AD9530BCPZ [ADI]

4 CML Output, Low Jitter Clock Generator;
AD9530BCPZ
型号: AD9530BCPZ
厂家: ADI    ADI
描述:

4 CML Output, Low Jitter Clock Generator

文件: 总41页 (文件大小:979K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
4 CML Output, Low Jitter Clock Generator  
with an Integrated 5.4 GHz VCO  
Data Sheet  
AD9530  
FEATURES  
GENERAL DESCRIPTION  
Fully integrated, ultralow noise phase-locked loop (PLL)  
4 differential, 2.7 GHz common-mode logic (CML) outputs  
2 differential reference inputs with programmable internal  
termination options  
The AD9530 is a fully integrated PLL and distribution supporting,  
clock cleanup, and frequency translation device for 40 Gbps/  
100 Gbps OTN applications. The internal PLL can lock to one  
of two reference frequencies to generate four discrete output  
frequencies up to 2.7 GHz.  
<232 fs rms absolute jitter (12 kHz to 20 MHz) with a non-  
ideal reference and 8 kHz loop bandwidth  
<100 fs rms absolute jitter (12 kHz to 20 MHz) with an 80 kHz  
loop bandwidth and low jitter input reference clock  
Supports low loop bandwidths for jitter attenuation  
Manual switchover  
The AD9530 features an internal 5.11 GHz to 5.4 GHz, ultralow  
noise voltage controlled oscillator (VCO). All four outputs are  
individually divided down from the internal VCO using two high  
speed VCO dividers (the Mx dividers) and four individual 8-bit  
channel dividers (the Dx dividers). The high speed VCO dividers  
offer fixed divisions of 2, 2.5, 3, and 3.5 for wide coverage of  
possible output frequencies. The AD9530 is configurable for  
loop bandwidths <15 kHz to attenuate reference noise.  
Single 2.5 V typical supply voltage  
48-lead, 7 mm × 7 mm LFCSP  
APPLICATIONS  
40 Gbps/100 Gbps optical transport network (OTN) line side  
clocking  
The AD9530 is available in a 48-lead LFCSP and operates from a  
single 2.5 V typical supply voltage.  
Clocking of high speed analog-to-digital converters (ADCs)  
and digital-to-analog converters (DACs)  
Data communications  
The AD9530 operates over the extended industrial temperature  
range of −40°C to +85°C.  
FUNCTIONAL BLOCK DIAGRAM  
REF_SEL  
OUT1  
AD9530  
D1 DIVIDER  
(1 TO 255)  
OUT1  
REFA  
REFA  
OUT2  
D2 DIVIDER  
(1 TO 255)  
M1 DIVIDER  
÷2, ÷2.5, ÷3, ÷3.5  
OUT2  
R DIVIDER  
(1 TO 255)  
800MHz MAX  
PLL  
OUT3  
OUT3  
REFB  
REFB  
D3 DIVIDER  
(1 TO 255)  
M2 DIVIDER  
÷2, ÷2.5, ÷3, ÷3.5  
OUT4  
OUT4  
D4 DIVIDER  
(1 TO 255)  
SERIAL PORT AND  
CONTROL LOGIC  
SDIO SDO SCLK CS  
LD  
CML 50Ω SOURCE TERMINATED  
2.7GHz MAX  
Figure 1.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
©2016 Analog Devices, Inc. All rights reserved.  
www.analog.com  
Tel: 781.329.4700  
Technical Support  
 
 
 
 
AD9530  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Applications Information .............................................................. 27  
Power Supply Recommendations............................................. 27  
Using the AD9530 Outputs for ADC Clock Applications .... 27  
Typical Application Block Diagram......................................... 28  
Control Registers............................................................................ 29  
Control Register Map Overview .............................................. 29  
Control Register Map Descriptions ............................................. 31  
SPI Configuration (Register 0x000 to Register 0x001) ......... 31  
Status (Register 0x002) .............................................................. 32  
Chip Type (Register 0x003) ...................................................... 32  
Product ID (Register 0x004 to Register 0x005)...................... 32  
Part Version (Register 0x006)................................................... 33  
User Scratchpad 1 (Register 0x00A)........................................ 33  
SPI Version (Register 0x00B).................................................... 33  
Vendor ID (Register 0x00C to Register 0x00D)..................... 33  
IO_UPDATE (Register 0x00F)................................................. 33  
R Divider (Reference Input Divider) (Register 0x010) ......... 33  
R Divider Control (Register 0x011)......................................... 34  
Reference Input A (Register 0x012)......................................... 34  
Reference Input B (Register 0x013) ......................................... 34  
OUT1 Divider (Register 0x014)............................................... 35  
OUT1 Driver Control Register (Register 0x015)................... 35  
OUT2 Divider (Register 0x016)............................................... 35  
OUT2 Driver Control (Register 0x017) .................................. 35  
OUT3 Divider (Register 0x018)............................................... 36  
OUT3 Driver Control (Register 0x019) .................................. 36  
OUT4 Divider (Register 0x01A).............................................. 36  
OUT4 Driver Control (Register 0x01B).................................. 36  
VCO Power (Register 0x01C)................................................... 37  
PLL Lock Detect Control (Register 0x01D) ........................... 37  
PLL Lock Detect Readback (Registers 0x01E to 0x01F)....... 37  
M1, M2, M3 Dividers (Register 0x020 to Register 0x022) ... 38  
M3 Divider (Register 0x022) .................................................... 39  
N Divider (Register 0x023) ....................................................... 39  
N Divider Control (Register 0x024) ........................................ 39  
Charge Pump (Register 0x025) ................................................ 39  
Phase Frequency Dectector (Register 0x026)......................... 39  
Loop Filter (Register 0x027) ..................................................... 40  
VCO Frequency (Register 0x028)............................................ 40  
User Scratchpad2 (Register 0x0FE) ......................................... 40  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 3  
Specifications..................................................................................... 4  
Supply Voltage and Temperature Range.................................... 4  
Supply Current.............................................................................. 4  
Power Dissipation......................................................................... 5  
REFA and REFB Input Characteristics...................................... 6  
PLL Characteristics ...................................................................... 7  
PLL Digital Lock Detect .............................................................. 7  
Clock Outputs (Internal Termination Disabled) ..................... 7  
Clock Outputs (Internal Termination Enabled)....................... 8  
Clock Output Absolute Time Jitter (Low Loop  
Bandwidth).................................................................................... 9  
Clock Output Absolute Time Jitter (High Loop  
Bandwidth).................................................................................. 10  
RESET  
and REF_SEL Pins ........................................................ 10  
LD Pin .......................................................................................... 10  
Serial Control Port ..................................................................... 10  
Absolute Maximum Ratings.......................................................... 12  
Thermal Resistance .................................................................... 12  
ESD Caution................................................................................ 12  
Pin Configuration and Function Descriptions........................... 13  
Typical Performance Characteristics ........................................... 15  
Terminology .................................................................................... 17  
Theory of Operation ...................................................................... 18  
Detailed Functional Block Diagram ........................................ 18  
Overview...................................................................................... 18  
Configuration of the PLL .......................................................... 18  
Reset Modes ................................................................................ 21  
Power-Down Modes................................................................... 21  
Input/Output Termination Recommendations.......................... 22  
Serial Control Port.......................................................................... 23  
SPI Serial Port Operation .......................................................... 23  
Power Dissipation and Thermal Considerations ....................... 26  
Clock Speed and Driver Mode ................................................. 26  
Evaluation of Operating Conditions........................................ 26  
Thermally Enhanced Package Mounting Guidelines............ 26  
Rev. 0 | Page 2 of 41  
Data Sheet  
AD9530  
User Scratchpad3 (Register 0x0FF) ..........................................40  
Outline Dimensions........................................................................41  
Ordering Guide ...........................................................................41  
REVISION HISTORY  
4/16—Revision 0: Initial Version  
Rev. 0 | Page 3 of 41  
AD9530  
Data Sheet  
SPECIFICATIONS  
Typical values are given for VDD = 2.5 V 5%, TA = 25°C, unless otherwise noted. Minimum and maximum values are given over the full VDD  
range and TA (−40°C to +85°C) variations listed in Table 1.  
SUPPLY VOLTAGE AND TEMPERATURE RANGE SPECIFICATIONS  
Table 1.  
Parameter  
Symbol  
Min  
Typ Max  
Unit Test Conditions/Comments  
SUPPLY VOLTAGE  
VDD  
2.375 2.5  
2.625  
V
2.5 V 5%  
TEMPERATURE  
Ambient Temperature Range  
Junction Temperature1  
TA  
TJ  
−40  
+25 +85  
°C  
°C  
115  
1 The is the maximum junction temperature for which device performance is guaranteed. Note that the Absolute Maximum Ratings section may have a higher  
maximum junction temperature, but device operation or performance is not guaranteed above the number that appears here. To calculate the junction temperature,  
see the Power Dissipation and Thermal Considerations section.  
SUPPLY CURRENT SPECIFICATIONS  
Table 2.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
SUPPLY CURRENT OTHER THAN CLOCK THE  
DISTRIBUTION CHANNEL  
Current listed in the Typ column is at nominal VDD at  
25°C; current listed in the Max column is at  
maximum VDD and worst case temperature  
Typical Operation 1  
fRTWO = 5300.16 MHz; VCO mode = low power;  
REFA enabled at 110.42 MHz; REFB disabled;  
R divider = 1; M1 and M3 divider = 3; M2 divider =  
powered down; phase frequency detector (PFD) =  
110.42 MHz; OUT1 CML output at 1766.72 MHz;  
OUT2, OUT3, and OUT4 outputs and dividers  
powered down; single-ended output swing level =  
800 mV; outputs terminated externally with 50 Ω  
to VDD  
Reference Input VDD (Pin 3 and Pin 7)  
PLL VDD (Pin 12)  
8.2  
10.7  
24  
mA  
mA  
mA  
Combined current of Pin 3 and Pin 7  
18.2  
747  
Rotary Travelling Wave Oscillator (RTWO) VDD  
(Pin 20 to Pin 23)  
860  
Combined current of Pin 20 to Pin 23  
SUPPLY CURRENT FOR AN INDIVIDUAL CLOCK  
DISTRIBUTION CHANNEL  
Each output channel has a dedicated VDD pin; all  
current values are listed for a single driver supply  
pin operating at 1766.72 MHz; output terminated  
externally, 50 Ω to VDD; these specifications include  
the current required for the external load resistors  
CML  
Internal Termination Disabled  
800 mV  
900 mV  
28.8  
30.7  
32.6  
34.5  
35.5  
37.6  
39.8  
41.8  
mA  
mA  
mA  
mA  
1000 mV  
1100 mV  
Internal Termination Enabled  
800 mV  
47.6  
51.5  
55.3  
59.0  
57.2  
61.5  
65.8  
70.1  
mA  
mA  
mA  
mA  
900 mV  
1000 mV  
1100 mV  
Rev. 0 | Page 4 of 41  
 
 
Data Sheet  
AD9530  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
CURRENT DELTAS, INDIVIDUAL FUNCTIONS  
Current delta when a function is enabled/disabled  
from Typical Operation 1  
VCO High Performance Mode Enabled  
REFx/REFx Receiver1  
133.5 160.0 mA  
Current increase when the VCO mode is changed  
from low power mode to high performance mode;  
combined current delta of Pin 20 to Pin 23  
2.5  
3.3  
mA  
mA  
Current increase when REFB is enabled with a  
110.42 MHz reference input; combined current  
delta of Pin 3 and Pin 7  
Reference Divider  
−0.55 −0.39  
Delta from bypassing reference divider to using  
reference divider = 2; total feedback division  
doubled to preserve lock; combined current delta  
of Pin 3 and Pin 7  
Output Channel  
28.4  
33.3  
mA  
One output channel enabled by powering up  
M2 divider = 3; D3 and D4 divider = 1; OUT3 and  
OUT4 enabled to 800 mV; no internal termination;  
associated low-dropout regulators (LDOs)  
enabled; includes the current required by the  
external termination; both outputs at 1766.72 MHz  
Mx Divider On/Off  
33.2  
28.4  
36.2  
33.4  
mA  
mA  
This is the current consumption delta between  
an Mx (where x is 0, 1, or 2) divider powered up  
and powered down; these dividers are a part of  
the RTWO VDD (Pin 20 to Pin 23) power domain  
Single Output Plus Associated Channel Divider  
(OUT1: Pin 31, OUT2: Pin 35, OUT3: Pin 41,  
OUT4: Pin 45)  
One output driver enabled by powering up the  
driver and channel divider (does not include  
power on the extra M2 divider); includes the  
current required by the external termination;  
output = 1766.72 MHz  
1 Where x is either A or B.  
POWER DISSIPATION SPECIFICATIONS  
Table 3.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
TOTAL POWER DISSIPATION  
Does not include power dissipated in external resistors;  
all CML outputs terminated with 50 Ω to VDD; internal  
output termination is disabled; output amplitude set  
to 1.0 V; reference inputs set to ac-coupled mode  
Power-On Default  
Power-Down Mode  
Typical Operation 2  
2.284  
0.338  
2.344  
2.750  
W
W
W
0.480  
2.82  
fRTWO = 5302.5 MHz; VCO mode = high performance;  
REFA enabled at 101 MHz, ac-coupled; REFB disabled;  
R divider = 1; M1 divider and M3 divider = 2.5;  
PFD = 101 MHz; OUT1 and OUT2 CML outputs at  
2121 MHz; OUT3 and OUT4 disabled; output swing  
level = 800 mV; outputs terminated externally to 50 Ω  
to VDD and internal termination disabled; M2 divider  
and LDO powered down; D3 and D4 dividers and  
associated LDOs disabled  
All Blocks Running  
fRTWO = 5400 MHz; VCO mode = high performance;  
REFA and REFB enabled at 100 MHz; ac-coupled mode;  
R divider = 1; M divider = 2; PFD = 100 MHz; four CML  
outputs at 2700 MHz  
800 mV Output Swing, Without  
Internal Output Termination  
2.536  
2.796  
3.02  
W
W
Single-ended output swing level = 800 mV and  
internal termination off  
1100 mV Output Swing with Internal  
Output Termination  
3.326  
Single-ended output swing level = 1100 mV and  
internal termination on  
Rev. 0 | Page 5 of 41  
 
AD9530  
Data Sheet  
REFA/REFA AND REFB/REFB INPUT CHARACTERISTICS  
Table 4.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DC-COUPLED LVDS MODE (REFA, REFA;  
REFB, REFB)  
DC-coupled LVDS mode (REFx_TERM_SEL = 00);  
includes an internal 100 Ω differential termination;  
inputs are not self biased in this setting  
Input Frequency  
Input Sensitivity  
6
800  
MHz  
Assumes a minimum of 494 mV p-p differential  
amplitude as measured with a differential probe at  
the REFx input pins  
494  
0.4  
mV p-p  
Peak-to-peak differential voltage swing across the  
pins to ensure switching between logic levels as  
measured with a differential probe  
Common-Mode Input Voltage  
Differential Input Resistance  
1.4  
V
Allowable common-mode voltage for dc coupling  
110  
3
Differential input resistance measured across the REFx  
and REFx pins  
Input Capacitance  
pF  
Input capacitance measured from each REFx pin to GND  
DC-COUPLED CML MODE (REFA, REFA,  
REFB, REFB)  
DC-coupled (REFx_TERM_SEL = 01); includes an internal  
termination of 50 Ω from each REFx input to GND;  
inputs are not self biased in this setting  
Input Frequency  
Input Sensitivity  
6
800  
0.4  
MHz  
Assumes a minimum of 494 mV p-p differential  
amplitude as measured with a differential probe at  
the REFx input pins  
494  
0.3  
mV p-p  
Peak-to-peak differential voltage swing across pins to  
ensure switching between logic levels as measured  
with a differential probe  
Common-Mode Input Voltage  
Single-Ended Input Resistance  
Input Capacitance  
V
Allowable common-mode voltage for dc coupling  
Input resistance measured from each REFx pin to GND  
Input capacitance measured from each REFx pin to GND  
55  
3
pF  
AC-COUPLED CML MODE (REFA, REFA,  
REFB, REFB)  
AC-coupled mode (REFx_TERM_SEL = 10); includes an  
internal termination of 50 Ω from each REFx input to a  
nominal dc bias of 0.35 V  
Input Frequency  
Input Sensitivity  
6
800  
MHz  
Assumes a minimum of 494 mV p-p differential  
amplitude as measured with a differential probe at  
the REFx input pins  
494  
0.32  
mV p-p  
Peak-to-peak differential voltage swing across pins to  
ensure switching between logic levels as measured  
with a differential probe  
Input Self Bias Voltage (VTT)  
(Internally Generated)  
0.355  
105  
3
0.39  
V
Self bias voltage of the REFx and REFx inputs in ac-  
coupled mode (REFx_TERM_SEL = 10)  
Differential Input Resistance  
pF  
Differential input resistance measured across the REFx  
and REFx pins  
Input Capacitance  
Input capacitance measured from each REFx pin to GND  
DC-COUPLED HIGH-Z MODE (REFA, REFA,  
REFB, REFB)  
DC-coupled high-Z mode (REFx_TERM_SEL = 11) places  
the REFx inputs into a high impedance state; inputs  
are not self biased in this setting  
Input Frequency  
Input Sensitivity  
6
800  
1.4  
MHz  
Assumes a minimum of 500 mV p-p differential  
amplitude as measured with a differential probe at  
the REFx input pins  
494  
0.4  
mV p-p  
Peak-to-peak differential voltage swing across pins to  
ensure switching between logic levels as measured  
with a differential probe  
Common-Mode Input Voltage  
Differential Input Resistance  
V
10.3  
3
kΩ  
Differential input resistance measured across the REFx  
and REFx pins  
Input Capacitance  
pF  
Input capacitance measured from each REFx pin to GND  
Rev. 0 | Page 6 of 41  
 
Data Sheet  
AD9530  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DUTY CYCLE  
Duty cycle bounds are set by pulse width high and pulse  
width low  
Pulse Width  
Low  
600  
600  
ps  
ps  
High  
PLL CHARACTERISTICS  
Table 5.  
Parameter  
RTWO  
Min Typ Max Unit  
Test Conditions/Comments  
Frequency Range  
5.11  
5.4  
GHz  
VCO Gain (KVCO  
)
180  
MHz/V  
PHASE FREQUENCY DETECTOR (PFD)  
PFD Input Frequency  
6
6
800  
500  
MHz  
MHz  
Antibacklash pulse width disabled (Register 0x026, Bit 1 = 0)  
Antibacklash pulse width enabled (Register 0x026, Bit 1 = 1)  
CHARGE PUMP (CP)  
Sink/Source Current (ICP)  
0.05  
2.6  
3.2  
mA  
µF  
Register 0x025, Bits[5:0] controls the charge pump current (see  
Table 56)  
LOOP FILTER  
External Loop Filter Capacitor  
Maximum value for the C2 capacitor in Figure 16; using a loop filter  
capacitor value larger than the maximum may affect device  
functionality  
POWER-ON RESET (POR) TIMER  
Internal Wait Time  
2
sec  
Minimum wait time implemented before issuing the first RTWO  
calibration after a POR  
PLL DIGITAL LOCK DETECT SPECIFICATIONS  
Table 6.  
Parameter  
PLL DIGITAL LOCK DETECT WINDOW1  
Min  
0.020  
Typ Max Unit Test Conditions/Comments  
Signal available at the LD pin and in Register 0x01F, Bit 2  
Lock Threshold  
300 ppm Lock threshold is selected by Register 0x01D, Bits[3:1], which is  
the threshold for transitioning from unlock to lock and vice  
versa  
1 For reliable operation of the digital lock detect, the period of the PFD frequency must be greater than the lock detector update interval (see Table 48).  
CLOCK OUTPUTS (INTERNAL TERMINATION DISABLED) SPECIFICATIONS  
Table 7.  
Parameter  
CML MODE  
800 mV  
Min  
Typ  
Max Unit Test Conditions/Comments  
All outputs are externally terminated with 50 Ω to VDD  
Output Frequency  
5.725  
2700 MHz  
Rise Time/Fall Time (20% to 80%)  
Duty Cycle  
78  
107  
53  
54  
57  
53  
ps  
%
%
%
%
47  
48  
45  
48  
Any Mx divider, output divider ≠ 1  
Mx divider = 2, output divider = 1  
Mx divider = 2.5, output divider = 1  
Mx divider = 3, output divider = 1  
51  
51  
50  
Output Differential Voltage, Magnitude 600  
845  
1090 mV  
Voltage difference between the output pins; output driver is  
static; in normal operation, the peak-to-peak amplitude is  
approximately 2× this value if measured with a differential probe  
Common-Mode Output Voltage  
1.82  
2.075 2.32  
V
Measured with output driver static  
Rev. 0 | Page 7 of 41  
 
AD9530  
Data Sheet  
Parameter  
Min  
Typ  
Max Unit Test Conditions/Comments  
All outputs are externally terminated with 50 Ω to VDD  
900 mV  
Output Frequency  
5.725  
2700 MHz  
Rise Time/Fall Time (20% to 80%)  
Duty Cycle  
77  
98  
53  
54  
57  
53  
ps  
%
%
%
%
47  
48  
45  
49  
Any Mx divider, output divider ≠ 1  
Mx divider = 2, output divider = 1  
Mx divider = 2.5, output divider = 1  
Mx divider = 3, output divider = 1  
51  
51  
51  
Output Differential Voltage, Magnitude 675  
950  
1340 mV  
Voltage difference between the output pins; output driver is  
static; in normal operation, the peak-to-peak amplitude is  
approximately 2× this value if measured with a differential probe  
Common-Mode Output Voltage  
1000 mV  
1.76  
2.03  
76  
2.29  
V
Measured with output driver static  
All outputs are externally terminated with 50 Ω to VDD  
Output Frequency  
5.725  
2700 MHz  
Rise Time/Fall Time (20% to 80%)  
Duty Cycle  
105  
53  
54  
57  
52  
ps  
%
%
%
%
47  
48  
45  
49  
Any Mx divider, output divider ≠ 1  
Mx divider = 2, output divider = 1  
Mx divider = 2.5, output divider = 1  
Mx divider = 3, output divider = 1  
51  
51  
51  
Output Differential Voltage, Magnitude 730  
1040 1340 mV  
Voltage difference between the output pins; output driver is  
static; in normal operation, the peak-to-peak amplitude is  
approximately 2× this value if measured with a differential probe  
Common-Mode Output Voltage  
1100 mV  
1.69  
1.97  
76  
2.25  
V
All outputs are externally terminated with 50 Ω to VDD  
Output Frequency  
5.725  
2700 MHz  
Rise Time/Fall Time (20% to 80%)  
Duty Cycle  
104  
53  
54  
57  
52  
ps  
%
%
%
%
47  
48  
45  
49  
Any Mx divider, output divider ≠ 1  
Mx divider = 2, output divider = 1  
Mx divider = 2.5, output divider = 1  
Mx divider = 3, output divider = 1  
51  
51  
50  
Output Differential Voltage, Magnitude 815  
1140 1480 mV  
Voltage difference between the output pins; output driver is  
static; in normal operation, the peak-to-peak amplitude is  
approximately 2× this value if measured with a differential probe  
Common-Mode Output Voltage  
1.61  
1.92  
2.22  
V
Measured with output driver static  
CLOCK OUTPUTS (INTERNAL TERMINATION ENABLED) SPECIFICATIONS  
Table 8.  
Parameter  
CML MODE  
800 mV  
Min  
Typ  
Max Unit Test Conditions/Comments  
All outputs are externally terminated with 50 Ω to VDD  
Output Frequency  
5.725  
2700 MHz  
Rise Time/Fall Time (20% to 80%)  
Duty Cycle  
55  
75  
53  
56  
60  
53  
ps  
%
%
%
%
47  
48  
43  
48  
590  
Any Mx divider, output divider ≠ 1  
Mx divider = 2, output divider = 1  
Mx divider = 2.5, output divider = 1  
Mx divider = 3, output divider = 1  
52  
51  
51  
Output Differential Voltage, Magnitude  
Common-Mode Output Voltage  
830  
1070 mV  
Voltage difference between the output pins; output driver is  
static; in normal operation, the peak-to-peak amplitude is  
approximately 2× this value if measured with a differential probe  
1.9  
2.08  
2.26  
V
Measured with output driver static  
Rev. 0 | Page 8 of 41  
Data Sheet  
AD9530  
Parameter  
Min  
Typ  
Max Unit Test Conditions/Comments  
All outputs are externally terminated with 50 Ω to VDD  
900 mV  
Output Frequency  
5.725  
2700 MHz  
Rise Time/Fall Time (20% to 80%)  
Duty Cycle  
53  
70  
53  
56  
60  
53  
ps  
%
%
%
%
47  
48  
43  
48  
660  
Any Mx divider, output divider ≠ 1  
Mx divider = 2, output divider = 1  
Mx divider = 2.5, output divider = 1  
Mx divider = 3, output divider = 1  
52  
51  
51  
Output Differential Voltage, Magnitude  
Common-Mode Output Voltage  
930  
1200 mV  
Voltage difference between the output pins; output driver is  
static; in normal operation, the peak-to-peak amplitude is  
approximately 2× this value if measured with a differential probe  
1.83  
2.03  
53  
2.23  
V
Measured with output driver static  
1000 mV  
All outputs are externally terminated with 50 Ω to VDD  
Output Frequency  
5.725  
2700 MHz  
Rise Time/Fall Time (20% to 80%)  
Duty Cycle  
71  
53  
56  
60  
53  
ps  
%
%
%
%
47  
47  
43  
48  
735  
Any Mx divider, output divider ≠ 1  
Mx divider = 2, output divider = 1  
Mx divider = 2.5, output divider = 1  
Mx divider = 3, output divider = 1  
52  
52  
51  
Output Differential Voltage, Magnitude  
Common-Mode Output Voltage  
1025 1335 mV  
Voltage difference between the output pins; output driver is  
static; in normal operation, the peak-to-peak amplitude is  
approximately 2× this value if measured with a differential probe  
1.83  
2.03  
53  
2.23  
V
Measured with output driver static  
1100 mV  
All outputs are externally terminated with 50 Ω to VDD  
Output Frequency  
5.725  
2700 MHz  
Rise Time/Fall Time (20% to 80%)  
Duty Cycle  
72  
53  
56  
60  
54  
ps  
%
%
%
%
47  
47  
43  
48  
810  
Any Mx divider, output divider ≠ 1  
Mx divider = 2, output divider = 1  
Mx divider = 2.5, output divider = 1  
Mx divider = 3, output divider = 1  
52  
52  
51  
Output Differential Voltage, Magnitude  
Common-Mode Output Voltage  
1125 1455 mV  
Voltage difference between the output pins; output driver is  
static; in normal operation, the peak-to-peak amplitude is  
approximately 2× this value if measured with a differential probe  
1.71  
1.93  
53.7  
2.23  
V
Measured with output driver static  
Measured with output driver static  
INTERNAL OUTPUTTERMINATION  
RESISTANCE  
CLOCK OUTPUT ABSOLUTE TIME JITTER (LOW LOOP BANDWIDTH) SPECIFICATIONS  
Table 9.  
Parameter  
Min Typ Max Unit  
Test Conditions/Comments  
CML OUTPUT ABSOLUTE TIME JITTER  
REFA enabled and ac-coupled; R divider = 1; Mx divider value varies;  
loop bandwidth = 8 kHz; output divider bypassed unless otherwise  
noted; single-ended output swing level = 1000 mV; no internal  
termination; VCO in high power mode, integration bandwidth =  
12 kHz to 20 MHz  
fOUT = 2700 MHz  
fOUT = 2100 MHz  
fOUT = 2050 MHz  
fOUT = 1768 MHz  
fOUT = 1500 MHz  
fOUT = 100 MHz  
219  
220  
214  
219  
210  
232  
fs rms  
fs rms  
fs rms  
fs rms  
fs rms  
fs rms  
Reference frequency = 100 MHz, Mx divider = 2  
Reference frequency = 100 MHz, Mx divider = 2.5  
Reference frequency = 102.5 MHz, Mx divider = 2.5  
Reference frequency = 104 MHz, Mx divider = 3  
Reference frequency = 100 MHz, Mx divider = 3.5  
Reference frequency = 100 MHz, Mx divider = 3, output divider  
(Dx divider) = 17  
Rev. 0 | Page 9 of 41  
AD9530  
Data Sheet  
CLOCK OUTPUT ABSOLUTE TIME JITTER (HIGH LOOP BANDWIDTH) SPECIFICATIONS  
Table 10.  
Parameter  
Min Typ Max Unit  
93 fs rms  
Test Conditions/Comments  
CML OUTPUT ABSOLUTE TIME JITTER  
REFA enabled and ac-coupled; R divider = 1; Mx divider value = 2; loop  
bandwidth = 80 kHz; output divider bypassed; single-ended output  
swing level = 1000 mV; no internal termination; VCO in high power  
mode; reference frequency = 860 MHz; output frequency = 2.58 GHz;  
integration bandwidth = 12 kHz to 20 MHz; absolute jitter value also  
depends on the noise of the input clock in the 12 kHz to 80 kHz range  
RESET AND REF_SEL PINS SPECIFICATIONS  
Table 11.  
Parameter  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Voltage  
Logic 1  
VDD − 0.5  
VDD  
0.5  
V
V
Logic 0  
Current  
Logic 1  
1
µA  
µA  
pF  
Logic 0  
36  
3
Capacitance  
RESET TIMING  
Pulse Width Low  
100  
50  
ns  
RESET Inactive to Start of Register Programming  
ms  
LD PIN SPECIFICATIONS  
Table 12.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
OUTPUT CHARACTERISTICS  
1 mA output load  
Output Voltage  
High  
VOH  
VOL  
VDD − 0.5  
V
V
Low  
0.5  
SERIAL CONTROL PORT SPECIFICATIONS  
Table 13.  
Parameter  
CS (INPUT)  
Input Voltage  
Logic 1  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
CS has an internal 75 kΩ pull-up resistor  
VDD − 0.4  
V
V
Logic 0  
0.4  
Input Current  
Logic 1  
1
µA  
µA  
pF  
Logic 0  
32  
3
Input Capacitance  
SCLK (INPUT)  
Input Voltage  
Logic 1  
SCLK has an internal 75 kΩ pull-down resistor  
VDD − 0.4  
V
V
Logic 0  
0.4  
Input Current  
Logic 1  
45  
1
µA  
µA  
pF  
Logic 0  
Input Capacitance  
3
Rev. 0 | Page 10 of 41  
Data Sheet  
AD9530  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
SDIO (INPUT)  
Input Voltage  
Logic 1  
VDD − 0.4  
V
V
Logic 0  
0.4  
Input Current  
Logic 1  
1
1
3
µA  
µA  
pF  
Logic 0  
Input Capacitance  
SDIO, SDO (OUTPUTS)  
Output Voltage  
Logic 1  
1 mA load current  
VDD − 0.2  
V
V
Logic 0  
0.2  
40  
TIMING  
See Figure 26 through Figure 30 and Table 21  
Clock Rate (SCLK)  
Pulse Width High  
Pulse Width Low  
SDIO to SCLK Setup  
SCLK to SDIO Hold  
SCLK to Valid SDIO and SDO  
CS to SCLK Setup  
CS to SCLK Hold  
CS Minimum Pulse Width High  
1/tSCLK  
tHIGH  
tLOW  
tDS  
MHz  
ns  
6
6
ns  
1.8  
0.6  
ns  
tDH  
ns  
tDV  
10  
ns  
tS  
0.6  
3.5  
1.5  
ns  
tH  
ns  
tPWH  
ns  
Rev. 0 | Page 11 of 41  
AD9530  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 14.  
THERMAL RESISTANCE  
Parameter  
Rating  
Table 15. Thermal Resistance (Simulated)  
Airflow  
VDD, BP_CAP_1, BP_CAP_2, BP_CAP_3,  
REFA, REFA, REFB, REFB, SCLK, SDIO,  
SDO, CS, OUT1, OUT1, OUT2, OUT2,  
OUT3, OUT3, OUT4, OUT4, RESET, and  
REF_SEL to GND  
2.625 V  
Package  
Type  
Velocity  
(m/sec)  
1, 2  
1, 3,4  
1, 4, 5  
1, 2, 4  
θJA  
θJC  
θJB  
ΨJT  
Unit  
48-Lead  
LFCSP  
0
25.8  
22.2  
19.7  
2.8  
7.5  
0.20  
N/A  
N/A  
°C/W  
°C/W  
°C/W  
1.0  
2.5  
N/A  
N/A  
N/A  
N/A  
Junction Temperature1  
150°C  
Storage Temperature Range  
Operating Temperature Range  
Lead Temperature (10 sec)  
−65°C to +150°C  
−40°C to +85°C  
300°C  
1 Per JEDEC 51-7, plus JEDEC 51-5 2S2P test board.  
2 Per JEDEC JESD51-2 (still air) or JEDEC JESD51-6 (moving air).  
3 Per MIL-Std 883, Method 1012.1.  
4 N/A means not applicable.  
5 Per JEDEC JESD51-8 (still air).  
1 See Table 15 for θJA.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
ESD CAUTION  
Rev. 0 | Page 12 of 41  
 
 
Data Sheet  
AD9530  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
36 DNC  
VDD  
LF_1  
DNC  
35  
3
VDD  
34 OUT2  
4
5
6
7
8
9
10  
REFA  
REFA  
GND  
33 OUT2  
32  
GND  
31 VDD  
30 OUT1  
29  
OUT1  
28 GND  
27 GND  
AD9530  
TOP VIEW  
VDD  
(Not to Scale)  
REFB  
REFB  
GND  
11  
VDD 12  
REF_SEL  
26 BP_CAP_3  
25 BP_CAP_2  
NOTES  
1. DNC = DO NOT CONNECT. DO NOT CONNECT TO THESE PINS.  
2. THE EXPOSED PAD IS A GROUND CONNECTION ON THE CHIP THAT  
MUST BE SOLDERED TO THE ANALOG GROUND OF THE PCB TO  
ENSURE PROPER FUNCTIONALITY AND HEAT DISSIPATION, NOISE,  
AND MECHANICAL STRENGTH BENEFITS.  
Figure 2. Pin Configuration  
Table 16. Pin Function Descriptions  
Pin No. Mnemonic  
Type1 Description  
1
LF_1  
O
Loop Filter Connection, Negative Output Side of the Active Loop Filter Op Amp. Connect the PLL active  
loop filter components (R1, C1, and C2) to this pin and LF_2 (Pin 48).  
2, 19,  
36, 37,  
46  
DNC  
N/A  
Do Not Connect. Do not connect to this pin.  
3
4
5
VDD  
REFA  
REFA  
P
I
Power Supply for REFA.  
Reference Clock Input A. This pin, along with REFA, is the first differential reference input for the PLL.  
I
Complimentary Reference Clock Input A. This pin, along with REFA, is the first differential reference  
input for the PLL.  
6
7
8
9
GND  
VDD  
REFB  
REFB  
GND  
Ground for the REFA Power Supply. Connect this pin to ground.  
Power Supply for REFB.  
P
I
Reference Clock Input B. This pin, along with REFB, is the second differential reference input for the PLL.  
I
Complimentary Reference Clock Input B. This pin, along with REFB, is the second differential reference  
input for the PLL.  
10  
11  
GND  
GND  
I
Ground for the REFB Power Supply. Connect this pin to ground.  
REF_SEL  
Reference Input Select. This pin is the digital input to select REFA or REFB as the active reference to the  
PLL. This pin has an internal 75 kΩ pull-up resistor. Logic high (default) selects REFA. Logic low selects REFB.  
12  
13  
14  
15  
16  
17  
18  
VDD  
RESET  
SDO  
SDIO  
SCLK  
CS  
P
I
Power Supply for the Serial Port Interface (SPI) and the PFD.  
Chip Reset, Active Low. This pin has an internal 75 kΩ pull-up resistor.  
Serial Control Port Unidirectional Serial Data Output. This pin is high impedance during 3-wire SPI mode.  
Serial Control Port Bidirectional Serial Data Input/Output.  
O
I/O  
I
Serial Control Port Clock Signal. This pin has an internal 75 kΩ pull-down resistor.  
Serial Control Port Chip Select, Active Low. This pin has an internal 75 kΩ pull-up resistor.  
PLL Lock Detect Output.  
I
LD  
O
P
20 to  
23  
VDD  
2.5 V Power Supply for the RTWO Internal LDO.  
24  
25  
26  
27  
28  
BP_CAP_1  
BP_CAP_2  
BP_CAP_3  
GND  
O
RTWO LDO Op Amp Bypass Capacitor. Connect an external 0.01 µF capacitor from this pin to GND.  
RTWO LDO Bypass Capacitor. Connect an external 1 µF capacitor from this pin to GND.  
RTWO Bias Supply Bypass Capacitor. This pin can be left unconnected (floating).  
Ground for RTWO Power Supply. Connect this pin to ground.  
O
O
GND  
GND  
GND  
Ground for OUT1 Power Supply. Connect this pin to ground.  
Rev. 0 | Page 13 of 41  
AD9530  
Data Sheet  
Pin No. Mnemonic  
Type1 Description  
29  
OUT1  
O
CML Complementary Output 1. This pin requires a 50 Ω to VDD termination even if the output is  
unused. See the CML Output Drivers section for more information.  
30  
OUT1  
O
CML Output 1. This pin requires a 50 Ω termination to VDD, even if the output is unused. See the CML  
Output Drivers section for more information.  
31  
32  
33  
34  
35  
38  
39  
40  
41  
42  
43  
44  
45  
47  
48  
VDD  
P
Power Supply for OUT1.  
GND  
OUT2  
OUT2  
VDD  
GND  
O
Ground for OUT2 Power Supply. Connect this pin to ground.  
CML Complementary Output 2.  
O
CML Output 2.  
P
Power Supply for OUT2.  
GND  
OUT3  
OUT3  
VDD  
GND  
O
Ground for OUT3 Power Supply. Connect this pin to ground.  
CML Complementary Output 3.  
O
CML Output 3.  
P
Power Supply for OUT3.  
GND  
OUT4  
OUT4  
VDD  
GND  
O
Ground for OUT4 Power Supply. Connect this pin to ground.  
CML Complementary Output 4.  
O
CML Output 4.  
P
Power Supply for OUT4.  
LF_3  
LF_2  
O
Loop Filter Connection. Connect an external capacitor (CA) between this pin and ground.  
O
Loop Filter Connection. This pin is the output side of the active loop filter op amp. Connect the PLL  
active loop filter components (R1, C1, and C2) to this pin and LF_1 (Pin 1).  
EP  
GND  
Exposed Pad. The exposed pad is a ground connection on the chip that must be soldered to the analog  
ground of the printed circuit board (PCB) to ensure proper functionality and heat dissipation, noise, and  
mechanical strength benefits.  
1 O means output, N/A means not applicable, P means power, I means input, GND means ground, and I/O means input/output.  
Rev. 0 | Page 14 of 41  
Data Sheet  
AD9530  
TYPICAL PERFORMANCE CHARACTERISTICS  
CML = 1.1V  
CML = 1.0V  
CML = 0.9V  
CML = 0.8V  
CML = 1.1V  
CML = 1.0V  
CML = 0.9V  
CML = 0.8V  
350mV/DIV  
2.5ns/DIV  
40.0GS/s IT 1.0ps/pt  
A
CH1  
–7.0mV  
350mV/DIV  
100ps/DIV  
40.0GS/s IT 500fs/pt  
A
CH1  
42.0mV  
Figure 3. CML Output Waveform (Differential) at 101 MHz,  
Internal Termination Disabled  
Figure 6. CML Output Waveform (Differential) at 2650 MHz,  
Internal Termination Enabled  
1.8  
CML = 1.1V  
CML = 1.0V  
CML = 0.9V  
CML = 0.8V  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
CML = 0.8V, TERMINATION ON  
CML = 0.9V, TERMINATION ON  
CML = 1.0V, TERMINATION ON  
CML = 1.1V, TERMINATION ON  
350mV/DIV  
2.5ns/DIV  
40.0GS/s IT 1.0ps/pt  
A
CH1  
–7.0mV  
OUTPUT FREQUENCY (MHz)  
Figure 4. CML Output Waveform (Differential) at 101 MHz,  
Internal Termination Enabled  
Figure 7. Differential Voltage Amplitude vs. Output Frequency, Internal  
Termination Enabled  
1.8  
CML = 0.8V, TERMINATION OFF  
CML = 0.9V, TERMINATION OFF  
CML = 1.0V, TERMINATION OFF  
CML = 1.1V, TERMINATION OFF  
CML = 1.1V  
CML = 1.0V  
CML = 0.9V  
CML = 0.8V  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
350mV/DIV  
100ps/DIV  
40.0GS/s IT 500fs/pt  
A
CH1  
42.0mV  
OUTPUT FREQUENCY (MHz)  
Figure 5. CML Output Waveform (Differential) at 2650 MHz,  
Internal Termination Disabled  
Figure 8. Differential Voltage Amplitude vs. Output Frequency,  
Internal Termination Disabled  
Rev. 0 | Page 15 of 41  
 
AD9530  
Data Sheet  
–20  
–30  
–40  
–50  
–60  
–70  
–20  
–30  
1: 100Hz, –73.4750dBc/Hz  
2: 1kHz, –66.6660dBc/Hz  
3: 10kHz, –86.8162dBc/Hz  
4: 100kHz, –115.4368dBc/Hz  
5: 1MHz, –138.1587dBc/Hz  
6: 10MHz, –151.7467dBc/Hz  
7: 100MHz, –149.6761dBc/Hz  
1: 100Hz, –77.9943dBc/Hz  
2: 1kHz, –72.9378dBc/Hz  
3: 10kHz, –90.9651dBc/Hz  
4: 100kHz, –119.4690dBc/Hz  
5: 1MHz, –141.9879dBc/Hz  
6: 10MHz, –155.3944dBc/Hz  
7: 100MHz, –161.6441dBc/Hz  
–40  
–50  
–60  
–70  
2
2
–80  
–80  
1
1
–90  
–100  
–110  
–120  
–130  
–90  
3
3
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
4
4
5
5
NOISE:  
NOISE:  
–140  
–150  
–160  
–170  
–180  
7
ANALYSIS RANGE X: START 12kHz  
STOP 20MHz  
ANALYSIS RANGE X: START 10.006kHz  
STOP 19.988MHz  
INTG NOISE: –51.4221dBc/19.69MHz  
RMS NOISE: 3.79671mRAD  
217.536mdeg  
INTG NOISE: –55.5777dBc/19.69MHz  
RMS NOISE: 2.35304mRAD  
134.819mdeg  
7
6
6
RMS JITTER: 223.802fsec  
RESIDUAL FM: 1.57236kHz  
RMS JITTER: 211.82fsec  
RESIDUAL FM: 1.03174kHz  
100  
1k  
10k  
100k  
1M  
10M  
100M  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 9. Phase Noise, fOUT = 2.7 GHz, Loop Bandwidth = 8 kHz  
Figure 12. Phase Noise, fOUT = 1.768 GHz, Loop Bandwidth = 8 kHz  
–20  
–20  
1: 100Hz, –77.2438dBc/Hz  
–30  
1: 100Hz, –78.6193dBc/Hz  
–30  
2: 1kHz, –72.2169dBc/Hz  
2: 1kHz, –73.4151dBc/Hz  
–40  
–50  
3: 10kHz, –89.3822dBc/Hz  
4: 100kHz, –118.0579dBc/Hz  
5: 1MHz, –140.6235dBc/Hz  
6: 10MHz, –153.7840dBc/Hz  
7: 100MHz, –158.1045dBc/Hz  
–40  
–50  
3: 10kHz, –92.6392dBc/Hz  
4: 100kHz, –120.8504dBc/Hz  
5: 1MHz, –143.4421dBc/Hz  
6: 10MHz, –156.4311dBc/Hz  
7: 100MHz, –160.8215dBc/Hz  
–60  
–60  
–70  
–70  
2
–80  
–80  
2
1
1
–90  
–90  
3
3
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
4
4
5
5
NOISE:  
NOISE:  
ANALYSIS RANGE X: START 12kHz  
STOP 20MHz  
ANALYSIS RANGE X: START 12kHz  
STOP 20MHz  
7
INTG NOISE: –54.1475dBc/19.69MHz  
RMS NOISE: 2.77421mRAD  
158.951mdeg  
INTG NOISE: –57.0182/19.69MHz  
RMS NOISE: 1.99345mRAD  
114.216mdeg  
7
6
6
RMS JITTER: 210.252fsec  
RESIDUAL FM: 1.23877kHz  
RMS JITTER: 211.512fsec  
RESIDUAL FM: 924.222kHz  
100  
1k  
10k  
100k  
1M  
10M  
100M  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 10. Phase Noise, fOUT = 2.1 GHz, Loop Bandwidth = 8 kHz  
Figure 13. Phase Noise, fOUT = 1.5 GHz, Loop Bandwidth = 8 kHz,  
High Performance Mode  
–20  
–40  
1: 100Hz, –76.5195dBc/Hz  
–30  
1: 1Hz, –94.3202dBc/Hz  
–50  
2: 1kHz, –72.1524dBc/Hz  
2: 10kHz, –109.4110dBc/Hz  
–40  
–50  
3: 10kHz, –90.4665dBc/Hz  
4: 100kHz, –118.45978dBc/Hz  
5: 1MHz, –141.0204dBc/Hz  
6: 10MHz, –153.8759dBc/Hz  
7: 100MHz, –164.4190dBc/Hz  
3: 100kHz, –114.0837dBc/Hz  
–60  
4: 1MHz, –139.4227dBc/Hz  
5: 10MHz, –151.9086dBc/Hz  
–70  
6: 40MHz, –157.7001dBc/Hz  
–60  
–80  
–90  
–70  
2
–80  
1
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
1
–90  
3
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
2
3
4
5
NOISE:  
NOISE:  
4
ANALYSIS RANGE X: START 12kHz  
STOP 20MHz  
ANALYSIS RANGE X: START 12kHz  
STOP 20MHz  
6
INTG NOISE: –54.8028/19.69MHz  
RMS NOISE: 2.57262mRAD  
174.4mdeg  
INTG NOISE: –59.5089dBc/19.69MHzMHz  
RMS NOISE: 1.49648mRAD  
85.7421mdeg  
5
7
6
RMS JITTER: 199.729fsec  
RESIDUAL FM: 1.22141kHz  
RMS JITTER: 92.314fsec  
RESIDUAL FM: 1.58172kHz  
100  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 11. Phase Noise, fOUT = 2.05 GHz, Loop Bandwidth = 8 kHz  
Figure 14. Phase Noise, fIN = 860 MHz, fOUT = 2.58 GHz,  
Loop Bandwidth = 80 kHz, ICP = 2.4 mA, High Performance Mode  
Rev. 0 | Page 16 of 41  
Data Sheet  
AD9530  
TERMINOLOGY  
Phase Jitter  
Time Jitter  
An ideal sine wave can be thought of as having a continuous  
and even progression of phase with time from 0° to 360° for  
each cycle. Actual signals, however, display a certain amount  
of variation from ideal phase progression over time, and this  
phenomenon is called phase jitter. Although many factors can  
contribute to phase jitter, one major factor is random noise,  
which is characterized statistically as being Gaussian (normal)  
in distribution.  
Phase noise is a frequency domain phenomenon. In the time  
domain, the same effect is exhibited as time jitter. When observing  
a sine wave, the time of successive zero crossings varies. In a square  
wave, the time jitter is a displacement of the edges from their  
ideal (regular) times of occurrence. In both cases, the variations in  
timing from the ideal are the time jitter. Because these variations  
are random in nature, the time jitter is specified in seconds root  
mean square (rms) or 1 sigma of the Gaussian distribution.  
Phase jitter leads to a spreading out of the energy of the sine  
wave in the frequency domain, producing a continuous power  
spectrum. This power spectrum is usually reported as a series of  
values whose units are dBc/Hz at a given offset in frequency  
from the sine wave (carrier). The value is a ratio (expressed in  
decibels) of the power contained within a 1 Hz bandwidth with  
respect to the power at the carrier frequency. For each measurement,  
the offset from the carrier frequency is also given.  
Time jitter that occurs on a sampling clock for a DAC or an  
ADC decreases the signal-to-noise ratio (SNR) and dynamic  
range of the converter. A sampling clock with the lowest possible  
jitter provides the highest performance from a given converter.  
Additive Phase Noise  
Additive phase noise is the amount of phase noise that can be  
attributed to the device or subsystem being measured. The phase  
noise of any external oscillators or clock sources is subtracted,  
making it possible to predict the degree to which the device  
impacts the total system phase noise when used in conjunction  
with the various oscillators and clock sources, each of which  
contributes its own phase noise to the total. In many cases, the  
phase noise of one element dominates the system phase noise.  
When there are multiple contributors to phase noise, the total is  
the square root of the sum of squares of the individual contributors.  
Absolute Phase Noise  
It is meaningful to integrate the total power contained within  
some interval of offset frequencies (for example, 10 kHz to  
10 MHz). This is called the integrated phase noise over that  
frequency offset interval; it is related to the time jitter due to the  
phase noise within that offset frequency interval.  
Phase noise has a detrimental effect on the performance of ADCs,  
DACs, and RF mixers. It lowers the achievable dynamic range of  
the converters and mixers, although they are affected in somewhat  
different ways. Absolute phase noise is the actual measured  
noise from the AD9530, and includes the input reference and  
power supply noise.  
Additive Time Jitter  
Additive time jitter is the amount of time jitter that can be attri-  
buted to the device or subsystem being measured. The time jitter of  
any external oscillators or clock sources is not a part of this jitter  
number. This makes it possible to predict the degree to which the  
device impacts the total system time jitter when used in  
conjunction with the various oscillators and clock sources, each  
of which contributes its own time jitter to the total. In many cases,  
the time jitter of the external oscillators and clock sources  
dominates the system time jitter.  
Rev. 0 | Page 17 of 41  
AD9530  
Data Sheet  
THEORY OF OPERATION  
DETAILED FUNCTIONAL BLOCK DIAGRAM  
REF_SEL  
LF_1  
LF_2  
LF_3  
BP_CAP_1  
BP_CAP_2  
BP_CAP_3  
OUT1  
OUT1  
D1 DIVIDER  
(1 TO 255)  
OUT2  
OUT2  
D2 DIVIDER  
(1 TO 255)  
5.11GHz TO 5.4GHz  
REFA  
REFA  
M1 DIVIDER  
÷2, ÷2.5, ÷3, ÷3.5  
CHARGE  
PUMP  
R DIVIDER  
(1 TO 255)  
PFD  
REFB  
REFB  
M2 DIVIDER  
÷2, ÷2.5, ÷3, ÷3.5  
OUT3  
OUT3  
D3 DIVIDER  
(1 TO 255)  
V
REF  
OUT4  
OUT4  
SDIO  
SDO  
SCLK  
CS  
D4 DIVIDER  
(1 TO 255)  
CONTROL  
INTERFACE  
(SPI)  
N DIVIDER  
(1 TO 255)  
M3 DIVIDER  
÷2, ÷2.5, ÷3, ÷3.5  
LOCK  
DETECTOR  
AD9530  
LD  
Figure 15. Detailed Functional Block Diagram  
Phase Frequency Detector (PFD)  
OVERVIEW  
The PFD takes inputs from the R divider output and the  
feedback divider path to produce an output proportional to the  
phase and frequency difference between them. The PFD includes  
an adjustable delay element that controls the width of the anti-  
backlash pulse. This pulse ensures that there is no dead zone in  
the PFD transfer function and minimizes phase noise and  
reference spurs.  
The AD9530 is a fully integrated, integer-N PLL with an ultralow  
noise, internal 5.11 GHz to 5.4 GHz RTWO capable of generating  
<232 fs rms, (12 kHz to 20 MHz) jitter clocking signals with a  
nonideal reference. The AD9530 is tailored for 40 Gbps and  
100 Gbps OTN applications with stringent converter and ASIC  
clocking specifications.  
The AD9530 includes an on-chip PLL, an internal RTWO, and  
four output channels with integrated dividers and CML drivers.  
The PLL contains a partially internal active loop filter, which  
requires a small number of external components to obtain loop  
bandwidths lower than 15 kHz for reference phase noise  
attenuation.  
The maximum allowable input frequency into the PFD is specified  
in the PFD parameter in Table 5.  
Charge Pump (CP)  
The CP is controlled by the PFD. The PFD monitors the phase  
and frequency relationship between its two inputs and causes  
the CP to pump up or pump down to charge or discharge, respec-  
tively, the integrating node, which is part of the loop filter. The  
integrated and filtered CP current is transformed into a voltage  
that drives the tuning node of the RTWO to move the RTWO  
frequency up or down. The CP current is programmable in 52 steps,  
where each step corresponds to a current increase of 50 µA.  
Calculate the CP current (ICP) by  
The four outputs of the AD9530 feature individual dividers to  
generate four separate frequencies up to 2.7 GHz.  
CONFIGURATION OF THE PLL  
Configuration of the PLL is accomplished by programming the  
various settings for the R divider, N divider, M3 divider, charge  
pump current, and a calibration of the RTWO. The combination of  
these settings and the loop filter determine the PLL loop  
bandwidth and stability.  
ICP (µA) = 50 × (1 + x)  
where x is the value written to Register 0x025, Bits[5:0].  
Successful PLL operation and satisfactory PLL loop performance  
are highly dependent on proper configuration of the internal PLL  
settings and loop filter. ADIsimCLKis a free program that helps  
the design and exploration of the capabilities and features of the  
AD9530, including the design of the PLL loop filter.  
Rev. 0 | Page 18 of 41  
Data Sheet  
AD9530  
PLL Active Loop Filter  
Use the ADIsimCLK design tool to design and simulate loop  
filters with varying bandwidths.  
The AD9530 active loop filter consists of an internal op amp,  
internal passive components, and external passive components.  
Proper loop filter configuration is application dependent. An  
example of a second-order loop filter is shown in Figure 16.  
PLL Reference Inputs  
The AD9530 features two fully differential PLL reference inputs  
that are routed through a 2:1 mux to a common R divider. The  
differential reference input receiver has four internal termination/  
biasing options to accommodate many input logic types. A  
functional diagram of the reference input receiver is shown in  
Figure 17. Table 18 details the four possible reference input  
termination and common-mode settings achievable by writing  
to Register 0x012, Bits[3:2] and Register 0x013, Bits[3:2]. The  
input frequency specifications for the reference inputs are listed  
in Table 4.  
ACTIVE LOOP FILTER WITH DUAL PATH  
OP AMP  
BIAS  
C
MAIN  
VREF  
V
V
TUNE_MAIN  
TUNE_TEMP  
R
MAIN  
RTWO  
C
IN  
R
A_ONCHIP  
LF_1  
LF_2  
C1  
LF_3  
OFF-CHIP  
COMPONENTS  
50  
C
A_OFFCHIP  
10kΩ  
R2  
C2  
VTT BIAS  
GND  
Figure 16. External Second-Order Loop Filer Configuration  
10kΩ  
50Ω  
C1, C2, CA_OFFCHIP, and R2 are external components required for  
proper loop filter operation. All internal loop filter components  
(RMAIN, RA_ONCHIP, CMAIN) are fixed with the exception of CIN, which  
has available settings of 5 pF to 192.5 pF by programming  
Register 0x027, Bits[5:2]. This capacitance setting alters the  
bandwidth of the loop filter op amp. CIN is composed of a fixed  
5 pF capacitor and a bank of 15 selectable 12.5 pF capacitors.  
Calculate the CIN value by  
Figure 17. Reference Input Receiver Functional Diagram  
REFx  
Each REFx/  
receiver can be disabled by setting the  
associated reference enable bit to 0.  
RTWO  
The internal RTWO tunes from 5.11 GHz to 5.4 GHz and is  
powered by the VDD supply pins (Pin 20 to Pin 23). The RTWO  
has two modes: high performance mode and low power mode.  
These modes are set by Register 0x01C, Bit 0. These modes  
enable optimization between the phase noise performance and  
power consumption. See the Power Supply Recommendations  
section for a recommended power supply configuration for  
Pin 20 to Pin 23.  
CIN = 5 pF + 12.5 pF × Register 0x027, Bits[5:2]  
Note that RMAIN and CMAIN in Figure 16 form a pole at  
approximately 2 MHz.  
Table 17 shows the typical loop filter component values and CP  
settings for an 8 kHz loop bandwidth.  
The maximum allowable capacitance value for the external loop  
filter design is shown in Table 5. Exceeding this value may cause  
various functions of the AD9530 to become unstable.  
Table 17. Typical Loop Filter Components and ICP Settings for 8 kHz Loop Bandwidth  
Reference (MHz)  
R Divider  
Feedback Divider (N × M3)  
C1 (nF)  
C2 (µF)  
R2 (Ω)  
CA_OFFCHIP (µF)  
ICP (mA)  
181.5  
÷1  
÷30  
10  
0.47  
255  
0.1  
0.3  
Table 18. Possible Reference Input Termination Settings  
REFx/REFx Input Termination Select Settings  
Mode Name  
On-Chip Termination  
100 Ω differential  
50 Ω to GND  
Common-Mode Bias  
DC-Coupled LVDS  
DC-Coupled, Internally Biased  
AC-Coupled  
00  
High-Z  
GND  
01 (default)  
10  
11  
50 Ω to 0.35 V  
0.35 V  
GND  
DC-Coupled High-Z  
10 kΩ to GND  
Rev. 0 | Page 19 of 41  
 
 
 
 
AD9530  
Data Sheet  
RTWO Calibration  
and N dividers have individual resets located at Register 0x022,  
Bit 0, and Register 0x024, Bit 0, respectively.  
The RTWO calibration function selects the appropriate RTWO  
frequency band for a given configuration. A calibration is  
performed by toggling Register 0x001, Bit 2 from 0 to 1. The  
command sequence to issue a VCO calibration is as follows:  
M1 and M2 Dividers (M1 and M2)  
The M1 and M2 dividers (Register 0x020, Bits[4:3] and  
Register 0x021, Bits[4:3], respectively) have fixed divide  
values of 2, 2.5, 3, and 3.5.  
1. Write the desired AD9530 configuration, including the  
divider and output driver settings.  
The M1 and M2 dividers provide frequency division between the  
RTWO output and the clock distribution channel dividers (Dx).  
2. Set Register 0x001, Bit 2 = 0 (CALIBRATE VCO bit).  
Note that this is a self clearing bit.  
The M1 and M2 dividers have individual resets located at  
Register 0x020, Bit 0, and Register 0x021, Bit 0, respectively.  
A calibration is required after initial power-up, after subsequent  
resets, and after any changes to the input reference frequency or  
the divide settings that affect the RTWO operating frequency. A  
2 sec wait timer is activated at power-up to gate the first calibration.  
This wait time is not enforced for subsequent calibrations after  
power-on. See the CML Output Drivers section for more  
details. The PLL reference must be active and stable and the  
PLL must be configured to a valid operational state prior to  
issuing a calibration. After a calibration, all of the internal  
dividers are synchronized automatically to ensure proper phase  
alignment of the PLL and distribution.  
Channel Dividers (Dx)  
The AD9530 has four 8-bit channel dividers (Dx) which are  
identical to the R and N dividers. Dx can be set to any value  
from 1 to 255. Setting the divide value for D1 through D4 is  
accomplished by writing Register 0x014, Register 0x016,  
Register 0x018, and Register 0x01A, respectively. The D1 through  
D4 reset bits that reset D1 through D4 are located in Bit 0 of  
Register 0x015, Register 0x017, Register 0x019, and  
Register 0x01B, respectively. A setting of 0 disables the divider.  
Reference Switchover  
Dividers Sync  
The AD9530 supports two separate differential reference inputs.  
Manual switchover is performed between these inputs by either  
writing to Register 0x011, Bit 2 and Bit 1, or by using the REF_SEL  
pin. Register 0x011, Bit 2 sets whether the REF_SEL pin or the  
reference select register controls the reference input mux. Default  
operation ignores the REF_SEL pin setting and uses the value of  
Register 0x011, Bit 1.  
Use a sync to phase align all of the AD9530 internal dividers to a  
common point in time. A global sync of all dividers is performed  
after a VCO calibration. To perform a VCO calibration, write a  
1 to Bit 2 of Register 0x001. A VCO calibration must be  
performed after power up, as well as any time a different VCO  
frequency is selected.  
To sync all of the dividers after programming them, without the  
VCO frequency, write a 1 to Bit 1 of Register 0x001.  
Dividers (R, Mx, N, and Dx)  
The AD9530 contains multiple dividers that configure the PLL  
for a given frequency plan. Each divider has an associated reset  
bit that is self clearing. Resetting a divider is required every time  
the divide value of that driver is changed. Issuing a reset of a  
single divider does not clear the current divide value.  
Lock Detector  
The AD9530 features a frequency lock detect signal that  
corresponds to whether the PLL reference and feedback edges are  
within a certain frequency of one another. The exact frequency  
lock threshold to indicate a PLL lock is user programmable in  
Register 0x01D, Bits[3:1]. The three register bits allow the  
frequency lock threshold to span 20 ppb to 300 ppm.  
Reference Divider (R Divider)  
The reference inputs are routed through a 2:1 mux into a  
common 8-bit R divider. R can be set to any value from 1 to 255  
(Register 0x010, Bits[7:0]). Setting Register 0x010 = 0x0A is  
equivalent to an R divider setting of 10.  
If the frequency error between the reference and feedback edges  
is lower than the specified lock threshold, the LD pin goes high and  
the PLL_LOCKED bit = 1. The LD pin and the PLL_LOCKED bit  
go low when the error between the reference and feedback  
edges is greater than the frequency lock threshold.  
The frequency out of the R divider must not exceed the maximum  
allowable frequency of the PFD listed in Table 5.  
The lock detector also outputs an 11-bit word located in  
Register 0x01E, Bits[7:0] and Register 0x01F, Bits[1:0]. Bit 10  
through Bit 0 contain a binary value representative of the measured  
frequency lock error, and Bit 11 indicates whether the 10-bit  
value is expressed in ppm (parts per million) or ppb (parts per  
billion). Note that this 11th bit is found in Register 0x01F, Bit 3.  
The R divider has its own reset located in Register 0x011. This  
reset bit is self clearing.  
M3 and N Feedback Dividers  
The total feedback division from the RTWO to the PFD is the  
product of the M3 and N dividers. The N divider (Register 0x023,  
Bits[7:0]) functions identically to the R divider described in the  
Reference Divider (R Divider) section. The M3 divider  
(Register 0x022, Bits[3:2]) is limited to fixed divide values of 2,  
2.5, 3, and 3.5 and acts as a prescaler to the N divider. The M3  
Rev. 0 | Page 20 of 41  
 
Data Sheet  
AD9530  
CML Output Drivers  
the 2 sec counter finishes, the user can issue a VCO calibration  
and outputs begin toggling ~500 ns later.  
The AD9530 has four CML output drivers that are operable up to  
2.7 GHz. Each output driver must be externally terminated as  
shown in the Input/Output Termination Recommendations  
section. The output voltage swing, internal termination, and  
power-down of each CML driver are configurable by writing to  
the appropriate registers. An initial calibration of the internal  
termination and voltage swing is performed after a POR event.  
This calibration requires that OUT1 is terminated, regardless of  
whether the driver is needed in a specific design. A functional  
diagram of the output driver is shown in Figure 18.  
2 sec Wait Timer  
The 2 sec wait timer ensures that all internal supplies are stable  
before allowing the user to issue a VCO calibration. This timer  
only starts after a POR. The user may program all the necessary  
registers during this time, including the VCO calibration bit. After  
the timer times out and a reference input is applied, the  
calibration issues, allowing the PLL to lock and the outputs to  
toggle. The maximum internal wait time is shown in Table 5.  
RESET  
Hardware Reset via the  
Pin  
V
DD  
RESET  
Driving the  
pin to a Logic 0 and then back to a Logic 1  
V
DD  
restores the chip to the on-chip default register settings.  
50Ω  
50Ω  
Soft Reset via the Serial Port  
The serial port control register allows a soft reset by setting  
Register 0x000, Bit 7 and Bit 1. When these bits are set, the chip  
restores to the on-chip default settings, except for Register 0x000  
and Register 0x001. Register 0x000 and Register 0x001 retain  
the values prior to reset, except for the self clearing bits. However,  
the self clearing operation does not complete until an additional  
serial port SCLK cycle occurs; the AD9530 is held in reset until  
this additional SCLK cycle.  
MN2  
MN3  
MN0  
MN1  
18mA TO 24mA  
18mA TO 24mA  
Individual Divider Reset via the Serial Port  
Figure 18. CML Output Simplified Equivalent Circuit  
Every divider in the AD9530 has the ability to reset individually  
by using the appropriate reset bit. This reset does not clear the  
value written in the specific divider register but restarts the  
divider count to 0, which results in a phase adjustment. See the  
associated divider section or the register map for the location of  
these bits.  
The CML differential voltage (VOD) is selectable from 0.8 V to 1.1 V  
via Bits[5:4] of Register 0x015, Register 0x017, Register 0x019,  
and Register 0x01B.  
The AD9530 has optional internal termination for cases where  
transmission line impedance mismatch between the CML output  
and the receiver causes increased reflections at high output  
frequencies. These terminations improve impedance match  
traces at high frequency at the expense of drawing twice as  
much current as the default operating condition.  
POWER-DOWN MODES  
Sleep Mode via the Serial Port  
Place the AD9530 in sleep mode by writing Register 0x002,  
Bits[1:0] = 11. This mode powers down the following blocks:  
For Register 0x015 (for OUT1), Register 0x017 (for OUT2),  
Register 0x019 (for OUT3), and Register 0x01B (for OUT4),  
setting the OUTx_TERM_EN (Bit 3) = 1 enables the on-chip  
termination and is configurable for each driver.  
All OUTx drivers  
All REFx inputs  
All Mx dividers  
Each CML output can be enabled as needed by altering the  
appropriate OUTx_ENABLE bit.  
RTWO power set to minimum  
CP current set to minimum  
PFD  
RESET MODES  
Loop filter op amp  
The AD9530 has a POR and several other ways to apply a reset  
condition to the chip.  
Individual Clock Input and Output Power-Down  
Power down any of the reference inputs or clock distribution  
outputs by individually writing to the appropriate registers. The  
register map details the individual power-down settings for  
each input and output.  
Power-On Reset (POR)  
During chip power-up, a POR pulse is issued when VDD  
reaches ~2 V and restores the chip to the default on-chip  
setting. At this point, a 2 sec counter is started to allow all the  
user device settings to load and the RTWO to stabilize. After  
Rev. 0 | Page 21 of 41  
 
AD9530  
Data Sheet  
INPUT/OUTPUT TERMINATION RECOMMENDATIONS  
Figure 19 through Figure 24 illustrate the recommended input and output connections for connecting the AD9530 to other devices.  
V
= 2.5V  
V
= 2.5V  
DD  
V
DD  
DD  
0.1µF  
0.1µF  
V
= 2.5V  
DD  
50  
0.1µF  
0.1µF  
100DIFFERENTIAL  
(COUPLED)  
TRANSMISSION LINE  
100Ω  
HSTL  
AD9530  
100DIFFERENTIAL  
(COUPLED)  
TRANSMISSION LINE  
50Ω  
AD9530  
CML  
Figure 22. REFx Input Termination Recommendation for High Speed  
Transceiver Logic (HSTL) Drivers  
Figure 19. CML AC-Coupled Output Driver (External Termination Required  
When Using the Internal Termination Option)  
V
= 3.3V  
V
= 2.5V  
DD  
V
= 2.5V  
DD  
DD  
0.1µF  
V
= 2.5V  
V = V  
S DD  
DD  
100DIFFERENTIAL  
50Ω  
(COUPLED)  
100Ω  
LVPECL  
AD9530  
0.1µF TRANSMISSION LINE  
100DIFFERENTIAL  
(COUPLED)  
TRANSMISSION LINE  
50Ω  
AD9530  
CML  
200Ω  
200Ω  
Figure 23. REFx Input Termination Recommendation for 3.3V LVPECL Drivers  
Figure 20. CML DC-Coupled Output Driver (External Termination Required  
When Using the Internal Termination Option)  
V
V
DD  
DD  
V
= 2.5V  
DD  
V
V
DD  
DD  
50  
100DIFFERENTIAL  
(COUPLED)  
TRANSMISSION LINE  
100Ω  
LVDS  
AD9530  
100DIFFERENTIAL  
(COUPLED)  
TRANSMISSION LINE  
50Ω  
CML  
AD9530  
Figure 24. REFx Input Termination Recommendation for 2.5V CML Drivers  
Figure 21. REFx Input Termination Recommendation for LVDS Drivers  
Rev. 0 | Page 22 of 41  
 
 
Data Sheet  
AD9530  
SERIAL CONTROL PORT  
The AD9530 serial control port is a flexible, synchronous serial  
communications port that provides a convenient interface to  
many industry-standard microcontrollers and microprocessors.  
The serial control port allows read/write access to the AD9530  
register map.  
The following product specific items are defined in the unified  
SPI protocol:  
Analog Devices unified SPI protocol Revision: 1.0.  
Chip type: 0x05 (0x05 indicates a clock chip).  
Product ID: 10011b (in this case) uniquely identifies the  
device as AD9530. No other Analog Devices clock IC  
supporting unified SPI has this identifier.  
Physical layer: 3-wire and 4-wire supported and 2.5 V  
operation supported.  
The AD9530 uses the Analog Devices, Inc., unified SPI protocol.  
The unified SPI protocol guarantees that all new Analog Devices  
products using the unified protocol have consistent serial port  
characteristics. The SPI port configuration is programmable via  
Register 0x0000. This register is a part of the SPI control logic  
rather than in the register map.  
Optional single-byte instruction mode: not supported.  
Data link: not used.  
SPI SERIAL PORT OPERATION  
Control: not used.  
Pin Descriptions  
Communication Cycle—Instruction Plus Data  
The SCLK (serial clock) pin serves as the serial shift clock. This  
pin is an input. SCLK synchronizes serial control port read and  
write operations. The rising edge SCLK registers write data bits,  
and the falling edge registers read data bits. The SCLK pin  
supports a maximum clock rate of 40 MHz.  
The unified SPI protocol consists of a two part communication  
cycle. The first part is a 16-bit instruction word that is coincident  
with the first 16 SCLK rising edges and a payload. The instruction  
word provides the AD9530 serial control port with information  
W
regarding the payload. The instruction word includes the R/ bit  
The SPI port supports both 3-wire (bidirectional) and 4-wire  
(unidirectional) hardware configurations and both MSB-first  
and LSB-first data formats. Both the hardware configuration  
and data format features are programmable. The 3-wire mode  
uses the SDIO (serial data input/output) pin for transferring  
data in both directions. The 4-wire mode uses the SDIO pin  
for transferring data to the AD9530, and the SDO pin for  
transferring data from the AD9530.  
that indicates the direction of the payload transfer (that is, a  
read or write operation). The instruction word also indicates  
the starting register address of the first payload byte.  
Write  
If the instruction word indicates a write operation, the payload  
is written into the serial control port buffer of the AD9530. Data  
bits are registered on the rising edge of SCLK. Generally, it does  
not matter what data is written to blank registers; however, it is  
customary to use 0s. Note that there may be reserved registers  
with default values not equal to 0x00; however, every effort was  
made to avoid this.  
CS  
The  
(chip select) pin is an active low control that gates read  
CS  
and write operations. Assertion (active low) of the  
pin initiates a  
write or read operation to theAD9530 SPI port. Any number of  
data bytes can be transferred in a continuous stream. The register  
address is automatically incremented or decremented based on the  
Most of the serial port registers are buffered (see the Buffered/  
Active Registers section for details on the difference between  
buffered and active registers). Therefore, data written into  
buffered registers does not take effect immediately. An additional  
operation is needed to transfer buffered serial control port  
contents to the registers that actually control the device. This  
transfer is accomplished with an IO_UPDATE operation, which  
is performed in one of two ways. One method is to write a Logic 1  
to Register 0x00F, Bit 0 (this bit is an autoclearing bit). The user  
can change as many register bits as desired before executing an  
IO_UPDATE command. The IO_UPDATE operation transfers  
the buffer register contents to their active register counterparts.  
CS  
setting of the address ascension bit (Register 0x0000).  
must be  
deasserted at the end of the last byte transferred, thereby ending  
the stream mode. This pin is internally connected to a 10 kΩ pull-  
CS  
up resistor. When  
is high, the SDIO and SDO pins go into a  
high impedance state.  
Implementation Specific Details  
A detailed description of the unified SPI protocol can be found  
at www.analog.com/ADISPI, which covers items such as timing,  
command format, and addressing.  
Rev. 0 | Page 23 of 41  
AD9530  
Data Sheet  
Read  
SPI MSB/LSB First Transfers  
If the instruction word indicates a read operation, the next  
N × 8 SCLK cycles clock out the data starting from the address  
specified in the instruction word. N is the number of data bytes  
read. The readback data is driven to the pin on the falling edge  
and must be latched on the rising edge of SCLK. Blank registers  
are not skipped over during readback.  
The AD9530 instruction word and payload can be MSB first or  
LSB first. The default for the AD9530 is MSB first. The LSB first  
mode can be set by writing a 1 to Register 0x000, Bit 6 and Bit 1.  
Immediately after the LSB first bit is set, subsequent serial  
control port operations are LSB first.  
Address Ascension  
A readback operation takes data from either the serial control  
port buffer registers or the active registers, as determined by  
Register 0x001, Bit 5.  
If the address ascension bit (Register 0x000, Bit 5 and Bit 2) = 0,  
the serial control port register address decrements from the  
specified starting address toward Address 0x0000.  
SPI Instruction Word (16 Bits)  
If the address ascension bit (Register 0x0000, Bit 5 and Bit 2) = 1,  
the serial control port register address increments from the  
starting address toward Address 0x0FF. Reserved addresses are  
not skipped during multibyte input/output operations;  
therefore, write the default value to a reserved register and 0s to  
unmapped registers. Note that it is more efficient to issue a new  
write command than to write the default value to more than  
two consecutive reserved (or unmapped) registers.  
W
The MSB of the 16-bit instruction word is R/ , which indicates  
whether the instruction is a read or a write. The next 15 bits are  
the register address (A14 to A0), which indicates the starting  
register address of the read/write operation (see Table 20). Note  
that, because there are no registers that require more than  
13 address bits, A14 and A13 are ignored and treated as zeros.  
Table 19. Streaming Mode (No Addresses Skipped)  
Address Ascension  
Increment  
Stop Sequence  
0x0000 … 0x1FFF  
0x1FFF … 0x0000  
Decrement  
Table 20. Serial Control Port, 16-Bit Instruction Word  
MSB  
LSB  
I0  
I15  
I14  
I13  
I12  
I11  
I10  
I9  
I8  
I7  
I6  
I5  
I4  
I3  
I2  
I1  
R/W  
A14  
A13  
A12  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
CS  
SCLK DON'T CARE  
DON'T CARE  
DON'T CARE  
DON'T CARE  
SDIO  
R/W A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0  
16-BIT INSTRUCTION HEADER REGISTER (N) DATA REGISTER (N – 1) DATA  
Figure 25. Serial Control Port Write—MSB First, Address Decrement, Two Bytes of Data  
CS  
SCLK  
DON'T CARE  
DON'T CARE  
SDIO  
R/W A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0  
REGISTER (N) DATA REGISTER (N – 1) DATA REGISTER (N – 2) DATA REGISTER (N – 3) DATA  
SDO DON'T CARE  
16-BIT INSTRUCTION HEADER  
DON'T  
CARE  
Figure 26. Serial Control Port Read—MSB First, Address Decrement, Four Bytes of Data  
tDS  
tHIGH  
tS  
tC  
tCLK  
tDH  
tLOW  
CS  
DON'T CARE  
DON'T CARE  
DON'T CARE  
SCLK  
SDIO  
R/W  
A14  
A13  
A12  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
D4  
D3  
D2  
D1  
D0  
DON'T CARE  
Figure 27. Timing Diagram for Serial Control Port Write—MSB First  
Rev. 0 | Page 24 of 41  
 
 
Data Sheet  
AD9530  
CS  
SCLK  
tDV  
SDIO  
SDO  
DATA BIT N  
DATA BIT N – 1  
Figure 28. Timing Diagram for Serial Control Port Register Read—MSB First  
CS  
SCLK DON'T CARE  
DON'T CARE  
DON'T CARE  
A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 R/W D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7  
16-BIT INSTRUCTION HEADER REGISTER (N) DATA REGISTER (N + 1) DATA  
DON'T CARE  
SDIO  
Figure 29. Serial Control Port Write—LSB First, Address Increment, Two Bytes of Data  
tS  
tC  
CS  
tCLK  
tHIGH  
tLOW  
tDS  
SCLK  
SDIO  
tDH  
BIT N  
BIT N + 1  
Figure 30. Serial Control Port Timing—Write  
Table 21. Serial Control Port Timing  
Parameter  
Description  
tDS  
tDH  
tCLK  
tS  
Setup time between data and the rising edge of SCLK (see Figure 27 and Figure 30)  
Hold time between data and the rising edge of SCLK (see Figure 27 and Figure 30)  
Period of the clock (see Figure 27 and Figure 30)  
CS  
(see Figure 27 and Figure 30)  
Setup time between the  
falling edge and the SCLK rising edge (start of the communication cycle)  
tC  
CS  
Setup time between the SCLK rising edge and rising edge (end of the communication cycle)  
(see Figure 27 and Figure 30)  
tHIGH  
tLOW  
tDV  
Minimum period that SCLK is in a logic high state (see Figure 27 and Figure 30)  
Minimum period that SCLK is in a logic low state (see Figure 27 and Figure 30)  
SCLK to valid SDIO (see Figure 28)  
Rev. 0 | Page 25 of 41  
 
 
AD9530  
Data Sheet  
POWER DISSIPATION AND THERMAL CONSIDERATIONS  
The AD9530 is a multifunctional, high speed device that targets  
a wide variety of clock applications. The numerous innovative  
features contained in the device each consume incremental power.  
If all outputs are enabled in the maximum frequency and mode  
that have the highest power, the safe thermal operating conditions  
of the device may be exceeded. Careful analysis and consideration  
of power dissipation and thermal management are critical  
elements in the successful application of the AD9530.  
CLOCK SPEED AND DRIVER MODE  
Clock speed directly and linearly influences the total power  
dissipation of the device and, therefore, the junction temperature.  
Table 3 lists the currents required by the driver for a single  
output frequency. If using the current vs. frequency graphs  
provided in the Typical Performance Characteristics section,  
subtract the power into the load using the following equation:  
P
LOAD = (Differential Output Voltage Swing2/50 Ω)  
The AD9530 is specified to operate within the industrial  
temperature range of –40°C to +85°C. This specification is  
conditional, such that the absolute maximum junction  
temperature is not exceeded (as specified in Table 14). At  
high operating temperatures, extreme care must be taken  
when operating the device to avoid exceeding the junction  
temperature and potentially damaging the device.  
EVALUATION OF OPERATING CONDITIONS  
The first step in evaluating the operating conditions is to  
determine the AD9530 maximum power consumption for the  
user configuration by referring to the values in Table 2. The  
maximum PD excludes power dissipated in the load resistors of  
the drivers because such power is external to the device. Use the  
current dissipation specifications listed in Table 2, as well as the  
power dissipation numbers in Table 3 to calculate the total  
power dissipated for the desired configuration.  
Many variables contribute to the operating junction temperature  
within the device, including  
Selected driver mode of operation  
Output clock speed  
The second step in evaluating the operating conditions is to  
multiply the power dissipated by the thermal impedance to  
determine the maximum power gradient. For this example, a  
thermal impedance of θJA = 21.1°C/W is used.  
Supply voltage  
Ambient temperature  
The combination of these variables determines the junction  
temperature within the AD9530 for a given set of operating  
conditions.  
Example 1  
Example 1 is as follows:  
(1358 mW × 21.1°C/W) = 29°C  
With an ambient temperature of 85°C, the junction temperature is  
TJ = 85°C + 29°C = 114°C  
The AD9530 is specified for an ambient temperature (TA). To  
ensure that TA is not exceeded, use an airflow source.  
Use the following equation to determine the junction  
temperature on the application PCB:  
This junction temperature is below the maximum allowable  
temperature.  
TJ = TCASE + (ΨJT × PD)  
Example 2  
where:  
TJ is the junction temperature (°C).  
Example 2 is as follows:  
T
CASE is the case temperature (°C) measured at the top center of  
the package.  
JT is the value from Table 14.  
(1630 mW × 21.1°C/W) = 34°C  
With an ambient temperature of 85°C, the junction temperature is  
TJ = 85°C + 34°C = 119°C  
Ψ
PD is the power dissipation of the AD9530.  
Values of θJA are provided for package comparison and PCB  
design considerations. θJA can be used for a first-order  
approximation of TJ by the equation  
This junction temperature is greater than the maximum allowable  
temperature. The ambient temperature must be lowered by 4°C  
to operate in the condition of Example 2.  
TJ = TA + (θJA × PD)  
THERMALLY ENHANCED PACKAGE MOUNTING  
GUIDELINES  
where TA is the ambient temperature (°C).  
See the AN-772 Application Note, A Design and Manufacturing  
Guide for the Lead Frame Chip Scale Package (LFCSP), for more  
information about mounting devices with an exposed pad.  
Values of θJC are provided for package comparison and PCB  
design considerations when an external heat sink is required.  
Values of ΨJB are provided for package comparison and PCB  
design considerations.  
Rev. 0 | Page 26 of 41  
Data Sheet  
AD9530  
APPLICATIONS INFORMATION  
POWER SUPPLY RECOMMENDATIONS  
Figure 32 shows the required sampling clock jitter as a function  
of the analog frequency and effective number of bits (ENOB).  
The AD9530 only requires 2.5 V for operation, but proper isolation  
between power domains is beneficial for performance. Figure 31  
shows the recommended Analog Devices power solutions for  
the best possible performance of the AD9530. These devices are  
also featured on the evaluation board.  
110  
18  
1
SNR = 20log  
2πfAtJ  
100  
90  
80  
70  
60  
50  
40  
30  
16  
14  
12  
10  
8
tJ  
tJ  
tJ  
=
=
=
1
0
2
0
4
0
0
f
0
f
0
f
s
s
s
ADP7158  
ADP2386  
BUCK  
(RECOMMENDED)  
OR  
3.4V  
6V  
INPUT  
2.5V: VDD RTWO  
(PINS 20 TO 23)  
ADP1741  
REGULATOR  
tJ  
tJ  
LDO  
=
=
1
2
p
s
s
p
ADM7154  
LDO  
2.5V: VDD OUT  
AND VDD REF  
(PIN 3, PIN 7, PIN 31,  
PIN 35, PIN 41, PIN 45)  
tJ  
=
1
0
p
s
ADP151  
LDO  
2.5V: VDD DIGITAL  
(PIN 12)  
6
10  
100  
fA (MHz)  
1k  
Figure 31. Power Supply Recommendation  
USING THE AD9530 OUTPUTS FOR ADC CLOCK  
APPLICATIONS  
Figure 32. SNR and ENOB vs. Analog Input Frequency (fA)  
For more information, see the AN-756 Application Note,  
Sampled Systems and the Effects of Clock Phase Noise and Jitter,  
and the AN-501 Application Note, Aperture Uncertainty and  
ADC System Performance.  
Any high speed ADC is extremely sensitive to the quality of the  
sampling clock of the AD9530. An ADC can be thought of as a  
sampling mixer, and any noise, distortion, or time jitter on the  
clock is combined with the desired signal at the analog-to-digital  
output. Clock integrity requirements scale with the analog input  
frequency and resolution, with higher analog input frequency  
applications at ≥14-bit resolution being the most stringent. The  
theoretical SNR of an ADC is limited by the ADC resolution and  
the jitter on the sampling clock. Considering an ideal ADC of  
infinite resolution, where the step size and quantization error  
can be ignored, the available SNR can be expressed  
Many high performance ADCs feature differential clock inputs  
to simplify the task of providing the required low jitter clock on  
a noisy PCB. Distributing a single-ended clock on a noisy PCB can  
result in coupled noise on the sampling clock. Differential  
distribution has inherent common-mode rejection that can  
provide superior clock performance in a noisy environment.  
The differential CML outputs of the AD9530 enable clock  
solutions that maximize converter SNR performance.  
approximately by  
Consider the input requirements of the ADC (differential or single-  
ended, logic level termination) when selecting the best clocking/  
converter solution.  
1
SNR(dB) 20log  
2fAtJ  
where:  
fA is the highest analog frequency being digitized.  
tJ is the rms jitter on the sampling clock.  
Rev. 0 | Page 27 of 41  
 
 
AD9530  
Data Sheet  
TYPICAL APPLICATION BLOCK DIAGRAM  
AD9554  
(QUAD CHANNEL DPLL)  
AD9530  
10 × 10Gbps  
10 × 10Gbps  
25Gbps TO 28Gbps  
25Gbps TO 28Gbps  
25Gbps TO 28Gbps  
25Gbps TO 28Gbps  
HIGH  
SPEED  
Tx DAC  
NPU  
OPTICAL  
FRONT  
END  
TO NETWORK  
FRAMER/  
FEC  
FRAMER/  
TRAFFIC  
PHY  
MANAGEMENT  
OPTICAL  
MODULE  
FPGA/ASIC  
AD9554  
(QUAD CHANNEL DPLL)  
AD9530  
DEMAPPING  
CONTROL  
10 × 10Gbps  
10 × 10Gbps  
25Gbps TO 28Gbps  
25Gbps TO 28Gbps  
25Gbps TO 28Gbps  
25Gbps TO 28Gbps  
HIGH  
SPEED  
Tx DAC  
NPU  
FROM NETWORK  
OPTICAL  
FRONT  
END  
FRAMER/  
FEC  
FRAMER/  
PHY  
TRAFFIC  
MANAGEMENT  
OPTICAL  
MODULE  
FPGA/ASIC  
TRx  
MODULES  
3 × AD9554-1  
(QUAD CHANNEL  
DPLL)  
10Gbps SERDES  
Figure 33. Typical Application Block Diagram, 100 Gbps Muxponder with the AD9530  
Rev. 0 | Page 28 of 41  
Data Sheet  
AD9530  
CONTROL REGISTERS  
CONTROL REGISTER MAP OVERVIEW  
When writing to registers with bits that are marked reserved,  
take care to always write the default value for the reserved bits.  
Register addresses that are not listed in Table 22 are not used  
and writing to those registers has no effect. Registers that are  
marked as reserved must never have their values changed.  
Unused and reserved registers are in the control register map  
but are not in the control register description tables.  
Table 22. Control Register Map  
Reg.  
Addr.  
(Hex) Register Name Bit 7  
Default  
Value  
(Hex)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
(LSB) Bit 0  
0x000 SPI_CONFIGA  
0x001 SPI_CONFIGB  
0x002 STATUS  
SOFT_RESET LSB_FIRST ADDRESS_ASCEND  
SDO_ACTIVE  
ADDRESS_  
ASCEND  
LSB_FIRST  
SOFT_RESET  
0x00  
SINGLE_  
INSTRUCTION  
RESERVED READ_BUFFER  
RESERVED  
CALIBRATE VCO DIVIDER_RESET RESERVED  
0x00  
PLL_LOCKED SIGNAL_  
PRESENT  
FEEDBACK_OK  
REFERENCE_  
OK  
RESERVED SLEEP  
Varies  
0x003 CHIP_TYPE  
0x004 PRODUCT_  
ID[11:0]  
RESERVED  
CHIP_TYPE, Bits[3:0]  
RESERVED  
0x05  
0x3F  
0x01  
0x14  
0x00  
0x00  
0x00  
0x00  
PRODUCT_ID, Bits[3:0]  
0x005  
PRODUCT_ID, Bits[11:4]  
0x006 PART_VERSION  
0x007 RESERVED  
0x008 RESERVED  
0x009 RESERVED  
PART VERSION  
RESERVED  
RESERVED  
RESERVED  
0x00A USER_  
SCRATCHPAD1  
USER_SCRATCHPAD1, Bits[7:0]  
0x00B SPI_VERSION  
0x00C VENDOR_ID  
0x00D VENDOR_ID  
0x00E RESERVED  
0x00F IO_UPDATE  
0x010 R_DIVIDER  
SPI_VERSION, Bits[7:0]  
VENDOR_ID, Bits[7:0]  
VENDOR_ID, Bits[15:8]  
RESERVED  
0x00  
0x56  
0x04  
0x00  
0x00  
0x01  
0x06  
RESERVED  
IO_UPDATE  
R_DIVIDER, Bits[7:0]  
0x011 R_DIVIDER_  
CTRL  
RESERVED  
REFIN_OVERRIDE_ REFIN_INPUT_  
REFIN_DIV_  
RESET  
PIN_SEL  
REFA_TERM_SEL  
REFB_TERM_SEL  
SEL  
0x012 REF_A  
RESERVED  
RESERVED  
REFA_LDO_EN  
REFB_LDO_EN  
REFA_EN  
REFB_EN  
0x07  
0x06  
0x01  
0x24  
0x013 REF_B  
0x014 OUT1_DIVIDER  
OUT1_DIVIDER, Bits[7:0]  
0x015 OUT1_DRIVER_  
CONTROL  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
OUT1_AMP_TRIM  
OUT1_TERM_ OUT1_LDO_EN  
EN  
OUT1_EN  
OUT2_EN  
OUT3_EN  
OUT4_EN  
OUT1_  
DIVIDER_RESET  
0x016 OUT2_DIVIDER  
OUT2_DIVIDER, Bits[7:0]  
0x01  
0x24  
0x017 OUT2_DRIVER_  
CONTROL  
OUT2_AMP_TRIM  
OUT3_AMP_TRIM  
OUT2_TERM_ OUT2_LDO_EN  
EN  
OUT2_  
DIVIDER_RESET  
0x018 OUT3_DIVIDER  
OUT3_DIVIDER, Bits[7:0]  
0x01  
0x24  
0x019 OUT3_DRIVER_  
CONTROL  
OUT3_TERM_ OUT3_LDO_EN  
EN  
OUT3_  
DIVIDER_RESET  
0x01A OUT4_DIVIDER  
OUT4_DIVIDER, Bits[7:0]  
0x01  
0x24  
0x01B OUT4_DRIVER_  
CONTROL  
OUT4_AMP_TRIM  
RESERVED  
OUT4_TERM_ OUT4_LDO_EN  
EN  
OUT4_  
DIVIDER_RESET  
0x01C VCO_POWER  
VCO_LDO_WAIT_ VCO_POWER  
OVERRIDE  
0x01  
0x0C  
Varies  
0x01D PLL_LOCKDET_  
CONTROL  
RESERVED  
PLL_LOCK_  
DET_START  
PLL_LOCK_DET_ERROR, Bits[7:0]  
PLL_LOCK_DET_ERR_THRESHOLD, Bits[2:0]  
PLL_LOCK_  
DET_RESET  
0x01E PLL_LOCKDET_  
READBACK1  
0x01F PLL_LOCKDET_  
READBACK2  
RESERVED  
RESERVED  
RESERVED  
PLL_LOCK_  
DET_DONE  
PLL_LOCK_  
DET_RANGE  
PLL_LOCKED  
M1_LDO_EN  
M2_LDO_EN  
PLL_LOCK_DET_ERROR, Bits[9:8] Varies  
0x020 M1_DIVIDER  
0x021 M2_DIVIDER  
0x022 M3_DIVIDER  
0x023 N_DIVIDER  
M1_DIVIDER  
M1_EN  
M2_EN  
M3_EN  
M1_DIVIDER_  
RESET  
0x16  
0x16  
0x02  
0x0A  
M2_DIVIDER  
M2_DIVIDER_  
RESET  
RESERVED  
M3_DIVIDER  
M3_DIVIDER_  
RESET  
N_DIVIDER  
Rev. 0 | Page 29 of 41  
 
AD9530  
Data Sheet  
Reg.  
Addr.  
(Hex) Register Name Bit 7  
Default  
Value  
(Hex)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
(LSB) Bit 0  
0x024 N_DIVIDER_  
CTRL  
RESERVED  
N_DIVIDER_  
RESET  
0x00  
0x025 CHARGE_PUMP  
RESERVED  
CP_CURRENT  
0x07  
0x01  
0x026 PHASE_  
FREQUENCY_  
DETECTOR  
RESERVED  
PFD_EN_  
ANTIBACKLASH  
PFD_ENABLE  
0x027 LOOP_FILTER  
RESERVED  
RESERVED  
LOOP_FILTER_CAP  
LOOP_FILTER_  
BIAS_EN  
LOOP_FILTER_ 0x13  
AMP_EN  
0x028 VCO_READBACK  
0x0FC RESERVED  
VCO_FREQ_AUTOCAL  
0x00  
0x00  
0x00  
0x00  
RESERVED  
RESERVED  
0x0FD RESERVED  
0x0FE USER_  
SCRATCHPAD2  
USER_SCRATCHPAD2, Bits[7:0]  
0x0FF USER_  
SCRATCHPAD3  
USER_SCRATCHPAD3, Bits[7:0]  
0x00  
Rev. 0 | Page 30 of 41  
Data Sheet  
AD9530  
CONTROL REGISTER MAP DESCRIPTIONS  
Table 23 through Table 61 provide detailed descriptions for each of the control register functions. The registers are listed by hexadecimal address.  
Bit fields noted as live indicate that the register write takes effect immediately. Bit fields that are not noted as live only take effect after an  
IO_UPDATE is issued by writing 0x01 to Register 0x00F.  
SPI CONFIGURATION (REGISTER 0x000 AND REGISTER 0x001)  
Table 23. Bit Descriptions for SPI_CONFIGA (Default: 0x00)  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
7
SOFT_RESET  
Master SPI reset. Setting this self clearing bit to 1 resets the AD9530.  
This bit is live.  
0b  
W
6
LSB_FIRST  
Selects SPI LSB first mode. This bit is live.  
MSB first SPI access.  
0b  
0b  
0b  
0b  
0b  
0b  
RW  
RW  
RW  
RW  
RW  
W
0
1
LSB first SPI access.  
5
ADDRESS_ASCEND  
SDO_ACTIVE  
ADDRESS_ASCEND  
LSB_FIRST  
Selects SPI address ascend mode. This bit is live.  
SPI streaming mode addresses decrement (default).  
SPI streaming mode addresses increment.  
Selects SPI 4-pin mode, which enables the SDO pin. This bit is live.  
SPI 3-pin mode. The SDIO pin is bidirectional (default).  
SPI 4-pin mode. The SDI and SDO pins are unidirectional.  
Selects SPI address ascend mode. This bit is live.  
SPI streaming mode addresses decrement (default).  
SPI streaming mode addresses increment.  
Selects SPI LSB first mode. This bit is live.  
MSB first SPI access (default).  
0
1
[4:3]  
0
1
2
1
0
0
1
0
1
LSB first SPI access.  
SOFT_RESET  
Master SPI reset. Setting this self clearing bit to 1 resets the AD9530.  
This bit is live.  
Table 24. Bit Descriptions for SPI_CONFIGB (Default: 0x00)  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
7
SINGLE_INSTRUCTION  
Single instruction mode. This bit is live.  
SPI streaming mode (default).  
SPI single instruction mode.  
0b  
RW  
0
1
0
6
5
RESERVED  
When writing to Register 0x001, this bit must be 0b.  
0b  
0b  
W
READ_BUFFER  
For buffered registers, this bit controls whether the value read from  
the serial port is from the actual (active) registers or the buffered copy.  
RW  
0
1
Reads values currently applied to the internal logic of the device (default).  
Reads buffered values that take effect on the next assertion of  
IO_UPDATE.  
[4:3]  
2
RESERVED  
00 When writing to Register 0x001, these bits must be 00b.  
00b  
0b  
W
W
CALIBRATE VCO  
VCO calibration. Setting this self clearing bit performs a VCO  
calibration, which must be performed at startup as well as any time  
the VCO frequency is changed. A VCO calibration also automatically  
performs a divider reset (Bit 1 in this register). This bit is live.  
1
0
DIVIDER_RESET  
RESERVED  
Divider reset. Writing a 1 to this self clearing register stalls the outputs, 0b  
reset all dividers, and reenable the outputs. A divider reset must be  
performed any time the divider values are changed. Note that if the  
divider value change results in a different VCO frequency, the  
CALIBRATE VCO bit (Bit 2 in this register) must be used instead.  
This bit is live.  
W
W
0
When writing to Register 0x001, this bit must be 0b.  
0
Rev. 0 | Page 31 of 41  
 
AD9530  
Data Sheet  
STATUS (REGISTER 0x002)  
Table 25. Bit Descriptions for STATUS (Default: Varies1)  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
7
PLL_LOCKED  
PLL lock detect status readback  
PLL unlocked  
Varies  
R
0
1
PLL locked  
6
5
4
SIGNAL_PRESENT  
FEEDBACK_OK  
REFERENCE_OK  
Reference signal present  
Varies  
Varies  
Varies  
R
R
R
0
1
Reference input signal not detected  
Reference input signal detected  
Feedback signal valid from N divider  
Feedback signal from N divider not detected  
Feedback signal from N divider detected  
Logical AND of reference input signal and feedback signal  
0
1
0
1
Either the reference input clock is not detected or the feedback signal is  
not detected, or neither are detected  
Reference input signal and feedback signal both detected  
[3:2]  
[1:0]  
RESERVED  
SLEEP  
00 When writing to Register 0x002, these bits must be 00b  
00b  
00b  
W
Sleep mode  
RW  
00 Normal operation (default)  
01 Undefined  
10 Undefined  
11 Sleep mode  
1 The default value reads 0xF0 under normal operation if the PLL is locked.  
CHIP TYPE (REGISTER 0x003)  
Table 26. Bit Descriptions for CHIP_TYPE (Default: 0x05)  
Bits  
[7:4]  
[3:0]  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RESERVED  
Reserved.  
R
R
CHIP_TYPE,  
Bits[3:0]  
The Analog Devices unified SPI protocol reserves this read only register  
location for identifying the type of device. The default value of 0x05 identifies  
the AD9530 as a clock IC.  
0x5  
PRODUCT ID (REGISTER 0x004 AND REGISTER 0x005)  
Table 27. Bit Descriptions for PRODUCT_ID[3:0] (Default: 0x3F)  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:4]  
PRODUCT_ID,  
Bits[3:0]  
The Analog Devices unified SPI protocol reserves this read only register  
location as the lower four bits of the clock part serial ID that (along with  
Register 0x005) uniquely identifies the AD9530 within the Analog Devices  
clock chip family. No other Analog Devices chip that adheres to the Analog  
Devices unified SPI has these values for Register 0x003, Register 0x004,  
and Register 0x005.  
0x3  
R
[3:0]  
RESERVED  
Reserved.  
0xF  
R
Table 28. Bit Descriptions for PRODUCT_ID[11:4] (Default: 0x01)  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
PRODUCT_ID,  
Bits[11:4]  
The Analog Devices unified SPI protocol reserves this read only register  
location as the upper eight bits of the clock part serial ID that (along with  
Register 0x004) uniquely identifies the AD9530 within the Analog Devices  
clock chip family. No other Analog Devices chip that adheres to the Analog  
Devices unified SPI has these values for Register 0x003, Register 0x004,  
and Register 0x005.  
0x01  
R
Rev. 0 | Page 32 of 41  
Data Sheet  
AD9530  
PART VERSION (REGISTER 0x006)  
Table 29. Bit Descriptions for PART_VERSION (Default: 0x14)  
Bits  
Bit Name  
Settings  
Description  
Reset  
0x00  
Access  
[7:0]  
PART VERSION  
The Analog Devices unified SPI protocol reserves this read only register  
location for identifying the die revision.  
R
USER SCRATCH PAD 1 (REGISTER 0x00A)  
Table 30. Bit Descriptions for USER_SCRATCHPAD1 (Default: 0x00)  
Bits  
Bit Name  
Settings Description  
Reset Access  
[7:0]  
USER_SCRATCHPAD1,  
Bits[7:0]  
0x00 to This register has no effect on device operation. It is available for serial port  
0xFF debugging or register setting revision control. There are two additional  
user scratch pad registers at Address 0x0FE and Address 0x0FF.  
0x00  
RW  
SPI VERSION (REGISTER 0x00B)  
Table 31. Bit Descriptions for SPI_VERSION (Default: 0x00)  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
SPI_VERSION,  
Bits[7:0]  
The Analog Devices unified SPI protocol reserves this read only register  
location for identifying the version of the unified SPI protocol.  
0x00  
R
VENDOR ID (REGISTER 0x00C AND REGISTER 0x00D)  
Table 32. Bit Descriptions for VENDOR ID (Default: 0x56)  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
VENDOR_ID,  
Bits[7:0]  
The Analog Devices unified SPI protocol reserves this read only register  
location for identifying Analog Devices as the chip vendor of this device.  
All Analog Devices parts adhering to the unified serial port specification  
have the same value in this register.  
0x56  
R
Table 33. Bit Descriptions for VENDOR_ID (Default: 0x04)  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
VENDOR_ID,  
Bits[15:8]  
The Analog Devices unified SPI protocol reserves this read only register  
location for identifying Analog Devices as the chip vendor of this part. All  
Analog Devices parts adhering to the unified serial port specification have  
the same value in this register.  
0x04  
R
IO_UPDATE (REGISTER 0x00F)  
Table 34. Bit Descriptions for IO_UPDATE (Default: 0x00)  
Bits  
[7:1]  
0
Bit Name  
RESERVED  
IO_UPDATE  
Settings  
Description  
Reset  
0x00  
0b  
Access  
W
0x00 When writing to Register 0x00F, these bits must be 0x0.  
Writing a 1 to this bit transfers the data in the serial input/output  
buffer registers to the internal control registers of the device. This is a  
live and autoclearing bit.  
W
R DIVIDER—REFERENCE INPUT DIVIDER (REGISTER 0x010)  
Table 35. Bit Descriptions for R_DIVIDER (Default: 0x01)  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
R_DIVIDER,  
Bits[7:0]  
0x01 to PLL reference divider. These bits control the divide ratio of the R divider.  
0xFF Divide ratio goes from ÷1 (by writing 0x01) to ÷255 (by writing 0xFF).  
0x01  
RW  
Rev. 0 | Page 33 of 41  
AD9530  
Data Sheet  
R DIVIDER CONTROL (REGISTER 0x011)  
Table 36. Bit Descriptions for R_DIVIDER_CTRL (Default: 0x06)  
Bits  
[7:3]  
2
Bit Name  
Settings  
Description  
Default Access  
RESERVED  
00000b When writing to Register 0x011, these bits must be 00000b.  
Reference input override pin selection.  
00000b RW  
REFIN_OVERRIDE_PIN_SEL  
1b  
RW  
0
REFIN_INPUT_SEL bit (in this register) controls reference input  
selection.  
1
REF_SEL pin controls reference input selection. REFA is selected if  
the REF_SEL pin is high. REFB is selected if the REF_SEL pin is low.  
1
0
REFIN_INPUT_SEL  
REFIN_DIV_RESET  
Reference input selection.  
1b  
0b  
RW  
W
0
1
Select REFB input if REFIN_OVERRIDE_PIN_SEL = 0.  
Select REFA input if REFIN_OVERRIDE_PIN_SEL = 0.  
Reference input divider reset (autoclearing). Setting this (self  
clearing) bit resets the R divider. This bit is live, meaning  
IO_UPDATE is not needed for it to take effect.  
REFERENCE INPUT A (REGISTER 0x012)  
Table 37. Bit Descriptions for REF_A (Default: 0x07)  
Bits  
[7:4]  
[3:2]  
Bit Name  
Settings  
Description  
Default Access  
RESERVED  
00 When writing to Register 0x012, these bits must be 0x0  
Reference A input termination select  
0x0  
01b  
W
REFA_TERM_SEL  
RW  
00 LVDS mode (100 Ω across the inputs)  
01 DC-coupled mode (50 Ω to ground) (default)  
10 AC-coupled mode (50 Ω to 0.35 V, internal)  
11 DC-coupled high-Z mode  
1
0
REFA_LDO_EN  
REFA_EN  
Reference A enable LDO  
1b  
1b  
RW  
RW  
0
1
Disabled  
Enabled (default)  
Reference A enable  
Disabled  
0
1
Enabled (default)  
REFERENCE INPUT B (REGISTER 0x013)  
Table 38. Bit Descriptions for REF_B (Default: 0x06)  
Bits  
[7:4]  
[3:2]  
Bit Name  
Settings  
Description  
Default Access  
RESERVED  
00 When writing to Register 0x013, these bits must be 0x0  
Reference B input termination select  
00 LVDS mode (100 Ω across the inputs)  
01 DC-coupled mode (50 Ω to ground) (default)  
10 AC-coupled mode (50 Ω to 0.35 V, internal)  
11 DC-coupled high-Z mode  
0x0  
01b  
W
REFB_TERM_SEL  
RW  
1
0
REFB_LDO_EN  
REFB_EN  
Reference B enable LDO  
1b  
0b  
RW  
RW  
0
1
Disabled  
Enabled (default)  
Reference B enable  
Disabled (default)  
Enabled  
0
1
Rev. 0 | Page 34 of 41  
Data Sheet  
AD9530  
OUT1 DIVIDER (REGISTER 0x014)  
Table 39. Bit Descriptions for OUT1_DIVIDER (Default: 0x01)  
Bits  
Bit Name  
Settings  
Description  
Default Access  
[7:0]  
OUT1_DIVIDER,  
Bits[7:0]  
0x00 to Output 1 divider. These bits control the divide ratio of the output divider.  
0xFF Divide ratio goes from ÷1 (by writing 0x01) to ÷255 (by writing 0xFF).  
Writing 0x00 disables the divider.  
0x01  
RW  
OUT1 DRIVER CONTROL REGISTER (REGISTER 0x015)  
Table 40. Bit Descriptions for OUT1_DRIVER_CONTROL (Default: 0x24)  
Bits  
[7:6]  
[5:4]  
Bit Name  
Settings  
Description  
Default Access  
RESERVED  
00 When writing to Register 0x015, these bits must be 00b.  
00b  
10b  
W
OUT1_AMP_TRIM  
Output 1 amplitude voltage trim.  
00 0.8 V.  
RW  
01 0.9 V.  
10 1.0 V (default).  
11 1.1 V.  
3
2
1
0
OUT1_TERM_EN  
OUT1_LDO_EN  
OUT1_EN  
Output 1 on-chip termination.  
0b  
1b  
0b  
0b  
RW  
RW  
RW  
W
0
1
Disabled (default).  
Enabled.  
Output 1 enable LDO.  
Disabled.  
0
1
Enabled (default).  
Output 1 enable.  
Disabled (default).  
Enabled.  
0
1
OUT1_DIVIDER_RESET  
Setting this (self clearing) bit resets the Output 1 divider. This bit is  
live, meaning IO_UPDATE is not needed for it to take effect.  
OUT2 DIVIDER (REGISTER 0x016)  
Table 41. Bit Descriptions for OUT2_DIVIDER (Default: 0x01)  
Bits  
Bit Name  
Settings  
Description  
Default Access  
0x01 RW  
[7:0]  
OUT2_DIVIDER,  
Bits[7:0]  
0x00 to  
0xFF  
Output 2 divider. These bits control the divide ratio of the output divider.  
Divide ratio goes from ÷1 (by writing 0x01) to ÷255 (by writing 0xFF).  
Writing 0x00 disables the divider.  
OUT2 DRIVER CONTROL (REGISTER 0x017)  
Table 42. Bit Descriptions for OUT2_DRIVER_CONTROL (Default: 0x24)  
Bits  
[7:6]  
[5:4]  
Bit Name  
Settings  
Description  
Default Access  
RESERVED  
00 When writing to Register 0x017, these bits must be 00b.  
00  
W
OUT2_AMP_TRIM  
Output 2 amplitude voltage trim.  
00 0.8 V.  
10b  
RW  
01 0.9 V.  
10 1.0 V (default).  
11 1.1 V.  
3
2
1
OUT2_TERM_EN  
OUT2_LDO_EN  
OUT2_EN  
Output 2 on-chip termination.  
0b  
1b  
0b  
RW  
RW  
RW  
0
1
Disabled (default).  
Enabled.  
Output 2 enable LDO.  
Disabled.  
0
1
Enabled (default).  
Output 2 enable.  
Disabled (default).  
Enabled.  
0
1
Rev. 0 | Page 35 of 41  
AD9530  
Data Sheet  
Bits  
Bit Name  
OUT2_DIVIDER_RESET  
Settings  
Description  
Default Access  
0
Setting this (self clearing) bit resets the Output 2 divider. This bit is  
live, meaning IO_UPDATE is not needed for it to take effect.  
0b  
W
OUT3 DIVIDER (REGISTER 0x018)  
Table 43. Bit Descriptions for OUT3_DIVIDER (Default: 0x01)  
Bits  
Bit Name  
Settings  
Description  
Default Access  
0x01 RW  
[7:0]  
OUT3_DIVIDER,  
Bits[7:0]  
0x00 to Output 3 divider. These bits control the divide ratio of the output divider.  
0xFF Divide ratio goes from ÷1 (by writing 0x01) to ÷255 by writing 0xFF.  
Writing 0x00 disables the divider.  
OUT3 DRIVER CONTROL (REGISTER 0x019)  
Table 44. Bit Descriptions for OUT3_DRIVER_CONTROL (Default: 0x24)  
Bits  
[7:6]  
[5:4]  
Bit Name  
Settings  
Description  
Default Access  
RESERVED  
When writing to Register 0x019, these bits must be 00b.  
Output 3 amplitude voltage trim.  
00b  
10b  
N/A  
RW  
OUT3_AMP_TRIM  
00 0.8 V.  
01 0.9 V.  
10 1.0 V (default).  
11 1.1 V.  
3
2
1
0
OUT3_TERM_EN  
OUT3_LDO_EN  
OUT3_EN  
Output 3 on-chip termination.  
Disabled (default).  
0b  
1b  
0b  
0b  
RW  
RW  
RW  
W
0
1
Enabled.  
Output 3 enable LDO.  
Disabled.  
0
1
Enabled (default).  
Output 3 enable.  
Disabled (default).  
Enabled.  
0
1
OUT3_DIVIDER_RESET  
Setting this (self clearing) bit resets the Output 3 divider. This bit is  
live, meaning IO_UPDATE is not needed for it to take effect.  
OUT4 DIVIDER (REGISTER 0x01A)  
Table 45. Bit Descriptions for OUT4_DIVIDER (Default: 0x01)  
Bits  
Bit Name  
Settings  
Description  
Default Access  
0x01 RW  
[7:0]  
OUT4_DIVIDER,  
Bits[7:0]  
0x00 to Output 4 divider. These bits control the divide ratio of the output divider.  
0xFF Divide ratio goes from ÷1 (by writing 0x01) to ÷255 by writing 0xFF.  
Writing 0x00 disables the divider.  
OUT4 DRIVER CONTROL (REGISTER 0x01B)  
Table 46. Bit Descriptions for OUT4_DRIVER_CONTROL (Default: 0x24)  
Bits  
[7:6]  
[5:4]  
Bit Name  
Settings  
Description  
Default Access  
RESERVED  
00 When writing to Register 0x01B, these bits must be 00b.  
00b  
10b  
W
OUT4_AMP_TRIM  
Output 4 amplitude voltage trim.  
00 0.8 V.  
RW  
01 0.9 V.  
10 1.0 V (default).  
11 1.1 V.  
3
OUT4_TERM_EN  
Output 4 on-chip termination.  
0b  
RW  
0
1
Disabled (default).  
Enabled.  
Rev. 0 | Page 36 of 41  
Data Sheet  
AD9530  
Bits  
Bit Name  
Settings  
Description  
Default Access  
2
OUT4_LDO_EN  
Output 4 enable LDO.  
Disabled.  
1b  
0b  
0b  
RW  
RW  
W
0
1
Enabled (default).  
Output 4 enable.  
Disabled (default).  
Enabled.  
1
0
OUT4_EN  
0
1
OUT4_DIVIDER_RESET  
Setting this (self clearing) bit resets the Output 4 divider. This bit is  
live, meaning IO_UPDATE is not needed for it to take effect.  
VCO POWER (REGISTER 0x01C)  
Table 47. Bit Descriptions for VCO_POWER (Default: 0x01)  
Bits  
[7:2]  
1
Bit Name  
Settings  
Description  
Default  
000000b  
0b  
Access  
W
RESERVED  
000000b When writing to Register 0x01C, these bits must be 00b  
VCO LDO wait state override  
VCO_LDO_WAIT_OVERRIDE  
RW  
0
1
Wait 2 sec on startup for VCO LDO stability (default)  
Do not wait for VCO LDO stability  
VCO power mode  
0
VCO_POWER  
1b  
RW  
0
1
Low power mode  
High power mode (lower jitter) (default)  
PLL LOCK DETECT CONTROL (REGISTER 0x01D)  
Table 48. Bit Descriptions for PLL_LOCKDET_CONTROL (Default: 0x0C)  
Bits  
[7:5]  
4
Bit Name  
Settings  
Description  
Default Access  
RESERVED  
000b When writing to Register 0x01D, these bits must be 000b.  
000b  
0b  
W
PLL_LOCK_DET_START  
PLL lock detect start measurement. This live bit enables the  
lock detector.  
RW  
0
1
PLL lock detector disabled (default).  
PLL lock detector enabled.  
[3:1]  
PLL_LOCK_DET_ERR_  
THRESHOLD, Bits[2:0]  
000b to PLL lock detect frequency error threshold (ppb is parts per  
111b billion and ppm is parts per million).The frequency accuracy of  
the lock detector is 25% of the lock detect setting. For example,  
for the 15 ppb setting, the actual accuracy of the lock detector  
is 11 ppb to 19 ppb.  
010b  
RW  
000b Threshold: 15 ppb. Update interval: 670 ms.  
001b Threshold: 60 ppb. Update interval: 170 ms.  
010b Threshold: 238 ppb. Update interval: 42 ms (default).  
011b Threshold: 954 ppb. Update interval: 10 ms.  
100b Threshold: 3.8 ppm. Update interval: 2.6 ms.  
101b Threshold: 15 ppm. Update interval: 660 µs.  
110b Threshold: 61 ppm. Update interval: 160 µs.  
111b Threshold: 244 ppm. Update interval: 41 µs.  
PLL lock detect disable.  
0
PLL_LOCK_DET_RESET  
0b  
RW  
0
1
PLL lock detector enabled (default).  
PLL lock detector disabled.  
PLL LOCK DETECT READBACK (REGISTER 0x01E AND REGISTER 0x01F)  
Table 49. Bit Descriptions for PLL_LOCKDET_READBACK1 (Read Only; No Default Value)  
Bits Bit Name  
Settings Description  
PLL lock detect error, Bits[7:0]. This read only register, along with Bits[1:0] Varies  
of Register 0x01F, form a 10-bit number that allows the user to read back  
Default Access  
[7:0] PLL_LOCK_DET_ERROR,  
Bits[7:0]  
R
the magnitude of the frequency error at the phase frequency detector.  
Bit 3 in Register 0x01F indicates whether the phase error measurement is  
in parts per million (ppm) or parts per billion (ppb).  
Rev. 0 | Page 37 of 41  
AD9530  
Data Sheet  
Table 50. Bit Descriptions for PLL_LOCKDET_READBACK2 (Read Only; No Default Value)  
Bits  
[7:5]  
4
Bit Name  
Settings  
Description  
Default Access  
RESERVED  
000b When writing to Register 0x01F, these bits must be 000b.  
PLL lock detect measurement done.  
000b  
R
R
R
PLL_LOCK_DET_DONE  
PLL_LOCK_DET_RANGE  
Varies  
Varies  
3
PLL lock detect error range.  
0
1
The read back error is expressed in ppb (parts per billion).  
The read back error is expressed in ppm (parts per million).  
PLL lock detect status readback.  
PLL unlocked.  
2
PLL_LOCKED  
Varies  
Varies  
R
R
0
1
PLL locked.  
[1:0]  
PLL_LOCK_DET_ERROR,  
Bits[9:8]  
PLL lock detect error, Bits[9:8]. These read only register bits, along  
with Bits[7:0] Register 0x01E, form a 10-bit number that allows the  
user to read back the magnitude of the frequency error at the phase  
frequency detector. Bit 3 in Register 0x01F indicates whether the  
phase error measurement is in parts per million (ppm) or parts per  
billion (ppb).  
M1, M2, M3 DIVIDERS (REGISTER 0x020 AND REGISTER 0x022)  
Table 51. Bit Descriptions for M1_DIVIDER (Default 0x16)  
Bits  
[7:5]  
[4:3]  
Bit Name  
Settings  
Description  
Default Access  
RESERVED  
M1_DIVIDER  
000b When writing to Register 0x020, these bits must be 000b.  
000b  
10b  
W
These bits control the divide ratio for the M1 divider that feeds the  
D1 and D2 dividers.  
RW  
00 Divide by 2.  
01 Divide by 2.5.  
10 Divide by 3 (default).  
11 Divide by 3.5.  
2
1
0
M1_LDO_EN  
M1_EN  
M1 divider enable LDO.  
1b  
1b  
0b  
RW  
RW  
W
0
1
Disabled.  
Enabled (default).  
M1 divider enable.  
Disabled.  
0
1
Enabled (default).  
M1_DIVIDER_RESET  
Setting this (self clearing) bit resets the M1 divider. This bit is live,  
meaning IO_UPDATE is not needed for it to take effect.  
Table 52. Bit Descriptions for M2_DIVIDER (Default: 0x16)  
Bits  
[7:5]  
[4:3]  
Bit Name  
Settings  
Description  
Default Access  
RESERVED  
M2_DIVIDER  
000b When writing to Register 0x021, these bits must be 000b.  
000b  
10b  
W
These bits control the divide ratio for the M2 divider that feeds the  
D3 and D4 dividers.  
RW  
00 Divide by 2.  
01 Divide by 2.5.  
10 Divide by 3 (default).  
11 Divide by 3.5  
2
1
0
M2_LDO_EN  
M2_EN  
M2 divider enable LDO.  
1b  
1b  
0b  
RW  
RW  
W
0
1
Disabled.  
Enabled (default).  
M2 divider enable.  
Disabled.  
0
1
Enabled.  
M2_DIVIDER_RESET  
Setting this (self clearing) bit resets the M2 divider. This bit is live,  
meaning IO_UPDATE is not needed for it to take effect.  
Rev. 0 | Page 38 of 41  
Data Sheet  
AD9530  
M3 DIVIDER (REGISTER 0x022)  
Table 53. Bit Descriptions for M3_DIVIDER (Default: 0x02)  
Bits  
[7:4]  
[3:2]  
Bit Name  
Settings  
Description  
Default Access  
RESERVED  
M3_DIVIDER  
0x0 When writing to Register 0x01F, these bits must be 0x0.  
These bits control the divide ratio for the M3 divider.  
00 Divide by 2 (default).  
0x0  
00b  
W
RW  
01 Divide by 2.5.  
10 Divide by 3.  
11 Divide by 3.5.  
1
0
M3_EN  
M3 divider enable.  
1b  
0b  
RW  
W
0
1
Disabled.  
Enabled (default).  
M3_DIVIDER_RESET  
Setting this (self clearing) bit resets the M3 divider. This bit is live,  
meaning IO_UPDATE is not needed for it to take effect.  
N DIVIDER (REGISTER 0x023)  
Table 54. Bit Descriptions for N_DIVIDER (Default: 0x0A)  
Bits  
Bit Name  
Settings  
Description  
Default Access  
[7:0]  
N_DIVIDER  
0x01 to PLL feedback divider. These bits control the divide ratio of the PLL  
0xFF feedback divider. The divide ratio ranges from ÷1 (by writing 0x01) to  
÷255 by writing 0xFF. Writing 0x00 disables the divider.  
0x0A  
RW  
N DIVIDER CONTROL (REGISTER 0x024)  
Table 55. Bit Descriptions for N_DIVIDER_CTRL (Default:0x00)  
Bits  
[7:1]  
0
Bit Name  
Settings  
Description  
Default  
0000000b  
0b  
Access  
W
RESERVED  
0000000b When writing to Register 0x024, these bits must be 0x00.  
N_DIVIDER_RESET  
Setting this (self clearing) bit resets the N divider (also called  
the feedback divider). This bit is live, meaning IO_UPDATE is not  
needed for it to take effect.  
W
CHARGE PUMP (REGISTER 0x025)  
Table 56. Bit Descriptions for CHARGE_PUMP (Default: 0x07)  
Bits  
[7:6]  
[5:0]  
Bit Name  
Settings  
Description  
Default Access  
RESERVED  
CP_CURRENT  
00b When writing to Register 0x025, these bits must be 0x0.  
00b  
W
Charge pump current. Charge pump current, ICP, is equal to: (1 +  
CP_CURRENT) × 50 µA. The allowable range is 50 µA to 2.6 mA. Higher  
register settings result in ICP = 2.6 mA.  
0x07  
RW  
000000b 50 µA.  
000001b 100 µA.  
000111b 400 µA (default).  
110010b 2.55 mA.  
110011 2.6 mA (maximum).  
PHASE FREQUENCY DECTECTOR (REGISTER 0x026)  
Table 57. Bit Descriptions for PHASE_FREQUENCY_DETECTOR (Default: 0x01)  
Bits  
[7:2]  
1
Bit Name  
Settings  
Description  
Default  
000000b  
0b  
Access  
W
RESERVED  
000000b When writing to Register 0x026, these bits must be 0x00.  
PFD antibacklash enable.  
PFD_EN_ANTIBACKLASH  
RW  
0
1
Normal antibacklash pulse width (default).  
Elongated antibacklash pulse width.  
Rev. 0 | Page 39 of 41  
AD9530  
Data Sheet  
Bits  
Bit Name  
PFD_ENABLE  
Settings  
Description  
Default  
Access  
0
PFD enable. This bit enables the phase frequency detector.  
1b  
RW  
0
1
Disabled.  
Enabled (default).  
LOOP FILTER (REGISTER 0x027)  
Table 58. Bit Descriptions for LOOP_FILTER (Default: 0x13)  
Bits  
[7:6]  
[5:2]  
Bit Name  
Settings  
Description  
Default Access  
RESERVED  
00b When writing to Register 0x027, these bits must be 00b  
Loop filter capacitance select (CIN in Figure 16)  
0000 5 pF  
00b  
0x4  
W
LOOP_FILTER_CAP  
RW  
0001 17.5 pF  
0010 30 pF  
0011 42.5 pF  
0100 55 pF (default)  
0101 67.5 pF  
0110 80 pF  
0111 92.5 pF  
1000 105 pF  
1001 117.5 pF  
1010 130 pF  
1011 142.5 pF  
1100 155 pF  
1101 167.5 pF  
1110 180 pF  
1111 192.5 pF  
1
0
LOOP_FILTER_BIAS_EN  
LOOP_FILTER_AMP_EN  
Loop filter enable bias  
1b  
1b  
RW  
RW  
0
1
Disabled  
Enabled (default)  
Loop filter enable amplifier  
Disabled  
0
1
Enabled (default)  
VCO FREQUENCY (REGISTER 0x028)  
Table 59. Bit Descriptions for VCO_READBACK (Default: 0x00)  
Bits  
[7:5]  
[4:0]  
Bit Name  
Settings  
Description  
Default Access  
RESERVED  
Reserved  
000b  
R
R
VCO_FREQ_AUTOCAL  
Read only VCO autocalibrated frequency band. This is a diagnostic bit  
and the user normally does not need to access this register.  
Varies  
USER SCRATCH PAD 2 (REGISTER 0x0FE)  
Table 60. Bit Descriptions for USER_SCRATCHPAD2 (Default: 0x00)  
Bits Bit Name  
Settings  
Description  
Reset Access  
0x00 RW  
[7:0] USER_SCRATCHPAD2,  
Bits[7:0]  
0x00 to This register has no effect on device operation. It is available for serial  
0xFF port debugging or register setting revision control. There are two  
additional user scratch pad registers at Address 0x00A and Address 0x0FF.  
USER SCRATCH PAD 3 (REGISTER 0x0FF)  
Table 61. Bit Descriptions for USER_SCRATCHPAD3 (Default: 0x00)  
Bits Bit Name  
Settings  
Description  
Reset Access  
0x00 RW  
[7:0] USER_SCRATCHPAD3,  
Bits[7:0]  
0x00 to This register has no effect on device operation. It is available for serial port  
0xFF debugging or register setting revision control. There are two additional user  
scratch pad registers at Address 0x00A and Address 0x0FE.  
Rev. 0 | Page 40 of 41  
Data Sheet  
AD9530  
OUTLINE DIMENSIONS  
7.10  
7.00 SQ  
6.90  
0.30  
0.25  
0.20  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
37  
36  
48  
1
0.50  
BSC  
*
EXPOSED  
PAD  
5.70  
5.60 SQ  
5.50  
24  
13  
0.50  
0.40  
0.30  
0.20 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.203 REF  
SEATING  
PLANE  
*
COMPLIANT TO JEDEC STANDARDS MO-220-WKKD-2  
WITH THE EXCEPTION OF THE EXPOSED PAD DIMENSION.  
Figure 34. 48-Lead Lead Frame Chip Scale Package [LFCSP]  
7 mm × 7 mm Body and 0.75 mm Package Height  
(CP-48-13)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +85°C  
Package Description  
Package Option  
AD9530BCPZ  
AD9530BCPZ-REEL7  
AD9530/PCBZ  
48-Lead Lead Frame Chip Scale Package [LFCSP]  
48-Lead Lead Frame Chip Scale Package [LFCSP]  
Evaluation Board  
CP-48-13  
CP-48-13  
−40°C to +85°C  
1 Z = RoHS Compliant Part.  
©2016 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D14044-0-4/16(0)  
Rev. 0 | Page 41 of 41  

相关型号:

AD9530BCPZ-REEL7

4 CML Output, Low Jitter Clock Generator
ADI

AD9540

655 MHz Low Jitter Clock Generator
ADI

AD9540BCPZ

655 MHz Low Jitter Clock Generator
ADI

AD9540BCPZ-REEL

655 MHz Low Jitter Clock Generator
ADI

AD9540BCPZ-REEL7

Low Jitter, DDS-based Clock Generator and Synthesizer
ADI

AD9540BCPZ-REEL7

OTHER CLOCK GENERATOR, QCC48, 7 X 7 MM, LEAD FREE, MO-220VKKD-2, LFCSP-48
ROCHESTER

AD9540PCB

655 MHz Low Jitter Clock Generator
ADI

AD9542

Quad Input, Five-Output, Dual DPLL Synchronizer and Adaptive Clock Translator
ADI

AD9542BCPZ

Quad Input, Five-Output, Dual DPLL Synchronizer and Adaptive Clock Translator
ADI

AD9542BCPZ-REEL7

Quad Input, Five-Output, Dual DPLL Synchronizer and Adaptive Clock Translator
ADI

AD9543

Quad Input, 10-Output, Dual DPLL/IEEE 1588 Synchronizer and Jitter Cleaner
ADI

AD9543BCPZ

Quad Input, 10-Output, Dual DPLL/IEEE 1588 Synchronizer and Jitter Cleaner
ADI