AD9445-BB-LVDS/PCB [ADI]

14-Bit, 105/125 MSPS, IF Sampling ADC;
AD9445-BB-LVDS/PCB
型号: AD9445-BB-LVDS/PCB
厂家: ADI    ADI
描述:

14-Bit, 105/125 MSPS, IF Sampling ADC

文件: 总41页 (文件大小:797K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
14-Bit, 105/125 MSPS, IF Sampling ADC  
AD9445  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
125 MSPS guaranteed sampling rate (AD9445BSV-125)  
78.3 dBFS SNR/92 dBFS SFDR with 30 MHz input (3.2 V p-p)  
74.8 dBFS SNR/95 dBFS SFDR with 30 MHz input (2.0 V p-p)  
77.0 dBFS SNR/87 dBFS SFDR with 170 MHz input (3.2 V p-p)  
74.6 dBFS SNR/95 dBFS SFDR with 170 MHz input (2.0 V p-p)  
73.0 dBFS SNR/88 dBFS SFDR with 300 MHz input (2.0 V p-p)  
102 dBFS 2-tone SFDR with 30 MHz and 31 MHz  
92 dBFS 2-tone SFDR with 170 MHz and 171 MHz  
60 fsec rms jitter  
AGND AVDD1 AVDD2 DRGND DRVDD  
RF ENABLE  
DFS  
AD9445  
DCS MODE  
OUTPUT MODE  
OR  
BUFFER  
14  
VIN+  
VIN–  
2
PIPELINE  
ADC  
CMOS  
OR  
LVDS  
OUTPUT  
STAGING  
T/H  
28  
D13 TO D0  
DCO  
2
CLOCK  
CLK+  
CLK–  
AND TIMING  
MANAGEMENT  
REF  
Excellent linearity  
DNL = 0.25 LSB typical  
VREF SENSE REFT REFB  
INL = 0.8 LSB typical  
2.0 V p-p to 4.0 V p-p differential full-scale input  
Buffered analog inputs  
Figure 1.  
LVDS outputs (ANSI-644 compatible) or CMOS outputs  
Data format select (offset binary or twos complement)  
Output clock available  
Optional features allow users to implement various selectable  
operating conditions, including input range, data format select,  
high IF sampling mode, and output data mode.  
3.3 V and 5 V supply operation  
The AD9445 is available in a Pb-free, 100-lead, surface-mount,  
plastic package (100-lead TQFP/EP) specified over the  
industrial temperature range −40°C to +85°C.  
APPLICATIONS  
Multicarrier, multimode cellular receivers  
Antenna array positioning  
Power amplifier linearization  
Broadband wireless  
PRODUCT HIGHLIGHTS  
1. High performance: outstanding SFDR performance for IF  
sampling applications such as multicarrier, multimode 3G,  
and 4G cellular base station receivers.  
Radar  
Infrared imaging  
Medical imaging  
Communications instrumentation  
2. Ease of use: on-chip reference and high input impedance  
track-and-hold with adjustable analog input range and an  
output clock simplifies data capture.  
GENERAL DESCRIPTION  
The AD9445 is a 14-bit, monolithic, sampling analog-to-digital  
converter (ADC) with an on-chip IF sampling track-and-hold  
circuit. It is optimized for performance, small size, and ease of  
use. The product operates at up to a 125 MSPS conversion rate  
and is designed for multicarrier, multimode receivers, such as  
those found in cellular infrastructure equipment.  
3. Packaged in a Pb-free, 100-lead TQFP/EP package.  
4. Clock duty cycle stabilizer (DCS) maintains overall ADC  
performance over a wide range of clock pulse widths.  
5. OR (out-of-range) outputs indicate when the signal is  
beyond the selected input range.  
The ADC requires 3.3 V and 5.0 V power supplies and a low  
voltage differential input clock for full performance operation.  
No external reference or driver components are required for  
many applications. Data outputs are CMOS or LVDS  
6. RF enable pin allows users to configure the device for  
optimum SFDR when sampling frequencies above 210 MHz  
(AD9445-125) or 240 MHz (AD9445-105).  
compatible (ANSI-644 compatible) and include the means to  
reduce the overall current needed for short trace distances.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
© 2005 Analog Devices, Inc. All rights reserved.  
 
AD9445* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
TOOLS AND SIMULATIONS  
Visual Analog  
AD9445 IBIS Models  
DOCUMENTATION  
REFERENCE DESIGNS  
CN0046  
Application Notes  
AN-1142: Techniques for High Speed ADC PCB Layout  
AN-1204: Using the ADL5562 Differential Amplifier to  
Drive Wide Bandwidth ADCs  
REFERENCE MATERIALS  
AN-1408: Using the AD8376 VGA to Drive Wide  
Bandwidth ADCs for High IF AC-Coupled Applications  
Technical Articles  
MS-2210: Designing Power Supplies for High Speed ADC  
AN-282: Fundamentals of Sampled Data Systems  
AN-345: Grounding for Low-and-High-Frequency Circuits  
DESIGN RESOURCES  
AD9445 Material Declaration  
PCN-PDN Information  
Quality And Reliability  
Symbols and Footprints  
AN-501: Aperture Uncertainty and ADC System  
Performance  
AN-586: LVDS Outputs for High Speed A/D Converters  
AN-715: A First Approach to IBIS Models: What They Are  
and How They Are Generated  
AN-737: How ADIsimADC Models an ADC  
DISCUSSIONS  
AN-741: Little Known Characteristics of Phase Noise  
View all AD9445 EngineerZone Discussions.  
AN-756: Sampled Systems and the Effects of Clock Phase  
Noise and Jitter  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
AN-807: Multicarrier WCDMA Feasibility  
AN-808: Multicarrier CDMA2000 Feasibility  
AN-835: Understanding High Speed ADC Testing and  
Evaluation  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
AN-905: Visual Analog Converter Evaluation Tool Version  
1.0 User Manual  
AN-935: Designing an ADC Transformer-Coupled Front  
End  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
Data Sheet  
AD9445: 14-Bit, 105/125 MSPS, IF Sampling ADC Data  
Sheet  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
AD9445  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Terminology.......................................................................................9  
Pin Configurations and Function Descriptions......................... 10  
Equivalent Circuits......................................................................... 15  
Typical Performance Characteristics ........................................... 16  
Theory of Operation ...................................................................... 24  
Analog Input and Reference Overview................................... 24  
Clock Input Considerations...................................................... 26  
Power Considerations................................................................ 27  
Digital Outputs ........................................................................... 27  
Timing ......................................................................................... 27  
Operational Mode Selection..................................................... 28  
Evaluation Board ............................................................................ 29  
Outline Dimensions....................................................................... 37  
Ordering Guide .......................................................................... 37  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
DC Specifications ......................................................................... 3  
AC Specifications.......................................................................... 4  
Digital Specifications ................................................................... 6  
Switching Specifications .............................................................. 6  
Timing Diagrams.......................................................................... 7  
Absolute Maximum Ratings............................................................ 8  
Thermal Resistance ...................................................................... 8  
ESD Caution.................................................................................. 8  
REVISION HISTORY  
10/05—Revision 0: Initial Version  
Rev. 0 | Page 2 of 40  
 
AD9445  
SPECIFICATIONS  
DC SPECIFICATIONS  
AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, LVDS mode, specified minimum sampling rate, 2.0 V p-p differential input, internal  
trimmed reference (1.0 V mode), AIN = −1.0 dBFS, DCS on, unless otherwise noted. RF ENABLE = AGND.  
Table 1.  
AD9445BSVZ-105  
AD9445BSVZ-125  
Parameter  
Temp  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
RESOLUTION  
ACCURACY  
Full  
14  
14  
Bits  
No Missing Codes  
Offset Error  
Full  
Full  
25°C  
Full  
25°C  
Full  
Guaranteed  
3
Guaranteed  
3
−7  
+7  
−7  
+7  
mV  
mV  
% FSR  
% FSR  
LSB  
Gain Error  
−3  
−2  
−0.6  
5
+3  
+2  
+0.65  
−3  
−2  
−0.6  
5
+3  
+2  
+0.65  
Differential Nonlinearity (DNL)1  
Integral Nonlinearity (INL)1  
0.25  
0.65  
0.25  
0.ꢀ  
25°C  
Full  
LSB  
LSB  
−1.6  
0.9  
+1.6  
1.1  
−2  
+2  
VOLTAGE REFERENCE  
Output Voltage VREF = 1.0 V  
Load Regulation @ 1.0 mA  
Reference Input Current (External VREF = 1.6 V)  
INPUT REFERRED NOISE  
ANALOG INPUT  
Full  
Full  
Full  
25°C  
1.0  
2
0.9  
1.0  
2
1.1  
V
mV  
μA  
1.0  
1.0  
LSB rms  
Input Span  
VREF = 1.6 V  
VREF = 1.0 V  
Full  
Full  
Full  
Full  
Full  
Full  
3.2  
2.0  
3.5  
3.2  
2.0  
3.5  
V p-p  
V p-p  
V
V
kΩ  
Internal Input Common-Mode Voltage  
External Input Common-Mode Voltage  
Input Resistance2  
Input Capacitance2  
POWER SUPPLIES  
Supply Voltage  
3.1  
3.9  
3.1  
3.9  
1
6
1
6
pF  
AVDD1  
AVDD2  
DRVDD—LVDS Outputs  
DRVDD—CMOS Outputs  
Supply Current1  
Full  
Full  
Full  
Full  
3.14  
4.75  
3.0  
3.3  
5.0  
3.46  
5.25  
3.6  
3.14  
4.75  
3.0  
3.3  
5.0  
3.46  
5.25  
3.6  
V
V
V
V
3.0  
3.3  
3.6  
3.0  
3.3  
3.6  
AVDD1  
Full  
Full  
Full  
Full  
335  
169  
63  
364  
196  
7ꢀ  
3ꢀ4  
172  
63  
424  
199  
7ꢀ  
mA  
mA  
mA  
mA  
AVDD21, 3  
IDRVDD1—LVDS Outputs  
IDRVDD1—CMOS Outputs  
PSRR  
14  
14  
Offset  
Gain  
Full  
Full  
1
0.2  
1
0.2  
mV/V  
%/V  
POWER CONSUMPTION  
LVDS Outputs  
CMOS Outputs (DC Input)  
Full  
Full  
2.2  
2.0  
2.4  
2.3  
2.1  
2.6  
W
W
1 Measured at the maximum clock rate, fIN = 15 MHz, full-scale sine wave, with a 100 Ω differential termination on each pair of output bits for LVDS output mode and  
approximately 5 pF loading on each output bit for CMOS output mode.  
2 Input capacitance or resistance refers to the effective impedance between one differential input pin and AGND. Refer to Figure 6 for the equivalent analog input structure.  
3 For RF ENABLE = AVDD1, IAVDD2 increases by ~30 mA, which increases power dissipation.  
Rev. 0 | Page 3 of 40  
 
 
 
AD9445  
AC SPECIFICATIONS  
AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, LVDS mode, specified minimum sample rate, 2.0 V p-p differential input, internal  
trimmed reference (1.0 V mode), AIN = −1.0 dBFS, DCS on, RF ENABLE = ground, unless otherwise noted.  
Table 2.  
AD9445BSVZ-105  
AD9445BSVZ-125  
Parameter  
Temp  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
SIGNAL-TO-NOISE RATIO (SNR)  
fIN = 10 MHz  
fIN = 30 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
Full  
25°C  
25°C  
25°C  
74.3  
74.3  
74.1  
73.ꢀ  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
73.3  
73  
72.9  
72.2  
72.2  
71.4  
72.9  
72.5  
72.3  
72  
71.4  
71.3  
fIN = 170 MHz  
fIN = 225 MHz1  
73.6  
73  
73.2  
72.9  
fIN = 300 MHz2  
fIN = 400 MHz2  
fIN = 450 MHz2  
72.1  
71  
70.5  
72  
71  
70.5  
fIN = 10 MHz (3.2 V p-p Input)  
fIN = 30 MHz (3.2 V p-p Input)  
fIN = 170 MHz (3.2 V p-p Input)  
fIN = 225 MHz (3.2 V p-p Input)1  
fIN = 300 MHz (3.2 V p-p Input)2  
SIGNAL-TO-NOISE AND DISTORTION (SINAD)  
fIN = 10 MHz  
25°C  
25°C  
25°C  
25°C  
25°C  
77.6  
77.5  
76  
75.3  
73.7  
77.3  
77.3  
76  
75.4  
73.5  
dB  
dB  
dB  
dB  
dB  
25°C  
25°C  
Full  
25°C  
25°C  
Full  
25°C  
25°C  
25°C  
74.2  
74.2  
73.9  
73.7  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
fIN = 30 MHz  
73.2  
72.ꢀ  
72.3  
71.4  
71.3  
70.2  
72.ꢀ  
72.3  
72.4  
71.9  
70.7  
69.3  
fIN = 170 MHz  
fIN = 225 MHz1  
73.3  
72.5  
73.0  
72.5  
fIN = 300 MHz2  
fIN = 400 MHz2  
fIN = 450 MHz2  
71.7  
67.2  
65.2  
71.5  
66.3  
64.3  
fIN = 10 MHz (3.2 V p-p Input)  
fIN = 30 MHz (3.2 V p-p Input)  
fIN = 170 MHz (3.2 V p-p Input)  
fIN = 225 MHz (3.2 V p-p Input)1  
fIN = 300 MHz (3.2 V p-p Input)2  
EFFECTIVE NUMBER OF BITS (ENOB)  
fIN = 10 MHz  
25°C  
25°C  
25°C  
25°C  
25°C  
77.4  
77.3  
75.7  
75.1  
72.5  
76.9  
76.ꢀ  
75.4  
75.2  
71.ꢀ  
dB  
dB  
dB  
dB  
dB  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
12.2  
12.2  
12.1  
12.0  
11.ꢀ  
11.7  
11.6  
12.2  
12.1  
12.0  
12.0  
11.ꢀ  
11.7  
11.6  
Bits  
Bits  
Bits  
Bits  
Bits  
Bits  
Bits  
fIN = 30 MHz  
fIN = 170 MHz  
fIN = 225 MHz1  
fIN = 300 MHz2  
fIN = 400 MHz2  
fIN = 450 MHz2  
Rev. 0 | Page 4 of 40  
 
AD9445  
AD9445BSVZ-105  
AD9445BSVZ-125  
Parameter  
Temp  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
SPURIOUS-FREE DYNAMIC RANGE  
(SFDR, Second or Third Harmonic)  
fIN = 10 MHz  
fIN = 30 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
Full  
25°C  
25°C  
25°C  
95  
92  
95  
94  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
ꢀ4  
ꢀ3  
ꢀ2  
76  
75  
76  
ꢀ5  
ꢀ2  
ꢀ0  
ꢀ3  
75  
75  
fIN = 170 MHz  
fIN = 225 MHz1  
94  
ꢀ7  
91  
ꢀꢀ  
fIN = 300 MHz2  
fIN = 400 MHz2  
fIN = 450 MHz2  
ꢀ7  
75  
70  
ꢀ7  
73  
69  
fIN = 10 MHz (3.2 V p-p Input)  
fIN = 30 MHz (3.2 V p-p Input)  
fIN = 170 MHz (3.2 V p-p Input)  
fIN = 225 MHz (3.2 V p-p Input)1  
fIN = 300 MHz (3.2 V p-p Input)2  
25°C  
25°C  
25°C  
25°C  
25°C  
92  
ꢀꢀ  
ꢀ6  
ꢀ1  
77  
92  
91  
ꢀ6  
ꢀ0  
76  
dBc  
dBc  
dBc  
dBc  
dBc  
WORST SPUR EXCLUDING SECOND OR  
THIRD HARMONICS  
fIN = 10 MHz  
fIN = 30 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
Full  
25°C  
25°C  
25°C  
−97  
−99  
−97  
−9ꢀ  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
−90  
−90  
−92  
−ꢀꢀ  
−ꢀ6  
−90  
−ꢀ9  
−ꢀꢀ  
−ꢀ5  
−ꢀ4  
−ꢀ0  
−ꢀ2  
fIN = 170 MHz  
fIN = 225 MHz1  
−99  
−94  
−93  
−94  
fIN = 300 MHz2  
fIN = 400 MHz2  
fIN = 450 MHz2  
−97  
−93  
−ꢀ2  
−92  
−93  
−ꢀ7  
fIN = 10 MHz (3.2 V p-p Input)  
fIN = 30 MHz (3.2 V p-p Input)  
fIN = 170 MHz (3.2 V p-p Input)  
fIN = 225 MHz (3.2 V p-p Input)1  
fIN = 300 MHz (3.2 V p-p Input)2  
TWO-TONE SFDR  
25°C  
25°C  
25°C  
25°C  
25°C  
−97  
−97  
−97  
−95  
−93  
−95  
−95  
−95  
−94  
−91  
dBc  
dBc  
dBc  
dBc  
dBc  
fIN = 30.3 MHz @ −7 dBFS,  
31.3 MHz @ −7 dBFS  
fIN = 170.3 MHz @ −7 dBFS,  
171.3 MHz @ −7 dBFS  
25°C  
25°C  
Full  
102  
92  
102  
91  
dBFS  
dBFS  
MHz  
ANALOG BANDWIDTH  
615  
615  
1 RF ENABLE = low (AGND ) for AD9445-105; RF ENABLE = high (AVDD1) for AD9445-125.  
2 RF ENABLE = high (AVDD1).  
Rev. 0 | Page 5 of 40  
 
AD9445  
DIGITAL SPECIFICATIONS  
AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, RLVDS_BIAS = 3.74 kΩ, unless otherwise noted.  
Table 3.  
AD9445BSVZ-105  
AD9445BSVZ-125  
Parameter  
Temp  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
CMOS LOGIC INPUTS (DFS, DCS MODE, OUTPUT MODE)  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Capacitance  
DIGITAL OUTPUT BITS—CMOS MODE (D0 to D13, OTR)1  
DRVDD = 3.3 V  
High Level Output Voltage  
Low Level Output Voltage  
Full  
Full  
Full  
Full  
Full  
2.0  
2.0  
V
V
μA  
μA  
pF  
0.ꢀ  
200  
+10  
0.ꢀ  
200  
+10  
−10  
3.25  
−10  
3.25  
2
2
Full  
Full  
V
V
0.2  
0.2  
DIGITAL OUTPUT BITS—LVDS MODE (D0 to D13, OTR)  
VOD Differential Output Voltage2  
VOS Output Offset Voltage  
Full  
Full  
247  
1.125  
545  
1.375  
247  
1.125  
545  
1.375  
mV  
V
CLOCK INPUTS (CLK+, CLK−)  
Differential Input Voltage  
Common-Mode Voltage  
Differential Input Resistance  
Differential Input Capacitance  
Full  
Full  
Full  
Full  
0.2  
1.3  
1.1  
0.2  
1.3  
1.1  
V
V
kΩ  
pF  
1.5  
1.4  
2
1.6  
1.7  
1.5  
1.4  
2
1.6  
1.7  
1 Output voltage levels measured with 5 pF load on each output.  
2 LVDS RTERM = 100 Ω.  
SWITCHING SPECIFICATIONS  
AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, unless otherwise noted.  
Table 4.  
AD9445BSVZ-105  
AD9445BSVZ-125  
Parameter  
Temp  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
CLOCK INPUT PARAMETERS  
Maximum Conversion Rate  
Minimum Conversion Rate  
CLK Period  
Full  
Full  
Full  
Full  
Full  
105  
125  
MSPS  
MSPS  
ns  
ns  
ns  
10  
10  
9.5  
3.ꢀ  
3.ꢀ  
ꢀ.0  
3.2  
3.2  
CLK Pulse Width High1 (tCLKH  
)
CLK Pulse Width Low1 (tCLKL  
)
DATA OUTPUT PARAMETERS  
Output Propagation Delay—CMOS (tPD)2 (Dx, DCO+)  
Output Propagation Delay—LVDS (tPD)3 (Dx+), (tCPD)3 (DCO+)  
Pipeline Delay (Latency)  
Aperture Delay (tA)  
Aperture Uncertainty (Jitter, tJ)  
Full  
Full  
Full  
Full  
Full  
3.35  
3.6  
13  
3.35  
3.6  
13  
ns  
ns  
Cycles  
ns  
fsec  
rms  
2.1  
4.ꢀ  
2.3  
4.ꢀ  
60  
60  
1 With duty cycle stabilizer (DCS) enabled.  
2 Output propagation delay is measured from clock 50% transition to data 50% transition with 5 pF load.  
3 LVDS RTERM = 100 Ω. Measured from the 50% point of the rising edge of CLK+ to the 50% point of the data transition.  
Rev. 0 | Page 6 of 40  
 
 
AD9445  
TIMING DIAGRAMS  
N – 1  
N
N + 1  
A
IN  
tCLKL  
tCLKH  
1/fS  
CLK+  
CLK–  
tPD  
N
N + 1  
N – 12  
13 CLOCK CYCLES  
N – 13  
DATA OUT  
DCO+  
DCO–  
tCPD  
Figure 2. LVDS Mode Timing Diagram  
N
N – 1  
N + 1  
VIN  
N + 2  
tCLKL  
tCLKH  
CLK–  
CLK+  
tPD  
13 CLOCK CYCLES  
N – 13  
N – 12  
N – 1  
N
DX  
DCO+  
DCO–  
Figure 3. CMOS Timing Diagram  
Rev. 0 | Page 7 of 40  
 
 
 
AD9445  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
With  
Respect  
To  
Parameter  
ELECTRICAL  
AVDD1  
AVDD2  
DRVDD  
AGND  
AVDD1  
AVDD2  
AVDD2  
D0 to D13  
CLK+/CLK−  
OUTPUT MODE, DCS  
MODE, DFS, SFDR,  
RF ENABLE  
VIN+, VIN−  
VREF  
SENSE  
REFT, REFB  
ENVIRONMENTAL  
Storage Temperature  
Range  
Operating Temperature  
Range  
Lead Temperature  
(Soldering 10 sec)  
Rating  
AGND  
AGND  
DGND  
DGND  
DRVDD  
DRVDD  
AVDD1  
DGND  
AGND  
AGND  
−0.3 V to +4 V  
−0.3 V to +6 V  
−0.3 V to +4 V  
−0.3 V to +0.3 V  
−4 V to +4 V  
−4 V to +6 V  
−4 V to +6 V  
–0.3 V to DRVDD + 0.3 V  
–0.3 V to AVDD1 + 0.3 V  
–0.3 V to AVDD1 + 0.3 V  
THERMAL RESISTANCE  
The heat sink of the AD9445 package must be soldered to ground.  
Table 6.  
Package Type  
θJA  
θJB  
θJC  
Unit  
100-lead TQFP/EP  
19.ꢀ  
ꢀ.3  
2
°C/W  
Typical θJA = 19.8°C/W (heat sink soldered) for multilayer  
board in still air.  
AGND  
AGND  
AGND  
AGND  
–0.3 V to AVDD2 + 0.3 V  
–0.3 V to AVDD1 + 0.3 V  
–0.3 V to AVDD1 + 0.3 V  
–0.3 V to AVDD1 + 0.3 V  
Typical θJB = 8.3°C/W (heat sink soldered) for multilayer board  
in still air.  
Typical θJC = 2°C/W (junction to exposed heat sink) represents  
the thermal resistance through heat sink path.  
–65°C to +125°C  
–40°C to +ꢀ5°C  
300°C  
Airflow increases heat dissipation, effectively reducing θJA. Also,  
more metal directly in contact with the package leads from  
metal traces through holes, ground, and power planes reduces  
the θJA. It is required that the exposed heat sink be soldered to  
the ground plane.  
Junction Temperature  
150°C  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. 0 | Page ꢀ of 40  
 
AD9445  
TERMINOLOGY  
Analog Bandwidth (Full Power Bandwidth)  
The analog input frequency at which the spectral power of the  
fundamental frequency (as determined by the FFT analysis) is  
reduced by 3 dB.  
Minimum Conversion Rate  
The clock rate at which the SNR of the lowest analog signal  
frequency drops by no more than 3 dB below the guaranteed  
limit.  
Aperture Delay (tA)  
Offset Error  
The delay between the 50% point of the rising edge of the clock  
and the instant at which the analog input is sampled.  
The major carry transition should occur for an analog value of  
½ LSB below VIN+ = VIN−. Offset error is defined as the  
deviation of the actual transition from that point.  
Aperture Uncertainty (Jitter, tJ)  
The sample-to-sample variation in aperture delay.  
Out-of-Range Recovery Time  
The time it takes for the ADC to reacquire the analog input  
after a transition from 10% above positive full scale to 10%  
above negative full scale, or from 10% below negative full scale  
to 10% below positive full scale.  
Clock Pulse Width and Duty Cycle  
Pulse width high is the minimum amount of time that the  
clock pulse should be left in the Logic 1 state to achieve rated  
performance. Pulse width low is the minimum time the clock  
pulse should be left in the low state. At a given clock rate, these  
specifications define an acceptable clock duty cycle.  
Output Propagation Delay (tPD)  
The delay between the clock rising edge and the time when all  
bits are within valid logic levels.  
Differential Nonlinearity (DNL, No Missing Codes)  
An ideal ADC exhibits code transitions that are exactly 1 LSB  
apart. DNL is the deviation from this ideal value. Guaranteed  
no missing codes to 14-bit resolution indicates that all 16,384  
codes must be present over all operating ranges.  
Power-Supply Rejection Ratio  
The change in full scale from the value with the supply at the  
minimum limit to the value with the supply at the maximum  
limit.  
Effective Number of Bits (ENOB)  
Signal-to-Noise and Distortion (SINAD)  
The effective number of bits for a sine wave input at a given  
input frequency can be calculated directly from its measured  
SINAD using the following formula:  
The ratio of the rms input signal amplitude to the rms value of  
the sum of all other spectral components below the Nyquist  
frequency, including harmonics but excluding dc.  
(
SINAD 1.76  
)
Signal-to-Noise Ratio (SNR)  
ENOB =  
6.02  
The ratio of the rms input signal amplitude to the rms value of  
the sum of all other spectral components below the Nyquist  
frequency, excluding the first six harmonics and dc.  
Gain Error  
The first code transition should occur at an analog value of  
½ LSB above negative full scale. The last transition should occur  
at an analog value of 1½ LSB below the positive full scale. Gain  
error is the deviation of the actual difference between first and  
last code transitions and the ideal difference between first and  
last code transitions.  
Spurious-Free Dynamic Range (SFDR)  
The ratio of the rms signal amplitude to the rms value of the  
peak spurious spectral component. The peak spurious component  
may be a harmonic. SFDR can be reported in dBc (that is, degrades  
as signal level is lowered) or dBFS (always related back to converter  
full scale).  
Integral Nonlinearity (INL)  
The deviation of each individual code from a line drawn from  
negative full scale through positive full scale. The point used as  
negative full scale occurs ½ LSB before the first code transition.  
Positive full scale is defined as a level 1½ LSB beyond the last  
code transition. The deviation is measured from the middle of  
each particular code to the true straight line.  
Temperature Drift  
The temperature drift for offset error and gain error specifies  
the maximum change from the initial (25°C) value to the value  
at TMIN or TMAX  
.
Total Harmonic Distortion (THD)  
The ratio of the rms input signal amplitude to the rms value of  
the sum of the first six harmonic components.  
Maximum Conversion Rate  
The clock rate at which parametric testing is performed.  
Two-Tone SFDR  
The ratio of the rms value of either input tone to the rms value  
of the peak spurious component. The peak spurious component  
may or may not be an IMD product.  
Rev. 0 | Page 9 of 40  
 
AD9445  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DCS MODE  
DNC  
DRGND  
D8+  
PIN 1  
2
3
OUTPUT MODE  
DFS  
D8–  
4
D7+  
5
LVDS_BIAS  
AVDD1  
SENSE  
VREF  
D7–  
6
D6+  
7
D6–  
8
DCO+  
DCO–  
D5+  
AD9445  
LVDS MODE  
TOP VIEW  
9
AGND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
REFT  
(Not to Scale)  
REFB  
D5–  
AVDD2  
AVDD2  
AVDD2  
AVDD2  
AVDD2  
AVDD2  
AVDD1  
AVDD1  
AVDD1  
AGND  
DRVDD  
DRGND  
D4+  
D4–  
D3+  
D3–  
D2+  
D2–  
D1+  
D1–  
VIN+  
D0+  
VIN–  
D0– (LSB)  
DNC  
DNC  
AGND  
AVDD2  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
DNC = DO NOT CONNECT  
Figure 4. 100-Lead TQFP/EP Pin Configuration in LVDS Mode  
Rev. 0 | Page 10 of 40  
 
AD9445  
Table 7. Pin Function Descriptions—100-Lead TQFP/EP in LVDS Mode  
Pin No.  
Mnemonic  
Description  
1
DCS MODE  
Clock Duty Cycle Stabilizer (DCS) Control Pin. CMOS compatible. DCS = low (AGND) to  
enable DCS (recommended); DCS = high (AVDD1) to disable DCS.  
2, 49 to 52  
3
DNC  
OUTPUT MODE  
Do Not Connect. These pins should float.  
CMOS-Compatible Output Logic Mode Control Pin. OUTPUT MODE = 0 for CMOS mode;  
OUTPUT MODE = 1 (AVDD1) for LVDS outputs.  
4
DFS  
Data Format Select Pin. CMOS control pin that determines the format of the output data.  
DFS = high (AVDD1) for twos complement; DFS = low (ground) for offset binary format.  
5
LVDS_BIAS  
AVDD1  
Set Pin for LVDS Output Current. Place 3.7 kΩ resistor terminated to DRGND.  
3.3 V ( 5%) Analog Supply.  
6, 1ꢀ to 20, 32 to 34, 36, 3ꢀ,  
43 to 45, 92 to 97  
7
SENSE  
VREF  
Reference Mode Selection. Connect to AGND for internal 1 V reference; connect to  
AVDD1 for external reference.  
1.0 V Reference I/O. Function dependent on SENSE and external programming resistors.  
Decouple to ground with 0.1 μF and 10 μF capacitors.  
9, 21, 24, 39, 42, 46, 91, 9ꢀ, 99, AGND  
Exposed Heat Sink  
Analog Ground. The exposed heat sink on the bottom of the package must be  
connected to AGND.  
10  
REFT  
Differential Reference Output. Decoupled to ground with 0.1 μF capacitor and to REFB  
(Pin 14) with 0.1 μF and 10 μF capacitors.  
11  
REFB  
Differential Reference Output. Decoupled to ground with a 0.1 μF capacitor and to REFT  
(Pin 13) with 0.1 μF and 10 μF capacitors.  
12 to 17, 25 to 31, 35, 37  
22  
23  
40  
AVDD2  
VIN+  
VIN−  
CLK+  
CLK−  
DRGND  
DRVDD  
D0− (LSB)  
D0+  
D1−  
D1+  
D2−  
D2+  
D3−  
D3+  
D4−  
D4+  
D5−  
D5+  
DCO−  
DCO+  
D6−  
D6+  
D7−  
D7+  
Dꢀ−  
Dꢀ+  
D9−  
D9+  
D10−  
D10+  
D11−  
D11+  
5.0 V Analog Supply ( 5%).  
Analog Input—True.  
Analog Input—Complement.  
Clock Input—True.  
Clock Input—Complement.  
Digital Output Ground.  
3.3 V Digital Output Supply (3.0 V to 3.6 V).  
D0 Complement Output Bit (LVDS Levels).  
D0 True Output Bit.  
D1 Complement Output Bit.  
D1 True Output Bit.  
D2 Complement Output Bit.  
D2 True Output Bit.  
D3 Complement Output Bit.  
D3 True Output Bit.  
D4 Complement Output Bit.  
D4 True Output Bit.  
D5 Complement Output Bit.  
D5 True Output Bit.  
Data Clock Output—Complement.  
Data Clock Output—True.  
D6 Complement Output Bit.  
D6 True Output Bit.  
D7 Complement Output Bit.  
D7 True Output Bit.  
Dꢀ Complement Output Bit.  
Dꢀ True Output Bit.  
D9 Complement Output Bit.  
D9 True Output Bit.  
D10 Complement Output Bit.  
D10 True Output Bit.  
D11 Complement Output Bit.  
D11 True Output Bit.  
41  
47, 63, 75, ꢀ7  
4ꢀ, 64, 76, ꢀꢀ  
53  
54  
55  
56  
57  
5ꢀ  
59  
60  
61  
62  
65  
66  
67  
6ꢀ  
69  
70  
71  
72  
73  
74  
77  
7ꢀ  
79  
ꢀ0  
ꢀ1  
ꢀ2  
Rev. 0 | Page 11 of 40  
 
AD9445  
Pin No.  
ꢀ3  
ꢀ4  
Mnemonic  
D12−  
D12+  
Description  
D12 Complement Output Bit.  
D12 True Output Bit.  
ꢀ5  
ꢀ6  
ꢀ9  
90  
D13−  
D13+ (MSB)  
OR−  
D13 Complement Output Bit.  
D13 True Output Bit.  
Out-of-Range Complement Output Bit.  
Out-of-Range True Output Bit.  
OR+  
100  
RF ENABLE  
RF ENABLE Control Pin. CMOS-compatible control pin to optimize the configuration of  
the AD9445 analog front end. Connecting RF ENABLE to AGND optimizes SFDR  
performance for applications with analog input frequencies <210 MHz for 125 MSPS  
speed grade and <230 MHz for the 105 MSPS speed grade. For applications with analog  
inputs >225 MHz for the 125 MSPS speed grade and >230 MHz for the 105 MSPS speed  
grade, this pin should be connected to AVDD1 for optimum SFDR performance. Power  
dissipation from AVDD2 increases by 150 mW to 200 mW.  
Rev. 0 | Page 12 of 40  
AD9445  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DCS MODE  
DNC  
DRGND  
D2  
PIN 1  
2
3
OUTPUT MODE  
DFS  
D1  
4
D0 (LSB)  
DNC  
5
LVDS_BIAS  
AVDD1  
SENSE  
VREF  
6
DNC  
7
DNC  
8
DCO+  
DCO–  
DNC  
AD9445  
9
AGND  
CMOS MODE  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
REFT  
TOP VIEW  
(Not to Scale)  
REFB  
DNC  
AVDD2  
AVDD2  
AVDD2  
AVDD2  
AVDD2  
AVDD2  
AVDD1  
AVDD1  
AVDD1  
AGND  
DRVDD  
DRGND  
DNC  
DNC  
DNC  
DNC  
DNC  
DNC  
DNC  
DNC  
VIN+  
DNC  
VIN–  
DNC  
AGND  
DNC  
AVDD2  
DNC  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
DNC = DO NOT CONNECT  
Figure 5. 100-Lead TQFP/EP Pin Configuration in CMOS Mode  
Rev. 0 | Page 13 of 40  
AD9445  
Table 8. Pin Function Descriptions—100-Lead TQFP/EP in CMOS Mode  
Pin No.  
Mnemonic Description  
1
DCS MODE  
Clock Duty Cycle Stabilizer (DCS) Control Pin. CMOS compatible. DCS = low (AGND) to enable  
DCS (recommended); DCS = high (AVDD1) to disable DCS.  
Do Not Connect. These pins should float.  
2, 49 to 62, 65 to 66, 69 to 71 DNC  
3
4
5
OUTPUT  
MODE  
DFS  
CMOS-Compatible Output Logic Mode Control Pin. OUTPUT MODE = 0 for CMOS mode;  
OUTPUT MODE = 1 (AVDD1) for LVDS outputs.  
Data Format Select Pin. CMOS control pin that determines the format of the output data.  
DFS = high (AVDD1) for twos complement; DFS = low (ground) for offset binary format.  
Set Pin for LVDS Output Current. Place 3.7 kΩ resistor terminated to DRGND.  
3.3 V ( 5%) Analog Supply.  
LVDS_BIAS  
AVDD1  
6, 1ꢀ to 20, 32 to 34, 36, 3ꢀ,  
43 to 45, 92 to 97  
7
SENSE  
VREF  
AGND  
REFT  
Reference Mode Selection. Connect to AGND for internal 1 V reference; connect to AVDD1 for  
external reference.  
1.0 V Reference I/O. Function dependent on SENSE and external programming resistors.  
Decouple to ground with 0.1 μF and 10 μF capacitors.  
Analog Ground. The exposed heat sink on the bottom of the package must be connected to  
AGND.  
Differential Reference Output. Decoupled to ground with 0.1 μF capacitor and to REFB  
(Pin 14) with 0.1 μF and 10 μF capacitors.  
9, 21, 24, 39, 42, 46, 91, 9ꢀ,  
99, Exposed Heat Sink  
10  
11  
REFB  
Differential Reference Output. Decoupled to ground with a 0.1 μF capacitor and to REFT  
(Pin 13) with 0.1 μF and 10 μF capacitors.  
12 to 17, 25 to 31, 35, 37  
22  
23  
40  
AVDD2  
VIN+  
VIN−  
CLK+  
CLK−  
DRGND  
DRVDD  
DCO−  
DCO+  
D0 (LSB)  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Dꢀ  
D9  
5.0 V Analog Supply ( 5%).  
Analog Input—True.  
Analog Input—Complement.  
Clock Input—True.  
Clock Input—Complement.  
Digital Output Ground.  
3.3 V Digital Output Supply (3.0 V to 3.6 V).  
Data Clock Output—Complement.  
Data Clock Output—True.  
D0 True Output Bit (CMOS levels).  
D1 True Output Bit.  
D2 True Output Bit.  
D3 True Output Bit.  
D4 True Output Bit.  
D5 True Output Bit.  
D6 True Output Bit.  
D7 True Output Bit.  
Dꢀ True Output Bit.  
D9 True Output Bit.  
41  
47, 63, 75, ꢀ7  
4ꢀ, 64, 76, ꢀꢀ  
67  
6ꢀ  
72  
73  
74  
77  
7ꢀ  
79  
ꢀ0  
ꢀ1  
ꢀ2  
ꢀ3  
ꢀ4  
ꢀ5  
ꢀ6  
ꢀ9  
90  
100  
D10  
D11  
D12  
D13 (MSB)  
OR  
D10 True Output Bit.  
D11 True Output Bit.  
D12 True Output Bit.  
D13 True Output Bit.  
Out-of-Range True Output Bit.  
RF ENABLE  
RF ENABLE CMOS-compatible Control Pin. Optimizes the configuration of the analog front end.  
Connecting RF ENABLE to AGND optimizes SFDR performance for applications with analog input  
frequencies <210 MHz for 125 MSPS speed grade and <230 MHz for the 105 MSPS speed grade.  
For applications with analog inputs >225 MHz for the 125 MSPS speed grade and >230 MHz  
for the 105 MSPS speed grade, this pin should be connected to AVDD1 for optimum SFDR.  
Power dissipation from AVDD2 increases by 150 mW to 200 mW.  
Rev. 0 | Page 14 of 40  
 
AD9445  
EQUIVALENT CIRCUITS  
AVDD2  
VIN+  
6pF  
1k  
Ω
Ω
DRVDD  
X1  
T/H  
3.5V  
1k  
DX  
AVDD2  
VIN–  
6pF  
Figure 6. Equivalent Analog Input Circuit  
Figure 9. Equivalent CMOS Digital Output Circuit  
VDD  
DRVDD DRVDD  
RF ENABLE, DCS  
MODE, OUTPUT  
MODE, DFS  
K
1.2V  
30kΩ  
LVDS_BIAS  
3.74kΩ  
I
LVDSOUT  
Figure 10. Equivalent Digital Input Circuit,  
DFS, DCS MODE, OUTPUT MODE  
Figure 7. Equivalent LVDS_BIAS Circuit  
AVDD2  
DRVDD  
3kΩ  
3kΩ  
CLK+  
CLK–  
V
V
DX–  
V
DX+  
V
2.5k  
Ω
2.5k  
Ω
Figure 11. Equivalent Sample Clock Input Circuit  
Figure 8. Equivalent LVDS Digital Output Circuit  
Rev. 0 | Page 15 of 40  
 
 
AD9445  
TYPICAL PERFORMANCE CHARACTERISTICS  
AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, rated sample rate, LVDS mode, DCS enabled, TA = 25°C, 2.0 V p-p differential  
input, AIN = −1.0 dBFS, internal trimmed reference (nominal VREF = 1.0 V), unless otherwise noted.  
0
–10  
0
–10  
125MSPS  
125MSPS  
30.3MHz @ –1.0dBFS  
SNR = 73.4dB  
225.3MHz @ –1.0dBFS  
SNR = 72.9dB  
–20  
–20  
ENOB = 12.1BITS  
SFDR = 94dBc  
ENOB = 12.1BITS  
SFDR = 88dBc  
–30  
–30  
–40  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–130  
0
15.625  
31.250  
46.875  
62.500  
0
15.625  
31.250  
46.875  
62.500  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 12. AD9445-125 64k Point Single-Tone FFT/125 MSPS/30.3 MHz  
Figure 15. AD9445-125 64k Point Single-Tone FFT/125 MSPS/225.3 MHz  
0
0
125MSPS  
125MSPS  
–10  
–10  
100.3MHz @ –1.0dBFS  
300.3MHz @ –1.0dBFS  
SNR = 0dB  
SNR = 72.0dB  
–20  
–20  
ENOB = 12.1BITS  
ENOB = 11.8BITS  
SFDR = 96dBc  
SFDR = 87dBc  
–30  
–40  
–30  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–130  
0
15.625  
31.250  
FREQUENCY (MHz)  
46.875  
62.500  
0
15.625  
31.250  
46.875  
62.500  
FREQUENCY (MHz)  
Figure 13. AD9445-125 64k Point Single-Tone FFT/125 MSPS/100.3 MHz  
Figure 16. AD9445-125 64k Point Single-Tone FFT/125 MSPS/300.3 MHz  
0
0
125MSPS  
125MSPS  
–10  
–10  
170.3MHz @ –1.0dBFS  
450.3MHz @ –1.0dBFS  
SNR = 73.2dB  
SNR = 70.5dB  
–20  
–20  
ENOB = 12.0BITS  
ENOB = 11.6BITS  
SFDR = 91dBc  
SFDR = 69dBc  
–30  
–40  
–30  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–130  
0
15.625  
31.250  
FREQUENCY (MHz)  
46.875  
62.500  
0
15.625  
31.250  
46.875  
62.500  
FREQUENCY (MHz)  
Figure 14. AD9445-125 64k Point Single-Tone FFT/125 MSPS/170.3 MHz  
Figure 17. AD9445-125 64k Point Single-Tone FFT/125 MSPS/450.3 MHz  
Rev. 0 | Page 16 of 40  
 
AD9445  
100  
95  
100  
95  
SFDR +85°C  
SFDR +85°C  
SFDR –40°C  
SFDR +25°C  
SFDR –40°C  
90  
90  
SFDR +25°C  
85  
80  
75  
70  
65  
85  
80  
75  
70  
65  
SNR +25°C  
SNR –40°C  
SNR –40°C  
SNR +25°C  
SNR +85°C  
SNR +85°C  
60  
55  
60  
55  
0
50  
100  
150  
200  
250  
300  
350  
400  
450  
0
50  
100  
150  
200  
250  
300  
350  
400  
450  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
Figure 18. AD9445-125 SNR/SFDR vs. Analog Input Frequency,  
125 MSPS, 2.0 V p-p Input Range  
Figure 21. AD9445-125 SNR/SFDR vs. Analog Input Frequency,  
125 MSPS, 3.2 V p-p Input Range  
100  
105  
SFDR +25°C  
SFDR +85°C  
95  
90  
85  
125M SFDR dBc  
100  
95  
90  
85  
80  
75  
70  
105M SFDR dBc  
SFDR –40°C  
SNR +25°C  
SNR –40°C  
80  
75  
70  
65  
60  
55  
SNR +85°C  
125M SNR dB  
105M SNR dB  
100 120  
SAMPLE RATE (MSPS)  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
20  
40  
60  
80  
140  
ANALOG INPUT FREQUENCY (MHz)  
Figure 19. AD9445-125 SNR/SFDR vs. Analog Input Frequency,  
3.2 V p-p Input Range, 125 MSPS, CMOS Output Mode  
Figure 22. AD9445 Single-Tone SNR/SFDR vs. Sample Rate 2.3 MHz  
120  
120  
SFDR dBFS  
SFDR dBFS  
100  
80  
100  
80  
SNR dBFS  
SNR dBFS  
60  
60  
40  
40  
SFDR dBc  
SFDR dBc  
20  
20  
SNR dB  
SNR dB  
0
0
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
ANALOG INPUT AMPLITUDE (dB)  
ANALOG INPUT AMPLITUDE (dB)  
Figure 20. AD9445-125 SNR/SFDR vs. Analog Input Level,  
125 MSPS/225.3 MHz  
Figure 23. AD9445-125 SNR/SFDR vs. Analog Input Level,  
125 MSPS/225.3 MHz, CMOS Output Mode  
Rev. 0 | Page 17 of 40  
AD9445  
0
0
–10  
105MSPS  
105MSPS  
–10  
–20  
30.3MHz @ –1.0dBFS  
SNR = 74.3dB  
225.3MHz @ –1.0dBFS  
SNR = 73.0dB  
–20  
ENOB = 12.2BITS  
SFDR = 92dBc  
ENOB = 12.0BITS  
SFDR = 87dBc  
–30  
–30  
–40  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–130  
0
13.125  
26.250  
FREQUENCY (MHz)  
39.375  
52.500  
0
13.125  
26.250  
39.375  
52.500  
FREQUENCY (MHz)  
Figure 24. AD9445-105 64k Point Single-Tone FFT/105 MSPS/30.3 MHz  
Figure 27. AD9445-105 64k Point Single-Tone FFT/105 MSPS/225.3 MHz  
0
0
105MSPS  
105MSPS  
–10  
–10  
100.3MHz @ –1.0dBFS  
300.3MHz @ –1.0dBFS  
SNR = 73.5dB  
SNR = 72.1dB  
–20  
–20  
ENOB = 11.8BITS  
ENOB = 11.8BITS  
SFDR = 93dBc  
SFDR = 87dBc  
–30  
–40  
–30  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–130  
0
13.125  
26.250  
FREQUENCY (MHz)  
39.375  
52.500  
0
13.125  
26.250  
FREQUENCY (MHz)  
39.375  
52.500  
Figure 25. AD9445-105 64k Point Single-Tone FFT/105 MSPS/100.3 MHz  
Figure 28. AD9445-105 64k Point Single-Tone FFT/105 MSPS/300.3 MHz  
0
0
105MSPS  
105MSPS  
–10  
–10  
170.3MHz @ –1.0dBFS  
450.3MHz @ –1.0dBFS  
SNR = 73.6dB  
SNR = 70.5dB  
–20  
–20  
ENOB = 12.1BITS  
ENOB = 11.6BITS  
SFDR = 94dBc  
SFDR = 70dBc  
–30  
–40  
–30  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–130  
0
13.125  
26.250  
39.375  
52.500  
0
13.125  
26.250  
FREQUENCY (MHz)  
39.375  
52.500  
FREQUENCY (MHz)  
Figure 26. AD9445-105 64k Point Single-Tone FFT/105 MSPS/170.3 MHz  
Figure 29. AD9445-105 64k Point Single-Tone FFT/105 MSPS/450.3 MHz  
Rev. 0 | Page 1ꢀ of 40  
AD9445  
100  
95  
100  
95  
SFDR +25°C  
SFDR –40°C  
SFDR +25°C  
SFDR –40°C  
90  
90  
SFDR +85°C  
SFDR +85°C  
85  
80  
75  
70  
65  
85  
80  
75  
70  
65  
SNR –40°C  
SNR –40°C  
SNR +25°C  
SNR +85°C  
SNR +85°C  
SNR +25°C  
60  
55  
60  
55  
0
50  
100  
150  
200  
250  
300  
350  
400  
450  
0
50  
100  
150  
200  
250  
300  
350  
400  
450  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
Figure 30. AD9445-105 SNR/SFDR vs. Analog Input Frequency,  
105 MSPS, 2.0 V p-p  
Figure 33. AD9445-105 SNR/SFDR vs. Analog Input Frequency,  
105 MSPS, 3.2 V p-p  
100  
100  
SFDR +25°C  
SFDR +85°C  
SFDR –40°C  
95  
90  
85  
80  
75  
70  
65  
60  
SFDR dBc  
95  
90  
85  
80  
75  
70  
65  
SNR –40°C  
SNR +25°C  
SNR dB  
SNR +85°C  
60  
55  
2.7  
2.9  
3.1  
3.3  
3.5  
3.7  
3.9  
4.1  
4.3  
0
20  
40  
60  
80  
100  
120  
140  
160  
180  
ANALOG INPUT COMMON-MODE VOLTAGE  
ANALOG INPUT FREQUENCY (MHz)  
Figure 31. AD9445-105 SNR/SFDR vs. Analog Input Frequency,  
3.2 V p-p Input Range, 105 MSPS, CMOS Output Mode  
Figure 34. AD9445-105 SNR/SFDR vs. Analog Input Common Mode,  
105 MSPS/10.3 MHz  
120  
120  
SFDR dBFS  
SFDR dBFS  
100  
80  
100  
80  
SNR dBFS  
SNR dBFS  
60  
60  
SFDR dBc  
40  
20  
0
40  
SFDR dBc  
20  
SNR dB  
SNR dB  
0
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
ANALOG INPUT AMPLITUDE (dB)  
ANALOG INPUT AMPLITUDE (dB)  
Figure 32. AD9445-105 SNR/SFDR vs. Analog Input Level,  
105 MSPS/225.3 MHz  
Figure 35. AD9445-105 SNR/SFDR vs. Analog Input Level,  
105 MSPS/225.3 MHz, CMOS Output Mode  
Rev. 0 | Page 19 of 40  
AD9445  
0
–10  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
125MSPS  
30.3MHz @ –7.0dBFS  
31.3MHz @ –7.0dBFS  
SFDR = 102dBFS  
–20  
–30  
SFDR dBc  
–40  
–50  
WORST IMD3 dBc  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
SFDR dBFS  
–110  
–120  
WORST IMD3 dBFS  
–140  
0
13.625  
27.250  
40.875  
54.500  
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
FREQUENCY (MHz)  
FUNDAMENTAL LEVEL (dB)  
Figure 36. AD9445-125 64k Point Two-Tone FFT/  
125 MSPS/30.3 MHz, 31.3 MHz  
Figure 39. AD9445-125 Two-Tone SFDR vs. Analog Input Level  
125 MSPS/170.3 MHz, 171.3 MHz  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
105MSPS  
–10  
30.3MHz @ –7.0dBFS  
31.3MHz @ –7.0dBFS  
SFDR = 102dBFS  
–20  
–30  
SFDR dBc  
–40  
–50  
–60  
WORST IMD3 dBc  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
SFDR dBFS  
–110  
–120  
WORST IMD3 dBFS  
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
0
13.125  
26.250  
39.375  
52.500  
FUNDAMENTAL LEVEL (dB)  
FREQUENCY (MHz)  
Figure 37. AD9445-125 Two-Tone SFDR vs. Analog Input Level  
125 MSPS/30.3 MHz, 31.3 MHz  
Figure 40. AD9445-105 64k Point Two-Tone FFT/105 MSPS/30.3 MHz, 31.3 MHz  
0
0
–10  
–20  
125MSPS  
–10  
170.3MHz @ –7.0dBFS  
171.3MHz @ –7.0dBFS  
SFDR = 91dBFS  
–20  
–30  
–30  
–40  
SFDR dBc  
–40  
–50  
–50  
–60  
WORST IMD3 dBc  
–60  
–70  
–80  
–70  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–140  
SFDR dBFS  
–100  
–110  
–120  
WORST IMD3 dBFS  
0
13.625  
27.250  
40.875  
54.500  
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
FREQUENCY (MHz)  
FUNDAMENTAL LEVEL (dB)  
Figure 38. AD9445-125 64k Point Two-Tone FFT/  
125 MSPS/170.3 MHz, 171.3 MHz  
Figure 41. AD9445-105 Two-Tone SFDR vs. Analog Input Level  
105 MSPS/30.3 MHz, 31.3 MHz  
Rev. 0 | Page 20 of 40  
AD9445  
25000  
20000  
15000  
10000  
5000  
0
30000  
25000  
20000  
15000  
10000  
5000  
0
23754  
SAMPLE SIZE = 65538  
22190  
26294  
16117  
15743  
9003  
7968  
3493  
3350  
1355  
1127  
307  
N – 4 N – 3 N – 2 N – 1  
227  
N + 1 N + 2 N + 3 N + 4  
62  
75  
3
2
2
N – 4 N – 3 N – 2 N – 1  
N
N + 1 N + 2 N + 3 N + 4  
N
OUTPUT CODE  
OUTPUT CODE  
Figure 42. AD9445-125 Grounded Input Histogram  
Figure 45. AD9445-105 Grounded Input Histogram  
0
–10  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
105MSPS  
170.3MHz @ –7.0dBFS  
171.3MHz @ –7.0dBFS  
SFDR = 92dBFS  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
–0.7  
–0.8  
0
13.125  
26.250  
39.375  
52.500  
–40  
–20  
0
20  
40  
60  
80  
FREQUENCY (MHz)  
TEMPERATURE (°C)  
Figure 43. AD9445-105 64k Point Two-Tone FFT/105 MSPS/170.3 MHz, 171.3 MHz  
Figure 46. AD9445-125 Gain vs. Temperature  
0.4  
0.3  
0
–10  
–20  
0.2  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
SFDR dBc  
0.1  
WORST IMD3 dBc  
0
–0.1  
–0.2  
–0.3  
–0.4  
SFDR dBFS  
–110  
–120  
WORST IMD3 dBFS  
0
4096  
8192  
12288  
16384  
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
OUTPUT CODE  
FUNDAMENTAL LEVEL (dB)  
Figure 44. AD9445-105 Two-Tone SFDR vs. Analog Input Level  
105 MSPS/170.3 MHz, 171.3 MHz  
Figure 47. AD9445-105 DNL Error vs. Output Code, 105 MSPS, 10.3 MHz  
Rev. 0 | Page 21 of 40  
AD9445  
0.4  
1.0  
0.8  
0.3  
0.6  
0.2  
0.4  
0.1  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.1  
–0.2  
–0.3  
–0.4  
0
4096  
8192  
12288  
16384  
0
4096  
8192  
12288  
16384  
OUTPUT CODE  
OUTPUT CODE  
Figure 48. AD9445-125 DNL Error vs. Output Code, 125 MSPS, 10.3 MHz  
Figure 51. AD9445-125 INL Error vs. Output Code, 125 MSPS, 10.3 MHz  
400  
350  
1.014  
1.012  
1.010  
1.008  
1.006  
1.004  
1.002  
300  
AVDD1  
250  
200  
AVDD2  
150  
100  
DRVDD  
50  
0
0
20  
40  
60  
80  
100  
120  
140  
160  
–40  
–20  
0
20  
40  
60  
80  
SAMPLE RATE (MSPS)  
TEMPERATURE (°C)  
Figure 52. AD9445-105 Power Supply Current vs. Sample Rate  
10.3 MHz @ −1 dBFS  
Figure 49. AD9445-125 VREF vs. Temperature  
78  
0.5  
0.4  
0.3  
77  
170.3MHz SNR dB  
76  
0.2  
0.1  
75  
74  
73  
72  
71  
225.3MHz SNR dB  
300.3MHz SNR dB  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2  
0
4096  
8192  
12288  
16384  
ANALOG INPUT RANGE (V p-p)  
OUTPUT CODE  
Figure 53. AD9445-125 SNR vs. Analog Input Range, 125 MSPS/170.3 MHz,  
225.3 MHz, 300.3 MHz  
Figure 50. AD9445-105 INL Error vs. Output Code, 105 MSPS, 10.3 MHz  
Rev. 0 | Page 22 of 40  
 
AD9445  
78  
77  
95  
90  
85  
80  
75  
70  
170.3MHz SFDR dBc  
76  
75  
170.3MHz SFDR dBc  
225.3MHz SFDR dBc  
300.3MHz SFDR dBc  
225.3MHz SFDR dBc  
74  
73  
72  
71  
300.3MHz SFDR dBc  
1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2  
1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2  
ANALOG INPUT RANGE (V p-p)  
ANALOG INPUT RANGE (V p-p)  
Figure 54. AD9445-105 SNR vs. Analog Input Range,  
105 MSPS/170.3 MHz, 225.3 MHz, 300.3 MHz  
Figure 57. AD9445-105 SFDR vs. Analog Input Range,  
105 MSPS/170.3 MHz, 225.3 MHz, 300.3 MHz  
400  
81  
350  
300  
250  
200  
150  
100  
50  
80  
79  
78  
77  
76  
75  
74  
AVDD1  
AVDD2  
105M SNR dBFS  
125M SNR dBFS  
DRVDD  
20  
0
0
40  
60  
80  
100  
120  
140  
160  
1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2  
SAMPLE RATE (MSPS)  
ANALOG INPUT RANGE (V p-p)  
Figure 55. AD9445-125 Power Supply Current vs. Sample Rate  
10.3 MHz @ −1 dBFS  
Figure 58. SNR vs. Analog Input Range, 2.3 MHz @ −30 dBFS  
95  
90  
170.3MHz SFDR dBc  
85  
80  
225.3MHz SFDR dBc  
75  
300.3MHz SFDR dBc  
70  
1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2  
ANALOG INPUT RANGE (V p-p)  
Figure 56. AD9445-125 SFDR vs. Analog Input Range, 125 MSPS/170.3 MHz,  
225.3 MHz, 300.3 MHz  
Rev. 0 | Page 23 of 40  
AD9445  
THEORY OF OPERATION  
connected to AGND). Because of this trim and the maximum ac  
performance provided by the 2.0 V p-p analog input range, there  
is little benefit to using analog input ranges <2 V p-p. Users are  
cautioned that the differential nonlinearity of the ADC varies  
with the reference voltage. Configurations that use <2.0 V p-p  
may exhibit missing codes and, therefore, degraded noise and  
distortion performance.  
The AD9445 architecture is optimized for high speed and ease  
of use. The analog inputs drive an integrated, high bandwidth  
track-and-hold circuit that samples the signal prior to quantization  
by the 14-bit pipeline ADC core. The device includes an on-board  
reference and input logic that accepts TTL, CMOS, or LVPECL  
levels. The digital output logic levels are user selectable as standard  
3 V CMOS or LVDS (ANSI-644 compatible) via the OUTPUT  
MODE pin.  
VIN+  
ANALOG INPUT AND REFERENCE OVERVIEW  
VIN–  
REFT  
A stable and accurate 0.5 V band gap voltage reference is built  
into the AD9445. The input range can be adjusted by varying  
the reference voltage applied to the AD9445, using either the  
internal reference or an externally applied reference voltage.  
The input span of the ADC tracks reference voltage changes  
linearly.  
0.1μF  
+
ADC  
CORE  
0.1μF  
10μF  
REFB  
0.1μF  
VREF  
0.1μF  
+
10μF  
SELECT  
LOGIC  
Internal Reference Connection  
SENSE  
A comparator within the AD9445 detects the potential at the  
SENSE pin and configures the reference into three possible states,  
which are summarized in Table 9. If SENSE is grounded, the  
reference amplifier switch is connected to the internal resistor  
divider (see Figure 59), setting VREF to ~1.0 V. Connecting the  
SENSE pin to VREF switches the reference amplifier output to  
the SENSE pin, completing the loop and providing a ~1.0 V  
reference output. If a resistor divider is connected as shown in  
Figure 60, the switch again sets to the SENSE pin. This puts the  
reference amplifier in a noninverting mode with the VREF  
output defined as  
0.5V  
AD9445  
Figure 59. Internal Reference Configuration  
VIN+  
VIN–  
REFT  
0.1μF  
0.1μF  
REFB  
+
ADC  
CORE  
10μF  
R2  
R1  
VREF = 0.5V × 1+  
0.1μF  
VREF  
+
10μF  
0.1μF  
In all reference configurations, REFT and REFB drive the  
analog-to-digital conversion core and establish its input span.  
The input range of the ADC always equals twice the voltage at  
the reference pin for either an internal or an external reference.  
SELECT  
LOGIC  
R2  
SENSE  
R1  
0.5V  
Internal Reference Trim  
AD9445  
The internal reference voltage is trimmed during the production  
test to adjust the gain (analog input voltage range) of the AD9445.  
Therefore, there is little advantage to the user supplying an external  
voltage reference to the AD9445. The gain trim is performed  
with the AD9445 input range set to 2.0 V p-p nominal (SENSE  
Figure 60. Programmable Reference Configuration  
Table 9. Reference Configuration Summary  
Selected Mode  
SENSE Voltage  
Resulting VREF (V)  
N/A  
Resulting Differential Span (V p-p)  
2 × external reference  
2 × VREF  
External Reference  
Programmable Reference  
AVDD1  
0.2 V to VREF  
R2  
R1  
(See Figure 60)  
0.5 × 1 +  
Internal Fixed Reference  
AGND to 0.2 V  
1.0  
2.0  
Rev. 0 | Page 24 of 40  
 
 
 
 
 
AD9445  
External Reference Operation  
The AD9445s internal reference is trimmed to enhance the gain  
accuracy of the ADC. An external reference may be more stable  
over temperature, but the gain of the ADC is not likely to improve.  
Figure 49 shows the typical drift characteristics of the internal  
reference in both 1 V and 0.5 V modes.  
VIN+  
VIN–  
1V p-p  
3.5V  
When the SENSE pin is tied to AVDD, the internal reference is  
disabled, allowing the use of an external reference. An internal  
reference buffer loads the external reference with an equivalent  
7 kΩ load. The internal buffer still generates the positive and  
negative full-scale references, REFT and REFB, for the ADC  
core. The input span is always twice the value of the reference  
voltage; therefore, the external reference must be limited to a  
maximum of 1.6 V.  
DIGITAL OUT = ALL 1s  
DIGITAL OUT = ALL 0s  
Figure 61. Differential Analog Input Range for VREF = 1.0 V  
Therefore, the analog source driving the AD9445 should be ac-  
coupled to the input pins. The recommended method for driving  
the analog input of the AD9445 is to use an RF transformer to  
convert single-ended signals to differential (see Figure 62).  
Series resistors between the output of the transformer and the  
AD9445 analog inputs help isolate the analog input source from  
switching transients caused by the internal sample-and-hold  
circuit. The series resistors, along with the 1 kΩ resisters connected  
to the internal 3.5 V bias, must be considered in impedance  
matching the transformer input. For example, if RT is set to  
51 Ω, RS is set to 33 Ω, and there is a 1:1 impedance ratio trans-  
former, the input will match a 50 Ω source with a full-scale drive  
of 10.0 dBm. The 50 Ω impedance matching can also be incor-  
porated on the secondary side of the transformer, as shown in  
the evaluation board schematic (see Figure 67).  
Analog Inputs  
As with most new high speed, high dynamic range ADCs, the  
analog input to the AD9445 is differential. Differential inputs  
improve on-chip performance because signals are processed  
through attenuation and gain stages. Most of the improvement  
is a result of differential analog stages having high rejection of  
even-order harmonics. There are also benefits at the PCB level.  
First, differential inputs have high common-mode rejection of  
stray signals, such as ground and power noise. Second, they  
provide good rejection of common-mode signals, such as local  
oscillator feedthrough. The specified noise and distortion of the  
AD9445 cannot be realized with a single-ended analog input, so  
such configurations are discouraged. Contact sales for  
recommendations of other 14-bit ADCs that support single-  
ended analog input configurations.  
R
ADT1–1WT  
S
ANALOG  
INPUT  
SIGNAL  
VIN+  
R
T
AD9445  
R
S
With the 1 V reference, which is the nominal value (see the  
Internal Reference Trim section), the differential input range of  
the AD9445 analog input is nominally 2.0 V p-p or 1.0 V p-p on  
each input (VIN+ or VIN−).  
VIN–  
0.1μF  
Figure 62. Transformer-Coupled Analog Input Circuit  
High IF Applications  
The AD9445 analog input voltage range is offset from ground  
by 3.5 V. Each analog input connects through a 1 kΩ resistor to  
the 3.5 V bias voltage and to the input of a differential buffer.  
The internal bias network on the input properly biases the  
buffer for maximum linearity and range (see the Equivalent  
Circuits section).  
In applications where the analog input frequency range is  
>100 MHz, the phase and amplitude matching at the analog  
inputs becomes critical to optimize performance of the ADC.  
The circuit in Figure 63 can be used to optimize the matching of  
these parameters. This configuration uses a double balun config-  
uration that has low parasitics, high bandwidth, and parasitic  
cancellation.  
ETC1–1–13  
ETC1–1–13  
33  
33  
Ω
Ω
25  
Ω
Ω
VIN+  
CT  
AD9445  
0.1μ  
F
0.1μF  
25  
VIN–  
50Ω  
SOURCE  
Figure 63. Double Balun-Coupled Analog Input Circuit  
Rev. 0 | Page 25 of 40  
 
 
AD9445  
Schottky diodes across the secondary of the transformer limit  
clock excursions into the AD9445 to approximately 0.8 V p-p  
differential. This helps prevent the large voltage swings of the  
clock from feeding through to other portions of the AD9445  
and limits the noise presented to the sample clock inputs.  
CLOCK INPUT CONSIDERATIONS  
Any high speed ADC is extremely sensitive to the quality of the  
sampling clock provided by the user. A track-and-hold circuit is  
essentially a mixer, and any noise, distortion, or timing jitter on  
the clock is combined with the desired signal at the analog-to-  
digital output. For that reason, considerable care was taken in  
the design of the clock inputs of the AD9445, and the user is  
advised to give careful thought to the clock source.  
If a low jitter clock is available, it may help to band-pass filter  
the clock reference before driving the ADC clock inputs.  
Another option is to ac couple a differential ECL/PECL signal  
to the encode input pins, as shown in Figure 65.  
Typical high speed ADCs use both clock edges to generate a  
variety of internal timing signals and, as a result, may be  
sensitive to the clock duty cycle. Commonly a 5% tolerance is  
required on the clock duty cycle to maintain dynamic  
performance characteristics. The AD9445 contains a clock duty  
cycle stabilizer (DCS) that retimes the nonsampling edge,  
providing an internal clock signal with a nominal 50% duty  
cycle. Noise and distortion performance are nearly flat for a  
30% to 70% duty cycle with the DCS enabled. The DCS circuit  
locks to the rising edge of CLK+ and optimizes timing  
ADT1–1WT  
CLOCK  
SOURCE  
CLK+  
0.1μF  
AD9445  
CLK–  
HSMS2812  
DIODES  
Figure 64. Crystal Clock Oscillator, Differential Encode  
VT  
0.1μF  
ENCODE  
internally. This allows for a wide range of input duty cycles at  
the input without degrading performance. Jitter in the rising  
edge of the input is still of paramount concern and is not  
reduced by the internal stabilization circuit. The duty cycle  
control loop does not function for clock rates of less than  
30 MHz nominally. The loop is associated with a time constant  
that should be considered in applications where the clock rate  
can change dynamically, requiring a wait time of 1.5 μs to 5 μs  
after a dynamic clock frequency increase or decrease before the  
DCS loop is relocked to the input signal. During the time that  
the loop is not locked, the DCS loop is bypassed, and the internal  
device timing is dependent on the duty cycle of the input clock  
signal. In such an application, it may be appropriate to disable  
the duty cycle stabilizer. In all other applications, enabling the  
DCS circuit is recommended to maximize ac performance.  
ECL/  
PECL  
AD9445  
0.1μF  
ENCODE  
VT  
Figure 65. Differential ECL for Encode  
Jitter Considerations  
High speed, high resolution ADCs are sensitive to the quality  
of the clock input. The degradation in SNR at a given input  
frequency (fINPUT) and rms amplitude due only to aperture jitter  
(tJ) can be calculated using the following equation:  
SNR = 20 log[2πfINPUT × tJ]  
In the equation, the rms aperture jitter represents the root-  
mean-square of all jitter sources, which includes the clock  
input, analog input signal, and ADC aperture jitter  
specification. IF undersampling applications are particularly  
sensitive to jitter, see Figure 66.  
The DCS circuit is controlled by the DCS MODE pin; a CMOS  
logic low (AGND) on DCS MODE enables the duty cycle  
stabilizer, and logic high (AVDD1 = 3.3 V) disables the  
controller.  
The clock input should be treated as an analog signal in cases  
where aperture jitter may affect the dynamic range of the  
AD9445. Power supplies for clock drivers should be separated  
from the ADC output driver supplies to avoid modulating the  
clock signal with digital noise. Low jitter crystal-controlled  
oscillators make the best clock sources. If the clock is generated  
from another type of source (by gating, dividing, or another  
method), it should be synchronized by the original clock during  
the last step.  
The AD9445 input sample clock signal must be a high quality,  
extremely low phase noise source to prevent degradation of  
performance. Maintaining 14-bit accuracy places a premium on  
the encode clock phase noise. SNR performance can easily  
degrade by 3 dB to 4 dB with 70 MHz analog input signals  
when using a high jitter clock source. (See the AN-501  
Application Note, Aperture Uncertainty and ADC System  
Performance.) For optimum performance, the AD9445 must be  
clocked differentially. The sample clock inputs are internally  
biased to ~2.2 V, and the input signal is usually ac-coupled into  
the CLK+ and CLK− pins via a transformer or capacitors.  
Figure 64 shows one preferred method for clocking the  
AD9445. The clock source (low jitter) is converted from single-  
ended to differential using an RF transformer. The back-to-back  
Rev. 0 | Page 26 of 40  
 
 
 
AD9445  
75  
70  
65  
60  
55  
50  
45  
40  
resistor is placed at Pin 5 (LVDS_BIAS) to ground. Dynamic  
0.2ps  
0.5ps  
performance, including both SFDR and SNR, is maximized  
when the AD9445 is used in LVDS mode; designers are  
encouraged to take advantage of this mode. The AD9445  
outputs include complimentary LVDS outputs for each data bit  
(Dx+/Dx−), the overrange output (OR+/OR−), and the output  
data clock output (DCO+/DCO−). The RSET resistor current is  
multiplied on-chip, setting the output current at each output  
equal to a nominal 3.5 mA (11 × IRSET). A 100 Ω differential  
termination resistor placed at the LVDS receiver inputs results  
in a nominal 350 mV swing at the receiver. LVDS mode  
facilitates interfacing with LVDS receivers in custom ASICs and  
FPGAs that have LVDS capability for superior switching  
performance in noisy environments. Single point-to-point net  
topologies are recommended, with a 100 Ω termination resistor  
placed as close to the receiver as possible. It is recommended to  
keep the trace length less than 2 inches and to keep differential  
output trace lengths as equal as possible.  
1.0ps  
1.5ps  
2.0ps  
2.5ps  
3.0ps  
1
10  
100  
1000  
INPUT FREQUENCY (MHz)  
Figure 66. SNR vs. Input Frequency and Jitter  
POWER CONSIDERATIONS  
Care should be taken when selecting a power source. The use of  
linear dc supplies is highly recommended. Switching supplies  
tend to have radiated components that may be received by the  
AD9445. Each of the power supply pins should be decoupled as  
closely to the package as possible using 0.1 μF chip capacitors.  
CMOS Mode  
In applications that can tolerate a slight degradation in dynamic  
performance, the AD9445 output drivers can be configured to  
interface with 2.5 V or 3.3 V logic families by matching  
DRVDD to the digital supply of the interfaced logic. CMOS  
outputs are available when OUTPUT MODE is CMOS logic  
low (or AGND for convenience). In this mode, the output data  
bits, Dx, are single-ended CMOS, as is the overrange output,  
OR. The output clock is provided as a differential CMOS signal,  
DCO+/DCO−. Lower supply voltages are recommended to  
avoid coupling switching transients back to the sensitive analog  
sections of the ADC. The capacitive load to the CMOS outputs  
should be minimized, and each output should be connected to a  
single gate through a series resistor (220 Ω) to minimize  
switching transients caused by the capacitive loading.  
The AD9445 has separate digital and analog power supply pins.  
The analog supplies are denoted AVDD1 (3.3 V) and AVDD2  
(5 V), and the digital supply pins are denoted DRVDD. Although  
the AVDD1 and DRVDD supplies can be tied together, best  
performance is achieved when the supplies are separate. This is  
because the fast digital output swings can couple switching  
current back into the analog supplies. Note that both AVDD1  
and AVDD2 must be held within 5% of the specified voltage.  
The DRVDD supply of the AD9445 is a dedicated supply for the  
digital outputs in either LVDS or CMOS output mode. When in  
LVDS mode, the DRVDD should be set to 3.3 V. In CMOS  
mode, the DRVDD supply can be connected from 2.5 V to  
3.6 V for compatibility with the receiving logic.  
TIMING  
The AD9445 provides latched data outputs with a pipeline delay  
of 13 clock cycles. Data outputs are available one propagation  
delay (tPD) after the rising edge of CLK+. Refer to Figure 2 and  
Figure 3 for detailed timing diagrams.  
DIGITAL OUTPUTS  
LVDS Mode  
The off-chip drivers on the chip can be configured to provide  
LVDS-compatible output levels via Pin 3 (OUTPUT MODE).  
LVDS outputs are available when OUTPUT MODE is CMOS  
logic high (or AVDD1 for convenience) and a 3.74 kΩ RSET  
Rev. 0 | Page 27 of 40  
 
 
AD9445  
RF ENABLE  
OPERATIONAL MODE SELECTION  
The RF ENABLE pin is a CMOS-compatible control pin that  
optimizes the configuration of the AD9445 analog front end.  
The crossover analog input frequency for determining the  
RF ENABLE connection differs for the 105 MSPS and 125 MSPS  
speed grades. For the 125 MSPS speed grade, connecting the  
RF ENABLE to AGND optimizes SFDR performance for appli-  
cations with analog input frequencies <210 MHz. For applications  
with analog inputs >210 MHz, this pin should be connected to  
AVDD1 for optimum SFDR performance. Connecting this pin to  
AVDD1 reconfigures the ADC, thereby improving high IF and RF  
spurious performance. Operating in this mode increases power dis-  
sipation from AVDD2 by 150 mW to 200 mW. For the 105 MSPS  
speed grade, connecting RF ENABLE to AGND optimizes SFDR  
performance for applications with analog input frequencies  
<230 MHz. For applications with analog inputs >230 MHz, this  
pin should be connected to AVDD1 to optimize performance.  
Data Format Select  
The data format select (DFS) pin of the AD9445 determines  
the coding format of the output data. This pin is 3.3 V CMOS-  
compatible, with logic high (or AVDD1, 3.3 V) selecting twos  
complement and DFS logic low (AGND) selecting offset binary  
format. Table 10 summarizes the output coding.  
Output Mode Select  
The OUPUT MODE pin controls the logic compatibility, as well  
as the pinout of the digital outputs. This pin is a CMOS-compatible  
input. With OUTPUT MODE = 0 (AGND), the AD9445 outputs  
are CMOS compatible, and the pin assignment for the device is  
as defined in Table 8. With OUTPUT MODE = 1 (AVDD1, 3.3  
V), the AD9445 outputs are LVDS compatible, and the pin  
assignment for the device is as defined in Table 7.  
Duty Cycle Stabilizer  
The DCS circuit is controlled by the DCS MODE pin; a CMOS  
logic low (AGND) on DCS MODE enables the DCS, and logic  
high (AVDD1, 3.3 V) disables the controller.  
Table 10. Digital Output Coding  
VIN+ − VIN−  
Input Span = 3.2 V p-p (V)  
VIN+ − VIN−  
Input Span = 2 V p-p (V)  
Digital Output  
Offset Binary (D13••••••D0)  
Digital Output  
Twos Complement (D13••••••D0)  
Code  
16,3ꢀ3 +1.600  
+1.000  
0
−0.000122  
−1.00  
11 1111 1111 1111  
10 0000 0000 0000  
01 1111 1111 1111  
00 0000 0000 0000  
01 1111 1111 1111  
00 0000 0000 0000  
11 1111 1111 1111  
10 0000 0000 0000  
ꢀ192  
ꢀ191  
0
0
−0.000195  
−1.60  
Rev. 0 | Page 2ꢀ of 40  
 
 
AD9445  
EVALUATION BOARD  
Evaluation boards are offered to configure the AD9445 in  
either CMOS or LVDS mode only. This design represents a  
recommended configuration for using the device over a wide  
range of sampling rates and analog input frequencies. These  
evaluation boards provide all the support circuitry required to  
operate the ADC in its various modes and configurations.  
Complete schematics are shown in Figure 67 through Figure 70.  
Gerber files are available from engineering applications demon-  
strating the proper routing and grounding techniques that should  
be applied at the system level.  
The LVDS mode evaluation boards include an LVDS-to-CMOS  
translator, making them compatible with the high speed ADC  
FIFO evaluation kit (HSC-ADC-EVALA-SC). The kit includes a  
high speed data capture board that provides a hardware solution  
for capturing up to 32 kB samples of high speed ADC output  
data in a FIFO memory chip (user upgradeable to 256 kB  
samples). Software is provided to enable the user to download  
the captured data to a PC via the USB port. This software also  
includes a behavioral model of the AD9445 and many other  
high speed ADCs.  
It is critical that signal sources with very low phase noise  
(<60 fsec rms jitter) be used to realize the ultimate performance  
of the converter. Proper filtering of the input signal to remove  
harmonics and lower the integrated noise at the input is also  
necessary to achieve the specified noise performance.  
Behavioral modeling of the AD9445 is also available at  
www.analog.com/ADIsimADC. The ADIsimADC™ software  
supports virtual ADC evaluation using ADI proprietary behavioral  
modeling technology. This allows rapid comparison between  
the AD9445 and other high speed ADCs with or without  
hardware evaluation boards.  
The evaluation boards are shipped with a 115 V ac to 6 V dc  
power supply. The evaluation boards include low dropout  
regulators to generate the various dc supplies required by the  
AD9445 and its support circuitry. Separate power supplies are  
provided to isolate the DUT from the support circuitry. Each  
input configuration can be selected by proper connection of  
various jumpers (see Figure 67).  
The user can choose to remove the translator and terminations  
to access the LVDS outputs directly.  
Rev. 0 | Page 29 of 40  
 
AD9445  
1
2
XTALPWR  
EXTREF  
DRGND  
P1  
P2  
3
4
P3  
P4  
DRVDD  
1
2
P1  
P2  
GND  
VCC  
GND  
5V  
3
4
P3  
P4  
H4  
MTHOLE6  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
50  
49  
48  
47  
46  
D0_T  
D0_C  
DRVDD  
D11_C/D6_Y  
D11_T/D7_Y  
DRVDD  
D11_C  
D11_T  
D12_C  
D12_T  
D13_C  
D13_T  
D14_C  
D14_T  
D15_C  
D15_T  
DRGND  
DRVDD  
OR_C  
D0_T  
D0_C (LSB)  
DRVDD  
DRGND  
GND  
H3  
MTHOLE6  
DRVDD  
DRGND  
AGND  
AVDD1  
AVDD1  
AVDD1  
AGND  
ENCB  
D12_C/D8_Y  
D12_T/D9_Y  
D13_C/D10_Y  
D13_T/D11_Y  
D14_C/D12_Y  
D14_T/D13_Y  
D15_C/D14_Y  
(MSB) D15_T/D15_Y  
DRGND  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
H1  
MTHOLE6  
VCC  
VCC  
GND  
VCC  
H2  
MTHOLE6  
GND  
DRGND  
ENCB  
ENC  
ENC  
AGND  
GND  
VCC  
5V  
DRVDD  
AVDD1  
AVDD2  
AVDD1  
AVDD2  
AVDD1  
AVDD1  
AVDD1  
AVDD2  
AVDD2  
AVDD2  
AVDD2  
AVDD2  
AVDD2  
DOR_C  
DOR_T/DOR_Y  
GND  
OR_T  
VCC  
5V  
AGND  
AVDD1  
AVDD1  
AVDD1  
AVDD1  
AVDD1  
AVDD1  
AGND  
AGND  
AGND  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
GND  
5V  
EPAD  
101  
OPTIONAL  
C91  
0.1μF  
ETC1-1-13  
+
PRI  
SEC  
Figure 67. AD9445 Evaluation Board Schematic  
Rev. 0 | Page 30 of 40  
 
AD9445  
C R 1  
2
1
3
1
2
3
C R 2  
Figure 68. AD9445 Evaluation Board Schematic (Continued)  
Rev. 0 | Page 31 of 40  
AD9445  
BYPASS CAPACITORS  
VCC  
GND  
VCC  
GND  
+
C64  
10μF  
C43  
0.1μF  
C35  
0.1μF  
C32  
0.1μF  
C30  
0.01μF  
C28  
0.1μF  
C27  
0.1μF  
C90  
0.1μF  
C50  
0.1μF  
C60  
0.1μF  
C10  
0.1μF  
C61  
0.1μF  
C75  
0.1μF  
C11  
XX  
C14  
XX  
C17  
XX  
C16  
XX  
C15  
XX  
C31  
XX  
C38  
XX  
C29  
XX  
C19  
XX  
DRVDD  
DRGND  
5V  
DRVDD  
+
C65  
10μF  
C47  
0.1μF  
C23  
0.1μF  
C21  
0.1μF  
C20  
0.1μF  
C69  
XX  
C70  
XX  
C45  
XX  
C49  
XX  
DRGND  
EXTREF  
+
+
C56  
10μF  
C85  
0.1μF  
C53  
0.1μF  
C52  
0.1μF  
C58  
0.01μF  
C37  
0.1μF  
C48  
0.1μF  
C18  
0.1μF  
C55  
10μF  
GND  
5V  
GND  
C72  
XX  
C73  
XX  
C108  
XX  
C109  
XX  
C110  
XX  
GND  
5V  
C94  
C95  
C22  
C59  
C93  
C96  
C97  
C84  
C46  
0.1μF  
0.1μF  
0.1μF  
0.1μF  
0.1μF  
0.1μF  
0.1μF  
0.1μF  
0.1μF  
GND  
Figure 69. AD9445 Evaluation Board Schematic (Continued)  
Rev. 0 | Page 32 of 40  
AD9445  
Figure 70. AD9445 Evaluation Board Schematic (Continued)  
Rev. 0 | Page 33 of 40  
 
AD9445  
Table 11. AD9445-125 Baseband Customer Evaluation Board Bill of Materials  
Item Qty. Reference Designator Description  
Package  
Value  
Manufacturer  
Mfg. Part No.  
1
7
C4, C6, C33, C34, Cꢀ7,  
Cꢀꢀ, Cꢀ9  
Capacitor  
TAJD  
10 ꢁF  
Digi-Key Corporation 47ꢀ-1699-2  
2
44  
C2, C3, C5, C7, Cꢀ,  
C9, C10, C11, C12,  
C15, C20, C21, C22,  
C23, C26, C27, C2ꢀ,  
C32, C35, C3ꢀ, C40,  
C42, C43, C46, C47,  
C4ꢀ, C50, C52, C53,  
C59, C60, C76, C77,  
C7ꢀ, Cꢀ2, Cꢀ4, Cꢀ5,  
Cꢀ6, C90, C91, C94,  
C95, C96, C97  
Capacitor  
402  
0.1 ꢁF  
Digi-Key Corporation PCC2146CT-ND  
3
4
5
6
7
2
4
1
1
1
20  
C30, C5ꢀ  
C39, C56, C64, C65  
C51  
CR1  
CR2  
E1, E2, E3, E4, E5, E6,  
E9, E10, E14, E1ꢀ, E19,  
E20, E24, E25, E26, E27,  
E30, E31, E36, E41  
Capacitor  
Capacitor  
Capacitor  
Diode  
Diode  
Header  
201  
TAJD  
ꢀ05  
SOT23M5  
SOT23M5  
EHOLE  
0.01 ꢁF Digi-Key Corporation 445-1796-1-ND  
10 ꢁF  
10 ꢁF  
Digi-Key Corporation 47ꢀ-1699-2  
Digi-Key Corporation 490-1717-1-ND  
Digi-Key Corporation MA3X71600LCT-ND  
Digi-Key Corporation MA3X71600LCT-ND  
Mouser Electronics  
517-6111TG  
9
10  
11  
2
1
3
J1, J4  
L1  
L3, L4, L5  
SMA  
Inductor  
EMIFIL®  
SMA  
0603A  
1206MIL  
Digi-Key Corporation ARFX1231-ND  
10 nH  
Coilcraft, Inc.  
0603CS-10NXGBU  
ꢀ1-BLM31P500S  
Mouser Electronics  
BLM31PG500SN1L  
12  
13  
14  
15  
16  
17  
1ꢀ  
19  
20  
21  
22  
23  
24  
25  
26  
27  
2ꢀ  
1
1
1
1
4
1
2
2
2
1
1
2
1
1
2
2
23  
P4  
P7  
R3  
Rꢀ  
PJ-002A  
Header  
Resistor  
Resistor  
Resistor  
BRES402  
Resistor  
Resistor array  
Transformer  
AD9445BSVZ-125  
ADP333ꢀ-5  
ADP333ꢀ-3.3  
SN75LVDT3ꢀ6  
SN75LVDT390  
Resistor  
PJ-002A  
C40MS  
402  
402  
402  
402  
402  
16PIN  
ADT1-1WT  
SV-100-3  
SOT-223HS  
SOT-223HS  
TSSOP64  
SOIC16PW  
402  
Digi-Key Corporation CP-002A-ND  
Samtec, Inc. TSW-120-0ꢀ-L-D-RA  
3.74 kΩ Digi-Key Corporation P3.74KLCT-ND  
50 Ω  
0 Ω  
1 kΩ  
33 Ω  
22 Ω  
Digi-Key Corporation P49.9LCT-ND  
Digi-Key Corporation P0.0JCT-ND  
Digi-Key Corporation P1.0KLCT-ND  
Digi-Key Corporation P33JCT-ND  
Digi-Key Corporation 742C163220JCT-ND  
R10, R19, R39, L2  
R11  
R2ꢀ, R35  
RZ4, RZ5  
T3, T5  
U1  
U14  
U3, U7  
Uꢀ  
U15  
Mini-Circuits  
ADT1-1WT  
Analog Devices, Inc.  
Analog Devices, Inc.  
Analog Devices, Inc.  
AD9445BSVZ-125  
ADP333ꢀ-5  
ADP333ꢀ-33  
Arrow Electronics, Inc. SN75LVDT3ꢀ6DGG  
Arrow Electronics, Inc. SN75LVDT390PW  
Digi-Key Corporation P36JCT-ND  
Digi-Key Corporation 47ꢀ-1699-2  
R4, R6  
C1, C44, C551  
36 Ω  
10 ꢁF  
XX  
Capacitor  
CAP402  
TAJD  
402  
C13, C14, C16, C17,  
C1ꢀ, C19, C29, C31,  
C36, C37, C41, C45,  
C49, C61, C69, C70,  
C72, C73, C75, C93,  
C10ꢀ, C109, C1101  
29  
30  
31  
32  
33  
34  
35  
1
C9ꢀ1  
Capacitor  
Header  
SMA  
Header  
BRES402  
BRES402  
ECLOSC  
ꢀ05  
EHOLE  
SMA  
C40MS  
402  
402  
10 ꢁF  
Digi-Key Corporation 490-1717-1-ND  
E151  
Mouser Electronics  
Digi-Key Corporation ARFX1231-ND  
Samtec, Inc. TSW-120-0ꢀ-L-D-RA  
517-6111TG  
J51  
P61  
2
3
1
R1, R21  
R5, R7, R91  
U21  
XX  
XX  
DIP4(14)  
Rev. 0 | Page 34 of 40  
AD9445  
Item Qty. Reference Designator Description  
Package  
MTHOLE6  
SM-22  
Value  
Manufacturer  
Mfg. Part No.  
36  
37  
3ꢀ  
4
2
2
H1, H2, H3, H41  
T1, T21  
P21, P221  
MTHOLE6  
Balun transformer  
Term strip  
M/A-COM  
Newark Electronics  
ETC1-1-13  
PTMICRO4  
1 Parts not populated.  
Table 12. AD9445-125 IF Customer Evaluation Board Bill of Materials  
Item Qty. Reference Designator Description Package  
Value  
Manufacturer  
MFG_PART_NO  
1
7
C4, C6, C33, C34, Cꢀ7,  
Cꢀꢀ, Cꢀ9  
Capacitor  
TAJD  
10 ꢁF  
Digi-Key Corporation 47ꢀ-1699-2  
2
44  
C2, C3, C5, C7, Cꢀ,  
C9, C10, C11, C12,  
C15, C20, C21, C22,  
C23, C26, C27, C2ꢀ,  
C32, C35, C3ꢀ, C40,  
C42, C43, C46, C47,  
C4ꢀ, C50, C52, C53,  
C59, C60, C76, C77,  
C7ꢀ, Cꢀ2, Cꢀ4, Cꢀ5,  
Cꢀ6, C90, C91, C94,  
C95, C96, C97  
Capacitor  
402  
0.1 ꢁF  
Digi-Key Corporation PCC2146CT-ND  
3
4
5
6
7
2
4
1
1
1
20  
C30, C5ꢀ  
C39, C56, C64, C65  
C51  
CR1  
CR2  
E1, E2, E3, E4, E5, E6,  
E9, E10, E14, E1ꢀ, E19,  
E20, E24, E25, E26, E27,  
E30, E31, E36, E41  
Capacitor  
Capacitor  
Capacitor  
Diode  
Diode  
Header  
201  
TAJD  
ꢀ05  
SOT23M5  
SOT23M5  
EHOLE  
0.01 ꢁF Digi-Key Corporation 445-1796-1-ND  
10 ꢁF  
10 ꢁF  
Digi-Key Corporation 47ꢀ-1699-2  
Digi-Key Corporation 490-1717-1-ND  
Digi-Key Corporation MA3X71600LCT-ND  
Digi-Key Corporation MA3X71600LCT-ND  
Mouser Electronics  
517-6111TG  
9
2
1
3
1
1
1
1
4
1
2
2
1
1
J1, J4  
L1  
L3, L4, L5  
P4  
P7  
R3  
Rꢀ  
R10, R19, R39, L2  
R11  
R2ꢀ, R35  
RZ4, RZ5  
U1  
SMA  
Inductor  
SMA  
0603A  
Digi-Key Corporation ARFX1231-ND  
10  
11  
12  
13  
14  
15  
16  
17  
1ꢀ  
19  
20  
21  
10 nH  
Coilcraft, Inc.  
Mouser Electronics  
0603CS-10NXGBU  
ꢀ1-BLM31P500S  
EMIFIL® BLM31PG500SN1L 1206MIL  
PJ-002A  
Header  
Resistor  
Resistor  
Resistor  
BRES402  
Resistor  
PJ-002A  
C40MS  
402  
402  
402  
402  
402  
16PIN  
SV-100-3  
SOT-  
Digi-Key Corporation CP-002A-ND  
Samtec, Inc. TSW-120-0ꢀ-L-D-RA  
3.74 kΩ Digi-Key Corporation P3.74KLCT-ND  
50 Ω  
0 Ω  
1 kΩ  
33 Ω  
22 Ω  
Digi-Key Corporation P49.9LCT-ND  
Digi-Key Corporation P0.0JCT-ND  
Digi-Key Corporation P1.0KLCT-ND  
Digi-Key Corporation P33JCT-ND  
Digi-Key Corporation 742C163220JCT-ND  
Resistor array  
AD9445BSVZ-125  
ADP333ꢀ-5  
Analog Devices, Inc.  
Analog Devices, Inc.  
AD9445BSVZ-125  
ADP333ꢀ-5  
U14  
223HS  
22  
23  
24  
25  
26  
27  
2ꢀ  
2
1
1
2
1
1
2
U3, U7  
Uꢀ  
U15  
T1, T2  
R5  
T3  
ADP333ꢀ-3.3  
SN75LVDT3ꢀ6  
SN75LVDT390  
Balun transformer  
Resistor  
SOT-223HS  
TSSOP64  
SOIC16PW  
SM-22  
402  
ADT1-1WT  
TAJD  
Analog Devices, Inc.  
Arrow Electronics, Inc. SN75LVDT3ꢀ6DGG  
Arrow Electronics, Inc. SN75LVDT390PW  
M/A-COM  
Digi-Key Corporation P49.9LCT-ND  
Mini-Circuits ADT1-1WT  
Digi-Key Corporation 47ꢀ-1699-2  
ADP333ꢀ-3.3  
ETC-1-1-13  
36 Ω  
Transformer  
Capacitor  
C1, C44, C551  
10 ꢁF  
Rev. 0 | Page 35 of 40  
 
AD9445  
Item Qty. Reference Designator Description  
Package  
Value  
Manufacturer  
MFG_PART_NO  
29  
23  
C13, C14, C16, C17,  
C1ꢀ, C19, C29, C31,  
C36, C37, C41, C45,  
C49, C61, C69, C70,  
C72, C73, C75, C93,  
C10ꢀ, C109, C1101  
CAP402  
402  
XX  
30  
31  
32  
33  
34  
35  
36  
37  
3ꢀ  
39  
40  
1
C9ꢀ1  
Capacitor  
Header  
SMA  
ꢀ05  
EHOLE  
SMA  
C40MS  
402  
402  
DIP4(14)  
MTHOLE6  
402  
ADT1-1WT  
PTMICRO4  
10 ꢁF  
Digi-Key Corporation 409-1717-1-ND  
Mouser Electronics 517-6111TG  
Digi-Key Corporation ARFX1231-ND  
E151  
J51  
P61  
Header  
Samtec, Inc.  
TSW-120-0ꢀ-L-D-RA  
2
3
1
4
2
1
2
R1, R21  
R5, R7, R91  
U21  
BRES402  
BRES402  
ECLOSC  
MTHOLE6  
Resistor  
Transformer  
Term strip  
XX  
XX  
H1, H2, H3, H41  
R4, R61  
T51  
36  
Digi-Key Corporation P36JCT-ND  
Mini-Circuits  
ADT1-1WT  
P21, P221  
Newark Electronics  
1 Parts not populated.  
Rev. 0 | Page 36 of 40  
 
AD9445  
OUTLINE DIMENSIONS  
16.00 BSC SQ  
1.20  
MAX  
0.75  
0.60  
0.45  
14.00 BSC SQ  
100  
1
76  
75  
76  
75  
100  
1
PIN 1  
EXPOSED  
PAD  
9.50 SQ  
TOP VIEW  
(PINS DOWN)  
0° MIN  
1.05  
1.00  
0.95  
0.20  
0.09  
7°  
BOTTOM VIEW  
(PINS UP)  
50  
51  
25  
25  
26  
49  
50  
26  
3.5°  
0°  
0.08 MAX  
COPLANARITY  
0.50 BSC  
LEAD PITCH  
0.27  
0.22  
0.17  
VIEW A  
0.15  
0.05  
SEATING  
PLANE  
VIEW A  
ROTATED 90° CCW  
COMPLIANT TO JEDEC STANDARDS MS-026-AED-HD  
NOTES  
1. CENTER FIGURES ARE TYPICAL UNLESS OTHERWISE NOTED.  
2. THE PACKAGE HAS A CONDUCTIVE HEAT SLUG TO HELP DISSIPATE HEAT AND ENSURE RELIABLE OPERATION OF  
THE DEVICE OVER THE FULL INDUSTRIAL TEMPERATURE RANGE. THE SLUG IS EXPOSED ON THE BOTTOM OF  
THE PACKAGE AND ELECTRICALLY CONNECTED TO CHIP GROUND. IT IS RECOMMENDED THAT NO PCB SIGNAL  
TRACES OR VIAS BE LOCATED UNDER THE PACKAGE THAT COULD COME IN CONTACT WITH THE CONDUCTIVE  
SLUG. ATTACHING THE SLUG TO A GROUND PLANE WILL REDUCE THE JUNCTION TEMPERATURE OF THE  
DEVICE WHICH MAY BE BENEFICIAL IN HIGH TEMPERATURE ENVIRONMENTS.  
Figure 71. 100-Lead Thin Quad Flat Package, Exposed Pad [TQFP_EP]  
(SV-100-3)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
AD9445BSVZ-1251  
AD9445BSVZ-1051  
AD9445-IF-LVDS/PCB  
AD9445-BB-LVDS/PCB  
Temperature Range  
–40°C to +ꢀ5°C  
–40°C to +ꢀ5°C  
Package Description  
Package Option  
SV-100-3  
SV-100-3  
100-Lead TQFP_EP  
100-Lead TQFP_EP  
AD9445-125 IF (>100 MHz) LVDS Mode Evaluation Board  
AD9445-125 Baseband (<100 MHz) LVDS Mode Evaluation Board  
1 Z = Pb-free part.  
Rev. 0 | Page 37 of 40  
 
 
AD9445  
NOTES  
Rev. 0 | Page 3ꢀ of 40  
AD9445  
NOTES  
Rev. 0 | Page 39 of 40  
AD9445  
NOTES  
©
2005 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05489–0–10/05(0)  
Rev. 0 | Page 40 of 40  

相关型号:

AD9445-BB-LVDSPCB

High Speed ADC USB FIFO Evaluation Kit
ADI

AD9445-BB-PCB

14-Bit, 105/125 MSPS, IF Sampling ADC
ADI

AD9445-IF-LVDS

14-Bit, 105/125 MSPS, IF Sampling ADC
ADI

AD9445-IF-LVDS/PCB

14-Bit, 105/125 MSPS, IF Sampling ADC
ADI

AD9445-IF-LVDSPCB

High Speed ADC USB FIFO Evaluation Kit
ADI

AD9445-IF-PCB

14-Bit, 105/125 MSPS, IF Sampling ADC
ADI

AD9445BSV-105

1-CH 14-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP100, LEAD FREE, PLASTIC, MS-026-AED, TQFP-100
ADI

AD9445BSVZ-105

14-Bit, 105/125 MSPS, IF Sampling ADC
ADI

AD9445BSVZ-125

14-Bit, 105/125 MSPS, IF Sampling ADC
ADI

AD9445_17

14-Bit, 105/125 MSPS, IF Sampling ADC
ADI

AD9446

16-Bit, 80/100 MSPS ADC
ADI

AD9446-100LVDS

16-Bit, 80/100 MSPS ADC
ADI