT  
can be used to provide the differential analog inputs for applica-  
tions that require a single-ended-to-differential conversion. Both  
analog inputs are self-biased by an on-chip resistor divider to a  
nominal 3 V. (See Equivalent Circuits section.)  
The AD9410 architecture is optimized for high speed and ease  
of use. The analog inputs drive an integrated high bandwidth  
track-and-hold circuit that samples the signal prior to quantiza-  
tion by the flash 10-bit core. For ease of use the part includes  
an onboard reference and input logic that accepts TTL, CMOS,  
or PECL levels.  
USING THE AD9410  
ENCODE Input  
Any high-speed A/D converter is extremely sensitive to the  
quality of the sampling clock provided by the user. A Track/Hold  
circuit is essentially a mixer, and any noise, distortion, or timing  
jitter on the clock will be combined with the desired signal at the  
A/D output. For that reason, considerable care has been taken  
in the design of the ENCODE input of the AD9410, and the  
user is advised to give commensurate thought to the clock source.  
To limit SNR degradation to less than 1 dB, a clock source with  
less than 1.25 ps rms jitter is required for sampling at Nyquist.  
(Valpey Fisher VF561 is an example.) Note that required jitter  
accuracy is a function of input frequency and amplitude. Consult  
Analog Devicesapplication note AN-501, Aperture Uncer-  
tainty and ADC System Performance,for more information.  
Special care was taken in the design of the Analog Input section  
of the AD9410 to prevent damage and corruption of data when the  
input is overdriven. The nominal input range is 1.5 V diff p-p.  
The nominal differential input range is 768 mV p-p × 2.  
A
IN  
3.384  
3.000  
The ENCODE input is fully TTL/CMOS-compatible. The  
clock input can be driven differentially or with a single-ended  
signal. Best performance will be obtained when driving the clock  
differentially. Both ENCODE inputs are self-biased to 1/3 × VCC  
by a high impedance resistor divider. (See Equivalent Circuits  
section.) Single-ended clocking, which may be appropriate for  
lower frequency or nondemanding applications, is accomplished  
by driving the ENCODE input directly and placing a 0.1 µF  
capacitor at ENCODE.  
A
IN  
2.616  
Figure 12. Typical Analog Input Levels  
Digital Outputs  
The digital outputs are TTL/CMOS-compatible for lower power  
consumption. The outputs are biased from a separate supply  
(VDD), allowing easy interface to external logic. The outputs are  
CMOS devices which will swing from ground to VDD (with no  
dc load). It is recommended to minimize the capacitive load the  
ADC drives by keeping the output traces short (<1 inch, for a  
total CLOAD < 5 pF). It is also recommended to place low value  
(20 ) series damping resistors on the data lines to reduce switch-  
ing transient effects on performance.  
ENCODE AD9410  
TTL/CMOS  
GATE  
ENCODE  
0.1F  
Figure 10. Driving Single-Ended Encode Input at  
TTL/CMOS Levels  
An example where the clock is obtained from a PECL driver is  
shown in Figure 11. Note that the PECL driver is ac-coupled to  
the ENCODE inputs to minimize input current loading. The  
AD9410 can be dc-coupled to PECL logic levels resulting in the  
ENCODE input currents increasing to approximately 8 mA  
typically. This is due to the difference in dc bias between the  
ENCODE inputs and a PECL driver. (See Equivalent Cir-  
cuits section.)  
Clock Outputs (DCO, DCO)  
The input ENCODE is divided by two and available off-chip at  
DCO and DCO. These clocks can facilitate latching off-chip,  
providing a low skew clocking solution (see timing diagram).  
These clocks can also be used in multiple AD9410 systems to  
synchronize the ADCs. Depending on application, DCO or  
DCO can be buffered and used to drive the DS inputs on a  
second AD9410, ensuring synchronization. The on-chip clock  
buffers should not drive more than 5 pF7 pF of capacitance to  
limit switching transient effects on performance.  
0.1  
F  
ENCODE AD9410  
PECL  
GATE  
ENCODE  
Voltage Reference  
0.1  
F  
510ꢃ  
510ꢃ  
A stable and accurate 2.5 V voltage reference is built into the  
AD9410 (VREF OUT). The input range can be adjusted by  
varying the reference voltage. No appreciable degradation in  
performance occurs when the reference is adjusted 5%. The full-  
scale range of the ADC tracks reference voltage changes linearly  
within the 5% tolerance.  
GND  
Figure 11. Driving the Encode Inputs Differentially  
REV. 0  
–13–  
AD9410  
Timing  
Data Sync (DS)  
The AD9410 provides latched data outputs, with six pipeline  
delays in interleaved mode (see Figure 1). In parallel mode, the  
A Port has one additional cycle of latency added on-chip to line  
up transitions at the data portsresulting in a latency of seven  
cycles for the A Port. The length of the output data lines and  
loads placed on them should be minimized to reduce transients  
within the AD9410; these transients can detract from the  
converters dynamic performance.  
The Data Sync input, DS, can be used in applications requir-  
ing that a given sample will appear at a specific output Port A or  
B. When DS is held high, the ADC data outputs and clock do not  
switch and are held static. Synchronization is accomplished by the  
assertion (falling edge) of DS, within the timing constraints  
TSDS and THDS relative to an encode rising edge. (On initial  
synchronization THDS is not relevant.) If DS falls within the  
required setup time (TSDS) before a given encode rising edge N,  
the analog value at that point in time will be digitized and avail-  
able at Port B six cycles later (interleaved mode). The very next  
sample, N+1, will be sampled by the next rising encode edge and  
available at Port A six cycles after that encode edge (interleaved  
mode). In dual parallel mode the A Port has a seven cycle latency,  
the B Port has a six cycle latency, but data is available at the  
same time.  
The minimum guaranteed conversion rate of the AD9410 is  
100 MSPS. At internal clock rates below 100 MSPS, dynamic  
performance may degrade. Note that lower effective sampling  
rates can be obtained simply by sampling just one output port—  
decimating the output by two. Lower sampling frequencies can  
also be accommodated by restricting the duty cycle of the clock  
such that the clock high pulsewidth is a maximum of 5 ns.  
EVALUATION BOARD  
REFERENCE  
The AD9410 evaluation board offers an easy way to test the  
AD9410. The board requires an analog input, clock, and 3 V,  
5 V power supplies. The digital outputs and output clocks are  
available at a standard 80-lead header P2, P3. The board has  
several different modes of operation, and is shipped in the fol-  
lowing configuration:  
The AD9410 has an on-chip reference of 2.5 V available at  
REFOUT (Pin 4). Most applications will simply tie this output  
to the REFIN input (Pin 5). This is accomplished by placing a  
jumper at E1, E6. An external reference can be used placing a  
jumper at E1, E3.  
Output Timing  
Output Timing = Parallel Mode  
Output Format = Offset Binary  
Internal Voltage Reference  
The chip has two timing modes (see timing diagram). Inter-  
leaved mode is selected by Jumper E11, E7. Parallel mode is  
selected by Jumper E11, E14.  
Power Connector  
Data Format Select  
Power is supplied to the board via detachable 4-pin power strips  
P1, P4, P5.  
Data Format Select sets the output data format that the ADC  
outputs. Setting DFS (Pin 79) low at E12, E10 sets the output  
format to be offset binary; setting DFS high at E12, E16 sets the  
output to be twos complement.  
VDAC Optional DAC Supply Input (3.3 V)  
EXT REF Optional External VREF Input (2.5 V)  
V
DD Logic Supply (3.3 V)  
DS Pin  
3.3 VA Analog Supply (3.3 V)  
5 V Analog Supply (5 V)  
The DS, DS inputs are available at SMB connectors J9X and  
J10X. The board is shipped with DS pulled to ground by R26.  
DS is floating (R25X is not placed).  
Analog Inputs  
The evaluation board accepts a 1.5 V p-p analog input signal  
centered at ground at SMB J8. This input is terminated to 50 Ω  
on the board at the transformer secondary, but can be termi-  
nated at the SMB if an alternative termination is desired. The  
input is ac-coupled prior to the transformer. The transformer is  
band limited to frequencies between approximately 1 MHz and  
400 MHz.  
DAC Outputs  
Each channel is reconstructed by an on-board dual channel  
DAC, an AD9751 to assist in debug. The performance of the  
DAC has not been optimized and will not give an accurate  
measure of the full performance of the ADC. It is a current  
output DAC with on-board 50 termination resistors. The  
outputs are available at J3 and J4.  
Encode  
The encode input to the board is at SMB connector J1. The  
input is terminated on the board with 50 to ground. The  
(>0.5 V p-p) input is ac-coupled and drives a high-speed  
differential line receiver (MC10EL16). This receiver provides  
sub- nanosecond rise times at its outputsa requirement for  
the ADC clock inputs for optimum performance. The EL16  
outputs are PECL levels and are ac-coupled to meet the common-  
mode dc levels at the AD9410 encode inputs.  
–14–  
REV. 0  
AD9410  
GND  
GND  
GND  
5V  
5V  
C1  
C2  
C3  
C5  
C4  
C40  
0.1F  
MC10EL16  
10F  
10F  
10F  
10F  
10F  
R14  
8.2kꢃ  
R19  
R11  
330ꢃ  
C7  
1
2
3
4
8
7
6
5
5V  
NC  
VCC  
Q
8.2kꢃ  
J1  
0.1F  
EXT REF VDAC  
VDD  
3.3VA  
5V  
D
ENCT  
ENCC  
U1  
C6  
D
Q
R8  
0.1F  
1
2
3
4
VDAC  
GND  
GND  
R9  
24kꢃ  
50ꢃ  
R18  
24kꢃ  
C8  
0.1F  
R15  
330ꢃ  
VBB  
GND  
VEE  
GND  
P4  
EXT REF  
GND  
GND  
GND GND  
GND  
5V  
VDD  
1
2
3
4
GND  
C14  
0.1F  
3.3VA  
GND  
R4  
2.5kꢃ  
R6  
100ꢃ  
C10  
0.1F  
3.3VA  
P1  
P5  
GND  
VDD/3.3V  
GND  
GND  
C11  
GND  
NOTE:  
DA9  
DA8  
DA7  
R3, R6, R7, R24 OPTIONAL  
E10  
E16  
E12  
0.1F  
R7  
100ꢃ  
(CAN BE ZERO )  
1
2
3
4
3.3VA  
GND  
5V  
R24  
GND  
GND  
100ꢃ  
3.3VA  
GND  
3.3VA  
GND  
5V  
DA6  
E7  
E11  
DA5  
DAOR  
R3  
100ꢃ  
GND  
GND  
GND  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61  
E14  
C12  
0.1F  
GND  
V
60  
1
2
3
4
5
6
7
AGND  
VDD  
GND  
DA4  
DA3  
DA2  
GND  
GND  
DD  
C27  
0.1F  
AGND  
59  
58  
57  
56  
DGND  
V
D
GND  
5V  
CC  
A4  
C28  
0.1F  
REF  
D
OUT  
E6  
E3 E1  
A3  
EXT  
REF  
REF  
D
IN  
A2  
DNC  
D
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
A1  
DA1  
DA0  
V
5V  
CC  
D
A0  
C26  
0.1F  
AGND  
AGND  
8
9
V
VDD  
C21  
0.1F  
DD  
GND  
GND  
DGND  
DCO  
GND  
T1  
6
1
2
3
A
10  
11  
GND  
C7  
0.1F  
IN  
DCOT  
DCOC  
GND  
AD9410  
U3  
R27  
GND  
5
4
A
J8  
IN  
50ꢃ  
DCO  
12 AGND  
GND GND  
1:1  
AIN  
DGND  
C24  
AGND  
13  
14  
15  
R23  
50ꢃ  
C25  
0.1F  
V
VDD  
C22  
0.1F  
DD  
0.1F  
GND  
V
GND  
CC  
DBOR  
DB9  
DB8  
DB7  
DB6  
DB5  
OR  
D
B
GND  
GND  
V
5V  
CC  
B9  
B8  
B7  
B6  
B5  
GND  
GND  
16 AGND  
AGND  
D
D
D
D
V
17  
18 ENCODE  
ENCT  
ENCC  
GND  
19  
20  
ENCODE  
VDD  
AGND  
DD  
C18  
0.1F  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
GND  
J9X  
GND  
3.3VA  
DB0  
3.3VA  
GND  
GND  
GND  
C15  
DB1  
DB2  
R26  
50ꢃ  
DB3  
0.1F  
DB4  
GND  
C19  
J10X  
GND  
0.1F  
VDD  
GND  
R25X  
50ꢃ  
3.3VA  
GND  
GND  
C16  
0.1F  
3.3VA  
Figure 13a. PCB Schematic  
REV. 0  
–15–  
AD9410  
Figure 13b. PCB Schematic (Continued)  
–16–  
REV. 0  
AD9410  
J3  
GND  
C3  
0.1F  
R1  
50ꢃ  
GND  
VDAC  
R10  
2kꢃ  
J4  
GND  
GND  
R12  
50ꢃ  
C23  
0.1F  
GND  
R5  
392ꢃ  
GND  
GND  
VDAC  
VDAC  
C33  
VDAC  
E2  
1F  
E4  
GND  
E5  
R13  
392ꢃ  
C20  
0.1F  
E31  
VDAC  
GND GND  
E29  
GND  
E30  
GND  
48 47 46 45 44 43 42 41  
38 37  
40 39  
E32  
E33  
VDAC  
GND  
1
2
36  
E34  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
DCOCA  
3
DCOTA  
GND  
4
5
DN0  
VDAC  
C13  
0.1F  
6
DN1  
DN2  
DN3  
E35  
DM9  
DM8  
AD9751  
U2  
GND  
7
8
9
DM7  
DM6  
DN4  
DN5  
DN6  
DN7  
10  
11  
12  
DM5  
DM4  
13 14  
23 24  
15 16 17 18 19 20 21 22  
DM3  
DM1  
DM2 DM0  
DN8  
GND  
DN9  
C17  
0.1F  
GND  
VDAC  
Figure 13c. PCB Schematic (Continued)  
TROUBLESHOOTING  
If the board does not seem to be working correctly, try the  
following:  
Try running encode clock and analog input at low speeds  
(10 MSPS/1 MHz) and monitor latch outputs, DAC outputs,  
and ADC outputs for toggling.  
Verify power at IC pins.  
The AD9410 Evaluation Board is provided as a design example  
for customers of Analog Devices, Inc. ADI makes no warranties,  
express, statutory, or implied, regarding merchantability or  
fitness for a particular purpose.  
Check that all jumpers are in the correct position for the  
desired mode of operation.  
Verify VREF is at 2.5 V.  
REV. 0  
–17–  
AD9410  
EVALUATION BOARD LAYOUT  
Figure 14. Top Silkscreen  
Figure 17. Bottom Components and Routing  
Figure 15. Split Power Plane  
Figure 18. Bottom Silkscreen  
Figure 19. Top Components and Routing  
Figure 16. Ground Plane  
–18–  
REV. 0  
AD9410  
AD9410 Evaluation Board Bill of Material  
Quantity  
Reference Description  
Device  
Package  
Value  
5
29  
1
31  
6
C1C5  
Capacitor  
TAJD  
603  
1206  
10 µF  
0.1 µF  
1 µF  
C6C30, C32, C37, C39, C40  
C33  
E1E7, E10E12, E14, E16E35  
J1, J3, J4, J8, J9X, J10X  
P1, P4, P5  
Capacitor  
Capacitor  
Ehole  
SMB  
3
4-Pin Power  
Connector  
40-Pin Header  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
RPACK  
25.531.3425.0  
25.602.5453.0  
Wieland  
2
7
8
1
1
2
1
2
2
5
8
P2, P3  
R1, R8, R12, R23*, R25X, R26, R27  
R2, R3, R4, R6, R24, R37, R42, R43  
R13  
R7  
R9, R18  
R10  
R11, R15  
R14, R19  
1206  
1206  
1206  
1206  
1206  
1206  
1206  
1206  
1206  
766163220G  
22 Ω  
ADT1-1WT  
SOIC8  
LQFP48  
LQFP80  
SOIC24  
SOIC14  
50 Ω  
100 Ω  
392 Ω  
100 Ω  
24 kΩ  
2 kΩ  
330 Ω  
8.2 kΩ  
0 Ω  
R5, R16, R17, R44, R45  
R28, R29, R32, R34, R36, R38R40  
CTS  
1
1
1
1
2
1
T1  
U1  
U2  
U3  
U4, U5  
U9  
Transformer (1:1)  
MC10EL16  
AD9751  
AD9410  
74LCX821  
74AC86  
Minicircuits  
*Optional R23 not placed on board (50 termination resistor).  
REV. 0  
–19–  
AD9410  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
80-Lead PowerQuad 2 (LQFP_ED)  
(SQ-80)  
0.630 (16.00) SQ  
0.063 (1.60)  
MAX  
0.551 (14.00) SQ  
0.030 (0.75)  
0.024 (0.60)  
0.018 (0.45)  
80  
80  
61  
61  
60  
60  
1
1
0.120 (3.04) 45C CHAMFER  
4 PLACES  
SEATING  
PLANE  
PIN 1  
BOTTOM  
VIEW  
0.413 (10.50)  
0.394 (10.00) REF  
0.374 (9.50)  
TOP VIEW  
(PINS DOWN)  
NICKEL PLATED  
XX  
COPLANARITY  
0.004 (0.10)  
MAX  
20  
41  
20  
41  
21  
40  
40  
21  
0.057 (1.45)  
0.055 (1.40)  
0.053 (1.35)  
0.413 (10.50)  
0.394 (10.00) REF  
0.374 (9.50)  
0.006 (0.15)  
0.002 (0.05)  
CONTROLLING DIMENSION IN MILLIMETERS.  
CENTER FIGURES ARE TYPICAL UNLESS  
OTHERWISE NOTED.  
0.008 (0.20)  
0.004 (0.09)  
0.015 (0.38)  
0.013 (0.32)  
0.009 (0.22)  
7ꢀ  
0ꢀ  
0.0256 (0.65)  
BSC  
NOTE  
The AD9410 has a conductive heat slug to help dissipate heat  
and ensure reliable operation of the device over the full indus-  
trial temperature range. The slug is exposed on the bottom of  
the package. It is recommended that no PCB traces or vias be  
located under the package that could come in contact with the  
conductive slug. Attaching the slug to a ground plane while not  
required in most applications will reduce the junction tempera-  
ture of the device which may be beneficial in high temperature  
environments.  
–20–  
REV. 0  

相关型号:

AD9410BSVZ

10-Bit, 210 MSPS ADC
ADI

AD9411

10-Bit, 170/200 MSPS 3.3 V A/D Converter
ADI

AD9411/PCB

10-Bit, 170/200 MSPS 3.3 V A/D Converter
ADI

AD9411BSV-170

10-Bit, 170/200 MSPS 3.3 V A/D Converter
ADI

AD9411BSV-200

10-Bit, 170/200 MSPS 3.3 V A/D Converter
ADI

AD9411BSVZ-170

1-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP100, PLASTIC, MS-026AED-HD, TQFP-100
ROCHESTER

AD9411BSVZ-170

IC 1-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP100, PLASTIC, MS-026AED-HD, TQFP-100, Analog to Digital Converter
ADI

AD9411BSVZ-200

1-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP100, PLASTIC, MS-026AED-HD, TQFP-100
ROCHESTER

AD9411PCB

High Speed ADC USB FIFO Evaluation Kit
ADI

AD9430

12-Bit, 170 MSPS 3.3V A/D Converter
ADI

AD9430-CMOSPCB

High Speed ADC USB FIFO Evaluation Kit
ADI

AD9430-LVDSPCB2

High Speed ADC USB FIFO Evaluation Kit
ADI