AD9432BST-105 [ADI]

12-Bit, 80 MSPS/105 MSPS A/D Converter; 12位, 80 MSPS / 105 MSPS A / D转换器
AD9432BST-105
型号: AD9432BST-105
厂家: ADI    ADI
描述:

12-Bit, 80 MSPS/105 MSPS A/D Converter
12位, 80 MSPS / 105 MSPS A / D转换器

转换器
文件: 总16页 (文件大小:425K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
12-Bit, 80 MSPS/105 MSPS  
A/D Converter  
a
AD9432  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
On-Chip Reference and Track/Hold  
On-Chip Input Buffer  
V
V
DD  
CC  
850 mW Typical Power Dissipation at 105 MSPS  
500 MHz Analog Bandwidth  
12  
12  
AIN  
PIPELINE  
ADC  
BUF  
T/H  
D11–D0  
OR  
OUTPUT  
AIN  
SNR = 67 dB @ 49 MHz AIN at 105 MSPS  
SFDR = 80 dB @ 49 MHz AIN at 105 MSPS  
2.0 V p-p Differential Analog Input Range  
Single +5.0 V Supply Operation  
+3.3 V CMOS/TTL Outputs  
STAGING  
ENCODE  
REF  
TIMING  
ENCODE  
AD9432  
GND VREFOUT VREFIN  
Two’s Complement Output Format  
APPLICATIONS  
Communications  
Basestations and ‘Zero-IF’ Subsystems  
Wireless Local Loop (WLL)  
Local Multipoint Distribution Service (LMDS)  
HDTV Broadcast Cameras and Film Scanners  
GENERAL INTRODUCTION  
Fabricated on an advanced BiCMOS process, the AD9432 is  
available in a 52-lead plastic quad flatpack package (LQFP)  
specified over the industrial temperature range (–40°C to  
+85°C).  
The AD9432 is a 12-bit monolithic sampling analog-to-digital  
converter with an on-chip track-and-hold circuit and is optimized  
for high-speed conversion and ease of use. The product operates  
at a 105 MSPS conversion rate with outstanding dynamic per-  
formance over its full operating range.  
The ADC requires only a single 5.0 V power supply and a  
105 MHz encode clock for full-performance operation. No  
external reference or driver components are required for many  
applications. The digital outputs are TTL/CMOS compatible  
and a separate output power supply pin supports interfacing  
with 3.3 V logic. The encode input supports either differential  
or single-ended and is TTL/CMOS-compatible.  
REV. B  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 2000  
(VDD = 3.3 V, VCC = 5.0 V; external reference; differential encode input, unless  
otherwise noted)  
AD9432–SPECIFICATIONS  
Test  
AD9432BST-80  
AD9432BST-105  
Parameter  
Temp  
Level  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
RESOLUTION  
12  
12  
Bits  
DC ACCURACY  
Differential Nonlinearity  
+25°C  
Full  
+25°C  
Full  
Full  
+25°C  
Full  
I
VI  
I
VI  
VI  
I
–0.75  
–1.0  
–1.0  
–1.5  
0.25 +0.75  
–0.75  
–1.0  
–1.0  
–1.5  
0.25 +0.75  
LSB  
LSB  
LSB  
LSB  
0.5  
0.5  
1.0  
+1.0  
+1.0  
+1.5  
0.5  
0.5  
1.0  
+1.0  
+1.0  
+1.5  
Integral Nonlinearity  
No Missing Codes  
Gain Error1  
Guaranteed  
+2  
Guaranteed  
+2  
–3  
+7  
–3  
+7  
% FS  
ppm/°C  
Gain Tempco1  
V
150  
150  
ANALOG INPUT  
Input Voltage Range (AIN–AIN)  
Common-Mode Voltage  
Input Offset Voltage  
Input Resistance  
Input Capacitance  
Full  
Full  
Full  
Full  
+25°C  
+25°C  
V
V
VI  
VI  
V
1.0  
3.0  
0
3
4
1.0  
3.0  
0
3
4
V
V
mV  
kΩ  
pF  
MHz  
–5  
2
+5  
4
–5  
2
+5  
4
Analog Bandwidth, Full Power  
V
500  
500  
ANALOG REFERENCE  
Output Voltage  
Tempco  
Full  
Full  
Full  
VI  
V
VI  
2.4  
2.5  
50  
15  
2.6  
50  
2.4  
2.5  
50  
15  
2.6  
50  
V
ppm/°C  
µΑ  
Input Bias Current  
SWITCHING PERFORMANCE  
Maximum Conversion Rate  
Minimum Conversion Rate  
Full  
Full  
VI  
IV  
IV  
IV  
V
80  
105  
MSPS  
MSPS  
ns  
ns  
ns  
ps rms  
ns  
ns  
ns  
ns  
1
1
Encode Pulsewidth High (tEH  
)
+25°C  
+25°C  
+25°C  
+25°C  
Full  
Full  
Full  
4.0  
4.0  
6.2  
6.2  
2.0  
0.25  
5.3  
5.5  
2.1  
1.9  
2
4.0  
4.0  
4.8  
4.8  
2.0  
0.25  
5.3  
5.5  
2.1  
1.9  
2
Encode Pulsewidth Low (tEL  
)
Aperture Delay (tA)  
Aperture Uncertainty (Jitter)  
Output Valid Time (tV)2  
V
VI  
VI  
V
V
V
V
IV  
3.0  
3.0  
2
Output Propagation Delay (tPD  
Output Rise Time (tR)2  
Output Fall Time (tF)  
Out-of-Range Recovery Time  
Transient Response Time  
Latency  
)
8.0  
8.0  
Full  
+25°C  
+25°C  
Full  
ns  
ns  
Cycles  
2
10  
2
10  
DIGITAL INPUTS  
Encode Input Common Mode  
Differential Input (ENC–ENC)  
Single-Ended  
Full  
Full  
V
V
1.6  
750  
1.6  
750  
V
mV  
Logic “1” Voltage  
Logic “0” Voltage  
Input Resistance  
Full  
Full  
Full  
+25°C  
IV  
IV  
VI  
V
2.0  
3
2.0  
3
V
V
kΩ  
pF  
0.8  
8
0.8  
8
5
4.5  
5
4.5  
Input Capacitance  
DIGITAL OUTPUTS  
Logic “1” Voltage (VDD = +3.3 V)  
Logic “0” Voltage (VDD = +3.3 V)  
Output Coding  
Full  
Full  
VI  
VI  
VDD – 0.05  
VDD – 0.05  
V
V
0.05  
0.05  
Two’s Complement  
Two’s Complement  
POWER SUPPLY  
Power Dissipation3  
Power Supply Rejection Ratio (PSRR) +25°C  
IVCC  
IVDD  
Full  
VI  
I
VI  
VI  
790  
0.5  
158  
9.5  
1000  
+5  
200  
12.2  
850  
0.5  
170  
12.5  
1100  
mW  
mV/V  
mA  
–5  
–5  
+5  
220  
16  
Full  
Full  
mA  
–2–  
REV. B  
AD9432  
Test  
Level  
AD9432BST-80  
AD9432BST-105  
Parameter  
Temp  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE4  
Signal-to-Noise Ratio (SNR)  
(Without Harmonics)  
f
IN = 10.3 MHz  
+25°C  
+25°C  
+25°C  
+25°C  
I
I
I
V
65.5  
65  
67.5  
67.2  
67.0  
66.1  
65.5  
64  
67.5  
67.2  
67.0  
66.1  
dB  
dB  
dB  
dB  
fIN = 40 MHz  
f
f
IN = 49 MHz  
IN = 70 MHz  
Signal-to-Noise Ratio (SINAD)  
(With Harmonics)  
fIN = 10.3 MHz  
+25°C  
+25°C  
+25°C  
+25°C  
I
I
I
V
65  
64.5  
67.2  
66.9  
66.7  
65.8  
65  
63  
67.2  
66.9  
66.7  
65.8  
dB  
dB  
dB  
dB  
fIN = 40 MHz  
f
f
IN = 49 MHz  
IN = 70 MHz  
Effective Number of Bits  
fIN = 10 MHz  
+25°C  
+25°C  
+25°C  
+25°C  
V
V
V
V
11.0  
10.9  
10.9  
10.7  
11.0  
10.9  
10.9  
10.7  
Bits  
Bits  
Bits  
Bits  
f
IN = 40 MHz  
fIN = 49 MHz  
IN = 70 MHz  
f
Second and Third Harmonic Distortion  
fIN = 10 MHz  
+25°C  
+25°C  
+25°C  
+25°C  
I
I
I
V
–75  
–73  
–85  
–85  
–83  
–80  
–75  
–72  
–85  
–83  
–80  
–78  
dBc  
dBc  
dBc  
dBc  
f
f
IN = 40 MHz  
IN = 49 MHz  
fIN = 70 MHz  
Worst Harmonic or Spur  
(Excluding Second and Third)  
fIN = 10 MHz  
+25°C  
+25°C  
+25°C  
+25°C  
I
I
I
V
–80  
–80  
–90  
–90  
–90  
–90  
–80  
–80  
–90  
–90  
–90  
–90  
dBc  
dBc  
dBc  
dBc  
f
f
IN = 40 MHz  
IN = 49 MHz  
fIN = 70 MHz  
Two-Tone Intermod Distortion (IMD)  
f
IN1 = 29.3 MHz; fIN2 = 30.3 MHz  
+25°C  
+25°C  
V
V
–75  
–66  
–75  
–66  
dBc  
dBc  
fIN1 = 70.3 MHz; fIN2 = 71.3 MHz  
NOTES  
1Gain error and gain temperature coefficients are based on the ADC only (with a fixed 2.5 V external reference and a 2 V p-p differential analog input).  
2tV and tPD are measured from the transition points of the ENCODE input to the 50%/50% levels of the digital outputs swing. The digital output load during test is  
not to exceed an ac load of 10 pF or a dc current of 40 µA. Rise and fall times measured from 10% to 90%.  
3Power dissipation measured with encode at rated speed and a dc analog input. (Outputs Static, IVDD = 0.)  
4SNR/harmonics based on an analog input voltage of –0.5 dBFS referenced to a 2 V full-scale input range.  
Typical θJA for LQFP package = 50°C/W.  
Specifications subject to change without notice.  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions outside of those indicated in the operation  
ABSOLUTE MAXIMUM RATINGS*  
VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +6 V  
VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +6 V  
Analog Inputs . . . . . . . . . . . . . . . . . . . –0.5 V to VCC + 0.5 V  
Digital Inputs . . . . . . . . . . . . . . . . . . . –0.5 V to VDD + 0.5 V  
VREFIN . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to VCC + 0.5 V  
Digital Output Current . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
Operating Temperature . . . . . . . . . . . . . . . . –55°C to +125°C  
Storage Temperature . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Maximum Junction Temperature . . . . . . . . . . . . . . . +175°C  
Maximum Case Temperature . . . . . . . . . . . . . . . . . . +150°C  
sections of this specification is not implied. Exposure to absolute maximum  
ratings for extended periods may affect device reliability.  
ORDERING GUIDE  
Temperature  
Ranges  
Package  
Descriptions  
Package  
Option  
Model  
AD9432BST  
-80, -105  
–40°C to +85°C 52-Lead Plastic Quad ST-52  
Flatpack (LQFP)  
AD9432/PCB +25°C  
Evaluation Board  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD9432 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. B  
–3–  
AD9432  
EXPLANATION OF TEST LEVELS  
Test Level  
PIN CONFIGURATION  
I
100% production tested.  
52 51 50 49 48 47 46 45 44 43 42 41 40  
II 100% production tested at +25°C and sample tested at  
1
2
GND  
39 GND  
38 GND  
specified temperatures.  
PIN 1  
IDENTIFIER  
V
CC  
III Sample tested only.  
3
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
V
V
GND  
GND  
CC  
CC  
4
IV Parameter is guaranteed by design and characterization  
testing.  
5
V
GND  
GND  
GND  
CC  
6
V
CC  
AD9432  
TOP VIEW  
(Not to Scale)  
7
ENCODE  
ENCODE  
GND  
V
Parameter is a typical value only.  
V
8
DD  
9
DGND  
D0 (LSB)  
D1  
VI 100% production tested at +25°C; guaranteed by design  
and characterization testing for industrial temperature  
range.  
10  
11  
12  
13  
V
CC  
GND  
D2  
DGND  
V
D3  
DD  
14 15 16 17 18 19 20 21 22 23 24 25 26  
PIN FUNCTION DESCRIPTIONS  
Pin Number  
AD9432BST  
Name  
Function  
1, 3, 4, 9, 11, 33, 34, 35, 38, 39, 40, 43, 48, 51 GND  
Analog Ground.  
2, 5, 6, 10, 36, 37, 42, 44, 47, 52  
VCC  
Analog Supply (+5 V).  
Encode Clock for ADC–Complementary.  
7
ENCODE  
ENCODE  
OR  
8
Encode Clock for ADC–True (ADC samples on rising edge of ENCODE).  
Out of Range Output.  
14  
15–20, 25–30  
D11–D6, D5–D0 Digital Output.  
12, 21, 24, 31  
DGND  
VDD  
Digital Output Ground.  
13, 22, 23, 32  
Digital Output Power Supply (2.7 V to 3.6 V).  
Do Not Connect.  
41  
45  
46  
49  
50  
DNC  
VREFIN  
VREFOUT  
AIN  
Reference Input for ADC (2.5 V Typical); Bypass with 0.1 µF to Ground.  
Internal Reference Output (2.5 V Typical).  
Analog Input–True.  
AIN  
Analog Input–Complementary.  
DEFINITION OF SPECIFICATIONS  
Analog Bandwidth (Small Signal)  
The analog input frequency at which the spectral power of the  
fundamental frequency (as determined by the FFT analysis) is  
reduced by 3 dB.  
Minimum Conversion Rate  
The encode rate at which the SNR of the lowest analog signal  
frequency drops by no more than 3 dB below the guaranteed  
limit.  
Maximum Conversion Rate  
Aperture Delay  
The encode rate at which parametric testing is performed.  
The delay between a differential crossing of ENCODE and  
ENCODE and the instant at which the analog input is sampled.  
Output Propagation Delay  
The delay between a differential crossing of ENCODE and  
ENCODE and the time when all output data bits are within  
valid logic levels.  
Aperture Uncertainty (Jitter)  
The sample-to-sample variation in aperture delay.  
Differential Nonlinearity  
Power Supply Rejection Ratio  
The deviation of any code from an ideal 1 LSB step.  
The ratio of a change in input offset voltage to a change in  
power supply voltage.  
Encode Pulsewidth/Duty Cycle  
Pulsewidth high is the minimum amount of time that the  
ENCODE pulse should be left in Logic “1” state to achieve  
rated performance; pulsewidth low is the minimum time  
ENCODE pulse should be left in low state. At a given clock  
rate, these specs define an acceptable Encode duty cycle.  
Signal-to-Noise Plus Distortion (SINAD)  
The ratio of the rms signal amplitude (set at 1 dB below full  
scale) to the rms value of the sum of all other spectral compo-  
nents, including harmonics but excluding dc.  
Signal-to-Noise Ratio (SNR)  
Integral Nonlinearity  
The ratio of the rms signal amplitude (set at 1 dB below full  
scale) to the rms value of the sum of all other spectral compo-  
nents, excluding the first five harmonics and dc.  
The deviation of the transfer function from a reference line  
measured in fractions of 1 LSB using a “best straight line”  
determined by a least square curve fit.  
REV. B  
–4–  
AD9432  
Spurious-Free Dynamic Range (SFDR)  
Two-Tone SFDR  
The ratio of the rms signal amplitude to the rms value of the  
peak spurious spectral component. The peak spurious compo-  
nent may or may not be a harmonic. May be reported in dBc  
(i.e., degrades as signal level is lowered), or in dBFS (always  
related back to converter full scale).  
The ratio of the rms value of either input tone to the rms value  
of the peak spurious component. The peak spurious component  
may or may not be an IMD product. May be reported in dBc  
(i.e., degrades as signal levels is lowered), or in dBFS (always  
related back to converter full scale).  
Two-Tone Intermodulation Distortion Rejection  
Worst Harmonic  
The ratio of the rms value of either input tone to the rms value  
of the worst third order intermodulation product; reported in dBc.  
The ratio of the rms signal amplitude to the rms value of the  
worst harmonic component, reported in dBc.  
SAMPLE N  
SAMPLE N+10  
SAMPLE N+11  
SAMPLE N1  
AIN  
SAMPLE N+1  
tA  
SAMPLE N+9  
tEH  
tEL  
1/fS  
ENCODE  
ENCODE  
tPD  
tV  
DATA N11  
DATA N10  
N9  
N2  
DATA N1  
DATA N  
DATA N+1  
D11D0  
Figure 1. Timing Diagram  
V
CC  
V
CC  
17k  
8k⍀  
17k⍀  
8k⍀  
ENCODE  
ENCODE  
VREFIN  
100⍀  
100⍀  
Figure 4. Equivalent Encode Input Circuit  
Figure 2. Equivalent Voltage Reference Input Circuit  
V
V
CC  
DD  
Q1  
NPN  
VREFOUT  
DIGITAL  
OUTPUT  
DIGITAL OUTPUT  
V
OUTPUT  
REF  
Figure 5. Equivalent Digital Output Circuit  
Figure 3. Equivalent Voltage Reference Output Circuit  
V
CC  
5k  
7k⍀  
5k⍀  
AIN  
AIN  
7k⍀  
ANALOG INPUT  
Figure 6. Equivalent Analog Input Circuit  
–5–  
REV. B  
AD9432Typical Performance Characteristics  
70  
65  
90  
AIN = 10.3MHz  
85  
SFDR  
80  
75  
60  
55  
50  
70  
65  
60  
SNR  
SINAD  
250  
0
50  
100  
150  
200  
0
20  
40  
60  
80  
100  
120  
140  
160  
A
INPUT FREQUENCY MHz (0.5dBFS)  
ENCODE MSPS  
IN  
Figure 7. SNR/SINAD/SFDR vs. fS: fIN = 10.3 MHz  
Figure 10. SNR vs. AIN Input Frequency,  
Encode = 105 MSPS  
50  
100  
AIN = 10.3MHz  
ENCODE = 105MSPS  
55  
90  
80  
70  
60  
65  
70  
75  
80  
2nd or 3rd (6.0dBFS)  
60  
50  
85  
3rd  
90  
2nd or 3rd (0.5dBFS)  
2nd  
95  
2nd or 3rd (3.0dBFS)  
100 120 140 160 180 200  
ANALOG INPUT FREQUENCY MHz  
40  
100  
0
20  
40  
60  
80  
0
20  
40  
60  
80  
100  
120  
140  
160  
ENCODE MSPS  
Figure 8. Harmonics vs. fS: fIN = 10.3 MHz  
Figure 11. Harmonics vs. fIN: fS = 105 MSPS  
100  
70  
ENCODE = 105MSPS  
ENCODE = 105MSPS  
WORST OTHER (0.5dBFS)  
90  
65  
60  
55  
50  
80  
WORST OTHER (6.0dBFS)  
SINAD (3.0dBFS)  
SINAD (6.0dBFS)  
SINAD (0.5dBFS)  
WORST OTHER (3.0dBFS)  
70  
60  
50  
40  
45  
40  
0
20  
40  
60  
80  
100 120 140 160 180 200  
200  
100 120 140 160 180  
0
20  
40  
60  
80  
ANALOG INPUT FREQUENCY MHz  
ANALOG INPUT FREQUENCY MHz  
Figure 9. SINAD vs. fIN: fS = 105 MSPS  
Figure 12. Worst-Case Spur (Other than Second and  
Third) vs. fIN: fS = 105 MSPS  
REV. B  
–6–  
AD9432  
0
0
10  
20  
30  
40  
50  
60  
70  
ENCODE = 105MSPS  
AIN = 10.3MHz (0.53dBFS)  
SNR = 67.32dB  
ENCODE = 105MSPS  
AIN = 50.3MHz (0.46dBFS)  
SNR = 67.0dB  
10  
20  
30  
SINAD = 67.07dB  
SINAD = 66.7dB  
SFDR = 85dBc  
SFDR = 80dBc  
40  
50  
60  
70  
80  
90  
80  
90  
100  
100  
110  
120  
110  
120  
SAMPLES  
SAMPLES  
Figure 13. Spectrum: fS = 105 MSPS, fIN = 10.3 MHz  
Figure 16. Spectrum: fS = 105 MSPS, fIN = 50.3 MHz  
0
0
ENCODE = 105MSPS  
AIN1 = 29.3MHz (7dBFS)  
10  
10  
AIN = 27.0MHz (0.52dBFS)  
AIN2 = 30.3MHz (7dBFS)  
SNR = 67.3dB  
ENCODE = 105MSPS  
20  
30  
40  
50  
60  
70  
20  
SINAD = 67.0dB  
SFDR = 83.1dBc  
30  
40  
50  
60  
70  
80  
90  
80  
90  
100  
100  
110  
120  
110  
120  
SAMPLES  
SAMPLES  
Figure 14. Spectrum: fS = 105 MSPS, fIN = 27 MHz  
Figure 17. Two-Tone Spectrum, Wideband: fS =  
105 MSPS, AIN1 = 29.3 MHz, AIN2 = 30.3 MHz  
0
0
AIN1 = 70.3MHz (7dBFS)  
10  
ENCODE = 105MSPS  
10  
AIN2 = 71.3MHz (7dBFS)  
AIN = 40.9MHz (0.56dBFS)  
ENCODE = 105MSPS  
20  
30  
40  
50  
60  
70  
SNR = 67.2dB  
20  
SINAD = 66.9dB  
30  
40  
50  
60  
70  
SFDR = 80dBc  
80  
90  
80  
90  
100  
100  
110  
120  
110  
120  
SAMPLES  
SAMPLES  
Figure 15. Spectrum: fS = 105 MSPS, fIN = 40.9 MHz  
Figure 18. Two-Tone Spectrum, Wideband: fS =  
105 MSPS, AIN1 = 70.3 MHz, AIN2 = 71.3 MHz  
REV. B  
–7–  
AD9432  
1.00  
0.75  
110  
100  
dBFS  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0.50  
ENCODE = 105MSPS  
AIN = 50.3MHz  
0.25  
0.00  
dBc  
0.25  
0.50  
0.75  
0
80  
1.00  
70  
60  
50  
40  
30  
20  
10  
0
INL  
ANALOG INPUT POWER LEVEL dBFS  
Figure 21. Integral Nonlinearity: fS = 105 MSPS  
Figure 19. Single Tone SFDR  
3.0  
1.00  
0.75  
0.50  
2.5  
2.0  
1.5  
0.25  
0.00  
0.25  
0.50  
0.75  
1.00  
0
2
4
6
8
10  
DNL  
CURRENT mA  
Figure 22. Voltage Reference Output vs. Current Load  
Figure 20. Differential Nonlinearity: fS = 105 MSPS  
REV. B  
–8–  
AD9432  
APPLICATION NOTES  
Theory of Operation  
Often, the cleanest clock source is a crystal oscillator producing  
a pure sine wave. In this configuration, or with any roughly  
symmetrical clock input, the input can be ac-coupled and biased  
to a reference voltage that also provides the ENCODE. This  
ensures that the reference voltage is centered on the encode signal.  
The AD9432 is a multibit pipeline converter that uses a switched  
capacitor architecture. Optimized for high speed, this converter  
provides flat dynamic performance up to frequencies near  
Nyquist. DNL transitional errors are calibrated at final test to a  
typical accuracy of 0.25 LSB or less.  
Digital Outputs  
The digital outputs are 3.3 V (2.7 V to 3.6 V) TTL/CMOS-  
compatible for lower power consumption.  
USING THE AD9432  
ENCODE Input  
Analog Input  
The analog input to the AD9432 is a differential buffer. The input  
buffer is self-biased by an on-chip resistor divider that sets the  
dc common-mode voltage to a nominal 3 V (see Equivalent  
Circuits section). Rated performance is achieved by driving the  
input differentially. Minimum input offset voltage is obtained when  
driving from a source with a low differential source impedance  
such as a transformer in ac applications. Capacitive coupling at the  
inputs will increase the input offset voltage by as much as 25 mV.  
Driving the ADC single-endedly will degrade performance.  
For best dynamic performance, impedances at AIN and AIN  
should match.  
Any high speed A/D converter is extremely sensitive to the qual-  
ity of the sampling clock provided by the user. A track/hold  
circuit is essentially a mixer, and any noise, distortion, or timing  
jitter on the clock will be combined with the desired signal at the  
A/D output. For that reason, considerable care has been taken  
in the design of the ENCODE input of the AD9432, and the  
user is advised to give commensurate thought to the clock  
source. The ENCODE input supports either differential or  
single-ended and is fully TTL/CMOS compatible.  
Note that the ENCODE inputs cannot be driven directly  
from PECL level signals (VIHD is 3.5 V max). PECL level  
signals can easily be accommodated by ac coupling as shown  
in Figure 23. Good performance is obtained using an MC10EL16  
in the circuit to drive the encode inputs.  
Special care was taken in the design of the analog input section  
of the AD9432 to prevent damage and corruption of data when  
the input is overdriven. The nominal input range is 2.0 V p-p.  
Each analog input will be 1 V p-p when driven differentially.  
AD9432  
0.1F  
4.0  
ENCODE  
PECL  
GATE  
ENCODE  
AIN  
0.1F  
510⍀  
510⍀  
3.5  
GND  
3.0  
Figure 23. AC Coupling to ENCODE Inputs  
ENCODE Voltage Level Definition  
The voltage level definitions for driving ENCODE and ENCODE  
in single-ended and differential mode are shown in Figure 24.  
AIN  
2.5  
ENCODE Inputs  
Differential Signal Amplitude (VID) . . . . . . . . . . . 500 mV min,  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 750 mV nom  
High Differential Input Voltage (VIHD) . . . . . . . . . . 3.5 V max  
Low Differential Input Voltage (VILD) . . . . . . . . . . . . . 0 V min  
Common-Mode Input (VICM) . . . . . . . 1.25 V min, 1.6 V nom  
High Single-Ended Voltage (VIHS) . . . . . 2 V min to 3.5 V max  
Low Single-Ended Voltage (VILS) . . . . . 0 V min to 0.8 V max  
2.0  
Figure 25. Full-Scale Analog Input Range  
Voltage Reference  
A stable and accurate 2.5 V voltage reference is built into the  
AD9432 (VREFOUT). In normal operation the internal refer-  
ence is used by strapping Pin 45 to Pin 46 and placing a 0.1 µF  
decoupling capacitor at VREFIN.  
ENCODE  
V
The input range can be adjusted by varying the reference voltage  
applied to the AD9432. No appreciable degradation in perfor-  
mance occurs when the reference is adjusted 5%. The full-scale  
range of the ADC tracks reference voltage changes linearly.  
IHD  
V
V
ID  
ICM  
ENCODE  
V
ILD  
Timing  
The AD9432 provides latched data outputs, with 10 pipeline  
V
IHS  
ENCODE  
delays. Data outputs are available one propagation delay (tPD  
after the rising edge of the encode command (see Figure 1).  
)
0.1F  
The length of the output data lines and loads placed on them  
should be minimized to reduce transients within the AD9432;  
these transients can detract from the converter’s dynamic  
performance.  
V
ILS  
Figure 24. Differential and Single-Ended Input Levels  
REV. B  
–9–  
AD9432  
66  
65  
The minimum guaranteed conversion rate of the AD9432 is  
1 MSPS. At internal clock rates below 1 MSPS, dynamic  
performance may degrade. Therefore, input clock rates below  
1 MHz should be avoided.  
SNR  
64  
63  
Table I. Output Coding (VREF = +2.5 V) (Two’s Complement)  
Code  
AIN–AIN (V)  
Digital Output  
SINAD  
62  
61  
60  
+2047  
1.000  
0111 1111 1111  
0
0
0000 0000 0000  
0
20  
40  
60  
–1  
–0.00049  
1111 1111 1111  
AIN MHz  
Figure 27. Measured SNR and SINAD (Encode = 105 MSPS)  
70  
–2048  
–1.000  
1000 0000 0000  
Using the AD8138 to Drive the AD9432  
H2  
A new differential output op amp from Analog Devices, Inc.,  
the AD8138 can be used to drive the AD9432 in dc-coupled  
applications. The AD8138 was specifically designed for ADC  
driver applications. Superior SNR performance is maintained up  
to analog frequencies of 30 MHz. The AD8138 op amp provides  
single-ended-to-differential conversion, providing for a low cost  
option to transformer coupling for ac applications as well.  
80  
H3  
90  
The circuit in Figure 26 was breadboarded and the measured  
performance is shown in Figures 27 and 28. The figures shown  
are for 5 V supplies at the AD8138—performance dropped by  
about 1 dB–2 dB with a single +5 V supply at the AD8138.  
100  
0
20  
40  
60  
AIN MHz  
Figure 27 shows SNR and SINAD for a –1 dBFS analog input  
frequency varied from 2 MHz to 40 MHz with an encode rate of  
105 MSPS. The measurements are for nominal conditions at  
room temperature. Figure 28 shows the second and third har-  
monic distortion performance under the same conditions.  
Figure 28. Measured Second and Third Order Harmonic  
Distortion (Encode = 105 MSPS)  
EVALUATION BOARD  
The AD9432 evaluation board offers an easy way to test the  
AD9432. It requires an analog signal, encode clock, and power  
supplies as inputs. The clock is buffered on the board to provide  
the clocks for an on-board DAC and latches. The digital outputs  
and output clock are available at a standard 37-pin connector P7.  
The dc common-mode voltage for the AD8138 outputs can be  
adjusted via input VOCM to provide the 3 V common-mode voltage  
the AD9432 inputs require.  
500  
Power Connector  
Power is supplied to the board via two detachable 4-pin power  
strips P30, P40.  
AD9432  
10pF  
P40  
50⍀  
VIN  
AIN  
500⍀  
P1 VCC2 5 V/165 mA  
P2 GND  
P3 VCC 5 V/200 mA  
DAC Supply  
22pF  
50⍀  
AD8138  
OCM  
50⍀  
ADC Analog Supply  
AIN  
P4 GND  
V
5V  
2k⍀  
P30  
500⍀  
P5  
P6  
No Connect  
No Connect  
P7 VD  
P8 GND  
3.3 V /105 mA Latch, ADC Digital Output Supply  
3k⍀  
0.1F  
10pF  
25⍀  
500⍀  
Figure 26. AD8138/AD9432 Schematic  
REV. B  
–10–  
AD9432  
Analog Inputs  
Note: Jitter performance on the clock source is critical at this  
performance level; a stable, crystal-controlled signal generator is  
used to generate all of the ADC performance plots. Figure 31  
shows the Encode+ clock at the ADC. The 3 V Latch clock  
generated on the card is also shown in the plot.  
The evaluation board accepts a 2 V p-p analog input signal at  
SMB connector P2. This single-ended signal is ac-coupled by  
capacitor C11 and drives a wideband RF transformer T1 (Mini-  
Circuits ADT1-1WT) that converts the single-ended signal to a  
differential signal. (The AD9432 should be driven differentially to  
provide optimum performance.) The evaluation board is shipped  
with termination resistors R4, R5, which provide the effective  
50 termination impedance; input termination resistor R10 is  
optional. Note: The second harmonic distortion that some RF  
transformers tend to introduce at high frequencies can be reduced  
by coupling two transformers in series as shown in Figure 29  
below. (Improvements on the order of 3 dB–4 dB can be realized.)  
86 ACQS  
[T]  
TEK  
5.00GS/s  
STOP:  
C1 MAX  
2.33V  
C1 MIN  
810mV  
TO AIN+  
T
C1 FREQ  
106.3167MHz  
LOW  
C2  
0.1F  
R1  
25⍀  
T1  
T2  
SIGNAL  
IN  
AMPLITUDE  
C1  
0.1F  
R2  
25⍀  
2
TO AIN  
Figure 29. Improving Second Harmonic Distortion  
Performance  
CH1  
1.00V  
CH2  
1.00V  
M 5.00ns CH1  
1.20V  
Figure 31. Encode+ Clock and Latch Clock  
14 ACQS  
[T]  
TEK  
5.00GS/s  
STOP:  
DATA OUTPUTS  
The ADC digital outputs are latched on the board by two 574s,  
the latch outputs are available at the 37-pin connector at Pins  
25–36. A latch output clock (data ready) is available at Pin 21,  
with the complement at Pin 2. There are series termination  
resistors on the data and clock outputs. These can be changed if  
required to accommodate different loading situations. Figure  
32 shows a data bit switching and output clock (DR) at the  
connector.  
C1 MAX  
3.4V  
T
C1 MIN  
2.5mV  
C1 FREQ  
49.995MHz  
LOW SIGNAL  
AMPLITUDE  
265 ACQS  
[T]  
TEK STOP: 5.00GS/s  
2
C1 MAX  
3.06V  
CH1 500mV  
CH3 2.00V  
CH2 500mV  
M 5.00ns CH1  
3.00V  
Figure 30. Analog Input Levels  
C1 MIN  
390mV  
The full-scale analog inputs to the ADC should be two 1 V p-p  
signals 180 degrees out of phase with each other as shown in  
Figure 30. The analog inputs are dc biased by two on-chip  
resistor dividers that set the common-mode voltage to approxi-  
mately 0.6 × VCC (0.6 × 5 = 3 V). AIN+ and AIN– each vary  
between 2.5 V and 3.5 V as shown in the two upper traces in Fig-  
ure 30. The lower trace is the input at SMB P2 (on a 2 V/div scale).  
T
C1 FREQ  
105.4562MHz  
2
Encode  
The encode input to the board is at SMB connector P3. The  
(>1 V p-p) input is ac-coupled and drives two high-speed differ-  
ential line receivers (MC10EL16). These receivers provide  
subnanosecond rise times at their outputs—a requirement for  
the ADC clock inputs for optimum performance. The EL16  
outputs are PECL levels and must be ac-coupled to meet the  
common-mode dc levels required at the AD9432 encode inputs.  
A PECL/TTL translator (MC100ELT23), provides the clocks  
required at the output latches, DAC, and 37-pin connector.  
CH1  
1.00V  
CH2  
1.00V  
M 5.00ns CH1  
1.20V  
Figure 32. Data Bit and Clock at 37-Pin Connector  
REFERENCE  
The AD9432 has an on-chip reference of 2.5 V available at  
VREFOUT (Pin 46). Most applications will simply tie this  
output to the VREFIN input (Pin 45). This is accomplished  
jumping E4 to E6 on the board. An external voltage reference  
can drive the VREFIN pin if desired by strapping E4 to E3 and  
placing an AD780 voltage reference on the board (not supplied).  
REV. B  
–11–  
AD9432  
DAC  
TROUBLESHOOTING  
The evaluation board has an on board reconstruction DAC  
(AD9752). This is placed only to facilitate testing and debug of  
the board. It should not be used to measure the performance of  
the ADC, as it will not accurately indicate the ADC performance.  
The DAC output is available at SMB P1. It will drive a 50 Ω  
load. Provision to power-down the DAC is at Pin 15 at the DAC.  
If the board does not seem to be working correctly, try the  
following:  
Verify power at IC pins.  
Check that all jumpers are in the correct position for the  
desired mode of operation.  
Verify VREF is at 2.5 V.  
Try running encode clock and analog inputs at low speeds  
(10 MSPS/1 MHz) and monitor 574 outputs, DAC output,  
and ADC outputs for toggling.  
PCB LAYOUT  
The PCB is designed on a four-layer (1 oz. Cu) board. Compo-  
nents and routing are on the top layer with a ground flood for  
additional isolation. Test and ground points were judiciously  
placed to facilitate high-speed probing. A common ground plane  
exists on the second layer. The third layer has three split power  
planes, two for the ADC and one for support logic. The DAC,  
components, and routing are located on the bottom layer.  
The AD9432 Evaluation Board is provided as a design example  
for customers of Analog Devices, Inc. ADI makes no warranties,  
express, statutory, or implied, regarding merchantability or fitness  
for a particular purpose.  
PCB Bill of Materials  
#
Quantity  
REFDES  
Device  
Package  
Value  
1
30  
C1–C8, C10–C13, C17, C19–C22,  
C27–C29, C41, C42, C47, C48,  
C53, C56, C58, C60, C61, C70  
Capacitor  
603  
0.1 µF  
2
3
4
5
6
7
8
9
1
4
1
18  
3
1
2
6
C9  
Capacitor  
Capacitor  
Capacitor  
E-HOLE  
Connector  
37-Pin Connector  
Power Connector  
Resistor  
603  
0.01 µF  
10 µF  
1 µF  
C14, C18, C31, C34  
C15  
E1–E13, E30, E32, E40, E42, E43  
P1, P2, P3  
P7  
P30, P40  
R1, R2, R7, R8, R10, R18  
(R1, R2, R10 Optional)  
CAPTAJD  
CAPTAJD  
Test Point  
SMB  
Female  
AMP 747462-2  
1206  
50 Ω  
10  
11  
12  
13  
14  
2
4
2
4
1
R3, R35  
R25, R26, R31, R32  
R6, R24  
RP1–RP4  
T1  
Resistor  
Resistor  
Resistor  
RES PAK  
Transformer  
1206  
1206  
1206  
100 Ω  
500 Ω  
2 kΩ  
100 Ω  
Mini-Circuits  
ADT1-1WT  
15  
16  
17  
18  
19  
20  
21  
22  
1
1
2
1
2
1
2
3
U1  
U2  
U3, U4  
U9  
U12–U13  
Z1  
DAC  
SOIC  
SOIC  
SC70  
52QFP  
SOIC  
SOIC  
SOIC  
1206  
AD9752  
AD780N  
Reference (Not Supplied)  
Inverter (U4 Not Supplied)  
ADC  
NC7SZ04P5  
AD9432  
74AC574M  
MC100ELT23  
MC10EL16  
24.9 Ω  
Latch  
PECL/TTL Translator  
Differential Receiver  
Resistor  
Z2, Z3  
R4, R5, R15  
REV. B  
–12–  
AD9432  
2
5
1
3
4
6
3 7  
4 4  
4 7  
5 2  
3 8  
4 3  
4 8  
5 1  
1 3  
3 6  
1 2  
3 5  
2 2  
2 3  
3 2  
1 1  
3 3  
1 0  
2 1  
2 4  
3 1  
9
3 4  
Figure 33a. PCB Schematic  
–13–  
REV. B  
AD9432  
Figure 33b. PCB Schematic (Continued)  
REV. B  
–14–  
AD9432  
Figure 37. Split Power Plane  
Figure 34. Top Silkscreen  
Figure 35. Top Level Routing  
Figure 36. Ground Plane  
Figure 38. Bottom Layer Route  
Figure 39. Bottom Silkscreen  
REV. B  
–15–  
AD9432  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
52-Lead Plastic Quad Flatpack (LQFP)  
(ST-52)  
0.063 (1.60)  
MAX  
0.472 (12.00) SQ  
0.030 (0.75)  
0.018 (0.45)  
39  
27  
40  
26  
SEATING  
PLANE  
0.394  
(10.0)  
SQ  
TOP VIEW  
(PINS DOWN)  
14  
52  
1
13  
0.006 (0.15)  
0.002 (0.05)  
0.026 (0.65)  
BSC  
0.015 (0.38)  
0.009 (0.22)  
0.057 (1.45)  
0.053 (1.35)  
–16–  
REV. B  

相关型号:

AD9432BST-80

12-Bit, 80 MSPS/105 MSPS A/D Converter
ADI

AD9432BSTZ-105

1-CH 12-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP52, ROHS COMPLIANT, MS-026BCC, LQFP-52
ROCHESTER

AD9432BSTZ-105

12-Bit, 80 MSPS/105 MSPS ADC
ADI

AD9432BSTZ-1051

12-Bit, 80 MSPS/105 MSPS ADC
ADI

AD9432BSTZ-80

1-CH 12-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP52, ROHS COMPLIANT, MS-026BCC, LQFP-52
ROCHESTER

AD9432BSTZ-80

12-Bit, 80 MSPS/105 MSPS ADC
ADI

AD9432BSTZ-801

12-Bit, 80 MSPS/105 MSPS ADC
ADI

AD9432BSVZ-105

12-Bit, 80 MSPS/105 MSPS ADC
ADI

AD9432BSVZ-1051

12-Bit, 80 MSPS/105 MSPS ADC
ADI

AD9432BSVZ-80

12-Bit, 80 MSPS/105 MSPS ADC
ADI

AD9432BSVZ-801

12-Bit, 80 MSPS/105 MSPS ADC
ADI

AD9432PCB

High Speed ADC USB FIFO Evaluation Kit
ADI