AD9578 [ADI]

Dual PLL Precision Synthesizer;
AD9578
型号: AD9578
厂家: ADI    ADI
描述:

Dual PLL Precision Synthesizer

文件: 总44页 (文件大小:817K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual PLL Precision Synthesizer  
Data Sheet  
AD9578  
FEATURES  
Any output frequency precision synthesis  
11.8 MHz to 919 MHz  
GENERAL DESCRIPTION  
The AD9578 is a programmable synthesizer intended for jitter  
attenuation and asynchronous clocking applications in high  
performance telecommunications, networking, data storage,  
serializer/deserializer (SERDES), and physical layer (PHY)  
applications. The device incorporates two low jitter PLLs that  
provide any frequency with precision better than 0.1 ppb, each  
with two separate output dividers, for a total of four programmable  
outputs, delivering maximum flexibility and jitter performance.  
Each output is independently programmable to provide frequen-  
cies of up to 919 MHz with <410 fs typical rms jitter (12 kHz to  
20 MHz) utilizing compact, low cost fundamental mode crystals  
(XTALs) that enable a robust supply chain. Using integer  
frequency synthesis, the AD9578 is capable of achieving rms  
jitter as low as 290 fs.  
Better than 0.1 ppb frequency resolution  
Ultralow rms jitter (12 kHz to 20 MHz)  
<300 fs rms using integer synthesis  
<405 fs rms using fractional synthesis  
Dual reference inputs support LVPECL, LVDS, 1.8 V LVCMOS,  
or fundamental mode AT cut crystals from 22 MHz to  
54 MHz or reference clocks from 20 MHz to 60 MHz  
Numerical (NCO) frequency control  
Dynamically pullable output frequency enables FPGA-  
based PLLs (HDL available)  
Fast serial peripheral interface (SPI) bus write speeds up to  
100 MHz  
On-the-fly frequency changes  
The AD9578 is packaged with a factory programmed default  
power-on configuration. After power-on, all settings including  
output frequency are reconfigurable through a fast SPI.  
Dual PLL in compact 7 mm × 7 mm package  
Replaces multiple large clock ICs, PLLs, fanout buffers,  
crystal oscillators (XOs), and voltage controlled crystal  
oscillators (VCXOs)  
The AD9578 architecture permits it to be used as a numerically  
controlled oscillator (NCO). This allows the user to dynamically  
change the frequency using the fast SPI bus. FPGAs and other  
devices can take advantage of this function to implement digital  
PLLs with configurable loop bandwidths for jitter attenuation  
applications, precision disciplined clocks that lock to tight  
stability references, or digitally controlled precision timing  
applications, such as network timing and IEEE 1588 applications.  
The SPI bus can operate up to 50 MHz, enabling fast FPGA  
loops while multiple devices share the same bus. The AD9578  
can also be used in multirate precision applications, such as  
broadcast video or OTN. HDL FPGA code for digital PLL  
applications is available from Analog Devices, Inc.  
Mix and match output buffers  
In-circuit programmable LVPECL/LVDS/HCSL/LVCMOS  
Independent buffer (VDDOx) drives multiple technologies  
Enhanced power supply noise rejection  
APPLICATIONS  
FPGA-based jitter attenuators and low jitter PLLs  
Precision disciplined clocks and clock synthesizers  
Multirate clock synthesizers  
Optical: OTN/SDH/SONET  
Broadcast video: 3G SDI, HD SDI, SDI  
Networking and storage: Ethernet/SAS/Fibre Channel  
Wireless infrastructure: OBSAI/CPRI  
Industrial: IEEE 1588  
Numerically controlled oscillators (NCOs)  
SIMPLIFIED FUNCTIONAL BLOCK DIAGRAM  
REFOUT,  
REFOUT  
OUT1,  
OPTIONAL  
AD9578  
XO4  
DIVIDER  
DIVIDER  
REF2  
OUT1  
FRACTIONAL  
PLL1  
OUT2,  
OUT2  
REF  
INPUT  
MUX  
XO3  
OUT3,  
OUT3  
OUT4,  
OUT4  
OPTIONAL  
DIVIDER  
DIVIDER  
FRACTIONAL  
PLL2  
XO2  
XO1  
REF1  
SPI AND OTP  
PROGRAMMABLE  
LOGIC CONTROL  
OUTPUT  
ENABLE  
LOGIC  
POWER  
SUPPLIES  
NOTES  
1. IF SUPPLYING A SINGLE-ENDED 1.8V CMOS SIGNAL, CONNECT THE SIGNAL TO EITHER  
XO2 OR XO4.  
Figure 1.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject tochange without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2014–2017 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
AD9578  
Data Sheet  
TABLE OF CONTENTS  
Features .....................................................................................1  
Overview .............................................................................25  
Crystal Oscillator Gain ........................................................25  
Crystal Load Capacitors.......................................................25  
PLLs ........................................................................................26  
Overview .............................................................................26  
PLL Modes of Operation .....................................................26  
VCO ....................................................................................27  
Charge Pump.......................................................................27  
Output Dividers...................................................................27  
Loss of Lock Indicator .........................................................27  
Resets...................................................................................27  
Example Values for 49.152 MHz crystal ..............................28  
SPI Programming....................................................................29  
Overview .............................................................................29  
SPI Description....................................................................29  
OTP Programming..............................................................30  
Register Map ...........................................................................32  
Register Map Bit Descriptions.................................................34  
Chip and Manufacturer ID (Register 0, Address 0x00)........34  
Applications...............................................................................1  
General Description ..................................................................1  
Simplified Functional Block Diagram........................................1  
Revision History ........................................................................3  
Specifications.............................................................................4  
Supply Voltage and Current (2.5 V Operation)......................4  
Supply Voltage and Current (3.3 V Operation)......................4  
Power Dissipation ..................................................................4  
Logic Inputs ( , , OEREF, OE1, OE2, OE3, OE4).........5  
CS PD1  
Reference Inputs (XO1, XO2, XO3, XO4)..............................5  
Distribution Clock Outputs (Including REFOUT/ ) 6  
REFOUT  
Serial Port ..............................................................................9  
Digital PLL...........................................................................10  
Digital Functions Timing.....................................................10  
JitterGeneration Using 49.152 MHz Crystal........................10  
Jitter Generation Using 25 MHz Square wave......................11  
Absolute Maximum Ratings....................................................12  
ESD Caution........................................................................12  
Pin Configuration and Function Descriptions.........................13  
Typical Performance Characteristics .......................................15  
Test Setup and Configuration Circuits.....................................18  
Input/Output Termination Recommendations........................19  
Getting Started.........................................................................20  
Chip Power Monitor and Startup.........................................20  
Device Register Programming Using a Register Setup File..20  
OTP Programming ..............................................................20  
Theory of Operation................................................................21  
Overview..............................................................................21  
PLL and Output Driver Control..............................................22  
Overview..............................................................................22  
PLL Enable/Disable..............................................................22  
Output Driver Format..........................................................23  
Output Configuration Example...........................................23  
Reference Input........................................................................24  
Overview..............................................................................24  
Reference Input....................................................................24  
Crystal Oscillator Amplifier Enable.....................................24  
Product ID, Chip ID, and User Programing Space (Register 1,  
Address 0x01)......................................................................34  
External Pin Readback and Override (Register 2, Address  
0x02)....................................................................................34  
REFOUT/OUTPUT Divider Enable (Register 3, Address  
0x03)....................................................................................36  
XTAL1 and Output Buffer Configuration (Register 4,  
Address 0x04)......................................................................37  
Output Driver Configuration (Register 5, Address 0x05)....38  
PLL1 Configuration (Register 6, Address 0x06) ..................38  
PLL1 Configuration (Register 7, Address 0x07) ..................39  
PLL2 Configuration (Register 8, Address 0x08) ..................40  
PLL2 Configuration (Register 9, Address 0x09) ..................40  
XTAL2 Configuration (Register 10, Address 0x0A).............42  
Reserved (Register 11, Address 0x0B)..................................42  
PLL1 KVCO Ban d (Register 12, Address 0x0C)......................42  
Reserved (Register 13, Address 0x0D).................................42  
PLL2 KVCO Ban d (Register 14, Address 0x0E)......................43  
PLL Lock Detect (Register 15, Address 0x0F)......................43  
Outline Dimensions................................................................44  
Ordering Guide ...................................................................44  
REFOUT/  
Source Selection...................................24  
REFOUT  
Crystal Oscillator Inputs..........................................................25  
Rev. B | Page 2 of 44  
Data Sheet  
AD9578  
REVISION HISTORY  
1/2017—Rev. A to Rev. B  
Change to Table 31..........................................................................32  
10/2016—Rev. 0 to Rev. A  
Changes to Figure 3.........................................................................13  
Changes to Table 29 ........................................................................28  
Added Exposed Pad Notation to Outline Dimensions ..............44  
10/2014—Revision 0: Initial Version  
Rev. B | Page 3 of 44  
AD9578  
Data Sheet  
SPECIFICATIONS  
SUPPLY VOLTAGE AND CURRENT (2.5 V OPERATION)  
VDD = 2.5 V 5%, TA = −25°C to +85°C.  
Table 1.  
Parameter  
Symbol  
VDD  
Min  
2.375  
229  
Typ  
2.50  
247  
365  
Max  
2.625  
265  
Unit  
V
Test Conditions/Comments  
SUPPLY VO LTA GE  
SUPPLY CURRENT  
IDD  
mA  
mA  
Using typical configuration in Tabl e 3  
337  
388  
Using all blocks running configuration in Tabl e 3  
SUPPLY VOLTAGE AND CURRENT (3.3 V OPERATION)  
VDD = 3.3 V 10%, TA = −25°C to +85°C.  
Table 2.  
Parameter  
Symbol Min Typ Max  
Unit Test Conditions/Comments  
SUPPLY VO LTA GE  
VDD  
2.97 3.30 3.63  
5.25 5.5 VDD + 2.5  
V
V
VPROG  
pin only; used only for one time programmable (OTP) programming;  
CS  
perform OTP programming only with VDD = 3.3 V  
SUPPLY CURRENT IDD  
252 268  
373 397  
mA  
mA  
Using typical configuration in Tabl e 3  
Using all blocks running configuration in Tabl e 3  
POWER DISSIPATION  
VDD = 2.5 V 5%, TA = −25°C to +85°C. Maximum power is at VDD = 2.625 Vand is usually 11% higher than typical.  
Table 3.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
POWER DISSIPATION  
Typical Configuration  
618  
696  
mW  
XTA L: 25 MHz  
REFOUT driver: disabled  
PLL1: one LVPECL driver at 644.53125 MHz  
PLL2: one single-ended LVCMO S driver (with 80 pF load)  
at 100 MHz  
All Blocks Running  
913  
67  
1018  
75  
mW  
mW  
XTAL: 49.152 MHz XTA L on both XTA L inputs  
REFOUT driver: LVPECL mode, 49.152 MHz  
PLL1: two LVPECL drivers at 693.812 MHz  
PLL2: two LVPECL drivers at 693.812 MHz  
Full Power-Down  
pin grounded; Register 0x02 = 0x015555 to disable  
PD1  
remainder of chip  
Starting with typical configuration; change in power due  
to the indicated operation  
Incremental Power Dissipation  
Crystal Reference On/Off  
PLL On/Off  
25  
mW  
mW  
PLL1 or PLL2 on/off, including output drivers or channel  
dividers  
259  
Output Distribution Driver On/Off  
HCSL (at 644.53 MHz)  
75  
mW  
mW  
mW  
mW  
Each output of a differential pair has 50 Ω to ground  
100 Ω across differential pair  
LVDS (at 644.53 MHz)  
43  
LVPECL (at 644.53 MHz)  
3.3 V LVCMO S (at 25 MHz)  
107  
75  
50 Ω to VDD – 2 V  
A single 3.3 V LVCMO S output with an 80 pF load  
Rev. B | Page 4 of 44  
 
 
Data Sheet  
AD9578  
LOGICINPUTS ( , , OEREF, OE1, OE2, OE3, OE4)  
CS PD1  
Table 4.  
Parameter  
Min Typ Max  
Unit Test Conditions/Comments  
Specifications apply to the  
LOGIC INPUTS ( in OTP  
CS  
pin while in OTP programming mode  
CS  
FUNCTION)  
See VPROG definition in Tabl e 1; OTP programming must be done  
with VDD = 3.3 V  
Input Voltage (VPROG  
)
5.25 5.5  
VDD + 2.5  
V
Input Current  
20  
25  
mA  
µs  
Current consumed during OTP programming  
Time required per bit programmed  
Time to OTP Program  
LOGIC INPUTS ( ,OEREF, OE1,  
800  
Numbers are valid for VDD = 2.5 V and 3.3 V  
PD1  
OE2, OE3, OE4,  
Input Voltage  
High (VIH)  
)
CS  
2.2  
V
Low (VIL)  
0.8  
60  
V
Input Current (IINH, IINL  
)
38  
3
µA  
pF  
Input Capacitance (CIN)  
REFERENCE INPUTS (XO1, XO2, XO3,XO4)  
Table 5.  
Parameter  
Min Typ Max  
Unit  
Test Conditions/Comments  
REFERENCE INPUT DRIVEN BY  
CRYSTAL RESONATOR  
Crystal Resonator  
Frequency Range  
20  
60  
MHz  
Fundamental mode, AT cut crystal  
Crystal Motional Resistance  
REFERENCE INPUT DRIVEN BY  
A DIFFERENTIAL CLOCK  
100  
Guaranteed by design  
This input is a source follower and must be either dc-coupled 1.8 V  
LVCMO S on the XO2 or XO4 pin, or ac-coupled  
Input Frequency Range  
20  
60  
MHz  
Assumes ac-coupled LVDS (494 mV p-p across the differential pair)  
Minimum limit imposed for jitter performance  
Input Slew Rate  
Differential Input Voltage  
Sensitivity  
133  
250  
V/μs  
Minimum voltage across pins required to ensure switching between  
logic states; the instantaneous voltage on either pin must not  
exceed the supply rails; can accommodate single-ended input by ac  
grounding of complementary input  
mV p-p  
REFERENCE INPUT DRIVEN BY  
A SINGLE-ENDED CLOCK  
The XO2 pin (for PLL1) and XO4 pin (for PLL2) input accepts dc-  
coupled 1.8 V LVCMOS  
Input Frequency Range  
20  
67  
60  
MHz  
V/μs  
DC-coupled  
Input Slew Rate  
Single-Ended Input (XO2,  
XO4 Pins Only)  
Minimum limit imposed for jitter performance  
Input Voltage  
High (VIH)  
Low (VIL)  
V
V
1.48  
0.98  
Rev. B | Page 5 of 44  
 
AD9578  
Data Sheet  
DISTRIBUTION CLOCK OUTPUTS(INCLUDING REFOUT/  
)
REFOUT  
Table 6.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
VDD = 3.3V ; 50 Ω to VDD − 2 V termination at output  
pins  
3.3 V LVPECL MO DE  
Output Frequency  
11.8  
919  
MHz  
REFOUT/  
limited to 60 MHz  
REFOUT  
Rise Time (20% to 80%)  
Fall Time (80% to 20%)  
130  
142  
183  
203  
ps  
ps  
Duty Cycle, OUTPUT1 and OUTPUT4  
111.8 ≤ fOUT ≤ 357 MHz  
50  
43  
46  
52  
47  
50  
54  
51  
54  
%
%
%
Output divider settings other than 4.5  
Output divider settings other than 4.5  
Measured at 765 MHz  
357 < fOUT ≤ 919 MHz  
Output Divider = 4.5  
Duty Cycle, OUTPUT2 and OUTPUT3  
111.8 ≤ fOUT ≤ 357 MHz  
49  
51  
53  
%
Output divider settings other than 4.5  
Output divider settings other than 4.5  
357 < fOUT ≤ 919 MHz  
45  
49  
51  
%
Output Divider = 4.5  
51  
57  
63  
%
Measured at 765 MHz  
Voltage across pins at minimum output frequency; if  
a differential probe is used, peak-to-peak voltage (VPP)  
is 2× this value  
Differential Output Voltage Swing  
700  
850  
1000  
mV  
Common-Mode Output Voltage  
2.5 V LVPECL MODE  
1.81  
11.8  
1.91  
2.01  
V
VDD = 2.5 V; 50 Ω to VDD − 2 V termination at output  
pins  
Output Frequency  
919  
MHz  
REFOUT/  
limited to 60 MHz  
REFOUT  
Rise Time (20% to 80%)  
Fall Time (80% to 20%)  
137  
148  
186  
209  
ps  
ps  
Duty Cycle, OUTPUT1 and OUTPUT4  
111.8 ≤ fOUT ≤ 357 MHz  
50  
49  
46  
52  
51  
50  
54  
54  
54  
%
%
%
Output divider settings other than 4.5  
Output divider settings other than 4.5  
Measured at 765 MHz  
357 < fOUT ≤ 919 MHz  
Output Divider = 4.5  
Duty Cycle, OUTPUT2 and OUTPUT3  
111.8 ≤ fOUT ≤ 357 MHz  
43  
48  
51  
%
Output divider settings other than 4.5  
Output divider settings other than 4.5  
357 < fOUT ≤ 919 MHz  
44  
48  
52  
%
Output Divider = 4.5  
51  
57  
63  
%
Measured at 765 MHz  
Voltage across pins at minimum output frequency; if  
a differential probe is used, VPP is 2× this value  
Differential Output Voltage Swing  
700  
850  
1000  
mV  
Common-Mode Output Voltage  
3.3 V HCSL MODE  
1.05  
11.8  
1.15  
1.25  
V
50 Ω to ground termination at output pins  
Output Frequency  
919  
MHz  
REFOUT/  
limited to 60 MHz  
REFOUT  
Rise Time (20% to 80%)  
Fall Time (80% to 20%)  
Duty Cycle, OUTPUT1 and OUTPUT4  
111.8 ≤ fOUT ≤ 357 MHz  
357 < fOUT ≤ 919 MHz  
180  
186  
266  
286  
ps  
ps  
51  
48  
49  
52  
51  
52  
54  
54  
56  
%
%
%
Output divider settings other than 4.5  
Output divider settings other than 4.5  
Measured at 765 MHz  
Output Divider = 4.5  
Duty Cycle, OUTPUT2 and OUTPUT3  
111.8 ≤ fOUT ≤ 357 MHz  
357 < fOUT ≤ 919 MHz  
50  
53  
51  
59  
750  
0
54  
%
Output divider settings other than 4.5  
Output divider settings other than 4.5  
Measured at 765 MHz  
48  
53  
%
Output Divider = 4.5  
53  
67  
%
Output High Voltage  
624  
−50  
624  
850  
+50  
850  
mV  
mV  
mV  
Output Low Voltage  
Voltage across pins at minimum output frequency;  
when a differential probe is used, VPP is 2× this value  
Output Voltage Swing (VSWING  
)
750  
Absolute Crossing Point (VOX  
)
295  
360  
14  
400  
17  
mV  
mA  
Short-Circuit Output Current  
Rev. B | Page 6 of 44  
Data Sheet  
AD9578  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
50 Ω to ground termination at output pins  
REFOUT/ limited to 60 MHz  
2.5 V HCSL MODE  
Output Frequency  
11.8  
919  
MHz  
REFOUT  
Rise Time (20% to 80%)  
OUTPUT1, OUTPUT2, OUTPUT3  
OUTPUT4  
199  
243  
275  
370  
ps  
ps  
Output divider settings other than 4.5  
Output divider settings other than 4.5  
Fall Time (80% to 20%)  
OUTPUT1, OUTPUT2, OUTPUT3  
OUTPUT4  
191  
226  
287  
329  
ps  
ps  
Output divider settings other than 4.5  
Output divider settings other than 4.5  
Duty Cycle, OUTPUT1 and OUTPUT4  
111.8 ≤ fOUT ≤ 357 MHz  
357 < fOUT ≤ 919 MHz  
Output Divider = 4.5  
Duty Cycle, OUTPUT2 and OUTPUT3  
111.8 ≤ fOUT ≤ 357 MHz  
357 < fOUT ≤ 919 MHz  
Output Divider = 4.5  
Output High Voltage  
Output Low Voltage  
50  
47  
39  
52  
50  
52  
54  
53  
55  
%
%
%
Output divider settings other than 4.5  
Output divider settings other than 4.5  
Measured at 765 MHz  
50  
52  
50  
59  
750  
0
54  
%
Output divider settings other than 4.5  
Output divider settings other than 4.5  
Measured at 765 MHz  
48  
53  
%
45  
65  
%
624  
-50  
624  
850  
50  
mV  
mV  
mV  
Voltage across pins at minimum output frequency; if  
a differential probe is used, VPP is 2× this value  
Output Voltage Swing (VSWING  
)
750  
850  
Absolute Crossing Point (VOX  
)
295  
360  
14  
400  
17  
mV  
mA  
Short-Circuit Output Current  
LVDS MODE (VDD = 3.3 V and 2.5 V)  
Output Frequency  
100 Ω termination across the output pair  
11.8  
919  
215  
223  
MHz  
ps  
REFOUT/  
limited to 54 MHz  
REFOUT  
Rise Time (20% to 80%)  
Fall Time (80% to 20%)  
OUTPUT1 and OUTPUT4 Duty Cycle  
111.8 ≤ fOUT ≤ 357 MHz  
357 < fOUT ≤ 919 MHz  
173  
177  
ps  
50  
46  
49  
52  
50  
52  
54  
54  
55  
%
%
%
Output divider settings other than 4.5  
Output divider settings other than 4.5  
Measured at 765 MHz  
Output Divider = 4.5  
OUTPUT2 and OUTPUT3 Duty Cycle  
111.8 ≤ fOUT ≤ 357 MHz  
357 < fOUT ≤ 919 MHz  
50  
46  
51  
52  
50  
59  
54  
53  
66  
%
%
%
Output divider settings other than 4.5  
Output divider settings other than 4.5  
Measured at 765 MHz  
Output Divider = 4.5  
Differential Output Voltage Swing  
Balanced, VOD  
Voltage across pins at minimum output frequency; if  
a differential probe is used, VPP is 2× this value  
247  
454  
50  
mV  
mV  
Absolute difference between voltage swing of true  
pin and complementary pin  
Unbalanced, ΔVOD  
Offset Voltage  
Common Mode, VOS  
1.08  
1.26  
16  
1.375  
50  
V
Voltage difference between pins at minimum  
output frequency  
Common-Mode Difference, ΔVOS  
mV  
Short-Circuit Output Current  
LVCMOS MODE (VDD = 3.3 V and 2.5 V)  
Output Frequency  
24  
mA  
11.8  
250  
MHz  
REFOUT limited to 60 MHz  
Rise Time (20% to 80%)  
Capacitor load (CLOAD) = 10 pF  
330 Ω Pull-Down Resistor  
3.3 kΩ Pull-Down Resistor  
Fall Time (20% to 80%)  
1.3  
1.2  
1.9  
1.7  
ns  
ns  
CLOAD = 10 pF  
330 Ω Pull-Down Resistor  
3.3 kΩ Pull-Down Resistor  
1.3  
1.5  
2
ns  
ns  
2.4  
Rev. B | Page 7 of 44  
AD9578  
Data Sheet  
Parameter  
Min  
Typ  
Max  
Unit  
ns  
Test Conditions/Comments  
Duty Cycle (20% to 80%)  
330 Ω Pull-Down Resistor  
3.3 kΩ Pull-Down Resistor  
CLOAD = 10 pF  
43  
44  
52  
53  
62  
63  
%
%
At minimum output frequency; outputs terminated  
50 Ω to VDD/2  
Output Voltage High (VOH  
)
VDD = 3.3 V  
VDD = 2.5 V  
3.0  
1.9  
3.1  
2.0  
3.35  
2.1  
V
V
At minimum output frequency; outputs terminated  
50 Ω to VDD/2  
Output Voltage Low (VOL  
)
VDD = 3.3 V  
VDD = 2.5 V  
0.22  
0.2  
0.32  
0.3  
0.42  
0.4  
V
V
OUTPUT TIMING SKEW  
LVPECL  
OUTPUT2 lags OUTPUT1; OUTPUT3 lags OUTPUT4  
Between OUTPUT1 and OUTPUT2  
Drivers  
LVPECL mode on both drivers; rising edge only;  
any divide value  
90  
ps  
ps  
Between OUTPUT3 and OUTPUT4  
Drivers  
LVPECL mode on both drivers; rising edge only;  
any divide value  
102  
LVDS  
Between OUTPUT1 and OUTPUT2  
Drivers  
LVDS mode on both drivers; rising edge only;  
any divide value  
94  
ps  
ps  
Between OUTPUT3 and OUTPUT4  
Drivers  
LVDS mode on both drivers; rising edge only;  
any divide value  
100  
HCSL  
Between OUTPUT1 and OUTPUT2  
Drivers  
HCSL mode on both drivers; rising edge only;  
any divide value  
48  
59  
ps  
ps  
Between OUTPUT3 and OUTPUT4  
Drivers  
HCSL mode on both drivers; rising edge only;  
any divide value  
LVCMO S  
Between OUTPUT1 and OUTPUT2  
Drivers  
LVCMOS mode on both drivers; rising edge only;  
any divide value  
64  
59  
ps  
ps  
Between OUTPUT3 and OUTPUT4  
Drivers  
LVCMOS mode on both drivers; rising edge only;  
any divide value  
Rev. B | Page 8 of 44  
Data Sheet  
AD9578  
SERIAL PORT  
Table 7.  
Parameter  
Min  
Typ Max  
Unit  
Test Conditions/Comments  
See Tabl e 4 for using while in OTP programming mode  
CS  
CS  
Input Voltage  
Logic 1  
2.2  
V
Logic 0  
1.2  
44  
V
Input Current  
Logic 1  
µA  
Logic 0  
88  
2
µA  
pF  
Input Capacitance  
SCK  
Internal 30 kΩ pull-down resistor  
Input Voltage  
Logic 1  
2.2  
V
V
Logic 0  
0.8  
1.2  
Input Current  
Logic 1  
200  
1
µA  
µA  
pF  
Logic 0  
Input Capacitance  
SDI  
2
Input Voltage  
Logic 1  
2.2  
V
V
Logic 0  
1.2  
Input Current  
Logic 1  
1
1
2
µA  
µA  
pF  
Logic 0  
Input Capacitance  
SDO/LOL  
Output Logic 1 Voltage  
Output Logic 0 Voltage  
TIMING  
VDD − 0.6  
V
V
1 mA load current  
1 mA load current  
See Figure 2  
0.4  
SCK  
SDO/LOL pin maximum speed may be limited by excess  
capacitance on the receiver connected to the SDO/LOL pin  
Clock Rate, 1/tCLK  
50  
MHz  
Write Only  
100  
MHz  
ns  
Pulse Width High, tHIGH  
Pulse Width Low, tLOW  
SDI to SCK Setup, tDS  
SCK to SDI Hold, tDH  
SCK to Valid SDO, tDV  
2
2
ns  
1.5  
2
ns  
ns  
8
ns  
SDO function of SDO/LOL pin (see Figure 33)  
to SCK Setup, tS  
65  
0
ns  
is normally held low during a complete SPI transaction  
CS  
CS  
CS  
CS  
to SCK Hold, tC  
ns  
Minimum Pulse Width High  
65  
ns  
Timing Diagram  
tDS  
tHIGH  
tS  
tC  
tCLK  
tDH  
tLOW  
CS  
DON'T CARE  
DON'T CARE  
DON'T CARE  
SCK  
OP[3]  
OP[2]  
OP[1]  
OP[0] ADDR[3] ADDR[2] ADDR[1]  
ADDR[0] DATA[7] DATA[6] DATA[5] DATA[4] DATA[3] DATA[2] DATA[1] DATA[0]  
SDIO  
DON'T CARE  
Figure 2. Serial Port Timing Diagram  
Rev. B | Page 9 of 44  
 
AD9578  
Data Sheet  
DIGITAL PLL  
Table 8.  
Parameter  
Min  
Typ Max  
Unit  
Test Conditions/Comments  
FREQUENCY STEP SIZE  
0.1  
ppb  
DIGITAL FUNCTIONS TIMING  
Table 9.  
Parameter  
Min  
Typ Max  
Unit  
ms  
Test Conditions/Comments  
OTP PROGRAMMING TIME, PER BIT 0.8  
1
2
See Tabl e 4 for using while in OTP programming mode (the AD9578  
CS  
has 444 bits; therefore, the total programming time is <1sec)  
POWER-ON RESET TIME  
4
ms  
Do not access serial port during power-on reset.  
JITTER GENERATION USING 49.152MHZ CRYSTAL  
Both PLLs are generating the same output frequency and use a 49.152 MHz crystal for the input reference. The loop bandwidth is set to  
the default value of 300 kHz. Where multiple driver types are listed, there is no significant difference between driver types.  
Table 10.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
JITTER GENERATION  
LVPECL, HCSL, LVDS Dr i ve r  
fOUT = 622.08MHz  
Fractional mode on, fREF = 49.152 MHz XTAL  
Bandwidth: 12 kHz to 20 MHz  
320  
370  
fs rms  
fs rms  
Bandwidth: 20 kHz to 80 MHz  
fOUT = 693.48MHz  
Bandwidth: 12 kHz to 20 MHz  
Bandwidth: 20 kHz to 80 MHz  
fOUT = 174.703 MHz  
403  
408  
fs rms  
fs rms  
Bandwidth: 12 kHz to 20 MHz  
Bandwidth: 20 kHz to 80 MHz  
fOUT = 161.1328MHz  
403  
410  
fs rms  
fs rms  
Bandwidth: 12 kHz to 20 MHz  
Bandwidth: 20 kHz to 80 MHz  
LVPECL, HCSL, LVDS, LVCMO S Dr i ve r  
fOUT = 156.25MHz  
361  
363  
fs rms  
fs rms  
Bandwidth: 12 kHz to 20 MHz  
Bandwidth: 1.875 MHz to 20 MHz  
Bandwidth: 20 kHz to 80 MHz  
350  
77  
fs rms  
fs rms  
fs rms  
352  
Rev. B | Page 10 of 44  
Data Sheet  
AD9578  
JITTER GENERATION USING 25 MHZ SQUAREWAVE  
Both PLLs are generating the same output frequency and use a 25 MHz square wave for the input reference. The loop bandwidth is set to  
the default value of 300 kHz. Where multiple driver types are listed, there is no significant difference between driver types. Fractional  
mode turned on, unless otherwise stated.  
Table 11.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
JITTER GENERATION  
LVPECL, HCSL, LVDS Dr i ve r  
fOUT = 622.08MHz  
fREF = 25 MHz square wave  
Bandwidth: 12 kHz to 20 MHz  
515  
516  
fs rms  
fs rms  
Bandwidth: 20 kHz to 80 MHz  
fOUT = 693.48MHz  
Bandwidth: 12 kHz to 20 MHz  
Bandwidth: 20 kHz to 80 MHz  
fOUT = 174.703 MHz  
504  
505  
fs rms  
fs rms  
Bandwidth: 12 kHz to 20 MHz  
Bandwidth: 20 kHz to 80 MHz  
fOUT = 161.1328MHz  
517  
523  
fs rms  
fs rms  
Bandwidth: 12 kHz to 20 MHz  
Bandwidth: 20 kHz to 80 MHz  
LVPECL, HCSL, LVDS, LVCMO S Dr i ve r  
fOUT = 156.25MHz  
527  
530  
fs rms  
fs rms  
Integer mode operation  
Bandwidth: 12 kHz to 20 MHz  
Bandwidth: 1.875 MHz to 20 MHz  
Bandwidth: 20 kHz to 80 MHz  
290  
61  
fs rms  
fs rms  
fs rms  
292  
Rev. B | Page 11 of 44  
AD9578  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Stresses at or above those listed under Absolute Maximum  
Table 12.  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Parameter  
Rating  
Supply Voltage (VDD  
)
4.6 V  
Inputs (VIN) (Except for  
Pin)  
−0.50 V to VDD + 0.5 V  
CS  
Pin  
VDD + 2.5 V  
CS  
Outputs (VOUT  
)
−0.50 V to VDD + 0.5 V  
−25°C to +85°C  
Operating Temperature Range (TA)  
Industrial  
ESD CAUTION  
Storage Temperature Range (TS)  
−65°C to +150°C  
Rev. B | Page 12 of 44  
Data Sheet  
AD9578  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
8
9
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
AD9578  
TOP VIEW  
(Not to Scale)  
10  
11  
12  
Figure 3. Pin Configuration  
Table 13. Pin Function Descriptions  
Pin No.  
Mnemonic Typ e  
Description  
Return Path Ground for Clock Output 1.  
1
2
VSSO1  
OUT1  
Negative power  
Clock Output 1 Derived from PLL1. Supports frequencies up to the device maximum. OUT1  
is a selectable 1 pin. When used in LVCMOS mode, OUT1 is the active pin.  
Output  
Active Low Clock Output 1 Derived from PLL1. Supports frequencies up to the device  
3
4
Output  
OUT1  
maximum.  
OUT1  
LVCMOS mode.  
is a selectable1 pin.  
is not used in LVCMOS mode; it is high-Z in  
OUT1  
Supply,  
positive power  
VDDO1  
VDDA  
VDDO2  
OUT2  
Power Supply for Clock Output 1.  
2.5 V or 3.3 V Analog Power Supply.  
Power Supply for Clock Output 2.  
5, 12, 25,  
31, 37, 48  
Supply, positive  
power  
Supply, positive  
power  
6
7
8
Clock Output 2 Derived from PLL1. Supports frequencies up to the device maximum. OUT2  
is a selectable1 pin. When used in LVCMOS mode, OUT2 is the active pin.  
Output  
Active Low Clock Output 2 Derived from PLL1. Supports frequencies up to the device  
Output  
OUT2  
maximum.  
OUT1  
LVCMO S mode .  
is a selectable1 pin.  
is not used in LVCMOS mode; it is high-Z in  
OUT2  
9
VSSO2  
VSS  
Negative power  
Negative power  
Input  
Return Path Ground for Clock Output 2.  
Device Ground.  
10, 36  
11  
OEREF  
Output Enable for REFOUT and  
75 kΩ pull-down resistor.  
Pi ns, LVCMO S. Active high. This pin has an internal  
REFOUT  
Phase-Locked Loop 1 (PLL1) Filter Node, Positive Side. Connect a 220 nF capacitor between  
this pin and Pin 14.  
13  
FI LTER1 +  
Filter  
14  
15  
FI LTER1 −  
OE1  
Filter  
Input  
PLL1 Filter Node, Negative Side. Connect a 220 nF capacitor between this pin and Pin 13.  
Output Enable 1 for Clock Output 1, LVCMO S. Places OUT1 and  
Active high. This pin has an internal 75 kΩ pull-up resistor.  
in a high-Z state.  
OUT1  
16  
OE2  
Input  
Output Enable 2 for Clock Output 2, LVCMO S. Places OUT2 and  
Active high. This pin has an internal 75 kΩ pull-up resistor.  
in a high-Z state.  
OUT2  
17  
18  
SDO/LOL  
CS  
Output  
Input  
Serial Data Output for SPI Control/Loss of Lock, LVCMO S.  
Chip Select for SPI Control, LVCMO S. Active low. When this pin is set to 5 V, OTP  
programming is enabled (see Tabl e 4 and the OTP Programming section). This pin has an  
internal 75 kΩ pull-up resistor.  
19  
SCK  
Input  
Serial Clock Input for SPI Control, LVCMO S.  
Rev. B | Page 13 of 44  
AD9578  
Data Sheet  
Pin No.  
20  
Mnemonic  
SDI  
Typ e  
Input  
Input  
Description  
Serial Data Input for SPI Control, LVCMO S.  
Output Enable 3 for Clock Output 3, LVCMO S. Places OUT3 and  
21  
OE3  
in a high-Z state.  
OUT3  
Active high is the default but active low is programmable. This pin has an internal 75 kΩ  
pull-up resistor.  
22  
OE4  
Input  
Output Enable 4 for Clock Output 4, LVCMO S. Places OUT4 and  
in a high-Z state.  
OUT4  
Active high is the default but active low is programmable. This pin has an internal 75 kΩ  
pull-up resistor.  
23  
24  
26  
27  
28  
FI LTER2 −  
FI LTER2 +  
PD1  
Filter  
PLL2 Filter Node, Negative Side. Connect a 220 nF capacitor between this pin and Pin 24.  
PLL2 Filter Node, Positive Side. Connect a 220 nF capacitor between this pin and Pin 23.  
Active Low Power-Down for PLL1, LVCMO S. This pin has an internal 75 kΩ pull-up resistor.  
Return Path Ground for Clock Output 3.  
Filter  
Input  
VSSO3  
Negative power  
Output  
Active Low Clock Output 3 Derived from PLL2. Supports frequencies up to the device  
OUT3  
maximum.  
OUT3  
LVCMO S mode .  
is a selectable1 pin.  
is not used in LVCMOS mode; it is high-Z in  
OUT3  
Clock Output 3 Derived from PLL2. Supports frequencies up to the device maximum. OUT3  
is a selectable1 pin. When used in LVCMOS mode, OUT3 is the active pin.  
29  
30  
32  
33  
OUT3  
Output  
Supply, positive  
power  
VDDO3  
VDDO4  
OUT4  
Power Supply for Clock Output 3.  
Supply, positive  
power  
Power Supply for Clock Output 4.  
Output  
Clock Output 4 Derived from PLL2. Supports frequencies up to the device maximum.  
OUT4  
is not used in LVCMOS mode and is high-Z.  
is a selectable1 pin.  
OUT4  
Clock Output 4 Derived from PLL2. Supports frequencies up to the device maximum. OUT4  
is a selectable1 pin. When used in LVCMOS mode, OUT4 is the active pin.  
34  
OUT4  
Output  
35  
38  
VSSO4  
XO2  
Negative power  
Input  
Return Path Ground for Clock Output 4.  
Reference Input 1. Connect a crystal across this pin and XO1. Alternatively, the user can  
connect a 1.8 V LVCMOS clock to this pin only, or connect a differential, ac-coupled LVDS or  
LVPECL signal across this pin and the XO1 pin. This pin can be a crystal or reference input.  
Complementary Reference Input 1. Connect a crystal across this pin and XO2. Alternatively,  
the user can connect a differential, ac-coupled LVDS or LVPECL signal to this pin and the  
XO2 pin. This pin can be a crystal or reference input.  
39  
XO1  
Input  
40, 41, 42  
43  
NIC  
No Internal Connection. Leave these pins unconnected.  
Active Low Reference Clock Output. This pin provides a copy of the reference input or  
Output  
REFOUT  
crystal input frequency.  
is a selectable1 pin.  
REFOUT  
Reference Clock Output. This pin provides a copy of the reference input or crystal input  
frequency. REFOUT is a selectable1 pin.  
44  
45  
REFOUT  
XO4  
Output  
Input  
Reference Input 2. Connect a crystal across this pin and XO3. Alternatively, connect a 1.8 V  
LVCMO S clock to this pin only, or connect a differential, ac-coupled LVDS or LVPECL signal  
across this pin and the XO3 pin. This pin can be a crystal or reference input.  
Complementary Reference Input 2. Connect a crystal across this pin and XO4. Alternatively,  
connect a differential, ac-coupled LVDS or LVPECL signal to this pin and the XO4 pin.  
46  
47  
XO3  
VDD  
EPAD  
Input  
Supply, positive  
power  
2.5 V or 3.3 V Power Supply for Device Core. This pin can be a crystal or reference input.  
Exposed Pad. The exposed pad on the bottom of the package must be connected to  
ground for proper operation.  
1 Selectable pins are factory programmed to a default power-up configuration. The user can override the default programming to support LVCMOS, LVDS, LVPECL, or  
HCSL mode after power-up using the SPI.  
Rev. B | Page 14 of 44  
Data Sheet  
AD9578  
TYPICAL PERFORMANCE CHARACTERISTICS  
fR is the input reference clock frequency; fOUT is the output clock frequency; VDD at nominal supply voltage (3.3 V). 25 MHz square wave  
input is a dc-coupled 3.3 V LVCMOS signal with 0.8 ns (20% to 80%) rise time.  
–70  
–80  
–70  
–80  
INTEGRATED RMS JITTER  
(12kHz TO 20MHz): 350fs  
INTEGRATED RMS JITTER  
(12kHz TO 20MHz): 290fs  
PHASE NOISE (dBc/Hz):  
PHASE NOISE (dBc/Hz):  
OFFSET  
100Hz  
1kHz  
10kHz  
100kHz  
1MHz  
10MHz  
FLOOR  
LEVEL  
–116  
–121  
–129  
–130  
–141  
–162  
–164  
OFFSET  
100Hz  
1kHz  
10kHz  
100kHz  
1MHz  
10MHz  
FLOOR  
LEVEL  
–116  
–125  
–132  
–133  
–142  
–163  
–164  
–90  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
100M  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
100M  
Figure 4. Absolute Phase Noise (Output Driver = LVDS),  
fR = 25 MHz Square Wave, fOUT = 156.25 MHz on Both PLLs  
Figure 7. Absolute Phase Noise (Output Driver = LVDS),  
fR = 49.152 MHz Crystal, fOUT = 156.25 MHz on Both PLLs  
–70  
–70  
–80  
INTEGRATED RMS JITTER  
(12kHz TO 20MHz): 527fs  
PHASE NOISE (dBc/Hz):  
INTEGRATED RMS JITTER  
(12kHz TO 20MHz): 361fs  
–80  
–90  
PHASE NOISE (dBc/Hz):  
OFFSET  
100Hz  
1kHz  
10kHz  
100kHz  
1MHz  
10MHz  
FLOOR  
LEVEL  
–113  
–123  
–127  
–122  
–144  
–163  
–163  
OFFSET  
100Hz  
1kHz  
10kHz  
100kHz  
1MHz  
10MHz  
FLOOR  
LEVEL  
–104  
–122  
–127  
–129  
–140  
–161  
–163  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
100M  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
Figure 5. Absolute Phase Noise (Output Driver = LVCMOS),  
fR = 25 MHz Square Wave, fOUT = 161.1328125 MHz on Both PLLs  
Figure 8. Absolute Phase Noise (Output Driver = 3.3.V LVCMOS),  
fR = 49.152 MHz Crystal, fOUT = 161.1328125 MHz on Both PLLs  
–70  
–70  
INTEGRATED RMS JITTER  
(12kHz TO 20MHz): 517fs  
INTEGRATED RMS JITTER  
(12kHz TO 20MHz): 403fs  
–80  
–80  
PHASE NOISE (dBc/Hz):  
PHASE NOISE (dBc/Hz):  
OFFSET  
100Hz  
1kHz  
10kHz  
100kHz  
1MHz  
10MHz  
FLOOR  
LEVEL  
–114  
–123  
–128  
–125  
–137  
–162  
–163  
OFFSET  
100Hz  
1kHz  
10kHz  
100kHz  
1MHz  
10MHz  
FLOOR  
LEVEL  
–105  
–121  
–127  
–126  
–141  
–163  
–165  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
100M  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
100M  
Figure 6. Absolute Phase Noise (Output Driver = LVPECL),  
fR = 25 MHz Square Wave, fOUT = 174.703 MHz on Both PLLs  
Figure 9. Absolute Phase Noise (Output Driver = LVPECL),  
fR = 49.152 MHz Crystal, fOUT = 174.703 MHz on Both PLLs  
Rev. B | Page 15 of 44  
AD9578  
Data Sheet  
–60  
–70  
–60  
–70  
INTEGRATED RMS JITTER  
INTEGRATED RMS JITTER  
(12kHz TO 20MHz): 515fs  
(12kHz TO 20MHz): 327fs  
PHASE NOISE (dBc/Hz):  
PHASE NOISE (dBc/Hz):  
OFFSET  
100Hz  
1kHz  
10kHz  
100kHz  
1MHz  
10MHz  
FLOOR  
LEVEL  
–102  
–112  
–115  
–110  
–128  
–155  
–159  
OFFSET  
100Hz  
1kHz  
10kHz  
100kHz  
1MHz  
10MHz  
FLOOR  
LEVEL  
–95  
–80  
–80  
–110  
–116  
–118  
–132  
–155  
–158  
–90  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–160  
100  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
100M  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
100M  
Figure 13. Absolute Phase Noise (Output Driver = LVPECL),  
fR = 49.152 MHz Crystal, fOUT = 622.08 MHz on Both PLLs  
Figure 10. Absolute Phase Noise (Output Driver = LVPECL),  
fR = 25 MHz 3.3 V LVCMOS Square Wave, fOUT = 622.08 MHz on Both PLLs  
–60  
–70  
INTEGRATED RMS JITTER  
(12kHz TO 20MHz): 392fs  
INTEGRATED RMS JITTER  
(12kHz TO 20MHz): 504fs  
–70  
–80  
–80  
PHASE NOISE (dBc/Hz):  
PHASE NOISE (dBc/Hz):  
OFFSET  
100Hz  
1kHz  
10kHz  
100kHz  
1MHz  
10MHz  
FLOOR  
LEVEL  
–93  
OFFSET  
100Hz  
1kHz  
10kHz  
100kHz  
1MHz  
10MHz  
FLOOR  
LEVEL  
–101  
–111  
–114  
–110  
–127  
–153  
–154  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–110  
–116  
–118  
–125  
–153  
–155  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
100M  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
100M  
Figure 14. Absolute Phase Noise (Output Driver = LVPECL),  
fR = 49.152 MHz Crystal, fOUT = 693.482991 MHz on Both PLLs  
Figure 11. Absolute Phase Noise (Output Driver = LVPECL),  
fR = 25 MHz Square Wave, fOUT = 693.482991 MHz on Both PLLs  
–70  
–70  
–80  
–90  
INTEGRATED RMS JITTER  
(12kHz TO 20MHz): 361fs  
–80  
–90  
PHASE NOISE (dBc/Hz):  
OFFSET  
100Hz  
1kHz  
10kHz  
100kHz  
1MHz  
10MHz  
FLOOR  
LEVEL  
–93  
–107  
–114  
–116  
–122  
–152  
–159  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
INTEGRATED RMS JITTER  
(12kHz TO 20MHz): 506fs  
PHASE NOISE (dBc/Hz):  
OFFSET  
100Hz  
1kHz  
10kHz  
100kHz  
1MHz  
10MHz  
FLOOR  
LEVEL  
–101  
–110  
–114  
–110  
–108  
–154  
–160  
100  
1k  
10k  
100k  
1M  
10M  
100M  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 15. Absolute Phase Noise (Output Driver = LVPECL),  
fR = 49.152 MHz Crystal, fOUT = 919 MHz on Both PLLs  
Figure 12. Absolute Phase Noise (Output Driver = LVPECL),  
fR = 25 MHz Square Wave on XO1/XO2 Pins, fOUT = 919 MHz on Both PLLs  
Rev. B | Page 16 of 44  
Data Sheet  
AD9578  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
–60  
–70  
INTEGRATED RMS JITTER  
(12kHz TO 5MHz): 5.8ps  
PHASE NOISE (dBc/Hz):  
OFFSET LEVEL  
–80  
100Hz  
–100  
–110  
–118  
–127  
–130  
–131  
–131  
1kHz  
–90  
10kHz  
100kHz  
1MHz  
10MHz  
FLOOR  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
2pF LOAD  
10pF LOAD  
–0.5  
0
1
2
3
4
5
6
7
8
9
10 11 12  
100  
1k  
10k  
100k  
1M  
10M  
100M  
TIME (ns)  
FREQUENCY (Hz)  
Figure 16. Phase Noise of 25 MHz, 3.3 V LVCMOS Input Clock Used  
Figure 19. Output Waveform, 3.3 V CMOS (100 MHz)  
0.4  
0.3  
0.4  
0.3  
0.2  
0.2  
0.1  
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.1  
–0.2  
–0.3  
–0.4  
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2  
TIME (ns)  
TIME (ns)  
Figure 17. Output Waveform, LVDS (400 MHz)  
Figure 20. Output Waveform, LVDS (900 MHz)  
1.0  
0.8  
1.2  
1.0  
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
–2.0 –1.5 –1.0 –0.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
TIME (ns)  
TIME (ns)  
Figure 21. Output Waveform, LVPECL (400 MHz)  
Figure 18. Output Waveform, HCSL (400 MHz)  
Rev. B | Page 17 of 44  
AD9578  
Data Sheet  
TEST SETUP AND CONFIGURATION CIRCUITS  
OSCILLOSCOPE  
OSCILLOSCOPE  
50Ω  
50Ω  
OSCILLOSCOPE  
OSCILLOSCOPE  
V
V
POWER  
= 2.0V  
V
V
POWER  
= 3.3V  
DD  
DD  
DD  
DD  
50Ω  
50Ω  
VDDOx OUTx OUTx  
VDDOx OUTx OUTx  
AD9578  
AD9578  
VSS  
VSS  
V
V
SS  
DD  
V
DD  
V
POWER = –1.3V  
SS  
LEAVE V FIXED AT 2.0V AND ADJUST V  
.
SS  
ADJUST V  
.
DD  
DD  
Figure 22. LVPECL Test Circuit  
Figure 24. LVDS Test Circuit  
OSCILLOSCOPE  
50Ω  
OSCILLOSCOPE  
V
V
POWER  
= 1.65V  
DD  
DD  
OSCILLOSCOPE  
OPEN  
V
V
POWER  
= 3.3V  
DD  
DD  
50Ω  
VDDOx OUTx OUTx  
AD9578  
50Ω  
VDDOx OUTx OUTx  
VSS  
AD9578  
V
V
SS  
DD  
VSS  
V
V
SS  
V
POWER = –1.65V  
DD  
SS  
ADJUST V AND V  
TOGETHER.  
DD  
SS  
Figure 23. LVCMOS Test Circuit  
Figure 25. HCSL Test Circuit  
Rev. B | Page 18 of 44  
Data Sheet  
AD9578  
INPUT/OUTPUT TERMINATION RECOMMENDATIONS  
See Figure 26 to Figure 30 for recommendations on how to connect the outputs.  
V
V
DD  
DD  
33Ω  
(OPTIONAL)  
V
Z
Z
= 50Ω  
= 50Ω  
DD  
0
AD9578  
HCSL  
HCSL  
RECEIVER  
50Ω  
50Ω  
V
V
DD  
DD  
R1  
R2  
R1  
R2  
0
33Ω  
(OPTIONAL)  
Z
Z
= 50Ω  
= 50Ω  
0
LVPECL  
LVPECL  
NOTES  
1. THE 50Ω PULL-DOWN RESISTORS CAN BE PLACED  
IMMEDIATELY AFTER 33Ω SERIES RESISTORS, AND DOING  
SO ALLOWS THE USER TO PLACE MULTIPLE HIGH  
IMPEDANCE LOADS AT THE DESTINATION. FOR DRIVING A  
SINGLE LOAD, THE 50 Ω PULL-DOWN RESISTORS CAN BE  
PLACED NEAR THE DRIVER OR NEAR THE DESTINATION.  
EITHER IMPLEMENTATION IS FINE.  
0
V
3.3V 2.5V  
DD  
R1 130Ω 240Ω  
R2  
82Ω  
82Ω  
Figure 26. Thevenin Equivalent DC-Coupled LVPECL Termination  
Figure 29. DC-Coupled HCSL  
V
V
= 2.5V OR 3.3V  
V
DD  
DD  
DD  
V
= 2.5V OR 3.3V  
AD9578  
DD  
(SAME AS AD9578)  
CMOS  
= 50Ω  
Z
Z
= 50Ω  
= 50Ω  
0
AD9578  
LVPECL  
MODE  
LVPECL  
RECEIVER  
33Ω  
100Ω  
Z
0
(HIGH-Z)  
0
200Ω  
200Ω  
Figure 27. AC-Coupled LVPECL Termination  
Figure 30. DC-Coupled LVCMOS Termination  
V
V
DD  
DD  
Z
Z
= 50Ω  
= 50Ω  
0
AD9578  
LVDS  
LVDS  
RECEIVER  
100Ω  
0
Figure 28. AC-Coupled LVDS  
Rev. B | Page 19 of 44  
 
 
AD9578  
Data Sheet  
GETTING STARTED  
CHIP POWER MONITOR AND STARTUP  
DEVICE REGISTER PROGRAMMING USING  
A REGISTER SETUP FILE  
The AD9578 monitors the voltage on the power supplies at  
power-up. When power supplies are greater than 2.1 V 0.1 V,  
the device generates an internal reset pulse, at which time, the  
AD9578 loads the values programmed in OTP memory. Do not  
use the SPI until 4 ms after power-up to ensure that all registers  
are correctly loaded from the OTP memory and that all internal  
voltages are stable.  
The evaluation software contains a programming wizard and  
a convenient graphical user interface that assists the user in  
determining the optimal configuration for the device. It  
generates a register setup file with a .STP extension that is easily  
readable using a text editor. These registers can be loaded  
directly into the AD9578.  
It is possible for the user to overwrite any value stored in the  
OTP memory if the security bits in Register 0x00 were not set at  
the time the OTP programming occurred. Take care not to  
overwrite the factory programmed calibrations (Register 11  
through Register 14).  
OTP PROGRAMMING  
The AD9578 has 444 bits of OTP memory. OTP stores the  
nonvolatile default configuration used on power-up.  
The default configuration is determined and programmed by  
the user. Use the SPI to overwrite these bits and change the  
operation of the AD9578 after power-up. The SPI Programming  
section describes how the bits affect the device operation and  
how to use the SPI to modify them.  
When programming the device through the serial port, write  
unused or reserved bits to their default values as listed in the  
register map.  
Rev. B | Page 20 of 44  
Data Sheet  
AD9578  
THEORY OF OPERATION  
PD1  
FILTER1+  
FILTER1–  
OE1  
AD9578  
REFSEL1  
OUT1  
OUT1  
OUT1  
DIVIDER  
÷4 TO ÷259  
FRACTIONAL  
PLL1  
OE2  
(3053MHz TO 3677MHz)  
OUT2  
DIVIDER  
÷4 TO ÷259  
OUT2  
OUT2  
OPTIONAL  
REFERENCE  
MUX SELECT  
XO3  
XO4  
OEREF  
REF2  
REFOUT  
REFOUT  
OE3  
REFSEL2  
OUT3  
DIVIDER  
÷4 TO ÷259  
OUT3  
OUT3  
OPTIONAL  
FRACTIONAL  
PLL2  
XO1  
XO2  
REF1  
OE4  
(3053MHz TO 3677MHz)  
OUT4  
DIVIDER  
÷4 TO ÷259  
OUT4  
OUT4  
SPI AND OTP  
PROGRAMMABLE  
LOGIC CONTROL  
FILTER2+  
FILTER2–  
SCK SDI SDO/  
LOL  
CS  
NOTES  
1. IF SUPPLYING A SINGLE-ENDED 1.8V CMOS SIGNAL, CONNECT THE SIGNAL TO EITHER XO2 OR XO4.  
Figure 31. Detailed Block Diagram  
feedback divider in terms of one integer divided by another.  
There are two output dividers on each VCO, with a range of 4 to  
259. To prevent an output frequency gap between 750.8 MHz  
and 777.25 MHz, a special divide by 4.5 mode is also included.  
Any output frequency between 11.8 MHz and 919 MHz can be  
produced with a frequency error of 0.1 ppb or better.  
OVERVIEW  
The AD9578 is a dual synthesizer with four programmable  
outputs. Two PLLs, with either a crystal or external reference  
input frequency, produce up to four unique output frequencies.  
Output format standards on each output include LVCMOS, LVDS,  
LVPECL, and HCSL. The input crystal is a low cost fundamental  
mode type, and the AD9578 provides programmable gain and  
load capacitors. Alternatively, an input reference clock can be  
used for either or both PLLs. The crystal or external reference  
Additional features include loss of lock indicators, smooth change  
of output frequency for small frequency steps, and SPI control.  
The AD9578 can be configured through the SPI, factory  
programmed, user programmed, or any combination thereof.  
The AD9578 ships with a default power-up configuration pro-  
grammed into OTP memory. All settings can be reprogrammed  
after power-up using the SPI.  
REFOUT  
frequency is available on the REFOUT/  
pins.  
The PLLs operate independently but may share the input  
reference, if desired. Three modes of operation can be selected:  
integer mode, fractional mode, and rational mode. The integer  
mode provides the lowest noise and behaves like a conventional  
PLL with whole number dividers. The fractional mode allows  
the feedback divider to have an 8-bit integer part and a 28-bit  
fractional part, resulting in a frequency resolution of 0.1 ppb or  
better. Rotary traveling wave oscillator (RTWO)-based VCOs  
operate at rates from 3053 MHz to 3677 MHz. Rational mode is  
similar to fractional mode, but allows the user to specify the  
At offset frequencies below the PLL bandwidth (which is  
typically 300 kHz), the PLL tracks and multiplies the reference  
phase noise. The crystal input offers a very low phase noise  
reference, ensuring that the output phase noise near the carrier  
is low. When selecting the reference input signal, ensure that the  
phase noise of the reference input is low enough to meet the  
system noise requirements.  
Rev. B | Page 21 of 44  
AD9578  
Data Sheet  
PLL AND OUTPUT DRIVER CONTROL  
Table 14. Register 2 Bits  
Bits  
Bit 7  
Bit 6  
Bit 5  
Unused  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
MR  
(master  
reset)  
MR enable  
(set to 1 to  
enable MR)  
REFOUT enable  
(override OEREF  
pin)  
[23:16]  
REFOUT  
Override OE2  
pin  
Override OE1  
pin  
[15:8]  
[7:0]  
OUTPUT4 Override OE4 pin  
OUTPUT3 Override OE3 pin  
OUTPUT2  
OUTPUT1  
PLL1  
REFSEL2 enable  
(set to 1 to enable  
REFSEL2)  
REFSEL1 enable  
(set to 1 to enable  
REFSEL1)  
PLL2 enable (set  
to 1 to enable  
PLL2)  
PLL1 enable  
REFSEL2  
REFSEL1  
PLL2  
(override  
pin)  
PD1  
Table 15. Register 4 Bits  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
[15:8]  
[7:0]  
XTA L frequency trim  
XTA L Capacitance Value[2:0]  
OUTPUT3 Mode[1:0]  
Unused  
OUTPUT2 Mode[1:0]  
XTA L Gain[2:0]  
OUTPUT1 Mode[1:0]  
OUTPUT4 Mode[1:0]  
Reading the Hardware OEx Pin States  
OVERVIEW  
By default, the AD9578 OEx pins determine which outputs are  
enabled. If the corresponding override OEx pin bits are not set  
in Register 2, the user can read the states of these pins by  
reading Register 2. Note that the OE1, OE2, OE3, and OE4 pins  
have 75 kΩ pull-up resistors.  
The AD9578 has five output drivers: OUTPUT1, OUTPUT2,  
OUTPUT3, OUTPUT4, and REFOUT. Each output can be  
individually configured as LVCM OS , LVDS , LVP ECL, or HCSL.  
Each output has an output enable pin (OEx). Pin control of the  
outputs is enabled when the corresponding override OEx pin bit  
in Register 2 is low. When configured this way, the OUTPUTx bit  
is read only and indicates the status of the OEx pin.  
Disabling Hardware OEx Pin Control  
To disable the hardware pin control, the associated override  
OEx pin bit can be set in Register 2 (see Table 14). The override  
OEx pin bits are OTP, allowing the device to power up with  
any output forced on, forced off, or controlled by the OEx pin.  
In Register 2, when the override OEx pin bit is set to 1, the  
corresponding OEx pin is ignored, and the OUTPUTx bit  
enables or disables an input or output. To enable an output, both  
the override OEx pin bit and the OUTPUTx bit in Register 2 must  
be set to 1.  
When the override OEx pin (where x = 1 to 4) bit is high, the  
OUTPUTx bit in Register 2 turns OUTPUTx on and off. See  
Table 14 for the contents of Register 2.  
The AD9578 ships with the default start-up output enable and  
output format functionality selected by the user. After power-  
up, the user can override the default programming through the  
SPI.  
PLL ENABLE/DISABLE  
Glitch-Free Output Enable  
Each output is enabled only if the associated PLL is powered up.  
Bits[3:0] in Register 2 control this function. There are two ways  
to power up/down PLL1. If the PLLx enable bit is 0, the user can  
When an output changes from disabled to enabled, there is an  
approximate 2 µs delay before switching begins. During this  
delay, the outputs settle to the appropriate dc differential levels  
according to the configured mode. After this initial delay, the  
outputs begin toggling without glitches or runt pulses.  
power down PLL1 by pulling the  
pin low. If the PLLx  
PD1  
enable bit is high, PLL1 is powered up/down using the PLL1 bit  
(Bit 1). PLL2 is under software control only. Therefore, always  
set Bit 2 to 1. The PLL2 bit (Bit 3) powers up/down PLL2.  
Output Disable Sequence  
When an output changes from enabled to disabled, it stops  
switching at the appropriate dc levelsaccording to the  
configured mode. After it has stopped switching, the biases are  
disabled and the output is set to high impedance.  
Rev. B | Page 22 of 44  
 
 
Data Sheet  
AD9578  
series termination resistor is recommended (see Figure 30).  
OUTPUT DRIVER FORMAT  
Place a series termination 33 Ω resistor within 7 mm of the  
AD9578. A 50 Ω transmission line configured this way is  
impedance matched. However, differential output modes are  
preferred over single-ended modes to preserve the high  
performance of the AD9578 and to reduce noise pickup and  
generation.  
The default power-up output mode is factory programmed to  
single-ended LVCM OS . The user can override the defaults  
using the serial port, and the drivers can be programmed  
simultaneously.  
Table 16. Output Driver Modes1  
OUTPUTx Mode[1:0]  
Output Mode  
LVCMO S  
LVDS  
OUTPUT CONFIGURATION EXAMPLE  
00  
01  
10  
11  
Table 17 and Table 18 show how Register 2 and Register 4,  
respectively, are used to configure the AD9578 inputsand  
outputs.  
LVPECL  
HCSL  
PLL1 and PLL2 are enabled so that the output drivers  
connected to them are also enabled.  
1 To disable any output through the SPI, the corresponding override OEx pin  
bit and OUTPUTx bit must be set to 1 and 0, respectively. This prevents any  
condition of the external OEx pin from affecting the state of the output  
driver. In OTP programming, setting the override bit to 1 disables the output  
pin permanently.  
The OE1 and OE2 pinsare ignored, OUTPUT1 is enabled and  
in LVCM OS mode, and OUTPUT2 is disabled. The OE3 and  
OE4 pins determine the state of OUTPUT3 and OUTPUT4,  
respectively. The REFOUT driver is disabled, OUTPUT3 is  
LVDS, and OUTPUT4 is LVP ECL.  
Note that all of the output modes are differential except  
LVCMOS mode. When LVCMOS is selected, the positive  
output pin is LVCM OS , and the negative (complementary)  
output pin is high impedance. The LVCM OS output driver  
mode can be used for output frequencies ≤250 MHz, and a  
The X in Table 17 and Table 18 indicates that the register bit is  
not related to output driver configuration.  
Table 17. Example of Output Driver Configuration Using Register 2  
Bit 4  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
[23:16]  
Unused = XXXX  
MR (master  
reset) = 0  
MR enable  
= 1  
REFOUT =  
0
REFOUT enable  
(override OEREF pin) = 1  
[15:8]  
[7:0]  
O UTPUT4 = Override OE4  
X
O UTPUT3 = Override  
OE3 pin = 0  
OUTPUT2 = 0  
Override  
OE2 pin = 1 = 1  
OUTPUT1  
Override OE1 pin= 1  
pin = 0  
X
REFSEL2 =  
X
REFSEL2  
enable = X  
REFSEL1 =  
X
REFSEL1  
enable = X  
PLL2 = 1  
PLL2  
enable =1  
PLL1 = 1  
PLL enable (override  
pin) = 1  
PD1  
Table 18. Example of Output Driver Configuration Using Register 4  
Bits Bit 7 Bit 6 Bit 5 Bit 4  
[15:8] XTA L1 frequency trim = X  
[7:0] OUTPUT4 Mode[1:0] = 10  
Bit 3  
Unused = X  
OUTPUT2 Mode[1:0] = XX  
Bit 2  
Bit 1  
Bit 0  
XTA L1 Capacitance Value[2:0] = XXX  
OUTPUT3 Mode[1:0] = 01  
XTA L1 Gain[2:0] = XXX  
OUTPUT1 Mode[1:0] = 00  
Rev. B | Page 23 of 44  
 
 
 
AD9578  
Data Sheet  
REFERENCE INPUT  
Table 19. Register 2 Bits  
Bits  
Bit 7  
Bit 6  
Bit 5  
Unused  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
MR  
(master  
reset)  
MR enable (set  
to 1 to enable  
MR bit)  
REFOUT enable  
(override OEREF  
pin)  
[23:16]  
REFOUT  
Override OE2  
pin  
[15:8]  
[7:0]  
OUTPUT4 Override OE4 pin OUTPUT3 Override OE3 pin OUTPUT2  
OUTPUT1 Override OE1 pin  
REFSEL2 enable  
(set to 1 to  
enable REFSEL2  
bit)  
REFSEL1 enable  
(set to 1 to  
enable REFSEL1  
bit)  
PLL2 enable  
(set to 1 to  
enable PLL2  
bit)  
PLL1 enable  
(override  
REFSEL2  
REFSEL1  
PLL2  
PLL1  
pin)  
PD1  
(set to 1 to enable  
PLL1 bit)  
Table 20. Register 3 Bits  
Bits  
Bit 7  
REFOUT  
mode[1:0]  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Enable activity  
detect (set to 1)  
Reference mux  
select  
[31:24]  
Unused  
Enabl e XTA L1  
Unused  
Enable OUTPUT4  
divider  
Enable OUTPUT3  
divider  
Enable OUTPUT2  
divider  
Enable OUTPUT1  
divider  
[23:16]  
[15:8]  
[7:0]  
Unused  
Enable OUTPUT4  
4.5 mode  
Enable OUTPUT3  
4.5 mode  
Enable OUTPUT2  
4.5 mode  
Enable OUTPUT1  
4.5 mode  
Unused  
LVCMO S Edge Trim[2:0]  
Exponent[3:0]  
Mantissa[3:0]  
OVERVIEW  
Table 22. PLL2 Reference Selection  
Two reference inputs are available for the PLLs. The user can  
connect either a crystal or an input clock to the XO1/XO2 pins  
or the XO3/XO4 pins. The allowable reference input logic types  
are 1.8 V LVCM OS , ac-coupled LVDS, and ac-coupled LVP ECL.  
The crystal oscillators accept standard crystals from 22 MHz to  
54 MHz. Either reference can be used by either PLL through the  
internal selectors. Likewise, either reference can be buffered to  
the REFOUT driver, which supports LVCM OS, LVDS , LVP ECL,  
or HCSL format. OTP fuses are available to automatically load  
the user settings loaded each time the chip powers up or resets.  
Register 2  
Register 10  
REFSEL2  
Enable  
Enable  
XTAL 2  
X1  
X1  
X1  
REFSEL2  
PLLx Reference  
0
1
1
X1  
0
Reference 1 (XO1, XO2)  
Reference 1 (XO1, XO2)  
Reference 2 (XO3, XO4)  
1
1 X = don’t care.  
CRYSTAL OSCILLATOR AMPLIFIER ENABLE  
The crystal oscillator amplifier is automatically enabled when  
either the PLLx or REFOUT bit in Register 2 uses the crystal  
oscillator for either Reference 1 or Reference 2. Otherwise, the  
crystal oscillator amplifier is disabled if neither the PLLx nor  
REFOUT bit selects that input. However, this setting can be  
overridden with the enable XTAL1 bit in Register 3 and enable  
XTAL2 bit in Register 10. Setting these bits forces the  
corresponding crystal oscillator on.  
Register 2 contains the reference input control bits, Bits[7:4],  
and is shown in Table 19. Register 3 containsthe configuration  
bits forthe input reference buffer,and reference output, shown in  
Table 20. See the PLL and Output Driver Control section for  
information about the control of the reference output buffer.  
REFERENCE INPUT  
Table 21. PLL1 Reference Selection  
These bits are useful to allow a crystal to power up and stabilize  
before it is needed. However, these bits are usually set to 0  
under normal operation.  
Register 2  
Register 3  
REFSEL1  
Enable  
Enable  
XTAL 1  
REFSEL1  
PLLx Reference  
REFOUT/  
SOURCE SELECTION  
REFOUT  
0
1
1
X1  
0
X1  
X1  
X1  
Reference 1 (XO1, XO2)  
Reference 1 (XO1, XO2)  
Reference 2 (XO3, XO4)  
The REFOUT/  
pins can be used to buffer the crystal  
REFOUT  
oscillator signal. Like the other outputs, it can be set to  
LVP ECL, LVDS, HCSL, or LVCMOS format (see the PLL and  
Output Driver Control section for more information).  
1
1 X = don’t care.  
Rev. B | Page 24 of 44  
 
 
Data Sheet  
AD9578  
CRYSTAL OSCILLATOR INPUTS  
Table 23. Register 4 Bits  
Bit Range  
[15:8]  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
XTA L1 frequency trim  
XTA L1 Capacitance Value[2:0]  
OUTPUT3 Mode[1:0]  
Unused  
XTA L1 Gain[2:0]  
[7:0]  
OUTPUT4 Mode[1:0]  
OUTPUT2 Mode[1:0]  
OUTPUT1 Mode[1:0]  
Table 24. Register 10 Bits  
Bit Range  
Bit 7  
Bit 6  
XTAL2 Capacitance Value[2:0]  
Sync Step[3:0]  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
XTA L2 Enabl e  
[15:8]  
[7:0]  
XTAL2 frequency trim  
XTAL2 Gain[2:0]  
Sync DIVN[3:0]  
OVERVIEW  
CRYSTAL OSCILLATOR GAIN  
The quartz crystal inputs, XO1/XO2 and XO3/XO4, accept  
standard 8 pF to 12 pF AT cut crystals from 22 MHz to 54 MHz.  
These inputs have programmable gain and programmable  
on-chip load capacitors so that a wide range of crystals can be  
used.  
Set the XTALx frequency trim bit in Register 4 and Register 10  
if the crystal frequency is 33 MHz or lower. The recommended  
values for the bits in Register 4 and Register 10 are given in  
Table 25.  
Table 25. XTALx Gain[2:0] Values  
In general, use the highest frequency crystal for lowest phase  
noise. If integer modes of PLL operation are possible, select the  
crystal such that the overall frequency multiplication is an  
integer value for lowest noise.  
XTAL x Gain[2:0]  
XTAL x  
Frequency  
Crystal  
Frequency (MHz)  
ESR =  
25 Ω  
ESR =  
35 Ω  
ESR =  
45 Ω  
Trim Bit  
22  
27  
33  
34  
39  
44  
49  
54  
0
1
2
1
2
3
4
5
1
2
3
2
3
4
5
6
3
4
5
3
4
5
6
7
1
1
1
0
0
0
0
0
XTAL Enable  
Setting the enable XTAL1 bit in Register 3 (for the crystal  
connected tothe XO1/XO2 pins),or enable XTAL2 in Register 10  
(for the crystal connected to the XO3/XO4 pins), and the  
REFSELx bit in Register 2 enables the second crystal oscillator.  
The second crystal oscillator (OSC2) is on Pin 45 and Pin 46,  
XO4 and XO3, respectively. OSC2 is useful if the crystal  
frequency on the first crystal oscillator (OSC1) results in an  
integer boundary spur; OSC2 can be set to a different frequency  
that does not cause an integer boundary. OSC2 is automatically  
enabled if it is selected and is disabled otherwise.  
CRYSTAL LOAD CAPACITORS  
The AD9578 has internal crystal load capacitors that are used as  
the load capacitance for an external crystal. XTALx Capacitance  
Value[2:0], Bits[14:12] in Register 4 (for the crystal connected  
to the XO1/XO2 pins) or Register 10 (for the crystal connected  
to the XO3/XO4 pins), set the on-chip load capacitance, as  
shown in Table 36.  
Rev. B | Page 25 of 44  
 
AD9578  
Data Sheet  
PLLs  
OVERVIEW  
Rational Mode  
Rational mode allows the user to express the feedback divider as  
a ratio of rational numbers. Rational mode is enabled by setting  
the rational mode bit (Bit 2 in Register 7 (for PLL1) or Register 9  
(for PLL2)) to 1.  
The two PLLs in the AD9578 operate independently. Each PLL  
consists of an input reference frequency (which can be shared),  
a phase/frequency detector, loop filter, RTWO-based VCO,  
complex feedback divider and phase selector, and two output  
dividers. The feedback divider can operate in two distinct  
modes: integer and fractional.  
Table 26. Rational Mode Feedback Divider Calculation  
Feedback Divider  
S[1:0] (FBDIV)1  
PLLx Fractional  
Feedback Divider[27:25]  
Using the AD9578 evaluation software is the easiest way to  
configure the AD9578. See the PLL Modes of Operation section  
for more information on the various register settings.  
S = 0  
S = 1  
S = 2  
S = 3  
FBDIV = A + (1/8)(B + C/D) B = 0, 1, … , 7 (Bits[27:25])  
FBDIV = A + (1/4)(B + C/D) B = 0, 1, 2, 3 (Bits[27:26])  
FBDIV = A + (1/2)(B + C/D) B = 0, 1 (Bit 27)  
In the PLL Modes of Operation section, the possible feedback  
divider settings is expressed in Q notation, QN.M, where N (the  
integerpart) is eight bits and M (the fractional part) is 28 bits.  
B ignored (Bits[27:25] =  
000b)  
FBDIV = A + C/D  
1 A is PLLx Integer Feedback Divider[7:0], C is PLLx Fractional Feedback  
Divider[24:9], D is PLLx Modulus Value[15:0].  
The S[1:0] value represents the amount of phase interpolation  
used to represent a portion of the fractional part of the divider  
value. When S[1:0] = 3, there is no phase interpolation. When  
S[1:0] = 0, there is phase interpolation in 1/8 increments.  
Integer Mode  
Integer mode provides the lowest possible phase noise and  
behaves like a traditional integer PLL in which the feedback  
divisor is an integer. Integer mode is a special case of rational  
mode in which the rational mode bit is zero, and the C and D  
terms in Table 26 are 0.  
PLL MODES OFOPERATION  
The PLLs on the AD9578 have three modes of operation:  
integer, fractional, and rational. In this section, PLLx refers to  
either PLL1 (whose settings are in Register 6 and Register 7) or  
PLL2 (whose settings are Register 8 and Register 9).  
Integer mode is set when the following conditions are met:  
PLLx MASH[2:0] = 000b  
The feedback divider has two parts: an 8-bit integer part and a  
28-bit fractional part. The fractional part is modulated by a  
multistage noise shaping (MASH) modulator. The order of the  
MASH modulator is set in PLLx MASH[2:0] in Register 7 and  
Register 9, Bits[31:29].  
PLLx Fractional Feedback Divider[24:0] = 0x000  
If PLLx S[1:0] = 3 (no phase interpolation),  
PLLx Fractional Feedback Divider[27:25] must be zero.  
If PLLx S[1:0] = 2 (phase interpolation of ½ or 0)  
PLLx Fractional Feedback Divider[26:25] must be zero.  
Set the value of MASH[2:0] to0 for integer mode,and 1 to 4 for  
fractional mode. Setting PLLx MASH[2:0] = 2 usually provides the  
lowest jitterforsettingsof PLLx Fractional Feedback  
If PLLx S[1:0] = 1, (phase interpolationof 1/4, 1/2, 3/4, or 0)  
PLLx Fractional Feedback Divider[25] must be zero.  
Divider[27:0] greater than 2% from aninteger. The value of S[1:0]  
is as follows: S[1:0] = 0, 1, and 2 results in eight, four, and two  
phases, respectively. Typically, a value of 0 for S[1:0] is best.  
When programming integer mode with S[1:0] = 0, the AD9578  
is in integer mode (with better noise performance), even though  
the feedback divider has a fraction (for example, 1/8, 2/8, 3/8).  
When using this mode, the user must reset the feedback divider  
by writing a 1 to Bit 14 of Register 7 (for PLL1) or Register 9  
(for PLL2).  
Fractional Mode  
The fractional mode allows the feedback divider to take on a  
value of the Q notation, QN.M, where N (the integer part) is  
eight bits and M (the fractional part) is 28 bits. The VCO  
frequency divided by the feedback divider must always equal  
the reference frequency.  
NCO Functionality  
Fractional mode allows operation as a precision NCO, which  
offers the capability of digitally pulling the output frequency  
using precise numerical control. A digital alternative to analog  
VCXOs that pull the crystal using varactors, NCO functionality  
enables completely digitallycontrolled PLLs thattrim theoutput  
frequency through the fast SPI bus. Precise numerical control  
enables PLL applications to be implemented digitally within  
FPGAs and other digital ICs. Writing the AD9578 registers  
using an SPI bus that runs at 100 MHz allows the AD9578  
output frequency to be updated frequently. The continuous  
trimming range of the output is greater than 1000 ppm, resulting  
FRAC  
228  
fVCO = fIN × INT +  
where:  
INT is PLLx Integer Feedback Divider[7:0] in Register 6 (for  
PLL1) or Register 8 (for PLL2).  
FRAC is PLLx Fractional Feedback Divider[27:0] in Register 6  
(for PLL1) or Register 8 (for PLL2)  
Rev. B | Page 26 of 44  
 
 
 
Data Sheet  
AD9578  
in better tracking range than is possible with analog VCXO-  
based PLLs.  
The PLLx KVCO band bit (Bit 31 in Register 0x0C forPLL1 and  
Bit 31 in Register 0x0E forPLL2) must be set to 1 for PLLx  
Frequency Select[4:0] values between 14 and 27, and must be 0  
for Frequency Select[4:0] values between 0 and 13. The reserved  
bits in Register 11, Register 12, Register 13, and Register 14 are  
factory calibrated values, and must not be changed.  
The output frequencies change smoothly with no sudden phase  
step when the change to the feedbackdivider is small (forexample,  
a change in phase or a few parts per million in frequency.) The  
change in the feedback divider is instantaneous, but the PLL  
response causes the PLL to change its frequency gradually.  
Thus, any changes small enough not to cause lock disturbance  
are smooth and continuous.  
CHARGEPUMP  
The PLL charge pump current is programmed in Register 7 and  
Register 9, Bits[20:16], theCUR[4:0] value. CUR[4:0]can optimize  
the PLL bandwidth for minimum integrated phase noise. For  
crystals of approximately 50 MHz, CUR[4:0] valuesnear 15  
often produce the lowest noise.The AD9578evaluation software  
generates these values for the user.  
VCO  
The VCO has 28 frequency bands. PLLx Frequency Select[4:0]  
in Register 7 (for PLL1) or Register 9 (for PLL2) selects the  
VCO band according to Table 27. Using the AD9578 evaluation  
software is the easiest way to ensure that these bits are set  
correctly.  
See Table 29 for a variety of output frequencies and settings for  
PLLx MASH[2:0], S[1:0], and CUR[4:0] when using a  
49.152 MHz crystal.  
Table 27. VCO Frequencies and KVCO Band Settings  
OUTPUT DIVIDERS  
PLLx Frequency  
Select[4:0]1  
VCO  
VCO Min Nom  
VCO  
Max  
(MHz)  
PLLx  
KVCO  
The output divider divides the RTWO frequency down to the  
required output frequency. There is one divider per output, and  
the divide ratios are located in Register 5 (see Table 28).  
Dec  
Binary  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
(MHz)  
3642  
3615  
3583  
3556  
3532  
3509  
3486  
3463  
3440  
3416  
3391  
3375  
3360  
3345  
3307  
3290  
3268  
3249  
3228  
3209  
3189  
3171  
3154  
3135  
3119  
3100  
3084  
3053  
(MHz)  
3654  
3623  
3597  
3568  
3542  
3518  
3496  
3473  
3450  
3426  
3402  
3382  
3366  
3350  
3322  
3298  
3278  
3256  
3237  
3217  
3198  
3179  
3161  
3143  
3126  
3108  
3091  
3072  
Band2  
0
3677  
3642  
3615  
3583  
3556  
3532  
3509  
3486  
3463  
3440  
3416  
3391  
3375  
3360  
3345  
3307  
3290  
3268  
3249  
3228  
3209  
3189  
3171  
3154  
3135  
3119  
3100  
3084  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Table 28. Output Divider Locations in Register 5  
2
3
Bits  
Bits[7:0]  
4
[31:24]  
[23:16]  
[15:8]  
[7:0]  
OUTPUT4 Divider[7:0]  
OUTPUT3 Divider[7:0]  
OUTPUT2 Divider[7:0]  
OUTPUT1 Divider[7:0]  
5
6
7
8
The output divider has a range of 4 to 259. Writing 0x04 to  
Address 0xFF to the output divider results in a divide ratio that  
is the same as the value stored in the register. Writing 0x00 to  
Address 0x03 to the output divider results in a divide ratio of  
256 to 259, respectively.  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
For the special case of frequencies between 750 MHz and  
778 MHz, which cannot be accessed with divide by 4 or divide  
by 5, a divide by 4.5 is provided. To divide by 4.5, set the enable  
OUTPUTx 4.5 mode bit in Register 3, Bits[11:8]. When the  
OUTPUTx 4.5 mode bit is set, the associated output divider  
ignoresthe value in Register 5 and divides by 4.5.  
LOSS OFLOCK INDICATOR  
The lock status of a PLL can be monitored via the PLLx lock  
detect bit in Register 0x0F, Bit 21 (for PLL1) or Bit 23 (for  
PLL2). A value of 1 indicates lock and is the normal condition.  
A value of 0 indicates out of lock, or the absence of an input  
reference. If the user programs Bit 0 of Register 6 (PLL1) and/or  
Register 8 (PLL2) to 1, the SDO/LOLpin changesfunction to  
the logical AND of the PLL1and PLL2loss of lock(LOL) function.  
1 PLLx Frequency Select[4:0] is in Register 0x07 for PLL1 and Register 0x09 for  
PLL2.  
2 The PLLx KVCO band bits are in Register 0x0C for PLL1 and Register 0x0E for  
PLL2.  
RESETS  
If the PLLx MASH (Bits[31:29] in Register 7 for PLL1 or  
Register 9 for PLL2) is changed, issue a reset by toggling the  
reset feedback divider bit in Register 7 or Register 9, Bit 14.  
Rev. B | Page 27 of 44  
 
 
AD9578  
Data Sheet  
EXAMPLE VALUES FOR 49.152 MHZ CRYSTAL  
Table 29 shows the output frequency settings when using a 49.152 MHz crystal, TXC Part Number 8Z49100001, 2.5 mm × 2.0 mm,  
49.152 MHz, 30 ppm, CL = 9 pF, maximum ESR= 50 Ω.  
Table 29. Register Settings for Various Output Frequencies with a 49.152 MHz Crystal  
Output  
Frequency  
PLLx  
KVCO  
VCO  
Frequency  
PLLx Feedback  
Divider  
OUTPUTx  
Divider[7:0]  
28  
Frequency  
Select[4:0]  
6
PLLx  
S[1:0] CUR[4:0]  
(MHz)  
Band  
0
MASH[2:0]  
(MHz)  
125.000000  
155.520000  
156.250000  
159.375000  
161.132813  
164.355469  
166.628571  
167.331646  
168.040678  
172.642299  
173.370748  
174.105369  
174.153733  
174.703084  
176.095145  
176.838163  
212.500000  
425.000000  
622.080000  
625.000000  
637.500000  
644.531250  
657.421875  
666.514286  
669.326582  
672.162712  
690.569196  
693.482991  
696.421478  
696.614931  
698.812335  
704.380580  
707.352650  
71.207682292  
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
17  
16  
16  
16  
16  
19  
19  
19  
15  
19  
22  
19  
19  
16  
15  
15  
14  
14  
16  
14  
13  
12  
7
3500  
69.609375  
22  
21  
21  
22  
21  
22  
20  
21  
21  
21  
21  
20  
20  
20  
18  
16  
8
9
0
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
2
2
3
2
2
2
2
2
2
3421.44  
66.757202148  
68.092346191  
72.121620402  
70.220232117  
74.581473023  
68.087421061  
71.79472327  
73.760747864  
74.071974854  
74.385838806  
70.863335368  
71.086866862  
71.653297933  
64.760069458  
69.173177083  
69.173177083  
63.281250000  
63.57828776  
64.849853516  
65.565109253  
66.876411438  
67.801339315  
68.087420858  
68.375926921  
70.248331299  
70.544737854  
63.759290588  
70.863335266  
71.086866760  
71.653297933  
64.760069275  
16  
13  
4
1
3281.25  
0
3346.875  
3544.92189  
3451.46485  
3665.82856  
3346.63292  
3528.85424  
3625.48828  
3640.78571  
3656.21275  
3483.07466  
3494.06168  
3521.9029  
3183.08693  
3400  
0
8
0
0
0
13  
5
0
0
1
0
1
0
0
0
7
0
6
0
5
0
21  
10  
10  
25  
24  
21  
19  
16  
14  
13  
12  
8
1
0
0
3400  
5
1
3110.4  
5
1
3125  
5
1
3187.5  
5
1
3222.65625  
3287.10938  
3332.57143  
3346.63291  
3360.81356  
3452.84598  
3467.41495  
3133.89665  
3483.07465  
3494.06167  
3521.9029  
3183.08693  
5
1
5
1
15  
19  
9
5
0
5
0
5
0
15  
12  
16  
19  
18  
15  
15  
5
7
0
4.5  
5
24  
7
1
0
5
6
0
5
5
0
4.5  
21  
1
Rev. B | Page 28 of 44  
 
Data Sheet  
AD9578  
SPI PROGRAMMING  
OVERVIEW  
SCK is the clock input to the SPI. SDI is the data input to the  
SPI. Data must be valid on the rising edge of SCK. SDO is the  
data output from the SPI.  
The AD9578 SPI bus transfers data in byte multiples. All  
transfers are most significant byte and most significant bit first.  
CS  
On the falling edge of , the SPI controller expects to see a  
At power-up, the AD9578 loads the values programmed in OTP  
memory. Thereafter, the SPI can be used to overwrite any value.  
Write 0 to unused or reserved bits, and do not overwrite factory  
programmed calibrations in Register 11 through Register 14.  
series of eight SCK clock pulses and eight bits of data on SDI,  
valid through the rising edge of the clock. As shown in Figure 32,  
the first four bits are the operation code (opcode), and the last  
four bits are the register to be addressed. Table 30 contains the  
AD9578 opcodes that are used by the interface.  
Note that throughout this data sheet, the multifunction SDO/LOL  
pin is referred to either by the entire pin name or by a single  
function of the pin, for example, SDO, when only that function  
is relevant.  
CS  
The default state on startup and when  
= high is Opcode 0  
(OP[3:0] = 0000), or no operation. Opcode 2, the read opcode  
(OP[3:0] = 0010), is followed by one or more series of eight  
SCK pulses. Data from the register addressed by ADDR[3:0]  
appear on SDO most significant bit (MSB) first. The number of  
eight-pulse cycles is determined by the type of register defined  
at ADDR[3:0]. Opcode 1, the write opcode (OP[3:0] = 0001), is  
followed by one or more series of eight SCK pulses, with data to  
be written to the addressed register placed on SDI and valid at  
the rising edge of SCK. The new values take effect immediately  
after a write operation on the falling edge of the last SCK pulse.  
SPI DESCRIPTION  
The SPI is in reset on power-up. All fuse values are loaded into  
the SPI and those become the default configuration for the device.  
The SPI is inaccessible for the duration of the fuse reset cycle.  
CS  
Setting the  
to its idle state. SDO is high impedance when  
CS  
pin high disables the SPI controller and resets it  
CS  
is high. Setting  
to 0 enables the SPI controller (awaiting the control/address  
byte). In this mode, the controller responds to events on SCK.  
CS  
SCK  
SDI  
ADDR[3]  
ADDR[1] ADDR[0]  
ADDR[2]  
OP[3]  
OP[2]  
OP[1]  
OP[0]  
SDO  
SDO IS LOW DURING THE COMMAND AND ADDRESS INPUT CYCLES.  
Figure 32. Control and Address Byte Format  
READ (OPCODE 2) CYCLE:  
CS  
CS MUST BE HELD LOW THROUGH THE ENTIRE OPERATION  
...REPEAT AS  
NECESSARY  
SCK  
SDI  
ANY DATA ON SDI ARE IGNORED  
SDO  
DATA[7]  
DATA[6] DATA[5] DATA[4] DATA[3] DATA[2] DATA[1]  
DATA[0]  
tDV  
Figure 33. Opcode 2, Read Cycle  
WRITE (OPCODE 1) CYCLE:  
CS MUST BE HELD LOW THROUGH THE ENTIRE OPERATION  
CS  
...REPEAT AS  
NECESSARY  
SCK  
SDI  
DATA[7]  
DATA[6]  
DATA[5]  
DATA[4]  
DATA[3]  
DATA[2]  
DATA[1]  
DATA[0]  
SDO  
SDO IS LOW DURING THE COMMAND AND ADDRESS INPUT CYCLES.  
Figure 34. Opcode 1, Write Cycle  
Rev. B | Page 29 of 44  
 
AD9578  
Data Sheet  
Table 30. Opcode x Settings  
The precise timing of the OTP programming sequence is  
Name  
OP[3:0]  
ADDR[3:0]  
Operation/Command  
ensured by on-board circuitry, and is 800 μs minimum per  
register. While either the OTP program or the fuse reset  
commandsare executing, the SDO/LOL pin goes high, and it  
returns to zero at the end of the fuse reset or OTP program  
cycle. The host controlling the AD9578 must monitor the state  
of the SDO/LOL pin to determine when it may continue SPI  
communication. SPI communication from the host is ignored  
during OTP programming.  
Opcode 0  
Opcode 1  
0000  
0001  
Ignored  
No operation  
Write data  
Register to  
be written  
Register to  
be read  
Opcode 2  
0010  
Read data  
Opcode 3  
Opcode 4  
0011  
0100  
Ignored  
0000  
Do not use  
Fuse reset (reloads OTP  
programmed values)  
Registers labeled read only have no associated fuses. The  
Register Map Bit Descriptions section has details about which  
registers are read only.  
Opcode 5  
Opcode 6  
Opcode 7  
Opcode 8  
0100  
0100  
0100  
0101  
0001  
1110  
OTP program  
OTP program enable  
OTP program disable  
Query register length  
1111  
Register to  
be queried  
Security[15:0] are per register security bits. Setting the security  
bit for a register disables writing to that register so that values in  
the register can no longer be changed with SPI write  
OTP PROGRAMMING  
commands. By disabling writing, OTP programing is also  
disabled. All OTP programing, including the security bits, can  
be performed at the same time. The new configuration settings  
for read/program bits, such as the security bits, is not applied  
until a fuse reset cycle or power cycle to the chip. That is,  
writing a 1 to Security[15:0] does not change the security  
setting, but writing a 1 to Security[15:0] followed by the OTP  
program and fuse reset commandsdoes. Note that OTP  
programming the Security0 bit preventsfurther writing to  
Security[15:0] and, therefore, preventsany other security bits  
from being set in the future. Other than the security bit settings,  
there is no limitation to the number of times that the OTP  
program command can be executed. This allows an incremental  
approach in which certain registers are factory calibrated,  
preprogrammed, and optionally secured to prevent further  
modification.  
The AD9578 has OTP registers so that a desired configuration can  
be programmed as the power-on default.All OTP programmable  
registers (except forthose set atthe factory) are initially set to the  
default values in the register map. The desired start-up configura-  
tion is programmed into the OTP bits by sending the OTP  
program command after the registers are set to their desired  
values. Note that the AD9578 must be powered at VDD = 3.3 V  
to perform OTP programming because the  
be more than 2.5 V above VDD.  
pin must never  
CS  
The  
pin has two functions: serial port chip select and OTP  
CS  
programming enable. To access the SPI normally, use the  
CS  
pin at normal digital LVCMOS levels (between 0 V and VDD.)  
To program the OTP, follow the OTP program procedure:  
1. Enable OTP programming by setting the  
pin to 5.5 V.  
CS  
2. Configure the SPI registers to the desired configuration.  
3. Send the OTP program enable command, Opcode 6.  
4. Send the OTP program command, Opcode 5.  
Changing the OTP default for a single register is difficult  
because the OTP programming sequence is not random access.  
To blow the fuse of a single bit, it is necessary to first send a fuse  
reset command to ensure that all registers contain default  
values. Then, change a single register bit and send the OTP  
program command, Opcode 5 (see Table 30).  
5. Send the OTP program disable command, Opcode 7.  
6. Set the  
pin back to 0 V.  
CS  
7. Send the fuse reset command, Opcode 4, to load the new  
register values. This final step is a verification of the OTP  
programming procedure.  
TRIP POINT AT 1.6V  
CS  
V
PROG  
5.0  
3.3  
5.0  
3.3  
TRIP POINT  
AT 4.1V  
0
0
0
3.3  
5.0  
0
3.3  
5.0  
VOLTAGE ON PIN (V)  
VOLTAGE ON PIN (V)  
Figure 35. Pin Function  
CS  
Rev. B | Page 30 of 44  
 
 
Data Sheet  
AD9578  
SPI Configuration  
are enabled as necessary. Setting these to 1 forces the  
corresponding input on permanently.  
The AD9578 can be programmed after power-up through the  
SPI. This section describes how to set a specific configuration in  
the SPI registers.  
4. The following bits are internal resets, and cannot be OTP  
programmed. These bits are in three groups (global, PLL1,  
and PLL2) and must be 0 for normal device operation.  
1. Prepare default values. The AD9578 evaluation software is  
an ideal way to determine the optimal default values of the  
AD9578 registers. Note that Register 0 and Register 1 are  
read only and cannot be changed.  
The internal reset global bits are in Register 15.  
The PLL1 bits are in Register 7, Bits[11:15].  
The PLL2 bits are in Register 9, Bits[11:15].  
5. For each output to be used (OUTPUT1 through  
OUTPUT4 and REFOUT), select the mode according to  
Table 16, as well as the corresponding enable bits in  
Register 2 and Register 3.  
2. Enable all subsystems. This normally includes the per PLL  
values found in Register 0x06 (forPLL1) and Register 0x08  
(for PLL2). They are the feedback divider PU (Bit 1), VCO  
PU (Bit 2), and ENPFD (Bit 3), as well as the enable activity  
detect bit, which is a global bit (Register 0x03, Bit 28).  
3. The enable XTAL1 (in Register 3) and enable XTAL2 (in  
Register 10) bits are normally set to 0 because the crystals  
Rev. B | Page 31 of 44  
AD9578  
Data Sheet  
REGISTER MAP  
The shaded cells in Table 31 indicate bit(s) that can be OTP programmed. See the OTP Programming section for more information.  
Table 31.  
Addr  
Name  
Bits  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
Register 0  
0x00  
Chip and  
manu-  
facturer ID  
[31:24]  
[23:16]  
[15:8]  
[7:0]  
Chip ID[3:0]  
Unused  
Manufacturer ID[7:0]  
Security[15:8]  
Manufacturer ID[10:8]  
0x03  
0x10  
0x00  
0x00  
Security[7:0]  
Register 1  
0x01  
Product  
ID, chip ID  
and user  
pro-  
[47:40]  
[39:32]  
[31:24]  
[23:16]  
[15:8]  
Product ID[7:0]  
0x7A  
0x08  
0x00  
0x00  
0x00  
0x00  
Chip ID[7:4]  
Product Revision[3:0]  
User ID[31:24]  
User ID[23:16]  
User ID[15:8]  
User ID[7:0]  
gramming  
space  
[7:0]  
Register 2  
0x02  
External  
pin  
readback  
[23:16]  
Unused  
MR  
(master  
reset)  
MR enable REFOUT  
(set to 1  
to enable  
REFOUT  
enable  
(override  
0x00  
and  
override  
MR)  
OEREF pin)  
[15:8]  
[7:0]  
OUTPUT4 Override  
OE4 pin  
OUTPUT3  
REFSEL1  
Override  
OE3 pin  
OUTPUT2  
PLL2  
Override  
OE2 pin  
OUTPUT1  
PLL1  
Override OE1  
pin  
0x00  
0x00  
REFSEL2  
REFSEL2  
enable  
(set to 1)  
REFSEL1  
enable  
(set to 1)  
PLL2  
enable  
(set to 1)  
PLL1 enable  
(override  
PD1  
pin)  
Register 3  
0x03  
Reference  
buffer and  
divider,  
inter-  
[31:24]  
[23:16]  
[15:8]  
[7:0]  
REFOUT Mode[1:0]  
Unused  
Enable  
activity  
detect  
Reference  
mux  
select  
Enable  
XTAL1  
Unused  
0x10  
0x0F  
0x00  
Unused  
Enable  
OUTPUT4  
divider  
Enable  
OUTPUT3  
divider  
Enable  
OUTPUT2  
divider  
Enable  
OUTPUT1  
divider  
polated  
value  
increment  
Unused  
Enable  
OUTPUT4  
4.5 mode  
Enable  
OUTPUT3  
4.5 mode  
Enable  
OUTPUT2  
4.5 mode  
Enable  
OUTPUT1 4.5  
mode  
Exponent[3:0]  
XTAL1 Capacitance Value[2:0]  
Mantissa[3:0]  
0x00  
0x00  
Register 4  
0x04  
XTAL1 and [15:8]  
output  
buffer  
XTAL1  
f re q u ency  
trim  
Unused  
XTAL1 Gain[2:0]  
config-  
uration  
[7:0]  
OUTPUT4 Mode[1:0]  
OUTPUT3 Mode[1:0]  
OUTPUT2 Mode[1:0]  
OUTPUT1 Mode[1:0]  
0x00  
Register 5  
0x05  
Output  
driver  
config-  
[31:24]  
[23:16]  
[15:8]  
[7:0]  
OUTPUT4 Divider[7:0]  
0x00  
0x00  
0x00  
0x00  
OUTPUT3 Divider[7:0]  
OUTPUT2 Divider[7:0]  
OUTPUT1 Divider[7:0]  
uration  
Register 6  
0x06  
PLL1  
[39:32]  
[31:24]  
[23:16]  
[15:8]  
PLL1 Integer Feedback Divider[7:0]  
PLL1 Fractional Feedback Divider[27:20]  
PLL1 Fractional Feedback Divider[19:12]  
0x00  
0x00  
0x00  
0x00  
config-  
uration  
PLL1 Fractional Feedback Divider[11:6]  
PLL1 Fractional Feedback  
Divider[5:4]; PLL1 Modulus  
Value[5:4]  
[7:0]  
PLL1 Fractional Feedback Divider[3:0];  
PLL1 Modulus Value[3:0]  
ENPFD  
VCO PU  
Feedback  
divider PU  
PLL1 lock IRQ  
0x0E  
Rev. B | Page 32 of 44  
 
Data Sheet  
AD9578  
Addr  
Name  
Bits  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
Register 7  
0x07  
PLL1  
[39:32]  
[31:24]  
[23:16]  
PLL1 Dither[2:0]  
PLL1 MASH[2:0]  
Dither Scale[4:0]  
PLL1 Frequency Select[4:0]  
CUR[4:0]  
0x00  
0x00  
0x00  
config-  
uration  
Power-on  
override  
S[1:0]  
[15:8]  
[7:0]  
PLL1  
phase  
advance  
Reset  
feedback reset  
divider  
OUTPUT1_2 Force  
reset  
PLL1  
phase  
retard  
Rational  
mode  
PLL1 Modulus Value[15:14]  
0x00  
0x00  
PLL1 Modulus Value[13:6]  
Register 8  
0x08  
PLL2  
[39:32]  
[31:24]  
[23:16]  
[15:8]  
PLL2 Integer Feedback Divider[7:0]  
PLL2 Fractional Feedback Divider[27:20]  
PLL2 Fractional Feedback Divider[19:12]  
0x00  
0x00  
0x00  
0x00  
config-  
uration  
PLL2 Fractional Feedback Divider[11:6]  
PLL2 Fractional Feedback  
Divider[5:4], PLL2 Modulus  
Value[5:4]  
[7:0]  
PLL2 Fractional Feedback Divider[3:0],  
PLL2 Modulus Value[3:0]  
ENPFD  
VCO PU  
Feedback  
divider PU  
PLL2 lock IRQ  
(SDO changes  
to IRQ)  
0x0E  
Register 9  
0x09  
PLL2  
config-  
uration  
[39:32]  
[31:24]  
[23:16]  
PLL2 Dither[2:0]  
PLL2 MASH[2:0]  
Dither Scale[4:0]  
PLL2 Frequency Select[4:0]  
CUR[4:0]  
0x00  
0x00  
0x00  
Power-on  
override  
S[1:0]  
[15:8]  
PLL2  
phase  
advance  
Reset  
feedback reset  
divider  
OUTPUT3_4 Force  
reset  
PLL2  
phase  
retard  
Rational  
mode  
PLL2 Modulus Value[15:14]  
0x00  
0x00  
[7:0]  
PLL2 Modulus Value[13:6]  
Register 10  
0x0A XTAL2  
[15:8]  
XTAL2  
f re q u ency  
trim  
XTAL2 Capacitance Value[2:0]  
XTAL2 Gain[2:0]  
Enable XTAL2 0x00  
0x00  
config-  
uration  
[7:0]  
Reserved  
Register 11  
0x0B  
Reserved  
[31:24]  
[23:16]  
[15:8]  
[7:0]  
Reserved (factory configured; do not change)  
Reserved (factory configured; do not change)  
Reserved (factory configured; do not change)  
Reserved (factory configured; do not change)  
Varies  
Varies  
Varies  
Varies  
Register 12  
0x0C  
PLL1 KVCO  
band  
[31:24]  
PLL1 KVCO  
band  
Reserved  
Reserved (factory  
configured; do not change)  
Varies  
[23:16]  
[15:8]  
[7:0]  
Reserved (factory configured; do not change)  
Reserved (factory configured; do not change)  
Reserved (factory configured; do not change)  
Varies  
Varies  
Varies  
Register 13  
0x0D  
Reserved  
[31:24]  
[23:16]  
[15:8]  
[7:0]  
Reserved (factory configured; do not change)  
Reserved (factory configured; do not change)  
Reserved (factory configured; do not change)  
Reserved (factory configured; do not change)  
Varies  
Varies  
Varies  
Varies  
Register 14  
0x0E  
PLL2 KVCO  
band  
[31:24]  
PLL2 KVCO  
band  
Reserved  
Reserved (factory  
configured; do not change)  
Varies  
Varies  
[23:16]  
[15:8]  
[7:0]  
Reserved (factory configured; do not change)  
Reserved (factory configured; do not change)  
Reserved (factory configured; do not change)  
Register 15  
0x0F PLL lock  
detect  
[23:16]  
PLL2 lock  
detect  
Reserved  
PLL1 lock  
detect  
Reserved  
Revision Subcode[1:0]  
Reserved  
Varies  
(read only)  
[15:8]  
[7:0]  
Unused  
Unused  
0x00  
0x00  
Rev. B | Page 33 of 44  
AD9578  
Data Sheet  
REGISTER MAP BIT DESCRIPTIONS  
CHIP AND MANUFACTURER ID (REGISTER 0, ADDRESS 0x00)  
Table 32. Chip and Manufacturer ID  
Bits  
Bit Name  
Description  
This register has no effect on device operation. The customer can use it for tracking different versions of device  
programming or identifying a chip on a printed circuit board. Including the four bits in Register 0x01, there are a  
total of eight bits for this function, and these values can be OTP programmed.  
31:28 Chip ID[3:0]  
27  
Unused  
Default = 0b.  
Manufacturer  
ID[10:0]  
26:16  
Manufacturer ID. These bits identify this chip as an Analog Devices IC and have no effect on device operation.  
During the process of OTP programming, these bits control whether a given register becomes read only during  
future operation. There is one bit for each register. If the security bit for a given register is 1 during an OTP  
programming sequence, the corresponding register becomes read only, and the user can make no additional  
modifications to that register through the serial port.  
15:0  
Security[15:0]  
PRODUCT ID, CHIP ID, AND USER PROGRAMING SPACE (REGISTER 1, ADDRESS 0x01)  
Table 33. Product ID, Chip ID, and User Programing Space  
Bits  
Bit Name  
Description  
47:40 Product ID[7:0]  
39:36 Chip ID[7:4]  
Product ID.  
This register has no effect on device operation. The customer can use it for tracking different versions of device  
programming or identifying a chip on a printed circuit board. Including the four bits in Register 0x00, there are a  
total of eight bits for this function, and these values can be OTP programmed.  
Product  
Revision[3:0]  
35:32  
31:0  
This read only register contains the AD9578 silicon revision information.  
User ID[31:0]  
Additional OTP programmable bits to program up to 32 bits of user assigned information.  
EXTERNAL PIN READBACK AND OVERRIDE (REGISTER 2, ADDRESS 0x02)  
Table 34. External Pin Readback and Override  
Bits  
Bit Name  
Description  
23:20 Unused  
Default = 0x0.  
19  
18  
17  
MR (master reset)  
This bit resets the chip. This bit is not self clearing.  
1: the AD9578 is held in reset. MR enable (Bit 18 in this register) must be 1 for this bit to take effect.  
0 (default): normal operation.  
MR enable  
REFOUT  
This bit enables the MR (master reset) bit (Bit 19 in this register).  
1: master reset is enabled.  
0 (default): master reset (Bit 19 of this register) is disabled.  
This bit enables/disables the REFOUT driver.  
If REFOUT enable (Bit 16 in this register) = 1, this bit enables the REFOUT driver, as follows:  
1: the REFOUT driver is enabled.  
0 (default): the REFOUT driver is disabled.  
If REFOUT enable (Bit 16 in this register) = 0, this is a read only register, as follows:  
1: the OEREF pin is high and the REFOUT driver is enabled.  
0 (default): the OEREF pin is low and the REFOUT driver is disabled.  
This bit enables REFOUT (Bit 17 in this register).  
REFOUT enable  
(override OEREF pin)  
16  
1: the REFOUT bit controls the on/off state of the REFOUT driver.  
0 (default): the OEREF pin controls the on/off state of the REFOUT driver.  
Rev. B | Page 34 of 44  
Data Sheet  
AD9578  
Bits  
Bit Name  
Description  
This bit enables/disables the OUTPUT4 driver. Note that the user must enable PLL2 for the OUTPUT4 driver  
to be enabled.  
15  
OUTPUT4  
If override OE4 pin (Bit 14 in this register) = 1, this bit enables the OUTPUT4 driver, as follows:  
1: the OUTPUT4 driver is enabled.  
0 (default): the OUTPUT4 driver is disabled.  
If override OE4 pin (Bit 14 in this register) = 0, this is a read only register, as follows:  
1: the OE4 pin is high and the OUTPUT4 driver is enabled.  
0 (default): the OE4 pin is low and the OUTPUT4 driver is disabled.  
This bit enables the OUTPUT4 bit (Bit 15 in this register).  
14  
13  
Override OE4 pin  
OUTPUT3  
1: the OUTPUT4 bit controls the on/off state of the OUTPUT4 driver.  
0 (default): the OE4 pin controls the on/off state of the OUTPUT4 driver.  
This bit enables/disables the OUTPUT3 driver. Note that the user must enable PLL2 for the OUTPUT3 driver  
to be enabled.  
If override OE3 pin (Bit 12 in this register) = 1, this bit enables the OUTPUT3 driver, as follows:  
1: the OUTPUT3 driver is enabled.  
0 (default): the OUTPUT3 driver is disabled.  
If override OE3 pin (Bit 12 in this register) = 0, this is a read only register, as follows:  
1: the OE3 pin is high and the OUTPUT3 driver is enabled.  
0 (default): the OE3 pin is low and the OUTPUT3 driver is disabled.  
This bit enables the OUTPUT3 bit (Bit 13 in this register).  
12  
11  
Override OE3 pin  
OUTPUT2  
1: the OUTPUT3 bit controls the on/off state of the OUTPUT3 driver.  
0 (default): the OE3 pin controls the on/off state of the OUTPUT3 driver.  
This bit enables/disables the OUTPUT2 driver. Note that the user must enable PLL2 for the OUTPUT2 driver  
to be enabled.  
If override OE2 pin (Bit 10 in this register) = 1, this bit enables the OUTPUT2 driver, as follows:  
1: the OUTPUT2 driver is enabled.  
0 (default): the OUTPUT2 driver is disabled.  
If override OE2 pin (Bit 10 in this register) = 0, this is a read only register, as follows:  
1: the OE2 pin is high and the OUTPUT2 driver is enabled.  
0 (default): the OE2 pin is low and the OUTPUT2 driver is disabled.  
This bit enables the OUTPUT2 bit (Bit 11 in this register).  
10  
9
Override OE2 pin  
OUTPUT1  
1: the OUTPUT2 bit controls the on/off state of the OUTPUT2 driver.  
0 (default): the OE2 pin controls the on/off state of the OUTPUT2 driver.  
This bit enables/disables the OUTPUT1 driver. Note that the user must enable PLL2 for the OUTPUT1 driver  
to be enabled.  
If override OE1 pin (Bit 8 in this register) = 1, this bit enables the OUTPUT1 driver, as follows:  
1: the OUTPUT1 driver is enabled.  
0 (default): the OUTPUT1 driver is disabled.  
If override OE1 pin (Bit 8 in this register) = 0, this is a read only register, as follows:  
1: the OE1 pin is high and OUTPUT1 is enabled.  
0 (default): the OE1 pin is low and the OUTPUT1 driver is disabled.  
This bit enables the OUTPUT1 bit (Bit 9 in this register).  
8
7
6
5
Override OE1 pin  
REFSEL2  
1: the OUTPUT1 bit controls the on/off state of the OUTPUT1 driver.  
0 (default): the OE1 pin controls the on/off state of the OUTPUT1 driver.  
This bit controls which input is used by PLL2, provided that REFSEL2 enable (Bit 6 of this register) is 1.  
1: PLL2 uses Reference 2 (which corresponds to the XO3/XO4 pins).  
0: (default) PLL2 uses Reference 1 (which corresponds to the XO1/XO2 pins).  
This bit enables the REFSEL2 bit, and must be set to 1 for Bit 7 to function.  
1: the REFSEL1 bit is enabled.  
REFSEL2 enable  
REFSEL1  
0 (default): the REFSEL1 bit is disabled. PLL2 uses Reference 1.  
This bit controls which input is used by PLL1, provided that REFSEL1 enable (Bit 4 of this register) is 1.  
1: PLL1 uses Reference 2 (which corresponds to the XO3/XO4 pins).  
0 (default): PLL1 uses Reference 1 (which corresponds to the XO1/XO2 pins).  
Rev. B | Page 35 of 44  
AD9578  
Data Sheet  
Bits  
Bit Name  
Description  
4
REFSEL1 enable  
This bit enables the REFSEL1 bit, and must be set to 1 for Bit 5 to function.  
1: the REFSEL1 bit is enabled.  
0 (default): the REFSEL1 bit is disabled. PLL1 uses Reference 1.  
This bit enables/disables PLL2 when PLL2 enable (Bit 2 of this register) is 1.  
1: PLL2 is enabled.  
3
2
PLL2  
0 (default): PLL2 is disabled.  
PLL2 enable  
This bit enables the PLL2 bit, and must be set to 1 for Bit 3 to function.  
1: the PLL2 bit is enabled.  
0 (default): the PLL2 bit is disabled. PLL2 is powered down.  
1
PLL1  
This bit enables/disables PLL1.  
If PLL1 enable (Bit 0 in this register) = 1, this bit enables PLL1, as follows:  
1: PLL1 is enabled.  
0 (default): PLL1 is disabled.  
If PLL1 enable (Bit 0 in this register) = 0, this is a read only register, as follows:  
1: the  
pin is high and PLL1 is enabled.  
PD1  
0 (default): the  
pin is low and PLL1 is disabled.  
PD1  
0
PLL1 enable  
This bit enables the PLL1 bit (Bit 1 in this register).  
1: the PLL1 bit controls the on/off state of PLL1.  
(override  
pin)  
PD1  
0 (default): the  
pin controls the on/off state of PLL1. In this case, the PLL1 bit is read only and its value  
PD1  
is the same as the state of the  
pin.  
PD1  
REFOUT/OUTPUT DIVIDER ENABLE(REGISTER 3, ADDRESS 0x03)  
Table 35. Reference Buffer and Divider, Interpolated Value Increment  
Bits  
Bit Name  
Description  
31:30 REFOUT  
Mode[1:0]  
These bits set the mode of the REFOUT driver.  
00 (default): 3.3 V LVCMO S (normal output only; complementary output is high-Z).  
01: LVDS.  
10: 3.3 V LVPECL.  
11: HCSL.  
29  
28  
Unused  
Set to 0.  
Enable activity  
detect  
This bit enables the activity detectors. Always set this bit to 1 for normal operation. The activity detectors  
determine when an active clock signal is passing through a circuit inside of the chip.  
1 (default): spot activity detector enabled.  
0: spot activity detector disabled. (Do not use.)  
27  
26  
Reference mux  
select  
This bit controls which input is buffered to the REFOUT driver.  
1: REFOUT uses Reference 2 (which corresponds to the XO3/XO4 pins).  
0: (default) REFOUT uses Reference 1 (which corresponds to the XO1/XO2 pins).  
Set to 0 for normal operation. This bit enables the crystal oscillator connected to the XO1 and XO2 pins when  
this bit is set to 1. Note that the crystal oscillator is automatically enabled when Reference Input 1 is selected.  
Setting this bit to 1 keeps the oscillator enabled at all times, avoiding the crystal start-up delay when switching  
between crystal and reference inputs.  
Enabl e XTA L1  
25:20 Unused  
Set to 0.  
Enable  
OUTPUT4  
divider  
19  
18  
17  
This bit enables the OUTPUT4 divider. Set this bit whenever the corresponding output buffer is enabled.  
Enable  
OUTPUT3  
divider  
This bit enables the OUTPUT3 divider. Set this bit whenever the corresponding output buffer is enabled.  
This bit enables the OUTPUT2 divider. Set this bit whenever the corresponding output buffer is enabled.  
Enable  
OUTPUT2  
divider  
Rev. B | Page 36 of 44  
Data Sheet  
AD9578  
Bits  
Bit Name  
Description  
Enable  
16  
This bit enables the OUTPUT1 divider. Set this bit whenever the corresponding output buffer is enabled.  
OUTPUT1  
divider  
15:12 Unused  
Set to 0.  
Enable OUTPUTx For the special case of frequencies between 750 MHz and 778 MHz, which cannot be accessed with divide by 4  
11:8  
4.5 mode  
or divide by 5, a divide by 4.5 is provided. To divide by 4.5, set the enable OUTPUTx 4.5 mode bit (where x is an  
integer from 1 to 4). When the OUTPUTx 4.5 mode bit is set, the associated output divider ignores the OUTPUTx  
Divider[7:0] value in Register 5 and divides by 4.5.  
If a new value is presented to the fractional-N divider, the change is interpolated in steps equal in size to the  
value of mantissa << exponent, that is, the value of the Mantissa[3:0] bits shifted up by the exponent bits. If  
Mantissa[3:0] is 0, the new value takes effect immediately. Allowable values are 0d to 15d for Exponent[3:0],  
with 1d having the smallest step size and the most gradual change in the fractional feedback divider.  
7:4  
Exponent[3:0]  
If a new value is presented to the fractional-N divider, the change is interpolated in steps equal in size to the  
value of mantissa << exponent, that is, the value of the mantissa bits shifted up by the exponent bits. If  
Mantissa[3:0] is 0, the new value takes effect immediately. Allowable values are 0d to 15d for Mantissa[3:0] with  
1d having the smallest step size and the most gradual change in the fractional feedback divider.  
3:0  
Mantissa[3:0]  
XTAL1 AND OUTPUT BUFFER CONFIGURATION (REGISTER 4, ADDRESS 0x04)  
Table 36. XTAL1 and Output Buffer Configuration  
Bits  
Bit Name  
Description  
XTA L1  
frequency trim  
This is an additional gain trim bit for the crystal oscillator. Setting XTAL frequency trim = 1 is recommended for  
optimal performance with crystal frequencies ≤33 MHz. See Tabl e 25.  
15  
XTA L1  
Capacitance  
Value[2:0]  
These register bits control the amount of internal load capacitance on the XO1 and XO2 pins. The correct setting  
can be determined using the following equation: 2 × (CLOAD − CSTR AY ) where CLOAD is the specified load  
capacitance of the crystal used, and CSTR AY is the stray capacitance (usually 2 pF to 5 pF) on the circuit board.  
14:12  
XTAL1 Capacitance  
Value[2:0]  
CLOAD of Crystal Recommended Internal Capacitance on XO1/XO2 Pins  
(Assuming 3 pF Stray Capacitance) (pF)  
(pF)  
000  
001  
010  
011  
100  
101  
110  
111  
8
10  
12  
14  
16  
18  
20  
22  
24  
9
10  
11  
12  
13  
14  
15  
11  
Unused  
These are gain trim bits for the crystal oscillator. Optimal performance is achieved when the gain is  
programmed according to the ESR of the crystal. See Tabl e 25.  
10:8  
XTA L1 Gain[2:0]  
OUTPUT4  
Mode[1:0]  
7:6  
5:4  
3:2  
These bits set the mode of OUTPUT4.  
00 (default): 3.3 V LVCMOS (normal output only; complementary output is high-Z).  
01: LVDS.  
10: 3.3 V LVPECL.  
11: HCSL.  
OUTPUT3  
Mode[1:0]  
These bits set the mode of OUTPUT3.  
00 (default): 3.3 V LVCMOS (normal output only; complementary output is high-Z).  
01: LVDS.  
10: 3.3 V LVPECL.  
11: HCSL.  
OUTPUT2  
Mode[1:0]  
These bits set the mode of OUTPUT2.  
00 (default): 3.3 V LVCMOS (normal output only; complementary output is high-Z).  
01: LVDS.  
10: 3.3 V LVPECL.  
11: HCSL.  
Rev. B | Page 37 of 44  
AD9578  
Data Sheet  
Bits  
Bit Name  
Description  
OUTPUT1  
Mode[1:0]  
1:0  
These bits set the mode of OUTPUT1.  
00 (default): 3.3 V LVCMOS (normal output only; complementary output is high-Z).  
01: LVDS.  
10: 3.3 V LVPECL.  
11: HCSL.  
OUTPUT DRIVER CONFIGURATION (REGISTER 5, ADDRESS 0x05)  
Table 37. Output Driver Configuration  
Bits  
Bit Name  
Description  
The value of the OUTPUT4 divider. As an 8-bit decimal value, n, the VCO frequency is divided by n, where  
n = 4 to 255, and divided by 256 + n, where n = 0 to 3.  
31:24 OUTPUT4 Divider[7:0]  
The value of the OUTPUT3 divider. As an 8-bit decimal value, n, the VCO frequency is divided by n, where  
n = 4 to 255, and divided by 256 + n, where n = 0 to 3.  
23:16 OUTPUT3 Divider[7:0]  
The value of the OUTPUT2 divider. As an 8-bit decimal value, n, the VCO frequency is divided by n, where  
n = 4 to 255, and divided by 256 + n, where n = 0 to 3.  
15:8  
7:0  
OUTPUT2 Divider[7:0]  
OUTPUT1 Divider[7:0]  
The value of the OUTPUT1 divider. As an 8-bit decimal value, n, the VCO frequency is divided by n, where  
n = 4 to 255, and divided by 256 + n, where n = 0 to 3.  
PLL1 CONFIGURATION (REGISTER 6, ADDRESS 0x06)  
Table 38. PLL1 Configuration  
Bits  
Bit Name  
Description  
PLL1 Integer Feedback  
Divider[7:0]  
PLL1 integer feedback divider. This is a fixed point value that contains the integer portion of the  
feedback divider. The smallest allowable value of the PLL1 feedback divider is 23.  
39:32  
PLL1 Fractional  
Feedback Divider[27:6]  
PLL1 fractional feedback divider, Bits[27:6]. If PLL1 is in fractional mode, all 28 bits in the PLL1 fractional  
feedback divider are used. If PLL1 is in integer mode, the first three bits in this register can be used either  
for phase interpolation or for MASH modulation, according to the value of S[1:0]. In fractional mode, at  
full phase interpolation, the fractional portion of the PLL1 feedback divider is 28 bits, for a resolution of  
1/(228), or 3.7 × 10−9, or approximately 4 ppb.  
31:10  
PLL1 Fractional  
Feedback Divider[5:0],  
PLL1 Modulus  
Value[5:0]  
In fractional mode, this register contains Bits[5:0] of the PLL1 fractional feedback divider. In rational  
mode, this register contains Bits[5:0] of the PLL1 modulus value. This register is not used in integer mode;  
do not set the bits in this register to 0 in integer mode.  
9:4  
3
This bit controls the power supplies to the charge pump and phase frequency detector. Keep this bit set  
to 1, the default setting. These subsystems are automatically disabled whenever the corresponding PLL  
ENPFD  
is powered down via the  
pin.  
PD1  
This bit controls the power supplies to the VCO. Keep this bit set to 1, the default setting. This subsystem  
is automatically disabled whenever the corresponding PLL is powered down via the pin.  
2
1
VCO PU  
PD1  
This bit controls the power supplies to the feedback divider. Keep this bit set to 1, the default setting.  
Feedback divider PU  
This subsystem is automatically disabled whenever the corresponding PLL is powered down via the  
pin.  
PD1  
0
PLL1 lock IRQ  
This bit sets the function of the SDO/LOL pin.  
0 (default): the SDO/LOL pin function is serial data output (SDO).  
1: the SDO/LOL pin function is IRQ, which is used as a loss of lock (LOL) indicator.  
Rev. B | Page 38 of 44  
Data Sheet  
AD9578  
PLL1 CONFIGURATION (REGISTER 7, ADDRESS 0x07)  
Table 39. PLL1 Configuration  
Bits  
Bit Name  
Description  
Order of dither generation. When PLL1 Dither[2:0] is 0, there is no dithering. All nonzero values create dither of  
the value stored in PLL1 Dither[2:0]. Dither is a noise shaped random value that is added to the divider fractional  
value at each calculation of the modulation, which helps to disperse harmonic spurs resulting from short  
modulation sequences. The time average value of dither is always zero, so that the use of dither does not change  
the divider value. The use of dither is highly dependent upon the choice of value for Dither Scale[4:0]. For normal  
operation, always set PLL1 Dither[2:0] to zero when PLL1 MASH[2:0] is zero. The largest usable value of PLL1  
Dither[2:0] is 5. Typically, the value of PLL1 Dither[2:0] is set equal to the value of PLL1 MASH[2:0].  
39:37 PLL1 Dither[2:0]  
Dither  
Scale[4:0]  
Dither scale. The dither scale, in bits. The dither value is a signed value of one to five bits in length, depending on  
the value chosen for PLL1 Dither[2:0]. To be effective, this value must be scaled up until the amount of dither is  
equal to 1/2 LSB of the divider value. The proper dither scale value for the dither is therefore equal to the  
number of zeros following the last bit set to 1 in the feedback divider value. Because the dither is a signed value,  
Dither Scale[4:0] must always be larger than the PLL1 Dither[2:0] setting.  
36:32  
The order of MASH modulation. When PLL1 MASH[2:0] = 0, there is no modulation. Any fractional value given to  
the feedback divider that is at a finer resolution than the phase interpolation, S[1:0], results in an inaccurate  
output frequency. For all nonzero values of PLL1 MASH[2:0], modulation is used unless the feedback divider does  
not require modulation to be represented exactly (for example, if the feedback divider is an integer number).  
Modulation means that the feedback divider alternates between floor(PLL1 Fractional Feedback Divider[27:0])  
and ceiling(PLL1 Fractional Feedback Divider[27:0]) according to a pattern whose time averaged value is PLL1  
Fractional Feedback Divider[27:0]. When PLL1 MASH[2:0] = 1, first-order modulation is used. First-order  
modulation typically has large noise spurs due to the short length of the modulation patterns. Noise decreases  
as a function of PLL1 MASH[2:0], although for values of PLL1 MASH[2:0] greater than 2, this effect may not be  
measurable. The largest usable value of PLL1 MASH[2:0] is 4.  
31:29 PLL1 MASH[2:0]  
PLL1 Frequency This 5-bit value sets the frequency range of the VCO. Smaller values correspond to higher frequency. The  
28:24  
23  
Select[4:0]  
evaluation software sets the optimal value; therefore, the user does not normally need to change this register.  
Tabl e 27 contains the frequency ranges for each register setting. Note that the PLL1 KVCO band bit in  
Register 0x0C must be set to 1 for Frequency Select[4:0] = 14 through 27 (decimal).  
Power-on  
override  
When set to 1, this bit, one for each PLL, disables the simultaneous synchronization pulses sent to PLL1 and PLL2  
during the power-up cycle. Otherwise, both PLL outputs are synchronized at startup.  
The order of phase interpolation. When S[1:0] = 0, a fractional divider is interpolated among eight phases;  
therefore, values down to 1/8 can be represented exactly, without modulation. When S[1:0] = 1, the value is  
interpolated among four phases. When S[1:0] = 2, the value is interpolated between two phases, and when S[1:0]  
= 3, there is no phase interpolation. For example, the feedback divider of 64.5 can be represented either by PLL1  
MASH[2:0] = 0, S[1:0] = 2; or by PLL1 MASH[2:0] = 1, S[1:0] = 3. In both cases, the output frequency is the same.  
However, the phase noise characteristics of the two representations differ. The use of phase interpolation allows  
up to three bits greater precision in the feedback divider. A consequence of reducing the phase interpolation is  
the loss of bits at the end of PLL1 Fractional Feedback Divider[27:0]. For example, when S[1:0] = 2, the last bit of  
PLL1 Fractional Feedback Divider[27:0] is ignored.  
22:21 S[1:0]  
Each PLL has a current trim for the charge pump, with the current given by the equation (3.125 × (1 + CUR)) μA,  
for a minimum currentof 3.125 μAat CUR[4:0] = 0, and a maximum current of 100 μAat CUR[4:0] = 31.  
20:16 CUR[4:0]  
PLL1 phase  
advance  
This bit, one for each PLL, is an active control that shifts the output of the VCO forward one of eight phases (1/8  
cycle). This phase shift happens regardless of the S[1:0] setting for the PLL. The phase advance is edge triggered;  
therefore, no further phase advancement occurs until this bit is set back to 0 and raised again. This feature can  
be used to precisely align the phases of the two PLLs.  
15  
Reset feedback  
divider  
This bit resets the feedback divider. Set and clear this bit if the order of the MASH is changed or if the feedback  
divider in Register 6 is changed.  
14  
13  
OUTPUT1_2  
reset  
This bit resets the OUTPUT1 and OUTPUT2 output driver. This bit is normally set to 0, although it can be set and  
cleared to reset the OUTPUT1 and OUTPUT2 output drivers.  
12  
11  
Force reset  
PLL1 phase  
retard  
This active signal forces a reset cycle that generates synchronization pulses for the outputs of each PLL.  
This bit is similar to the advance bit but shifts the output of the VCO backward one of eight phases.  
This bit sets the rational mode, the use of which is described in detail in the PLLs section. In rational mode, the  
feedback divider fractional part is a ratio of integers, with the numerator encoded in PLL1 Fractional Feedback  
Divider[24:9] in Register 6and the denominator encoded in PLL1 Modulus Value[15:6] of this register.  
10  
Rational mode  
Rev. B | Page 39 of 44  
AD9578  
Data Sheet  
Bits  
Bit Name  
Description  
PLL1 Modulus  
Value[15:6]  
The first 10 bits of the 16-bit modulus value. When the 16-bit binary value is 0, the PLL1 Fractional Feedback  
Divider[27:0] value is interpreted as a 28-bit fixed point value. When PLL1 Modulus Value[15:0] is nonzero, and  
the rational mode bit is set, the feedback divider ratio is calculated by a complicated expression (see Tabl e 26). In  
the simplest case, S[1:0] is set to 3 (no phase interpolation), and the feedback divider expression is PLL1  
Fractional Feedback Divider[24:9] + (PLL1 Feedback Divider[24:9]/modulus), generating a feedback divider that  
is an exact ratio of integers. Note that having a numerator that is larger than the denominator is an invalid  
configuration. Also, note that the lower six bits of the modulus value are shared with the lowest six bits of PLL1  
Feedback Divider[27:0], which are not otherwise used in rational mode.  
9:0  
PLL2 CONFIGURATION (REGISTER 8, ADDRESS 0x08)  
Table 40. PLL2 Configuration  
Bits  
Bit Name  
Description  
PLL2 Integer  
Feedback  
Divider[7:0]  
PLL2 integer feedback divider. This is a fixed point value that contains the integer portion of the feedback  
divider. The smallest allowable value of the PLL1 feedback divider is 23.  
39:32  
PLL2 Fractional  
Feedback  
Divider[27:6]  
PLL2 fractional feedback divider, Bits[27:6]. If PLL2 is in fractional mode, all 28 bits in the PLL2 fractional  
feedback divider are used. If PLL1 is in integer mode, the first three bits in this register can be used either for  
phase interpolation or for MASH modulation, according to the value of S[1:0]. In fractional mode at full phase  
interpolation, the fractional part of the PLL1 feedback divider is 28 bits, for a resolution of 1/(228), or 3.7 × 10−9  
or approximately 4 ppb.  
31:10  
9:4  
3
,
PLL2 Fractional  
Feedback  
Divider[5:0],  
PLL2 Modulus  
Value[5:0]  
In fractional mode, this register contains Bits[5:0] of the PLL2 fractional feedback divider. In rational mode, this  
register contains Bits[5:0] of the PLL2 modulus value. This register is not used in integer mode; do not set the  
bits in this register to 0 in integer mode.  
This bit controls the power supplies to the charge pump and phase frequency detector. Keep this bit set to 1,  
the default setting. These subsystems are automatically disabled whenever the corresponding PLL is powered  
ENPFD  
down via the  
pin.  
PD1  
This bit controls the power supplies to the VCO. Keep this bit set to 1, the default setting. This subsystem is  
automatically disabled whenever the corresponding PLL is powered down via the pin.  
2
1
0
VCO PU  
PD1  
This bit controls the power supplies to the feedback divider. Keep this bit set to 1, the default setting. This  
Feedback divider  
PU  
subsystem is automatically disabled whenever the corresponding PLL is powered down via the  
pin.  
PD1  
PLL2 lock IRQ  
(SDO changes to  
IRQ)  
This bit sets the function of the SDO/LOL pin.  
0 (default): the SDO/LOL pin function is serial data output (SDO).  
1: the SDO/LOL pin function is IRQ, which is used as a loss of lock (LOL) indicator.  
PLL2 CONFIGURATION (REGISTER 9, ADDRESS 0x09)  
Table 41. PLL2 Configuration  
Bits  
Bit Name  
Description  
Order of dither generation. When PLL2 Dither[2:0] is 0, there is no dithering. All nonzero values create dither of  
the value stored in PLL2 Dither[2:0]. Dither is a noise shaped random value that is added to the divider fractional  
value at each calculation of the modulation, which helps to disperse harmonic spurs resulting from short  
modulation sequences. The time average value of dither is always zero, so that the use of dither does not change  
the divider value. The use of dither is highly dependent upon the choice of value for Dither Scale[4:0]. For normal  
operation, always set PLL2 Dither[2:0] to zero when PLL2 MASH[2:0] is zero. The largest usable value of PLL2  
Dither[2:0] is 5. Typically, the value of PLL2 Dither[2:0] is set equal to the value of PLL2 MASH[2:0].  
39:37 PLL2 Dither[2:0]  
Dither  
Scale[4:0]  
Dither scale. The dither scale, in bits. The dither value is a signed value of one to five bits in length, depending on  
the value chosen for PLL2 Dither[2:0]. To be effective, this value must be scaled up until the amount of dither is  
equal to 1/2 LSB of the divider value. The proper dither scale value for the dither is therefore equal to the  
number of zeros following the last bit set to 1 in the feedback divider value. Because the dither is a signed value,  
Dither Scale[4:0] must always be larger than the PLL2 Dither[2:0] setting.  
36:32  
Rev. B | Page 40 of 44  
Data Sheet  
AD9578  
Bits  
Bit Name  
Description  
The order of MASH modulation. When PLL2 MASH[2:0] = 0, there is no modulation. Any fractional value given to  
the feedback divider that is at a finer resolution than the phase interpolation, S[1:0], results in an inaccurate  
output frequency. For all nonzero values of PLL2 MASH[2:0], modulation is used unless the feedback divider does  
not require modulation to be represented exactly (for example, if the feedback divider is an integer number).  
Modulation means that the feedback divider alternates between floor(PLL2 Fractional Feedback Divider[27:0])  
and ceiling(PLL2 Fractional Feedback Divider[27:0]) according to a pattern whose time averaged value is PLL2  
Fractional Feedback Divider[27:0]. When PLL2 MASH[2:0] = 1, first-order modulation is used. First-order  
modulation typically has large noise spurs due to the short length of the modulation patterns. Noise decreases  
as a function of PLL2 MASH[2:0], although for values of PLL2 MASH[2:0] greater than 2, this effect may not be  
measurable. The largest usable value of PLL2 MASH[2:0] is 4.  
31:29 PLL2 MASH[2:0]  
PLL2 Frequency This 5-bit value sets the frequency range of the VCO. Smaller values correspond to higher frequency. The  
28:24  
23  
Select[4:0]  
evaluation software sets the optimal value; therefore, the user does not normally need to change this register.  
Tabl e 27 contains the frequency ranges for each register setting. Note that the PLL2 KVCO band bit in  
Register 0x0E must be set to 1 for PPL2 Frequency Select[4:0] = 14 through 27 (decimal).  
Power-on  
override  
When set to 1, this bit, one for each PLL, disables the simultaneous synchronization pulses sent to PLL1 and PLL2  
during the power-up cycle. Otherwise, both PLL outputs are synchronized at startup.  
The order of phase interpolation. When S[1:0] = 0, a fractional divider is interpolated among eight phases;  
therefore, values down to 1/8 can be represented exactly, without modulation. When S[1:0] = 1, the value is  
interpolated among four phases. When S[1:0] = 2, the value is interpolated between two phases, and when S[1:0]  
= 3, there is no phase interpolation. For example, the feedback divider of 64.5 can be represented either by PLL2  
MASH[2:0] = 0, S[1:0] = 2; or by PLL2 MASH[2:0] = 1, S[1:0] = 3. In both cases, the output frequency is the same.  
However, the phase noise characteristics of the two representations differ. The use of phase interpolation allows  
up to three bits greater precision in the feedback divider. A consequence of reducing the phase interpolation is  
the loss of bits at the end of PLL2 Fractional Feedback Divider[27:0]. For example, when S[1:0] = 2, the last bit of  
PLL2 Fractional Feedback Divider[27:0] is ignored.  
22:21 S[1:0]  
Each PLL has a current trim for the charge pump, with the current given by the equation (3.125 × (1 + CUR)) μA,  
for a minimum currentof 3.125 μAat CUR[4:0] = 0, and a maximum current of 100 μAat CUR[4:0] = 31.  
20:16 CUR[4:0]  
PLL2 phase  
advance  
This bit, one for each PLL, is an active control that shifts the output of the VCO forward one of eight phases (1/8  
cycle). This phase shift happens regardless of the S[1:0] setting for the PLL. The phase advance is edge triggered;  
therefore, no further phase advancement occurs until this bit is set back to 0 and raised again. This feature can  
be used to precisely align the phases of the two PLLs.  
15  
Reset feedback  
divider  
This bit resets the feedback divider. Set and clear this bit if the order of the MASH is changed or if the feedback  
divider in Register 8 is changed.  
14  
13  
OUTPUT3_4  
reset  
This bit resets the OUTPUT3 and OUTPUT4 output driver. This bit is normally set to 0, although it can be set and  
cleared to reset the OUTPUT3 and OUTPUT4 output drivers.  
12  
11  
Force reset  
This active signal forces a reset cycle that generates synchronization pulses for the outputs of each PLL.  
This bit is similar to the advance bit but shifts the output of the VCO backward one of eight phases.  
PLL2 phase  
retard  
This bit sets the rational mode, the use of which is described in detail in the PLLs section. In rational mode, the  
feedback divider fractional part is a ratio of integers, with the numerator encoded in PLL2 Fractional Feedback  
Divider[24:9] in Register 8and the denominator encoded in PLL2 Modulus Value[15:6] of this register.  
10  
Rational mode  
PLL2 Modulus  
Value[15:6]  
The first 10 bits of the 16-bit modulus value. When the 16-bit binary value is 0, the PLL1 Fractional Feedback  
Divider[27:0] value is interpreted as a 28-bit fixed point value. When PLL1 Modulus Value[15:0] is nonzero, and  
the rational mode bit is set, the feedback divider ratio is calculated by a complicated expression (seeTabl e 26 ). In  
the simplest case, S[1:0] is set to 3 (no phase interpolation), and the feedback divider expression is PLL1  
Fractional Feedback Divider[24:9] + (PLL1 Feedback Divider[24:9]/modulus), generating a feedback divider that  
is an exact ratio of integers. Note that having a numerator that is larger than the denominator is an invalid  
configuration. Also, note that the lower six bits of the modulus value are shared with the lowest six bits of PLL1  
Feedback Divider[27:0], which are not otherwise used in rational mode.  
9:0  
Rev. B | Page 41 of 44  
AD9578  
Data Sheet  
XTAL2 CONFIGURATION (REGISTER 10, ADDRESS0x0A)  
Table 42. XTAL2 Configuration  
Bits  
Bit Name  
Description  
This is an additional gain trim bit for the second crystal oscillator. XTA L2 frequency trim = 1 is  
recommended for optimal performance with crystal frequencies ≤33 MHz. See Tabl e 25.  
15  
XTAL2 frequency trim  
XTAL1 Capacitance  
Value[2:0]  
These register bits control the amount of internal load capacitance on the XO3 and XO4 pins. The correct  
setting can be determined using the following equation: 2 × (CLOAD − CSTR AY ) where CLOAD is the specified  
load capacitance of the crystal used, and CSTR AY is the stray capacitance (usually 2 pF to 5 pF) on the circuit  
board.  
14:12  
XTAL 2 Capacitance  
Value[2:0]  
CLOAD of Crystal  
(pF)  
Recommended Internal Capacitance on XO3/XO4 Pins  
(Assuming 3 pF Stray Capacitance) (pF)  
000  
001  
010  
011  
100  
101  
110  
111  
8
10  
12  
14  
16  
18  
20  
22  
24  
9
10  
11  
12  
13  
14  
15  
XTA L2 Capacitance  
Value[2:0]  
These register bits are identical to the ones in Register 3, except that they apply to XTAL2, which is  
connected to the XO3 and XO4 pins.  
14:12  
11:9  
8
These are gain trim bits for the second crystal oscillator. Optimal performance is achieved when the gain is  
programmed according to the ESR of the crystal. See Tabl e 25.  
XTA L2 Gain[2:0]  
Enable XTA L2  
Reserved  
Setting the enable XTAL2 bit and the REFSELx bit allows the second crystal oscillator to be used as the PLLx  
reference.  
7:0  
Reserved. Set to 0.  
RESERVED (REGISTER 11, ADDRESS 0x0B)  
Table 43. Reserved  
Bits  
Bit Name  
Description  
31:0  
Reserved  
Factory configured; do not change.  
PLL1 KVCO BAND (REGISTER 12, ADDRESS 0x0C)  
Table 44. PLL1 KVCO Band  
Bits Bit Name  
Description  
PLL1 KVCO  
band  
KVCO band for PLL1. When changing the PLL1 KVCO band bit, it is best to first read the entire register and then write  
the same values for other bits in this register.  
31  
0 (default): set to 0 if PLL1 Frequency Select[4:0] (Register 7, Bits[28:24]) is between 0 and 13.  
1: set to 1 if PLL1 Frequency Select[4:0] (Register 7, Bits[28:24]) is between 14 and 27.  
Factory configured; do not change. Default: varies.  
30:0 Reserved  
RESERVED (REGISTER 13, ADDRESS 0x0D)  
Table 45. Reserved  
Bits  
Bit Name  
Description  
31:0  
Reserved  
Factory configured; do not change.  
Rev. B | Page 42 of 44  
Data Sheet  
AD9578  
PLL2 KVCO BAND (REGISTER 14, ADDRESS 0x0E)  
Table 46. PLL2 KVCO Band  
Bits  
Bit Name  
Description  
PLL2 KVCO  
band  
KVCO band for PLL2. When changing the PLL2 KVCO band bit, it is best to first read the entire register and then write the  
same values for other bits in this register.  
31  
0 (default): set to 0 if PLL2 Frequency Select[4:0] (Register 9, Bits[28:24]) is between 0 and 13.  
1: set to 1 if PLL2 Frequency Select[4:0] (Register 9, Bits[28:24]) is between 14 and 27.  
Factory configured; do not change. Default: varies.  
30:0  
Reserved  
PLL LOCK DETECT (REGISTER 15, ADDRESS 0x0F)  
Table 47. PLL Lock Detect (Read Only)  
Bits  
Bit Name  
Description  
23  
PLL2 lock detect  
PLL2 lock detect.  
0: PLL2 is not locked, possibly indicating the absence of an input reference, or that the PLL is  
misconfigured.  
1: PLL2 is locked.  
22  
21  
Reserved  
PLL1 lock detect  
PLL1 lock detect.  
0: PLL1 is not locked, possibly indicating the absence of an input reference, or that the PLL is  
misconfigured.  
1: PLL1 is locked.  
20:19 Reserved  
Set to 00b.  
Revision  
Subcode[1:0]  
18:17  
This 2-bit value gives the mask variant of the AD9578. Default: 01b  
6
Reserved  
Unused  
Default: 0x00  
Set to 0.  
15:0  
Rev. B | Page 43 of 44  
AD9578  
Data Sheet  
OUTLINE DIMENSIONS  
7.10  
0.30  
0.25  
0.18  
7.00 SQ  
6.90  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
37  
36  
48  
1
0.50  
BSC  
5.70  
EXPOSED  
PAD  
5.60 SQ  
5.50  
24  
13  
0.50  
0.40  
0.30  
0.20 MIN  
BOTTOM VIEW  
5.50 REF  
TOP VIEW  
END VIEW  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.203 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WKKD-4.  
Figure 36. 48-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
7 mm × 7 mm Body, Very Very Thin Quad  
(CP-48-13)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
AD9578BCPZ  
−25°C to +85°C  
−25°C to +85°C  
−25°C to +85°C  
48-Lead LFCSP_VQ Tube  
48-Lead LFCSP_VQ Tape and Reel  
Evaluation Board  
CP-48-13  
CP-48-13  
CP-48-13  
AD9578BCPZ-REEL7  
AD9578/PCBZ  
1 Z = RoHS Compliant Part.  
©2014–2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D11356-0-1/17(B)  
Rev. B | Page 44 of 44  

相关型号:

AD9578BCPZ

Dual PLL Precision Synthesizer
ADI

AD9578BCPZ-REEL7

Dual PLL Precision Synthesizer
ADI

AD95S08KAC

THYRISTOR MODULE|DOUBLER|HALF-CNTLD|POSITIVE|15V V(RRM)|95A I(T)
ETC

AD95S08KAF

THYRISTOR MODULE|DOUBLER|HALF-CNTLD|POSITIVE|15V V(RRM)|95A I(T)
ETC

AD95S08KBC

THYRISTOR MODULE|DOUBLER|HALF-CNTLD|POSITIVE|15V V(RRM)|95A I(T)
ETC

AD95S08KBF

THYRISTOR MODULE|DOUBLER|HALF-CNTLD|POSITIVE|15V V(RRM)|95A I(T)
ETC

AD95S08KCC

THYRISTOR MODULE|DOUBLER|HALF-CNTLD|POSITIVE|15V V(RRM)|95A I(T)
ETC

AD95S08KCF

THYRISTOR MODULE|DOUBLER|HALF-CNTLD|POSITIVE|15V V(RRM)|95A I(T)
ETC

AD95S08KDC

THYRISTOR MODULE|DOUBLER|HALF-CNTLD|POSITIVE|15V V(RRM)|95A I(T)
ETC

AD95S08KDF

THYRISTOR MODULE|DOUBLER|HALF-CNTLD|POSITIVE|15V V(RRM)|95A I(T)
ETC

AD95S10KAC

THYRISTOR MODULE|DOUBLER|HALF-CNTLD|POSITIVE|15V V(RRM)|95A I(T)
ETC

AD95S10KAF

THYRISTOR MODULE|DOUBLER|HALF-CNTLD|POSITIVE|15V V(RRM)|95A I(T)
ETC